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1 Introduction to Rf signals

1.1 Main features

Fundamental condition:
Standard Representation:
In phase / In quadrature:
Exponentional form:

Phasor Notation:

1.2 Power Transfer

With a specified line of transmission

Power of the source (S):

Power to the load (L):

Available power:
Matching condition:
Gain

General definition:

Transducer Power Gain:

Available Power Gain:

Relationship between gain definitions:

Cascade of 2-port:

If port interfaces are matched:

L

Jo

srr(t) = Var cos(wot + ¢(t))

srr(t) = Vi(t) cos(wot) £ Vo (t) sin(wot)
SRF(t) = Re{VM(t)ej¢(t)ejwot}

Ve =V (t)el®® = Vi(t) + jVo(t)

1
Pm = iRe(vgis*)
1 .
P = _iRe(ULZL )

1P
8 Re(Zs)

ZL:ZS*épL:Pa,U

=
P Z ?
GT _ out —4 R@( s) Vout
Pav,in Re(ZL) ‘/z
Pav,out R@ZS Vout 2

= Dot 5 |V

Pa'u,in B Re(Zout>

Gr < Ga (or Gp)

Gp =Gp1GpaGp3...Gpy
Ga=Ga1Ga2Gaz...Gayn

GT = GTlGTQGT3 s G(T'rL



1.3 Noise Generation
Bandwidth:

Noise Power:

With a 2-ports device?

Noiseless port:
Noise Power of the device:

Noisy port:

Attenuator

Attenutation:

Equal temperature:

Noise Figure (of a 2-port)

Definition 1:

Definition 2:

Definition 3:

Cascade of 2-ports:

Mizer

AF

Py = KTAF

Pav,out = GavPav,in = GavPN =
G KTAF
Pp = KT,yAFG,,

Pav,out =GuwPNn+Pp = GavKTAF+

Pp
1
A= —
Gr
Teg = (A—1)To
NF — Output Noise Power
~ Output NP for noiseless ideal model
T.
NF=1++
+ T
(S/N)out
NFy—1 NF;—1
NFypp = NFy + —2 3

+
Gav 1 Gavl Gav2

e The frequency of the input is different from the output frequency. Exploiting a local oscillator (usually
sinusoidal) the mixer can change the frequency of the carrier

Down conversion  fryout < fry

Up conversion frfout > fry

e There are two channels: RF and Image Frequency. Both theese channels count to the overall noise of the
device. This model is called DSB. The alternative is known as SSB, because only one contribution

atually matters.

e Remember that Mixers are passive devices, hence they introduce attenutation, not gain!

DSB:

SSB:

NF:

I AC
Tpsp = To (? -1)
A,
Tssp = 21p (7 -1)
(SN _,y  Toso
(S/N)out TO



2 Antennas and Link equation

2.1 Directional properties

Radiation intensity: U8, ¢)
. . Prad
R.I. for isotropic antennas: U= 1
™
dPr, 1 _ 1

Power density: Sr = de = QRG{EIH*} = EU(G’ ®)

N . U, p) Radiation
Directivity Gain: D(6 = =

frectivity Ll (0,¢) Proq/4m  Isotropic Radiation

U 6maw7 max
Maximum of D: Doz = (Pmd/ir)
D(6
Directivity function: f(0,0) = D( %)
max
Direction of maximum propagation: fll,0)=1
2.2 Transmitting Antenna
Avilable power for the antenna: Pr
. RG{ZR}
Effi factor: ==
ciency factor Re(Z.} + Ry

Radiated power/Electrical power: Prgq = nPr
Power Density: Sr = Prad Doz f(0,0)

W y: R — ArR? max y P
Gain: G= anaz

Pr P

Power Density 2: Sk = o NDmaz (0, 0) = 47T1T%2 Gf(0,¢)
ERP - effective radiated power: FERP = PrG

2
Beamwidth (for a dish antenna): A6 =20 = 2cos™! (1 - >

Fields intensity: Sk

Dmaz
1 r 1 Zy,
3Bl = 5T P

Evaluation of Gain by means of the directivity function

{Suppose that X' is a hemisphere}
Radiated Power:

Infinitesimal element of the sur-
face:

Hence we obtain:

Prad = / SR(R,H,QO) dZ =
)

7adDmaL
C 4nR? // 1(0

dX¥ = R?sin(#)dfdy

47

G
Dma:r = =

[fs fO.0)az—

)



2.3 Receiving Antenna
Received Power: Pr = SrA:q(0, )

. . G 4
Effective Area/Gain: I‘Te =3z

1
Effective Area (dish antenna, fixed Ae:eazmp
area):

2.4 Noise at the antenna output/Link Budget

Friis equation: Pr = SrA.9(0,0))
\\2
Friis equation 2: Pr=Pr-G¢- f(0,¢) G, () 9(0, )
4rR
System SNR: SNRyy = —27
ystem H SYs — K Tsys B

Remember that B is the signal band and Tsys is the equivalent temperature of the system. Now, the Friis
equation under condition of optimal direction of propagation leads to the following expression:

PG: [ N\’ G P 1 /G
System SNR: SNBuys = o5 (47TR> T = ?;Pﬁ (T: )
sYs sYs

Data Rate Limits
Shannon’s theorem - max data R, = C = Blogy(1+ SNR)

rate:
. Ey energy per unit
Bit Error Rate: BER = — = - -
No  noise spectral density
Time to receiving one bit: Ty =+
. Ey
Received Power: Pr = T =R
b
) Ey\ /R 1 1 /Ggr
Since System SNR... SNRsys = (m) (§> = PERPffﬁ (Tsys>
Peprp 1 (Gr
Hence... Rate: R= ( )
Eb/NO KLf Tsys
Roll-off coefficient: «
M-QAM modulation: __n (1+a)
' ~ logy M
Ey rloga M
System SNR: SNRuys = - )
ystem y M\ T1a
1
Satellite Link - System SNR: SNRgys = S S —



3 Characterization of non-linearity in RF systems

2-port memoryless network I/0

(ideal model: no active devices):

"Many tones" signal (example):

Numbero of tones:

Power of each tone:
Average Power (signal):

Peak Power (signal):

Peak Factor (of the signal):

Peak Envelope Power:

RF Power

_ 2 3
Vout = Ao + A1Vin + Q205 + a3y, ...

V = Acos(wot) + A cos(wat) + Acos(wst) + ...

N

PTOC7

Pay (or P) = NPp =N KA?

Pp=K(NA)?=N2Pp

o br
Pyv

1
PEP = Imaz(V.,)|?

X
X
X
X
—

—P(t) = Instantaneous power
—Pe(t) = Envelope power
PEP = Peak envelope power

—PBAvg = Burst average power
—Pavg = Average power

Burst
/ pulse width

Pulse

Repetition Interval (PRI)

Ti me'

Figure 1: Peak and Average Measurements of a Pulse Modulated Signal

RF Power

\\ / -.‘\\ —Pavg
| “\ // PEP
—P(1) ‘ \_/
—Pe(t)
J —Pavg
PEP
Time

Figure 2: Another Example of Instantaneous vs. Peak vs. Average Powers



The "1dB compression Power" gauges the power of the signal after the effect of distortion. This compression
is caused by the non-linearity of the device. More precisely, if we were to write down the explicit expansion of
the generic I/0O relationship considered by the professor, we would observe that the coefficient of the first term
changes with respect to the linear regime.

The easiest way to represent a RF signal is a 2-tones signal. However with more tones at the input occurs the
problem of intermodulation: all the combinations of the main frequencies appears at the output. Every
combination has a order:

General combination: nwy & mws

Order of the combination: n-+m

We want to filter the signal in order to cancel out the undesidered contributions produced by the distorsion.
However, if we approzimate the system at the third order, we would observe that two combinations are too
close to the main frequencies to be neglected by the filtering. These two frequencies are 2wy — w9 and

2wy — wy. Now, plotting the output power of the main frequencies and of the third order components, under
linear approximation, we observe that the two lines met at some point. This point is called Third Order
Intercept Point.

To summarize:

s
/
oPjp———————————— e Intercept
; ///\ point, IP;
/

OPIdB - _______ld_

c ompression

Py (dBm)
I

{Consider the following equations expressed in decibel}

Relation between power values: Poyy—w, =3P, —2IP;
Average power of the main fequencies: P,=PF, +3

Average power of the intermodulation 3rd order components: Pint = Powy—wy +3
Carrier-to-intermodulation ratio: Clipm ~2IP; — 2P, +6



Specifying the output power of a PA for a 2-tones signal

2
PEP =N PT,monotone = 4PT,monotone ~ 2Pm,2tones

Hence (in dB):
PEP = Pm,2tones +3

and
CI =2IP; —2(PEP —3)+6
Eventually:
IP3 = Pigp + Ap
Where A, = 10.
I
Backoff: BO = or Ap—3
2
PEP
Peak factor (different peak power) 2: F = -5 = N
. . . o PRFsignal,load - PRFsignal,input
Power conversion efficiency: PAFE =100 x
DCpower
P,
Adjacent Channel Power Ratio: inf = PL“t
. . . . PGT’T‘OT
Degradation of digital signal powers: EV M (%) =100 x .
reference

Mixer: parameters referred to the input - Pro is typically above Pyg
P;1ap = Piap — GaB

IIPy = Ps — Ggp

G4p is the linear gain expressed in decibel



4 Receiver Architecture

4.1 Theory introduction

Suppose to have the most generic scheme possible. We recognise three parts: the front-end, the intermediate
frequency and the passband.

In the RF front-end we find the receiving antenna (usually a dish type one), the first microwave filter (to
cancel the image band), the power amplifier (that’s usually a LNA, "low noise amplifier"), the second microwave
filter (to cancel the noise of the amplifier, absent in presence of LNA) and the Mixer (which is connected to a
local oscillator, used to tune the signal at the right frequency). We must point out that ...

The local oscillator spectrum should be a straight line, but the phase fluctuactions leads to a broadening of the
spectrum that affects the SN Ry,.

The LNA has a double benefit: it amplifies the signal and decrease the noise (see Equivalent model)

Actually, the tuning operation that makes possible the frequency conversion presents a difficult choice. Imaging
the spectrum, we can easily understand that while an high IF provides high performances even with a simple
image filter (thanks to the high level of rejection), low IF are easier to achieve, work at low frequency and most
of all keep the cost low (on the other hand the channel bandwidth is limited).

For this reason the Double Conversion Receivers were designed: in the scheme there are two mixers, one high
IF and one low IF. The first one filters out the image band (fixed IF), meanwhile the other one complete the
conversion at the right intermediate frequency (variable IF). Nowadays we have also Image Reject Mixers, de-
vices that can handle the problem of the image band without involving an expensive filter instead.

[Another possible design| Direct Conversion receiver: there are not IF filters. The complexity is minimized, it’s
easier to achieve but it’s more susceptible to noise and distorsion.

4.2 Some parameters

Analog Receiver

Sensitivity: S
SNR minimum: SNR = 5
' - KT.,B
Digital Receiver
Sensitivity: S < FE
E,
SNR: Do propagate Fb back to the input
0
Dynamic Range, minimum: S
. . . 2
DR, maximum (a possible defini- DRyp = g(IIP&dBm +3—SaBm)
tion):
) 1 \2 1 2 Grna 2
Overall IP at the input of LNA: (7) :( ) ( )
vera. a e input o 1P TIPy na + TIP; miver
+
Spurious responses: frr = M m,n=1,2,3...
m

When the sensitivity, DR (or Ppa) and the ratio R over B (bit rate over passband) are assigned:

10



E
Receiver Budget Analysis: SNR = ﬁ - FZ%

4.3 FEvaluation of the receiver noise

RECEIVER .
Intermediate frequency +
Front-end RF Demodulation
A L
IN Iy IF ouT
(RF) = 41GR/F DEM (BB)
T T
F Tre SSB G Ty
TSSB

Tre
T, Ao

TRF

e 1st: the total noise at the output:

T 1 TrrG
Tout = { {(l + TRF)GRF + TSSB} — 4 BRETRE TIF}GIF

Af LC LC

e 2nd: the noise at the output is propagated back to the input:

LcAf

Trec = Towt5—=—
e *GrrGrr

e 3rd: every contribution is made explicit

Af(Tssp + L:Trr)

Trec =Tr +2A;Trr +
Grr

11



5 Transmitter and Feedforwrding

5.1 Theory introduction

In the generic scheme of a transmitter we start with a local oscillator, followed by a modulator. The first one
provides the carrier signal. It must be frequency stable, since the quality of the signal at the receiver depends
also on the degradation introduced by its phase noise. Next, the modulator introduces the information. In
the case of digital signal the modulator combine the I- and Q-components ( "In phase" and "Quadrature") to
modulate both the amplitude and the phase of the RF signal.

Then there are a filter, a power amplifier and the transmitting antenna at the end.

For what concerns the non-lineariy of the the transmitter, the amplified signals presents obviously some kind
of distortion and there will be also spurious components affecting adjacent channels. The parameters used to
gauge the livel of distortion are, for istance, the BER, the ACPR and the EVM. Note that signal with a constant
envelope can tolerate more distortion than signal with both phase and amplitude variation. However, since the
constant envelope signal don’t have a high spectral efficiency, they are replaced with more efficient modulation
schemes, which presents an envelope variation. This substitution leads to the importance of designing linearizers,
especially when we want to amplify more channels.

5.2 Feedforward

VM ll lvfp 1

Vector | Coupler : Coupler3 'V,
—| Modulator PA i @ !
(A, Dy) | ik \”_y N I

(a3} (C3)

k.

in | Power
E—

divider Attenuator

y (C2)

g PR Wesiar
Eam—— 7 — Modulator >
Coupler 2 (A, D)

VMEI T Vaz

Note: The Vector modulators are needed for the fine tuning of the loops
balancing (they also allow a dynamical control of the loops balancing)

e Mathematical model of the vector modulators:

Vour = K Vo [(1 + %) +j(1 + %)} Vip = Ae??V,
e Mathematical model of the coupler:
Veoup = VVin Vour = —jBVin 7B
lossless condition: v 4p2=1 (first approxiamtion)

I/0 relationship:  Vyur = yVe — jBV; and Ve o< —Veoup

1 oo

e Delay lines: 74 = 278]”
7T

12



Analysis

1st hp: lossless condition (ideally 8~ 1)
2nd hp: amplifying with 0 delays associated
3rd hp: we refer to amplitude

We must derive the loop equations from the scheme of the circuit.
Balance condition of the error loop:

—As+GuC1 — A1 —Co=—-Ac = Gu=(A; —A) +C1 + A1 + Cs
Balance condition of the signal loop:
—-O1—-—A1—-Cy+Gg—C3=0=>Gg=C1+A1 +Cy+ Cs
No ideal error amplifier (EA):

Suppose to test the linearizer with a two-tones signal. Now, the error amplifier introduces distortion.
Therefore, at the output, two more components appear in the spectrum.

Distortion cancellation condition: Pp —Cs=Pyup
PA Carrier-to-intermodulation: Cly =Py — Pup
EA Carrier-to-intermodulation: Clgp =Pr—Pgp

:>CIE+PE’D—03:PM—CIM

= Cly +Clg = Py — (PE,D 703)

Finally, looking at the output spectrum, we can derive the expression to compute the "total"
Carrier-to-intermodulation of the FeedForward:

CIffvinf:PMf(PE7chg):CIM+CIE [dB]

Unbalanced loop:
A missmatch error of the loop amplitude §A and/or phase §¢ determines a reduction of the distortion
suppression.

@
Amplitude: B=10 20

Phase: el

Reduction of distortion suppression:

V.
S = —2010g(‘v6
rif

) = —10log(1 + B* — 2B cos(d¢))

Note: the use of S is trivial, take a look to the exerscises. However, to better understand its conceptual
meaning, we can consider S1 the reduction of distortion suppression measured at the output of the first loop,
that is, the output of C2. It represents a fraction of the reference signal that is added to the distorsion
entering the second loop.

In other words: ideally at the output of the error loop we would have two components related to the distortion
introduced by the first power amplifier (in the upper path). But, in the case of an unbalanced loop, the
merging made by the second coupler don’t cancel totally the signal power and some residual enters in the

13



second loop (called unsuppresed for obvious reasons). S is the value of difference between the signal power
and these possible residuals (not sure).

Feedfoorward efficiency

Main Amplifier: efficiency a7, Ouput Power Py, CI ratio C'Iy,
Error Amlifier: efficiency n,s, Output Power Pg
Output Couplee: coupling C5, Through-path coupling Lj

In natural units:

Now,

far = 10710 13 =107, ¢5=10710"
the efficiency is:
nunePu(l —c3) nunePu(l — c3)

= nar Par + 1iar farls 22  nees +nafu8l —cs

6 Useful observations

From the exercises

Do keep in mind that the noise introduced by the devices doesn’t depend on the power signal. Thus, once
that Tyevice has been computed, it doesn’t change in the following. On the other hand SNR depends on
the power signal, so it changes with respect to the point that we are considering.

We can calculate the SNR in every point of a system with the overall equivalent temperature referred to

the input. The parameter T,, sums up all the contributions in one single value associated to the input.

AN
The attenutation L, in decibel, is computed as 10109(7) , where R is the distance between the
antennas.

Since the mixer converts both the signal frequency and the image one, there are two channels which means
two power values. Both of them are amplified by the LNA. Note that this situation could be avoided if
there was a filter cancelling the image band (7).

If the mean power of intermodulation at some point is imposed equal to system noise power:

Pm,r
Pint

Py = KT.yB = SNR =

Hence:
SNRdB = Pm,T'eceived,dBm — Lynt,dBm — cI

(Computation of Dynq.) If it is not differently specified, the range of 6 is [0; 7], while ¢ varies between 0
and 27

(Computation of T,,) The image band noise equivalent temperature must be considered when the front
end involves at east an amplifier and a mixer in that order. Normally the image band is amplified by the
LNA and converted by the MIXER, but if there is a filter in between we can assume that the image band
is erased by the filtering.

The half power beamwidht, known with the symbol 0345, is defined as two times the diffrence between
Omaz and the direction 6 along which the power is a half (-3dB).

14



7 Trasmission Lines

7.1 Basic Concepts

Wave function: vt (z) = (Vpedwot)e=7?
Phasor of the voltage: Vpedwot
Propagation constant: y=a+jp
Attenuation coefficient: @
27w
Phase constant: f=—=—
)\0 14
e L
Characteristic impedance: Z. = c
Useful relationshi 1R+1GZ B VvLC l 1
seful relationship: a=-—+-GZ., =w , vel = —
P 27, 2 VLC
Therefore: 1
c=y0 vk

7.2 Voltage, currents, reflection coefficient

Voltage along the line: V(z) =0t (2) + v (2) = Ve 797 + V; etihz
Current along the line: I(z) =it (2) +i~(2) = If e 9P% 4+ I, etibB=
Vi Ve

Characteristic impedance Z,= — = ———
’ T L

Reflection Coefficient:

_ Refleced wave 7, — Z. Vy etihz Vo ijose
Incident wave  Zp 4+ Z. Ve ifz Vb

I'(z)

, 2
= Tgeti?8z = 1, exp(jQ%z)

e the magnitude is constant and always less than 1 if there is a passive load;
e the phase is periodic, period = A/2.

Now, the previous expressions are written using the reflection coefficient:

Voltage: V(z) =VT(2)[14+T(2)]
Voltage Magnitude: [V (2)| = [V5T||(1 + Deti2hz)]
Maximum: — 14 |Ty|

Minimum: — 1 —1T|

Voltage Standing Wave Ratio: VSWR = “imar

VSWR = 0: Perfectly mazzged

VSWR = oc: Totally missmatched

15



T
Impedance (normalized): 2(z) _1+1()

Zo B 1 - F(Z)
. _ (Z(2)]Z:) -1 Z(2) — Z.
Inverting the latter relation: ['(2) = -
nverting the latter relation (2) (Z(2))Z.)+1  Z(2)+ Z.
Impedance (function of the load): Zin = I, =Zc Zf -:_jsz tzzggL;

Note that L is the distance from the load. Indeed, probably, the reference system is the most important thing
to point out, start with defining which point corresponds to z=0.

7.3 Stubs to modelize circuit components

These particular trasmission lines are used to obtain inductive and capacitative devices. We aproximate
inductors with short circuit stubs and capacitors with open circuit stubs.
It’s imposed that d < A/4

Xinductor _ UJOL

Inductor replacing stub: = N
nductor replacing stu tan (fod)  tan (22d)

. . Bca acitor LU()C
Capacitor replacing stub: Y. = P =
P pracine tan (Bod)  tan (22d)

7.4 Summary of some T.L parameteres and Smith Chart

SUMMARY
Cut-off: fe
. c 1
Phase velocity: vf =
VEreff 1— (i)
fo
A

Wavelength: A= % = 0

SMITH CHART:

impedance
matched

16



We use the Smith Chart to analyze the paramaters characterizing the transmission lines. In practice we will
use a specific executable file for Windows, offered by the professor, which consists into an electronical Smith
Chart that exploits Matlab runtime.

e The Smith Chart is used to represent the complex coefficient of reflection. If the line of trasmission is
closed on a passive load, the magnitude of the reflection coefficient is less than 1, thus the vector can be
rappresented, in polar coordinate, inside a circle of unit radius. Since does exist a biunivocal relationship
between reflection coefficient and the normalized impedance/admittance seen at the interface, the
coordinate of the reflecion coefficient corresponds to the real and imaginary part of the impedance
(admittance).

e The normalization consists into dividing the real values of the loads, stubs, capacitors or inductors by
the reference characteristic value of the transmission line, e.g. Z,orm = Zioad/Zip.;

e The picture above shows the real and imaginary parts of specific complex values of z. However it’s
possible to draw also some admittances values, but their "circles" are reflected, i.e. the position of short
circuit and open circuit are reversed:

Remind that: Y =g+ jband Z =1+ jz.

17



USE OF THE SMITH CHART

o The reflection coefficient is a vector that has origin in the center of the Smith Chart. The magnitude of
this vector is:

IT| = \/Re{T'}2 + Im{T}2

e However, in general, we write this coefficient as a function of the spatial coordinate z that represent the
distance from a reference interface: 4
I'(z) = Frefeiﬂzﬂ

e The picture below shows a simple line of trasmission and two different computation to obtain the
reflection coefficient in the middle:

L

Y
A

°
L r r. Bz
° f
| T b - o e >
X:’ Asse X
. e ;
Asse d d

[=Ty e?7 =T ¢ /204

e Particular values for I':

Values  Meaning

I'=0 Matching condition satisfied at the port
r=1 Open circuit if working with impedances, Short circuit with admittances
I'=—1 Short circuit for impedances, Open Circuit with admittances

e To understand which points correspond to the optima of the voltages, since V(z) depends on I'(z), we
must find the maximum and minimum real values of I' exploiting the Smith Chart and the right
expression for the reference considered.

¢ In presence of a series (or a parallel) of two devices we can compute the total impedance (admittance)
summing the impedances (admittances) of the devices. What happen on the Smith Chart?

It’s easy to conclude that Z;, = (r + Ry) + jX. This is known as displacement at costant reactance,
because the imaginary part of the load doesn’t change as shown in the right picture. In the case of an
imaginary device, like a capacitor or a inductor, we would observe a displacement at costant resistance.
In this latter case, the refelction coefficient would move on the same red circle.

18



¢ When we move on the trasmission line, we're rotating on the Smith Chart: referring to the reflection
coefficient, moving from the source to the load means rotating counterclockwise; viceversa moving from
the load to the source means rotating clockwise.

e Every distance on the trasmission line corresponds to an arc of circonference on the Smith Chart. The

relation is the following: d — 23d.

7.5 Matching Networks

Available Power at the source (Recall):
Conjugate Matching Condition:
1st hypothesis:

2nd hypothesis:

A/4 line - Impedance inverter

2
po 1V

8 Re(Zs)
Zin = ZF and Zoy, = Z%

The Matching Network is lossless

If conjugate matching is satisfied at one port, it’s also satisfied at
any other section

— — e . ;
. : N4 : . ; v :
e : H X L L
Rg :“—.: ) o
E : : : : ZL: RL-';F JXL
v 5 5 f o
—p ' '
o —o °

N

Equivalent load impedance:

ZQ
General relation: Tin = 2

Z
Matching condition: Zin =25 =Ry

Note that this setup works only if Z;, is a real value, because we’ve supposed real the intrinsic resistance of the

generator. Under this condition the only solution

is provided if X = —X. This result remains the same with

admittances, because the reasoning doesn’t change.

Single Stub Matching

: (A E : (B (C :
o Ca N R N
G m“imnﬁ;;i _____ __________________ B REr:Y
o . | s T
________ o— | | o | ¢
Erin : ErB : rL :

1. To satisfy the matching condition we must obtain I';, = 0. Since we’re going to use the admittances,

another way to express the matching at the
value — Y}, must be real as well.

input port is Yy = Y;;. However Y, = G, that is a real

19



2. If we suppose that the characteristic admittance of the line is Y., = G4, whhen we normalize the
paramaters we obtain what follows:

gc =1 1y =1 (match. cond.) T, =0

3. The stretch within interfaces C and B corresponds to a rotation at |I'z| = constant. We move clockwise
untill we find the interception point with the circle defined by Re(y) =1 (it’s a necessary condition
because gg = 1, real value). Therefore, measuring the arc of this displacement, we find also the actual
value of the distance d = z(C) — 2(B). We can write, in general, 'y = 1 + jbg.

4. Tf we were using admittances, at this point we should sum the susceptance bs; (Bs normalized) to the
admittance at interface B. Anyway, since we’re working with the reflection coefficient on the Smith
Chart, to obtain the matching condition requested, we must reach the center of the chart. In other
words, we move at costant conductance: g = 1 defines the circle on which we are trasforming the I'g into
I';, = 0. It’s evident that by must be b,.

Double-Stub Matching

(C) (D)

C

_ —— *— ——
: A A S S b, - WYF9Hb
_h _b': _’: _’: N N N
¢ — ? |
:' L

1. Tt’s asked to achieve the conjugate matching at the input port, the interface A. So we want I';,, = 0 and
we suppose gg = 1.

2. Let’s start observing the solving relation: y;, = 1. In general y;,, = g + j(bp + b1), thus we need
suitable values to satisty the equation gg + j(bp + 1) = 1:

=1
9B = I'p must be on the circle g =1
bp=—-b1

3. Observing the line, it’s evident that I'p is obtained through a displacement at constant magnitude on
the Smith Chart: the distance d "transforms" I into I'g. However, I'¢ is obtained with a shift on the
circle g = gy, starting from I'y,.

4. T'¢ is the key to solve this problem. As a matter of fact, it belongs to the circles ¢ = g and, after
rotation, g = 1. Hence, to find I'c we simply rotate the circle g = 1 counterclokwise (toward load) by
23d, obtaining two points of interception which are the possible solutions of this problem, for the
paramater I'c.

Notes about the choice of the stubs

In order to design the best line, the shorter is the stubs the better is the design. In other words, we need to
check if it is shorter a short circuit stub or a open circuit stub. To solve this comparison, with respect to the
parameter we're using, it’s sufficient to look at the Smith Chart. Moreover, it could be possible that the dual
stub is shorter. In this case we may have to change the design from series to parallel, or viceversa.
Remembder that stus have imaginary impedances/admittances.
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8 Matrix characterization of electrical netwroks and Microwave Cir-

cuits

8.1 Matric characaterization

Mathematical model for a n-port linear circuit:

U1 i1 N
Vo 19 Z = — impedance matrix
= I . .
) Y = = admittance matrix
Un in |4

Since v = i - z and assuming currents indipendent paramters, i.e. impressed values, we can write:

v = 21,191 + 21,292 + - + 21, NIN
Vg = 22,191 + 22,292 + -+ + 22 NIN

v3 = ZN,111 + 2Nt + o+ 2N NIN

Properties of Z and Y

o The response, or excitation, remains the same when the ports are exchanged. In other words, for a
reciprocal N-ports netwrok: z; ; = z;,;, and y; ; = y;;. Hence Z and Y are symmetric.

e Pagsivity: assuming absence of sources inside the network, the sum of the power flowing through all the
ports must be positive:
1
P = SRe(ViI{ + VI3 + -+ ViI}) > 0

e Lossless: in case of no dissipation the averall power must be equal to 0. This means, for example in
terms of impedances, that z; ; = —(z;,;)*. Moreover, i we suppose that the network is reciprocal, we
conclude that all the elements must be imaginary.

Microwave linear circuits

Zci a I'—»
L R
v,, v, Network
- @
bi
. Lo
Incident Power Wave: §|ai|
Lo
Reflected Power Wave: §|b1|
Available Power: P _ 1|a_|2 _ |Vg,i|2 o |Zc,iIi + ‘/Z‘Q
' AV T T 8Re{Zo;}  8Re{Zei)
Coefficient Vi ¥ Zoili Zi & Zoi
1ent a; a; = = 14
2\/Re{Z.;} 2\/Re{Z.;}
Vi— 2.1 Zi— 2,

Coefficient b; b; = =1
2\/Re{Z.;} 2\/Re{Z.;}
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Due to the linearity of the circuit, we can express as follows the relation beatween incident and reflected waves:

by = s11a1 + s1202 + -+ + S1,NON

by = s21a1 + S22a2 + -+ - + Sa NON

by = sni1a1 + sye2az + -+ + Sy, NaN

Exploiting matrix form we write b = S-a@. S is known as scattering matrix:

S11 - SIN
5 =
SN1 *** SNN
b; . . . .
® 5 = l|ak¢~—0: reflection coefficient at port i when the other ports are connected to their reference
a; WA=
impedances Z. ;, i.e. matching condition satisfied
b
o 5 = —Z|ak#__0: reflection coefficient between port j and i, with all other ports matched.
aj L

Note that |s; ;|2 is the transducer power gain between the two ports.
For a reciprocal network S is symmetric. For a lossless netwrok S is unitary

In general, real microwave circuits are interconnections of components whose size is comparabale with the
wavelength at the operation frequency.

To properly represent the junction between components, i.e. to take into account the power dissipation, we
must use the scattering matrix. Indeed, using an ideal model as reference is not possible: the physical
discontinuities excite high order modes; that means losses, even if they don’t propagate because they are
"below" the cut-off.

Usually the parameters of the scattering matrix are evaluated with a software, that simulates the propagation
of electromagnetic waves inside specified structures.

Ezxamples of scattering matriz

In the previous chapter it is explained how to change the input impedance using matching networks. We can
realize them using lumped components or equivalent stubs, and in chapter 7.3 are shown the proper
relationships to design this replacement. Now, these relations hold also when we use scattering materix,
recalling that the following lines of trasmissions are 2-ports network, with two inputs and two outputs. The
scattering matrices require 4 parameters:

Series Inductor

L, :
— — ——
< >
— —o
1 1 1 1
v, = | ks dwls v, = | JZetan(Bls) - jZtan(Bl,)
jwLls  jwLg jZ.tan(Bls)  jZctan(pBls)

Yy =~ Y, and Bl; = 0 = tan(Bl,) ~ sin(Bl,) = Sl

Zels
=wly =26l => Ly = —
v
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Shunt Capacitor

CP - <4 >
1 1 1 1
jwC jwC. _ 'Y, tan(Sl 1Y, tan(f3l
1p 1 P Y, = _J 1(5 ) J 1 (Bls)
jwCp  jwCy jY.tan(Bls)  jY.tan(Bls)

Z1, = Zs and Bl ~ 0 = tan(pBls) =~ sin(Bls) =~ Sl

YCZS
:chz CﬂlS:Cp:T

8.2 Eigenvectors and Eigenvalues of a matrix

Memo: an eigenvector, of a matrix §, is a particular vector V that doesn’t change direction if multiplied by S.
The result of this product can be obtained also as A - V, where A is the eigenvalue. Hence, by definition, the

eigenvalues are the solution of the equation det[S — S\U] = 0.

Peoperties: if a N-port is excited with a vector of currents representing a eigenvector of Z, you see the same
impedance at all ports, and its value is just the eigenvalue. We obtain the eigenvalues looking for symmetry
axis in the network that allow us to identify suitably defined circuits, teh eigencircuits.

Example: 2-ports:

Suppose to have 2 eigenvectors and that the largest n element for each x; is 1:

Netwrok
— —e

2-port @ g_ (S S
N 521 522

Eigenvector: 2-port, network Eigenvalue:
1 a,

[+ *— 2-port b _ b _ |,
=y [, ’_’b Netwrok bﬂ I, 1T ey !
1 2
10—»— 0"

1 2-port by by
e rr Netwrok r T a2
(o) 2 b etwro b 2 1 e %}
1 2
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Eigenvector 1:

by =s11-14+512 -1
by = 812 -1+ 522 - (02
by bo

— = — =17

1 (%)

Eigenvector 2:
by =s11-1+ 512
by =512 -1+ 5022

b b
d_2_7,
1 (65)
e Matrix elements:
a1F2 — Oégrl Fl — Fg a1F1 — a2F2
S11 = ————————— S12 = 821 = ————— Sy = ————————
Q] — Qo Q] — Q2 ap — Q2
e Relationship between eigenvalues of S , Y and Z:
Z\ — Z, Yo - Y 1+ 1
Sy = 22T % Yo~ N ZA:ZO+,\:7
Z\ — Zy Yo +Y, 1-5, Y\

The evaluation of the eigenvector is generally possible only exploiting some software for simulation. However if
the network is symmetric (s17 = so2)we can actually deduct its eigenvalues. With respect to the previous
examples, to obtain the same reflection coefficient at port 1 and port 2, we need to impose the following
condition: oy = ag = £1.

Te+T,

Eigenvector 1 (Even): {iﬂ 811 = Sop = % e =511+ 812
r.-r,

Eigenvector 2 (Odd): {i_ﬂ S12 = 821 = ——5— 'y =511 — 812

Observing the vertical symmetry axis we can prove that with an even excitation (two equal inputs) we can
replace it with an open circuits. Viceversa, an odd excitation corresponds to a short circuit.

Even excitation: by = s11 -1+ 812-1

0Odd excitation : bl = S11 * 1+ 812 - (—1)

We know that the total power flowing in, supposing a lossless network, must return back. Hence, by definition:

r.=1 r,=-1
Hence, from the equations introduced above we derive that

bpj=1=1-140-1

*—
° Circuit o Circuit

" —
Open r Short
.—
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9 Directional Couplers and Coupled TEM Lines

9.1 Directional Couplers
A directional coupler is a 4-port Netwrok, but:
1. all ports are matched on the reference load: s1; = S99 = 533 = 544 = 0
2. two pairs of ports are uncoupled: typically (1,3) and (2,4) — s;; =0
The coupling, C, is a parameter defined as the lowest scattering paramter. In our case, let’s suppose that is s13.
C = |s13]* = Cyp = —201og(|s13])
For example, considering a reciprocal and lossless network, assuming (1,4) and (2,3) uncoupled:
e The unitary condition is imposed on the first port:
s11]% + [s12]2 + [s13)° + |s14> = L = [s12]P + C =1 — [s12| = V1 - C
e Second port: same reasoning...
|s01|* + [s22]* + [s23° + [s2a]* = 1 = |s21|* + [s04]* = [s12]” + [s24* =1 = [324]* = |s13)* = C
e Third port:
Isg1]? + |ss2]? + [s33]® + [s3a]> = 1 = [s51]* + [s3a]? = C + s> =1 = [sou| = 512 = V1 - C
Always keeping in mind that we’ve found the value of magnitude, supposing that every scattering parameter is

positive, a clear overview of the corresponding matrix is the following:

821 S22 823  So24 1-C
=

S31 832 S33  S34 vC

S41  S42  S43  S44 0

Ve 0

0 VG

0 Vi—C
Ni=re 0

A further implication of lossless condition, when network is reciprocal, is that the outputs are in quadrature.

S11 S12 S13 S14 0 V1i-C
0
0
Ve

9.2 Coupled TEM Lines

Consider the case of two trasmission lines placed close to each other.

Vertical axis

2

--------------------- a------------------Horizzontal axis

30— 4

BL

The electromagnetic wave propagates along the overall line in two modes: one called even and the other called
odd.Each of them is characterized by its own impedance (Z., Z,)-

Our goal is computing the four port matrix (Z, or Y, or S).

To do that we suppose that we have equal lines, with symmetric structure.
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e We can modelize each mode with an ideal wall:

Even mode (Z) Odd mode (Z)
~— —e ~— '—0
"'Magnetic wall (open) Electric wall (short)

e With reference to Z , the exciting currents for each eigenvector result:

Iy = {+1,+1,+1,+1} = H. Axis: Mag, V. Axis: Mag
Iy ={+1,-1,41,-1} = H. Axis: Mag, V. Axis: Ele
Iy ={+1,+41,-1,—-1} = H. Axis: Ele, V. Axis: Mag
Iy ={+1,-1,-1,41} = H. Axis: Ele, V. Axis: Ele

If two ports share the same sign we can replace the symmetry axis with a magnetic wall. Viceversa, if
the values are opposite we raplace the symmetry axis with electric wall.

A
Eigenvalue Z,1: — /2,7 Zx1 = —jZce cot(9/2)

Z .
Eigenvalue Zys: e— /2, Zce Zo = jZee tan(¢/2)

Eigenvalue Zy3: N @ ®/2,Z Zxg = —jZco cOt(2/2)

Eigenvalue Zy4: M g sz, Z Zxa = jZeo tan(?/2)
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o Recalling the definition of the matrix elements:

1%

1= Ifl =Zn+Zi2+ Z13+ Za
AL
v

Zyo = 1*2 =21 —2Zi2+Zi3— Zia
A2
Va

Zyz = 173 =2+ Zi2 —Z13— Z1a
A3
V;

Iy = 174 =Z11—2Zi2—Ziz+ Zia
Vi

Hence obtain Z11 = 1/a{Zx1 + Zx2 + Zx3+ Z»4}. In general we can obtain each parameter of th(i first TOowW
as the prodcut of the corresponding current vector by the vector of the eigenvalues: Zy; = 1/a{Ix; X Zx;}.
Compact expressions:

Zee + Zeo (Yee + Yo
Z1 :—j(%)comb Y11:—](+>tan¢
. (Zce + Zco) 1 . (Yce + cho) 1
Jig = —j———2 Yio=+j———=
2 J 2 sin ¢ 12 =4 2 sin ¢
Zee — 7, Y.. - Y,
Zlgz—ji( ce 5 CO) C0t¢ Y13:—]7( ce 5 CO) C0t¢
. (Zce - Zco) 1 . (Yce - }/co) 1
Tog = —jce — Zeco) Y, — —j\lce — Teo)
1 2 sin ¢ 1 J 2 sin ¢
9.3 Special cases
¢=pBL =180
The eigenvalues of Z are [0, 00,0, 00]. Hence those of matrix S are: S1; = 0,512 = —1, 513 = 0 = S14. Note

that the port 2 is completeley uncoupled form the line 1!

Perfect Matching at all ports

There is a value Zj for which the ports are all matched (517 = Sag = S33 = S44 = 0), there are not reflected

waves at the ports.
This vaue does not depend on the lenght: Zy =/ Z..Z.,. How dis we get this value?

The eigenvalules of Z: Zy = j{—Zee cot(¢/2), Zee tan(/2), — Zeo cot(¢/2), Zeo tan(¢/2)} = jX ;. This latter
equivalence does NOT mean that each eigenvalue is equal to a corresponding reactance. In this case the letter
X is used as variable to write faster the rest of the reasoning.

The eigenvlues of S are derived:
X — 2o

X+ Zo

For the matching condition: s17 = 1/a{Sx1 + Sa2 + Sxs + Sxsa} = 0. Hence tere are only two posssible solutions:

Sxi

1.:
(S +5x2) =0 X Xoo=-25 2= 23
(Sxz+ Sx) =0 Xxg - Xou=—23

Solution not admissible, because Z.. must be different from Z,.
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(S)\l + SA4) =0 X)\l . XA4 = _ZO2 V ZceZco = ZO
= Sy =
(Sx2+8x3) =0 Xxo - Xog = —2f VZeeleo = Zo
That is admissible and it’s independent on ¢ = SL.

Coupled TEM lines as directional couplers

If all ports are matched,Zy = \/Z.c - Zeo, assuming the port 4 uncoupled, the maximum value of (|s13]?)maz

defines C: )

Lo — D¢
C= ) maz = |1/a(Sx1 + Sxz — Sas — Saa)[2,, = |22
(Is13]") [L/4(Sx1 + Sx2 = Sxs — 9a) [nas ‘ZCEJFZCO
Moreover for real devices, C varies with frequency:
Omaa:
C(d) =
(¢) 1+ (1 - Cpaz) cot? ¢
9.4 Couplers with lumped couplings
1. Branch line
A ,
o 6= thatis L= 1 Yo e o2
2 4
e We define B, =Y/ +Y! and By =Y/ - Y/ &
e We suppose that (1,3) and (2,4) are uncoupled; soq = 0 0
S$13 — 0
C 8y = 3 Y, @ ®/
e We suppose that all ports are matched: s;; = 0. c
Without showing every eigencircuit, the eigenvalues are obtained:
. Yo — jB, . Yo + jBa
Yo = (Y +Y") = Sy = 278 Yo = —j(Y! +Y!) = Syp = 21924
= (Y ¢ Al Yo + B A2 J( ) A2 Yo — jBy
‘ Yo — jBa ‘ Yo + jBs
Yas=J4! Y/ )= Sy =F7"" Yu=—3Y/+Y") = Sy="F"7""7"
s = J( ) A3 Yo + j By M J( ) M Yo — j B,

Imposing the conditions of matchig and un-coupling:

{511 :>{ AL+ Ox2 N d:1—>Yc/2—Y!2:Y02

513 =10 Sxs+Su=0 Yy

B
Defining b, = —>:
efining v

0
1 1 _2bs.
S10 = Z(S)\l — Sxa+Sx3 — S) = §(S>‘1 —Sa) = 1+ bg
1—b?
And s14 = 5
HE S = e

28



From the unitary condition: ¢12 — ¢14 = £7/2. If ¢p12 = —7/2 = ¢14 = 7. This means that b, must be
greater than 1, otherwise s14 is not negative (this is logical assuming positive the input at port 1 and
considering a change oh phase by 180°).

Imposing |s14]? = C, we obtain by:

21 1+VC Y +Y”
814:7jbs: =
b2+1 1-C Yo

And finally:
1 C
Y = Y)—— Y =Yy ——
c om c Ni1—o
More values: s14 = s93 = —V/C and s15 = s34 = —jv1—C.
2. Rat Race

® 511 = Sg9 = 833 =544 =0

® 514 ==5933=0

513> = |s24/* = C

‘812|2 = |521|2 = 1 — C

Design equations: Y, = Y,v/1 - C Y =Y/ C

Scattering parameters: si3 = —jv/C So4 = jVC s12=—jV1-C

For C = 0.5(3dB): Z, = = Zr =20
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10 Microwave Amplifiers

| Bias Networks |

Ro
MATCH R,
Vin MATCH Out

‘“J (1] rlr L 7

Since these devices must be biased, the biasing must be separated by the RF system, thus we need decoupling
networs. In case of small signal operations, we can modelize them with a suited scattering matrix.

10.1 Active Device Representation

L 2 L 4 [e— Zs — 50
- r ST Zs 150
s S (500Q) ]
—» —
L & . Z, — 50
rin rout " Z1+50

Using suitable formulas, is possible to compute the transducer gain and the reflection coefficients at the input
and output of the device.

Zin — 50 I'ps12521 Zout — 50 Iss12521

rm —— — — = -z
in Z +50 S11 522 (1 — FSSH)

(1 - FL522) FOUt B Zout +50 -
(1 =Tel?) - (1= Tef?)

Gr = |sa 5
[(1-Tg-511)(1 =T -s22) = 'sI'p5125021]

A 2-port network operating as an amplifier must be stable.
A network is unconditionally stable provided that both these following equations are verified for whataver
value of I';, and I'g:

Iin| <1 1 — |s11]% — |s22]? — |s11 - 822 — S12 - 821/ _
|Linl k= |s11] | 522 |s11 - S22 — S12 - 521 -1 A det[3] < 1
ITout] <1 2|s12521]

Once these conditions are satisfied, we can calculated a pair of optimum values, I's opt, I'r opt for which the
gain is maximum and the conjugate matching is achieved:

GT,mam = Sﬂ (k' -V k2 — 1)
$21
As for conjugate matching:

r _ Cé: B [Bg B (Bﬁ - 4|Cg|2)1/2]

e 21C,
i —
L,opt — L out o _ [B _ (32 B 4‘0 ‘2)1/2}

T _ L L L L

L,opt

2|CL?
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Where:

By =1+ [s11]|* — |s22]® — [s11822 — 512521/ B, =1—|s11|* — |s22]* — |s11822 — s12821 >

Og = S11 — (511522 - 512321)532 Cr = 592 — (511822 - 512521)571

NOTE THAT ABOVE EQUATIONS HOLD FOR sy2 # 0.

10.2 Potentially unstable devices

If kK < 1 we cannot say that the device is unconditionally stable. Hence, does not exist a pair of optima values
of T" for which G is maximum. As a matter of fact, in case of instability G si infinite.

To find admissible values of I' we need to come back to the conditions introduced in the previous chapter:

I'ps12521
Tinl =511+ ———| <1
| ’L’I’Ll 11 (1 — FLSQZ)
I'ss12821
r = |890 + —"— 1
| out| 22 (1 — Fssn)
S
While for what concerns the transducer gain we can consider the reference value of G e = 221
S12

Admissible region I'p,

The boundary condition is derived by the following equation:

I'ss12521
| = + —1 =1
| out| 522 (1 FSSU)

The equation define a circles with the following center and radius:

*
SQQA* — S11

Oy =222~
|A[2 — [s11]?

rg = |512 . 821|
|A]2 = [s11]?

Admissible region I'f,

The boundary condition is derived by the following equation:

T'rs12521 _
(1 — FLSQQ)

The equation define a circles with the following center and radius:

Tin] = s11 +

o SllA* — 832
A2 — |52

rp = |812 . 321|
|A[]? = |s22]?

Cr,
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Identification of admissible region

We need to observe the vaues of I';,, ',y when I'g = ', = 0. Taking into account that in this case I';;, = s11
and 'yt = S99:

e the stable region for I'f,(I's) is outside the instability circle if:

— |s11](|s22]) < 1 and the circle does not enclose the center of the Chart

— |s11](Js22]) > 1 and the circle encloses the center of the chart
e the stable region for I'f,(I's) is inside the instability circle if:

— |s11](|s22]) > 1 and the circle does not enclose the cener of the chart

— |s11](Js22]) < 1 and the circle encloses the center of the chart

Design with potentially unstable devices

There is not a unique solution:

1. : Ty, is choosen in its stable region and I'g is computed in order to achieve maximum G7. Remember
that also I'g must result in its stabe region.

*
s128211' )

Te=0T* =
S n <511+ I—SQQ'FL

2. : T'g is choosen inside its stabel region and I';, is computed to achieve maximum Gr:

*
s125211's )

T'p=T" =
L out <$22 + 1—sy Ts

From the definition of power gain the following expression is derived:

(1-T%)

Gp = |so1]?
P = o T T L (5l — JAP) — 2ReT L (53 — A - 5y

In general Gp > Grp, it’s equal if the input is matched, and it’s independent from I'gs. Moreover, drawing this
equation on the plane of I'f,, we find a curve along which G p is constant: it’s a circle with...

gp(sy — AF - 511) (1 — 2k|s12521|gp + |s12521]%9%) "/

Center = Cp = radius =rp =
L+ gp(|s22]? — [A?) 1+ gp(|s22|* — |A]?)
Gp
gp =
|s21]?
Now, suppose that Gp is assigned:
Instability
region of

e Draw the circle Gp = G on the Smith Chart repre-
senting I'f,

the load

o Select I'z, 4, on this circle and verify that’s inside the
stability region of the load

e Compute I'g op¢ from the equation for the conjugate
matching at the input

e verify that this value is in the stability region of I'g. Instability
region of the

source
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From the definition of available gain the following expression is derived:

(1-T%)
1 —[s22[ +[Ts[? - (Isn1|> = [A[?) — 2Re[l's(s11 — A - s35)]

Ga = |s21]?

In general G4 > G, it’s equal if the output is matched, and it’s independent from I'g. Moreover, drawing
this equation on the plane of I'g, we find a curve along which G 4 is constant: it’s a circle with...

(]. — 2k|812$21|g,4 + |512521|2g,24)1/2
1+ ga(|s22]? — |AJ]?)

ga(siy — A" - s529)
L+ ga(lsu|> =A%)

Center = Cp = radius =ry =

Ga

A = e——
5212

Now, suppose that G4 is assigned:

Instability
region of the
source

e Draw the circle G4 = G on the Smith Chart repre-
senting I'g

Cerchio a

e Select I'g opt On this circle and verify that’s inside the G .
1=COS

stability region of the source

e Compute I'y, op¢ from the equation for the conjugate
matching at the output

e verify that this value is in the stability region of I'y,. Instability

region of
the load

Design Result

Case 1 Case 2
Trasducer gain imposed Trasduced gain imposed
Input matched (NOT the output) Output matched (NOT the input)

If the network is lossless, also the input or output of the amplifier is matched!

10.3 Main sources ot electric noise

Thermal Noise, caused by dissipation: 1n = Power spectral density = K - T
Shot Noise (discrete nature of junctions current): n = Power spectral density = 2q - [
Flicker Noise (defects of crystals structures): G(f) = Power Spectrum = K Iz [W/H?Z]
Added power from the 2-port: Npp
Total Noise Power: Pxnout = PninGa+ Npp

. . . A o PN,out
Noise Figure (function of frequency and I'g): NF = _—r—

GaPn,in

. IFS - sznl2

Noise dependance on I'g: NF = (NF)pin + 41,

1+ Toin]*(1 = [Ts?)
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As for the latter definition, all parameters depend on frequency and "r," is known as normalized noise
resistance.

If we plot the NF dependinf on I's on the Smith Chart we will find a circle with the following parameters:

_ Fmin o 1 2 2
Cr = 1% re = 1o VAV Nl = IDaal?)
NF — (NF)min
N, = M= M min g

NF—1 NF—1
Gal Ga2

Noise Figure for cascaded stages: N Fy,; = NFy +

Design of a Low Noise Amplifier

In general the value of I'g that determines the minimum value of NF is not the same that maximize G7. The
choice of I'g is then the result of a compromise.

If we plot the circles defined by NF = const. and G 4 = const. on the Smith Chart, we would see that some
pairs of circles share a common areas, resulting form the intersection. We choose I'g within this area.

In zone 1: NF< NF, and G >G,,

Cerchi a Cerchiodi  NF is previliged

Instabilita
NF=cost del gen.
In zone 2: NF< NF, and G >G,,
G, is previliged
Once assigned Iy o , I' o 18

computed by imposing the
matching at output (then G=G,)

Cerchi a
Ga=cost
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11 Oscillators

11.1 Classification and main parameters
Feedback Oscillators

o | .
g A
Groop = A-B(jwo) =1 = |Groop(jwo)| = 1, ZL(Groopr(jwo)) = 2n-m
Negative resistance oscillators
_O_
Passive Active
N k
etworl :‘_O-{: Network]| R = RB7 XA(WO) + XB((UO) -0
Z,' Za
dd dlX X
e Indirect stability coefficient: Sro = wo % Srx =wo [ A(w)d+ ()]
w w
w=wo w=wo

e Harmonic distortion: It defines numerically the amplitude of the harmonic referred to the fundamental

wo

e Phase and Amplitude Noise: random fluctuations of amplitude and phase, the second type is unavoidable

AP 6 — AP
Wé:b.)o(l-’- ><—>w0 “o

SF,qb wo SF,qs

11.2 Configuration and conditions

7, T, Zy, Ty
—o0 N k
Network ei’l;vnr Ra
A
s Zow T =
ctive /_J_'
,-J-, z, T, Device

In this case we need negative resistances at input and output in order to have a sinusoidal signal. This means
that input/output reflection coefficient are larger than 1: the device must be potentially unstable.

|Din] > LA |Tout| > 1

To increment the instability of the device we must decrease K. We achieve this goal by changing the reference
terminal of the active device or by introducing a positive feedback.

For what concerns the actual conditions:

!
=1
™

-
.

Zy

S S

os}
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Steady-state conditions: it’s sufficient that only one of the following is satisfied
Fin(jo.)o) ! FA(deo) =1 = (Zzn + ZA) = Oa ()/171 + YA) =0

Fout(jWO) . PB(jWO) =1 = (Zout + ZB) = 07 (Yout + YB) =0

Start-up conditions: both the following equations must be satisfied
ITin(jwo) - Ta(jwo)| >1 = Re(Zin+Za) <0, Re(Yin+Ya)<0

ITout (jwo) - Tp(Jwo)| > 1 = Re(Zout + Zp) <0, Re(You: +Yp) <0

Note that we have these relations because the poles must be on the right-hand plane. Anyway, after the start
the oscillation grows and the poles move towards the left-hand plane. Once they have reached the imaginary
axis, the oscillation remains with constant amplitude and the transient is concluded.

The frequency of the oscillation is derived by the regime condition combined with the start-up requirements:

ITin(jwo) - Ta(jwo)| > 1, |Touwt(jwo) - Tr(jwo)| > 1 | Rin(jwo) + Ra(jwo) <0,  Rout(jwo) + Rp(jwo) <0

L(Lin(jwo) - Ta(jwo)) =0 Xin(jwo) + Xa(jwo) =0

To increase the stability only the phase of I" 4 should determine wy. Note that once wq is imposed at section A,
it is also verified (at regime) at section B.

11.3 General Design procedure

We look for the values of T4 and I'g that allow the start of oscillation. We fix |T'4| = 1, that is, the network A
is made of reactive components. The unknown paramteres are: /I'4, |[I'g| and ZT'p.

1. Evaluation of /T 4.

e The value of |T'y,| > 1 is assigned Intersections

Mapping Circle

e The corresponding circle representing L'y, is | Fout|>1

drawn on the plane of I'g

. . . Plane of I
e Look for intersections of the circles (where et s

II's| = 1). Otherwise re-assign I'o,;

One of the points of intersection is selected: I's = I'4 ,p¢ and thus the network A is sythesized as a
reactive 1-port network.

2. Evaluation of I'g.

51282114, opt

o I'out =511+
1-— SQZFA,opt

® Zout Or Yo,: is derived from I'y,,¢, and it has a negative real part

e Hence, imposing the start of oscillation: Zp ops = Bout/3 — j Xy OF Y opt = Cout/3 — jBoys
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rou 4 [ 1 ) |
J | | |
I“ FB “ Rnur ‘Z_ — RB
Aopt (<0} ‘out ZB (3’0)
e = -

e Z;, or Y, are derived from Zp opt and Yp opt

¢ One of the following conditions must be verified, otherwise re-assign Zp op: Or |I'oy¢| and repeat the

procedure:
(Rzn - RA,opt) <0 (Gzn + GA,opt) <0

Note that the first equation is equivalent to [T, - T4 opt| > 1

e In the end I'p p is evaluated from Zp o, and the network B is synthesized by imposing impedance
trasformation of the load

11.4 Noise in oscillators

The noise in the electric circuits determines fluctations of the instantaneous phase of the generated signal.
These fluctuations can be seen as a modulation of the sinusoidal proceduced by noise

Representation in the time domain: V(t) = Vs cos(wt)
1 do
Relation frequency-phase: f=— —
2 dt

Power spectrum of phase fluctuations:  A®?
Small-signal modulation: AP <1
Power density: L(f)

For small modulation angle L(f) has the same shape of A®2.
Phasorial description:

n(t) is the noise phasor, with random magnitude and phase.
n(t) can be divided in components: "in phase" n.(t) and
"in quadrature" ng(t).

Half of the overall power density is associated to each of
them.

Suppose that ns(t) < V,, and so V,, = Vj:

The spectrum of phase fluctuations is proportional to the spectrum of added noise:

N(f)
2P,

Sa(f) =

Whenever we have to work with a positive feedback network, the noise frequency components close to the
oscillation frequency are amplified byt he loop. Ultimately a broadening of the ideal spectral line is produced.
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For the phase noise we can trust the Leeson’s model, whose relation put in relations the power spectrum of the
phase fluctuation, the noise spectrum and the indirect stability of the oscillator:

fo\* N(fa)
Sa(f) o (52> 2(fa)?

The parameter fa represents the deviation with respect the oscillation frequency fy. This model is accurate
for small values of fa.

Actually, the Leeson’s model holds true for noise components inside the band of G;oop. The band B is mainly
determined by the selectiity of the feedback network:

_h
Qo
For what concerns the specturm of V,,(f): around fy is proportional to Sg(fa) and is symmetric only if phase
noise is present.
The principal figure of merit is the CNR, or carrier to noise ratio:
B Py B
Svy(fo+fa)  Sa(f)

B

CNR(fa)

12 Mixers

12.1 '"Basics"
We need mixers to traslate the frequency of the RF signals. It implies necesserily a multiplication:

Vi = Virr - Vor, = Va(t) cos(wrrpt + @(t)) - Vo cos(wort) = Var(t)Vp cos(wrrt + D(t)) cos(wort)
Hence we obtain the following expression:

Vo = % [Var (t) cos((wrr — wor)t + @(t)) + Vs cos((wrr + wor )t + @(t))]

Filter

4
@1 e :> @ :> Ogr - o Orpt+ Oor,

Since the traslation produces two components, we need a filter in the communication filter the select the right
one.

12.2 Practical implementation and Classes

At mirowave frequencies it’s much easier to realize the frequency traslsation exploiting the 2-port non-linear
devices:
Vout = al‘/in + QQV;'%L + (Lg‘/;::l +o
Since V;,, = Vrr + Vor:
as

Vout = 9

(Ve + Vo) + a1 (Vo cos(wor )t + Var cos(wrrt))+

+%(V02 cos(2wot) + Vi cos(2wrrt)) + az(2VoVar cos(wot) - cos(wrr)) + . . -

The most used non-linear device is the Shotcky diode. There are two main classes of microwave mixers:
Mixers with a single diode and balanced mixers (2 or 4 diodes).
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Single-ended mixers

+ DC
bias
Diplexing RF Low-pass
RF  coupler DC choke filter
input hlﬁCk - —~ ig(r)
- = | i i | > ey >
vRe() DC IF
LO Diode block output
4 input
vio(®)
Equivalent circuit:
The diode Ry is characterized by the following func-
Vb
Zrr Zio R, 2z e
" tion: Ip = I, eVr —1|. Tt can be assumed
Vee Vio
memory-less.

“Pumped” diode

Effects of distortion:

e The spectrum of the frequency-traslated signal around the new carrier frequency is different from the
original one

e New replicas of the original RF signal, LO and combination of them are generated at different carrier
frequencies

The local linearity is described with the same parameters seen for the amplifier (Pigp, IPs).

39



