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1 Introduction
A brief list of optics features that are useful for the application in the interconnection field:

• High frequency:

– No frequency dependent loss or crosstalk;

– Very high bandwidth

– Well synchronized signals, always propagating at high speed

• Short wavelength:

– Essentially no distant-dependent loss or degradation

– Wavelenght Division Multiplexing (WDM)

• Large Photon energy:

– Electrical isolation

– Immunity to electromagnetic interference

– Fundamental lower communication energy

The first optical device that we’re going to study, for logical and historical reasons, is the waveguide.
The waveguides are the fundamental building blocks to design every optical system of communication, every
photonic integrated circuit.
When it takes to choose a dielectric waveguide, the most important parameter is the index contrast:

∆n =
ncore − ncladding

ncore

Many characteristics and properties of a waveguide depend on this parameter, or are related somehow to its
varying: dimensions, fiber to waveguide coupling, bending radius, losses, directional couplers gap, birefringe
and so on...
The first devices in the field of integrated optics were designed for low values of index contrast. Actually, these
waveguides are still on the market today because they are reliable and ensure an excellent fibers coupling.
It is importanto to understand that the current research are aiming to merge efficiently photonics and
electronics to exploit the best properties of the two options. In the end, we must mention the large, and
growing, interest for silicon photonics. Indeed, since silicon is a semiconductor has a very high index contrast,
but in the same time provide excellent optical properties. It is probably the best choice to work with in order
to find a way to standardize photonics.
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2 Waveguides
With the term waveguide we mean every structure, typically dielectric, that is able to confine the
electromagnetic radiation in the range of light wavelengths. The most common example is the optical fiber.
However, the waveguides used in integrated photonics are different because their structure is planar, not
cilindrical.

Geometric optics is not a rigorous approach and we will avoid to use it, exception done for teh next
paragraph, in which is shown how to derive the fundamental equations describing the electromagnetic
propagation in a slab waveguide.

2.1 Slab Waveguide: introduction

Hypothesis: it extends infinitely alongside y-direction. For symmetric slab nsubstrate = ncladding, but more in
general ncore > nsubstrate > ncladding. According to the laws of reflection and refraction (the rays come form
medium 1 and enters in medium 2) there are two critical angles, one referring to the "core-substrate" interface
and the other to the "core-cladding" interface. The electromagnetic wave can propagate if the following
relation is respected:

θcritic = sin−1

(
n2

n1

)
−→ θ ≥ θgs ≥ θgc

This is a necessary condition. However, it’s not true that every wave that respects it can be called guided. To
be guided by the structure, the waves must respect also the condition of phase matching.
The picture above is analyzed:

1. The distance covered from A to B is AB =
(sin2 θ − cos2 θ) · d

cos θ
.

2. The distance covered from C to D is CD =
d

cos θ

We assume A and C to be on the same wavefront (likewise B and D). The total phase difference between the
rays must be equal to a multiple of 2π:

k0nw(CD −AB) + 2φc + 2φs = 2 ·Nπ

Where φc and φs are the differences of phase introduced by the reflections for the ray going from C (first
reflection) to D (second reflection). Since they depend on the polarization we have different values for TM and
TE modes. At the critic angle, they are nill.
Replacing the explicit expressions of the distances in the previous equation, we have:

k0nw · d cos θ + 2φc + 2φs = 2 ·Nπ

It’s called eigenvalues equation or dispersion equation, because for every possible λ (eigenvalue) we determine
the corresponding angle, field configuration, cut-off frequency and the other parameters of interest.
In particular, we derive the definition of the propagation constant: the component of the wave vector
alongside the direction of propagation:

β =
ω

vp
= k0nw sin θ

Where vp is the phase velocity of the wave in the core section: c/nw sin θ.
From the equations expressed before we derive that k0ns < β < k0nw, an important limit on the value of the
constant propagation.
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This picture shows the important relation between the propagation constant and the frequency, i.e. the phase
velocity of the first three modes.
Every curve respect the following condition: c/ns < ω/β < c/nw.

The cut-off frequency of every mode is determined by the intersection between the mode curve and the lower
limit c/ns. Since at the cut-off the angle of reflection is the critic one, the phase displacement is 0, thus we can
compute its expression from the dispersion equation.
For symmetric structure:

d

λcut−off
=

N

2 ·
√
n2
w − n2

s

Then, for symmetric slab the cut-off frequency is the same for TE and TM modes. Moreover the first mode is
alaways guided, that is, for every possible ω.

2.2 Goos-Hänchen shift (zs) and effective width

We suppose that the planar waves forming the total incident one have slightly different wave vectors.
Obviously we are not in the case of a critical reflection.

Amplitude incident wave: A(z) = e−(β−∆β)z + e−(β+∆β)z = 2 cos(∆β)e−β·z

Phase displacement: φ(β + ∆β) = φ(β) +
dφ

dβ
∆β

Ampltiude reflected wave: B(z) = R ·A(z) = cos(∆β(z − zs))e−(β·z−φ)

"Depth of evacescence": xs =
zs

2 tan θ

Effective Width: deff = d+ xs + xc
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2.3 Electromagnetic theory of the guides
Reasonable hypotesis on the medium material:

• linearity : ε and µ do not depend on the field intensity

• isotropy : ε and µ do not depend on the direction of the field

• abscence of source: no free currents and no free charges

Hence, the Maxwell equations became: 

∇× E = −ωµ0H

∇×H = ωε0n
2E

ε0∇ · (n2E) = 0

µ0∇ · H = 0

Where:
ε0 = 8.854 · 10−12 C

2/N ·m2 µ0 = 4π · 10−7 N · s2/C2

Now, starting from the Maxwell’s equations and exploiting some vector identities, we derive the equation of
the wave, in the most general case:

∇2E +∇
(

1

n2
∇n2 · E

)
− ε0µ0ω

2n2E = 0

Obviously there is a equivalent expression also for the magnetic field.
Next, in order to simplify our problem, we separate the structure of the guide into sub-homogeneous segments.
In this way, we only have to solve the wave equation in every one of them. Once we have these solutions, we
finally impose the appropriate boundary conditions and the continuity of the fields at the interfaces.

Actually, the main advantage of this method is that the second term vanishes: the three cartesian components
of each wave equations become scalar.

Last hypothesis: z-invariance −→ n = n(x,y). The field distribution became:

E(x, y, z) = E(x, y) · e−β·z

Finally, substituting this latter relation in the wave equation, we obtain:

∇2
tE(x, y) + [k2

0n
2(x, y)− β2]E(x, y) = 0 (∗)

Where:

∇2
t =

(
∂2

∂2x
,
∂2

∂2y
, 0

)
k0 =

2π

λ

Observations

1. The equation * give us eigenvalues (possible values of beta), related to eigensolutions (or eigenvectors)
that correspond to the orientations of the field in the guide.

2. For a dielectric waveguide and an incoming wave with a known wavelenght there is a set of allowed
solutions - these are defined as the modes of the guide

3. It is generally prefered to separate the electric field into longitudinal and trasverse components (Ez(x, y)
and Et(x, y)) and solve the wave equation using only the trasverse one. Once you have Et we can derive
Ez from the Maxwell equations.

4. Trasverse components of E and H are in phase, longitudinal components are in phase. Travserse
components are out of phase by π/2, with respect to the corresponding longitudinal components.
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2.4 Modal Expansion Field Theory and properties of waves
The (eigen)solutions of the wave equation are of two types:

1. Guided : modes confined in the core region of the structure. Moreover: E(x, y)→ 0 ↔ x, y →∞. The
guided modes are waves that propagate without changing neither their shape nor their amplitude, unless
there were losses.

2. Radiative: modes not confined - since there is not this limit, there is not a discrete number of solution
but a continuous range of possible values. The most important difference with guided modes is that,
while guided are evanescent in the direction of x and y (they have pure imaginary transverse propagation
constant), radiative modes substract field in waveguide (they have a perpendicular component to the
power). In certain extreme cases they can have an imaginary value of β along z-direction.
In general they are excitede by discontinuites and so, at a great distance from origin, only the power
associated to the guided modes remains in the guide.

Now, a really important point is discussed: the radiative modes are very similar to planar waves. However, a
discontinuity does not excite only one radiative mode, indeed to have a planar way you should have a infinite
extended source. It’s always generated a set of them, summed in a so called packet, and they have different
phase constant β. They interact and add up, and they form the configuration of extension over the field. In
other words, we could describe the radiative modes as harmonics that contribute to the definition of the total
field distribution.

Each radiative mode of the packet travels with its own phase velocity vp = ω/β. It’s logical that the shape
and amplitude are not mantained, and the velocity with which they change is proportional to the differnce
between the phase constants.
However, if the difference is small, this change can be neglected and the packet resembles a guided mode.
These leaky modes don’t meet the conditions to be considered waves, and they don’t have the properties of
wave. We can anyway associate a phase constant to them, a specfic β equals to a weighted average of β of
radiative modes that constitute it.

Any field distribution that propagates in the guide and satisfies the wave equation can be seen as a linear
combination of guided and radiative modes:

E(x, y) =
∑
m

am · em(x, y) +

∫ ∞
0

ar(β) · er(β, x, y)dβ

They respect the principle of orthogonality : if we take any two generic waves the integral of overlap of
transvers fields is null in any section of the guide:∫

area

(em × h∗n) · ds = δm,n

Where m,n are the mode indeces. Next, delta is better specified:

δm,n = 0 for:m 6= n

δm,n = 1 for:m = n

An important consequence: modes don’t interact and don’t exchange power between them (regardless to their
nature).
This actually means that the total Poyinting vector is the sum of the individual mode powers:

P =
1

2

∑
m

am · a∗m
(∫

section

(em × h∗m)dS

)
=

1

2

∑
m

|am|2
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CASE:What if there were also the reflected waves?E =
∑

(am + bm)em

H =
∑

(am − bm)hm
⇒ P =

1

2

∑
m

(|am|2 − |bm|2)

CASE:What if the were evanescent modes in the guide?

Firtsly, evanescent means that β is imaginary. These condition leads to a phase difference of π/2 between the
trasverse components of the fields. Then: P = j|am|2. It’s a reactive power not a real one.
However, if there was a counter wave, the problem becomes even more complex:

P = j(|am|2 − |bm|2) + j(am · a∗m − bm · b∗m)

While the first term is alaways imaginary, the second one can be real for some values. In that case there would
be an actual trasport of power mediated by evanescent modes, pheonemena called optical tunneling. It
explains losses caused by bends.

2.5 Slab Waveguide: analytical solution of the wave equation
The structure is infinitely extended in y-direction so we can consider the propagation independent from y.
Suppose we want to find solution for TE modes, that are, waves with purely transverse electric field.
From Maxwell equations:

Ez = 0 ∧ z-invariance⇒ Hy = Ex = Ez = 0

Now, the wave equation is scalar and one-dimensional:

∂2Ey(x)

∂x2
+ (n(x)2k2

0 − β2)Ey(x) = 0

It’s important to address that n(x) is the profile of the refractive index along x direction.
Once we’ve evaluated Ey, we derive Hz and Hx from Maxwell equations.

Suppose to have a core wide "d" and suppose that the interfaces are at x = 0 and at x = d. The acceptable
solutions are those field distributions that satify the continuity at these interfaces. Moreover, if they are
guided modes, they must vanish at great distance from the core.
From a mathematical point of view:

Ey = Es exp(γs · x) In the substrate, for x < 0

Ey = Eg cos(kg · x− φs) In the core region, for 0 < x < d

Ey = Ec exp(γc · (x− d)) In the cladding, for x > d

We replace these solution in the wave equation and we obtain:

k2
g = k2

0n
2
w − β2

−γ2
s = k2

0n
2
s − β2

−γ2
c = k2

0n
2
c − β2

Since the supposed solutions describes guided modes, kg, γs and γc should be real.

k2
0n

2
w − β2 > 0

k2
0n

2
s − β2 < 0

k2
0n

2
c − β2 < 0
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Next, boundary conditions are imposed:

Eys = Eyg ⇒ Es = Eg cos(−φ)

Eyc = Eyg ⇒ Ec = Eg cos(kgd− φs)

Without showing every step, we isolate tan(kgd) removing φs. The resulting relationship is the following one:

tan(kgd) =

γc
kg

+
γs
kg

1− γc · γs
k2
g

It is used to determine the values of the constant β of TE propagation modes, and allows to build a scatter
diagram of ω − β.
Furthemore, relationships between the amplitudes of the electric field in the three regions are derived:

Eg
Es

=
k0

kg

√
n2
w − n2

s

Eg
Ec

=
k0

kg

√
n2
w − n2

c

A similar result is obtained for TM modes:

tan(kgd) =

n2
w

n2
c

γc
kg

+
n2
w

n2
s

γs
kg

1− n4
w

n2
cn

2
s

γcγs
k2
g

The cut-off conditions (γs = 0) are:

For TE modes: tan(kgd) =
γc
kg

For TM modes: tan(kgd) =
n2
w

n2
c

γc
kg

In the case of a symmetric flat waveguide: ns = nc.
Hence the previous relationships becomes:

For TE modes: tan

(
kgd

2
+N

π

2

)
=

(
nw
ns

)
γ

kg

For TM modes: tan

(
kgd

2
+N

π

2

)
=

γ

kg

N is the order of the mode.
Note that the cut-off condition is the same for the two cases, once we impose γ = 0.

It is evident that we msut rely on a numerical method to evaluate the eigenvalues of the dispersion relation.
However, we can still understand some properties of the propagation following a study graph.
For a flat symmetrical slab waveguide, the normalized frequency is defined as:

V =
k0d

2

√
n2
w − n2

s

Another relation in which there is V and that is also valid is:

V 2 =

(
γd

2

)2

+

(
kgd

2

)2

10



Furtemore we define numerical aperture the parameter NA =
√
n2
w − n2

s.
We will observe that for V < π/2 we are in the monomodal regime: only the fundamental mode propagate
inside the guide.

NUMERICAL METHOD

The picture above shows the relationship between the eigenvalues, i.e. the propagation constant of the modes,
and the corresponding (angular) frequencies. It must be reminded that this diagram is referring to a infinite
flat slab waveguide.

As we can see, once we’ve fixed the frequency the space is divided into 4 regions.
Keep in mind that we started analyzing this structure assuming that the field distribution, for the guided
modes, is sinusoidal in the core and decreasing exponential in the substrate/cladding.
In order to have a distribution like this, the relationships between the parameters of the field functions tell us
that kg, γc and γs must be real.
This conclusion holds true in the third region of the diagram, whose boundaries are represented by the lines
c/ns and c/nw.
On the horizzontal axis we can easily verify that the corresponding interval in which β varies is (nsk0; nwk0).
As an example, the curves of the first three guided modes are drawn: note that the ω choosen is below the
cut-off value of the mode of order N=2, then we can conclude that only the first two are actually propagatin
in the waveguide.

Another possible approach to explain the confinement of the guided modes in the third region is the vector
representation, shown in the next page.
Long story short: when γc or γs are directed as β they are real, otherwise they are imaginary.
Real γ correspond to guided modes field distribution. However, whenever thery are imaginary there is a power
flow in the direction perpendicular to that of propagation (key words: radiative mode, losses).
The vectors tell us that only in the third region nsk0 < β < nwk0 is true, pointing out that usually we
consider nc < ns.
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Vector Representation:

nc
β

nck0
γc

β

nck0
γc

β

nck0
γc

nw
β

nwk0
kg

β

nwk0
kg

β

nwk0
kg

ns
β

nsk0
γs

β

nsk0
γs

β

nsk0
γs

Region 1 Region 2 Region 3

Observations:

• At the same frequency high order modes have a smaller phase constant, which means that the
corresponding field distribution is less confined in the core region. Indeed, the closer β is to the upper
limit (nwk0), the more the propagation is limited. Moreover, considering only one, the confinement
improves increasing the frequency;

• Effective Index: a weighted mean value of the three indeces ns, nc and nw. The ray theory lead us to the
following definition:

β =
2π

λ
neff =

2π

λ
nw · sin θ

• In the first region we have radiative modes either in the cladding and in the substrate. In the second
region only in the substrate;

• In the fourth region we have β > nwk0. Observe the wave equation:

∂2Ey(x)

∂x2
= (n(x)2k2

0 − β2)Ey(x)

Since the second term is always positive the correpsonding field distribution tends to infinite at a great
distance from the core: physically speaking it makes no sense. As a matter of fact this region is
proibitive.

• In physiscs, the speed at which the phase of the field advances is named phase velocity : vp =
ω

β

However, the transport of energy is associated with the group velocity : vg =
dω

dβ

∣∣∣∣
ω=ω0

We need to understand that these two values are different if there is dispersion in a wave packet. In this
latter case, more than one wave is propagating inside the medium and each wave has its own phase
constant. The group velocity is the velocity at which the paket travels, while the phase velocity becomes
an "apparent" quantity.

• Recalling the effective index definition:

ng(ω) =
c

vg(ω)
= neff (ω) + ω

dneff
dω

12



2.6 Real case: channel waveguide
In reality the structure are always limited in the three directions. The most simple and common case is the
channel waveguide, in which the field is confined in bot directions x and y.
As for the design, we need to understand clearly that there is not an perfect waveguide: it’all about trade-off
choices and the application that we aim to achieve.

1. The first main difference with the infinite slab waveguide concerns the modes, which are never purely
TE or TM in the channel model. We call them quasi-TE or quasi-TM.

2. The properties of waveguides are seriously limited by the available fabbrication technologies
exploited to craft the structures. They impose the most restrictive constraints on materials and
dimensions. Obviously, the most critical step concerns the choice of the refractive indexes. In this
regard, a very important parameter is the refactive index contrast, defined as

∆n =
nw − ns
nw

A lot of properties vary significantly with it, so it’s helpful to plot their dependency and choose the best
value in according with the application required.

3. One of the desired requirement of a waveguide is the condition of single-mode. Set the refractive
indexes, the order of magnitude for the dimensions of the channel waveguide is the same of the thickness
d of an ideal slab. Typically, w and h are increased to improve the confinement of the fundamental mode.

4. However, the choice of the ratio w/h must be taken considering also another parameter, the birefringe.
It is defined as the difference of the refractive indexes of the quasi-TE and quasi-TM mode (hereinafter
called simply TE and TM), and is due to two separate contirbutions: birefringe of the material Bm and
of the shape Bf .

2.7 Curved guides
The bending of waveguides is very common in photonics circuit because allow the connection of different
parts. Unfortunately it could give rise to radiative modes.

The radius of curvature is constant. The phase fronts move
by rotating around the point O with velocity:

r
dθ

dt
=

ω

β(r)

Where β(r) is the phase constant function in dependece of
the distance from the center. From the previous relation,
naming βc the value in the center of the guide:

β(r) = βc
R

r

Now, it’s evident that β decreases radially outwardly of the guide. Reminding the ω-β graph, the smaller is
beta, the closer it is to the lower limit for guided modes, that is k0nc. Over this point the propatation is in the
trasverse direction.
This limit will be reached by β(r), at some point. However, the smaller the radius of curvature, the closer the
cut-off to the guide, but since here the field is higher the losses increase as well. Strictly speaking, the
fundamental mode of a curve guide is therefore alsways leaky, but the losses become negligible rapidly
increasing the radius of curvature.

Formal Analysis: applying a conformal transformation we can map the curve driving on a straight guide
equivalent. Under condition of large radius of curvature, the refractive index can be written:

n(x, y) = n0(x, y)e
x/R ' n0(x, y)

(
1 +

2x

R

)

13



We set x = r −R.

Larger is R and less steep is the relation between n(x) and
n.
Paying attention to the directions and verses of the ref-
erence axis, we note that outer we are and higher is the
refractive index.

After having done our transformation we can simulate and plot the guide.
For example, considering a buried waveguide (nw = 1.513, ns = 1.445, w = h = 2.2):

As we can see the effect of the curvature is a distortion with a displacement of δ of the center of gravity
towards the outside of the curve.
Must be pointed out that this distorsion change the effective modal refractive index, so the phase constant of
the curved guide is higher than that of the straight structure. Besides, we can also understand that this
increase is due to the convention of taking as distance travelled the one referred to the centerline, but the
mode is distorted outwardly and so it travels a longer distance. We can calculate the increase as follows:

βc = β0 +
B

R2
B : dimensional parameter

As for the radiative losses we can approximately calculate them as follows:

αr =
C1√
R
e−C2·R

C1, C2 are determined by numerical simulation. In particular, C2 is a constant which increase with the
difference between the refractive indexes (of guide and cladding) or with the dimensions of the guide.

14



3 Directional Couplers and Dividers

3.1 Coupled Mode Theory
This theory is applied to adiabatic perturbations, that are described as slow trasfers of power from a mode to
another. Possible reflections or losses can be neglected.
Let’s start with the following system: two parallel dielectric guide that are such close that their modes affect
each other. We could determine the field distributions like we did in the single guide case: we solve
analytically the wave equation, imposing the specific boundary conditions. Usually, structure like these are at
least bi-modal.

ns n1 ns n2 ns

ns

n1 n2

The direction of propagation is the z-axis, while the section plane is xy.

The first two modes are called: symmetric (or even) and asymmetric (or odd). These modes ar mutually
orthogonal, they do not exchange power, and they have different velocities of propagation. We name them ψs
and ψa.
Moreover, since they propagate indipendently of each other they do not change "shape"!
Once we have these mdoes we can actually derive the description of the fields evolution along the guides.
Unfortunately, it is not an easy task...

Now, if we sum them and subtract them, we would obtain two graphs that resemble the modes of the guides
taken separately: ψ1 and ψ2. These are easier to find, but more importantly we can always derive the exact
modes of the structure with a proper combination of them. The farther are the guides, the better is this
approximation. Since the exact modes have different phase velocities these mode change shape while
propagating.
We called ψ1 and ψ2 coupled modes, because they are the result of two different guides close enough to allow
the coupling of their modes.
We can define them as follows:

ψ1 '
ψs + ψa

2
ψ2 '

ψs − ψa
2

15



The formal derivation of the coupled modes equations starts with the wave equation of the coupled
structure:

∇2
tΨ +

∂2Ψ

∂z2
+ k2

0n
2(x, y)Ψ = 0

∇t is the gradient along the trasverse plane.
Note that the refractive index does not depend on z because of the z-invariant hypothesis. Moreover, we have
the following schemes for the refractive indexes:

x

n(x)

x

n1(x)

x

n2(x)

In order to use the coupled modes theory we consider two guides that are not strongly coupled. In this way,
the supposed solution becomes a linear combination of the coupled modes:

Ψ(x, y, z) = A(z)ψ1(x, y)e−β1z +B(z)ψ2(x, y)e−β2z

We have two complex amplitudes because the "shape" of these approximated modes change with z.
Next, we replace the assumed solution in the equation of the wave, and we obtain:

k2
0∆n2

1Aψ1 + k2
0∆n2

2Bψ2e
j∆βz − 2β1ψ1

dA

dz
− 2β2ψ2

dB

dz
ej∆βz = 0

Observations on how we obtained this result:

• We define:
∆n2

1 = n2(x, y)− n2
1(x, y) ∆n2

2 = n2(x, y)− n2
2(x, y) ∆β = β1 − β2

• Since the guides are weakly coupled, A(z) and B(z) vary very slow:

∂2A(z)

∂z2
→ 0

∂2B(z)

∂z2
→ 0

Now, a very important step: to find the coupled equations we need to project the previous equation on the
two modes. We do this multiplying the equation to ψ∗1 one time and to ψ∗2 the other.

dA

dz
= −κ11A(z)− κ12B(z)ej∆z

dB

dz
= −κ22B(z)− κ21A(z)e−j∆z

⇔ κij =
k2

0

2βi
·
∫ ∫ +∞
−∞ ψj∆n

2
jψ
∗
i dxdy∫ ∫ +∞

−∞ ψiψ∗i dxdy

However, this is not the form that we prefer.
The actual expressions are derived after having done the following substitution:


a(z) = A(z)e−β1z

b(z) = B(z)e−β2z

⇔


da

dz
= −(β1 + κ11)a(z)− κ12b(z)

db

dz
= −(β2 + κ22)b(z)− κ21a(z)
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The physical meanings of the coefficients are:

• κii: phase constant corrections due to the presence of the second guide. They are usually very small;

• κij : constants that quantify the coupling between the guides. They are equal if the guides are identical
and they go to zero increasing the distance.

It must be reminded, another time, that ψ1 and ψ2 are not solution of the structure, they exchange power and
they are coupled.
The exact solutions of the guides are the modes ψa and ψs, that have different phase velocities and that don’t
exchange power. We can write the total solution as follows:

Ψ = Aψae
−βaz +Bψse

−βsz

The solution.
We suppose to have a(z) = ase

−βz and b(z) = aae
−βz, particular solutions. The important detail is that

these waves don’t change shape or amplitude.
The system of the coupled equations becomes:

as(β − β1)− κ12aa = 0

aa(β − β2)− κ21as = 0

The system leads to notrivial solutions only if the determinant is zero, that occurs if β is equal to the
eigenvalues.

βa,s =
β1 + β2

2
±
√

(β1 − β2)2

4
+ κ12κ21

As we know the eigenvalues determine the eigenvectors, that are the fields configurations in the structure.
The general solutions of the coupled equations are:

a(z) = ase
−βsz + aae

−βaz

b(z) =
βs − β1

κ12
ase
−βsz +

βa − β2

κ21
aae
−βaz

Keep in mind that aa and as are the amplitudes of the exact modes, related to the exact solutions of the
coupled structure. Instead, a(z) and b(z) are the amplitudes of the fields in the guides.

The matrix configuration.
We call I1 and I2 the input field complex amplitudes.[

O1

O2

]
= TC

[
I1
I2

]
TC is known as transmission matrix.
From the solution obtained before, we derive its explicit expression:

TC = e−β̄z

cos δz − jRsinδz −jS sin δz

−jS sin δz cos δz + jRsinδz


In the following there are the definitions of the parameters and some properties.
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R =
∆β

2δ

S =
κ

δ

∆β = β1 − β2

β̄ =
β1 + β2

2

κ2 = κ12 · κ21

δ =

√
∆β2

4
+ κ2

• R and S gauges the symmetry of the structure.
If β1 = β2, then R = 0, S = 1.

• In this course the losses are to be considered
negligible:

R2 + S2 = 1 ∧ det(TC) = 1

• If z = 0, the field is unitary in the first guide
and nill in the second. Along z:

|a(z)|2 = 1− κ2

δ2
sin2(δz)

|b(z)|2 =
κ2

δ2
sin2(δz)

The plot for ∆β = 0:

Another time: the total field is give by the superposition of the exact modes, which are the symmetric and
asymmetric ones. They have different phase velocities, so the shape of the total field varyies along the guide.
This plot can be also described like an exchange of power between the guides of the modes, ψ1 and ψ2. This
exchange occurs with a periodicity, in general:

Lc =
π

2δ
=

π

β1 − β2

It is defined as the minimal length at which there is the maximum power exchange, that is:

|b|2max =
κ2

δ2

However, if ∆β = 0 the power exchange is total and it happens after a distance equals to Lc0 =
π

2κ
.
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We end up showing the particular Tc for this case, that is called more oftenly synchronous coupling :

Tc

[
cos(κL) − sin(κL)
− sin(κL) cos(κL)

]
⇒

{
P1(z) = P0 cos2(κz)

P2(z) = P0 sin2(κz)

The relationship between ∆β and z is shown in the following picture:

3.2 Directional Coupler: a general overview

The directional coupler is a fundamental device in integrated optics. It’s a 2-ports device that makes possible
to divide or merge the light, and we will learn how to describe it with a matrix relationship between the
inputs and ouputs.
The guides are coupled for a length L only. The transition is designed to avoid radiative losses.
The main parameter is the coupling ratio:

K =
P2

P1 + P2

But, supposing that there are no losses and that power flows out from one guide only, we have that:

K =
P2

P0

However, in general we call Pbar the power that comes out the guide the wave enters at the input. Instead,
Pcross is the power flowing out the coupled guide.
The critical step is choosing κ and ∆β: if κ is large the guides are close but the coupler is very sensitive to
construction tollerances. On the other hand, if κ is small, the coupler is less sensitive but it has greater
dimensions.
We set them by trial, without neglecting technological aspects. Anyway, in general the smallest sensitivity to
the parameters κ, ∆β and L is obtained if:

L =
π

2κ

√
K ∆β = 2κ

√
1

K
− 1
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Moreover, it’s possible to compute also the lenght of the curved parts:

Lt =

∫ ∞
0

e−γ(d(z)−d0)dz =
1

2

√
πR

γ

This result is obtained considering the radius of the transitions constant.

3.2.1 "-3dB" Coupler

Like the title suggests, this directional coupler divides equally the input light.
In the simple case of ∆β = 0, we derive the condition κL = π/4. Since the transfer function is periodical, an
alternative solution is κL = (2N + 1)(π/4). However, even if it’s right mathematically, the technological
realization is different.
The transmission matrix for a synchronous coupling:

Tc =
1√
2

[
1 −j
−j 1

]
Considering the graph ∆β versus Lc/Lc0 it’s possible to obtain the division in equal halfs until the limit value
∆β = 2κ: κL = π/(2

√
2):

Tc = − 

2
√

2

[
1 1
1 −1

]
3.2.2 WDM coupler

The properties of the directional coupler depend on parameters κ and ∆β, which both vary with the frequency.
While ∆β depends on λ−1, we can consider κ varying with λ: the superposition integral depends on λ2 for a
lot of different guides.
Consequently, K increases with λ, but ∆β can be choosen to make K insensitive to the wavelength for large
bandwidths: this particular value would be found through numerical simulations.
Actually, for large κL the directional coupler becomes very sensitive to λ. We can exploit this relation to
design coupler that can filter signals: they are called WDM.
We suppose to enter in one guide with two different wavelengths λ1, and λ2. We want to obtain at the ouput
this following configuration: {

Pcross(λ1, L) = sin2(κ1L) = sin2(κ0λ1L) = 1

Pbar(λ2, L) = cos2(κ2L) = cos2(κ0λ2L) = 1

In this way the signal is completely (∆β = 0) coupled to λ1, that ends in the bar. Instead, λ2 wil be
discriminated and diverted into cross guide.κ0λ1L = π

(
N2 ±

1

2

)
cross

κ0λ2L = πN1 bar

We use the sign + when λ1 > λ2, - in the opposite case. Moreover N1 = N2 = N .

κ0L =
π

2
· 1

λ1 − λ2
N =

1

2
· λ2

|λ1 − λ2|
In the end, we derive κ0L to have a certain wavelength in a specific output guide.
The problem is that in general, λ1 and λ2 cannot satisfy the equation to compute N: since N is a integer
number, the operation makes sense only for values of λ that are far away in the spectrum.
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3.3 Coupling assisted by grating
In this paragraph we will study how to guarantee the maximum power transfer for an asynchronous coupling.
We recall that for two guides with different phase constants the maximum energy transfer that is achievable is
|b(z)|2max = κ2/δ2.
Anyway, do observe the following graph:

The dashed line represents the power in the guides.
As we can see, if we could stop the coupling at z2

and let it start again at z3, the power will contiu-
osly move from a guide to the other. At the end the
guides will have exchanged all the power, as it was a
synchronous directional coupler.
This periodical interruption is realizable varying the
spacing within the guides, or the refractive index pro-
file.

For a formal computation, we do the following hypothesis:

1. the guides are weakly coupled: a(0) = a0 ' a(z);

2. there are no retrofelctions;

3. ∆β is small;

4. b(0) = 0;

5. κ22 is negligible.

We can write:
b(z) = a(0)

∫ z

0

κ21(ξ)e∆βξdξ

As we can see, it’s a Fourier transformation.
The coupling is actually possible if κ21(z) is periodical, with period equals to or multiple of ∆β. Obviously
changing the profile we should change also κ(z).
For any possible case, anyway, there is a condition that must be respected, called phase matching :

(β1 − β2) · Λ = 2π

Where Λ is the lattice parameter ("passo reticolare").
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3.4 Bifurcations
Like suggested by the title, these devices consists in a division of a single guide into two different ones.
As for the Directional Couplers an exact analysis of the structure is really difficult, but we can rely on the
coupled mode theory.
The functional principle: the original guide is bimodal (at least) and they are the fundamental modes of the
output guides. If the central guide is monomodal, one of the output mode is radiative.

A symmetric bifurcation is called Y-branch and it
divides the light equally in halfs.
Usually, if the input guide is monomodal, in order
to make it bimodal we insert a taper to double the
dimensions. The transition zones must be as gentle
as possible to avoid the excitation of radiative modes.

Let’s analyze two possible cases:

a) do consider the excitation of the fundamental mode of the central guide, with an amplitude a1. Whent it
reaches the bifurcation zone only the symmetric mode arises. It is then divided into the fundamental
modes of the guides, with equal ampltiudes:

b1 = b2 =
a1√

2

b) If we enter from one of the previusly labeled output guides with the relative fundamental mode, both
symmetric and asymetric modes are excited. These are the same of the central guide and they have the
same amplitude. However, since we have take the central guide as monomodal, the asymmetric one is
radiated away.

Next, we derive the expression of the transmission matrix, TY .
We call a1 and a2 the amplitudes of the fields at the input, and b1 and b2 those of the fileds at the ouput.[

b1
b2

]
= TY

[
a1

a2

]
Where:

TY =
1√
2

[
1 1
1 −1

]
If we had complex amplitudes a1,2 = a · exp(±ϕ):

b1 =
2√
2
a cosϕ

b2 = 
2√
2

sinϕ

3.5 MMIC: Mulitmode interference Coupler
We have N guides at intput, a slab waveguid whose dimensions are Width and Length, and finally P guides at
the ouput.
The input filed can be described as the linear combination fo the slab modes.
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Transverse coordinate: x

Number of modes: M

Mode implicit expression: ψ(x)

Complex amplitude: Cm

Constant of propagation: βm

Field in generic z: Ψ(x, z) =

M−1∑
m=0

Cmψm(x) exp(−βmz)

3.5.1 Star Couplers

• N,M: numbers of input/output guides. They are arranged radially.

• The FPR, free propagation region, is guided only in the vertical plane. It is limited by two arcs of
circumference with radius R, whose centers lay on the oppsite arc. This latter requirement let us
describe the distribution of the field in the ouput array as the Fourier transformation of the field
distribution in the input guides.

• The dimensions of the star coupler are such that we can consider the output guides in the far-field region
(useful to apply some simplifictions).

• The angular difference between two adjacent guides is α. The spatial distance is a = α ·R. The total
extension of the arc, that is the angular extension of the input/output arrays, is θM , hence
M · a = θM ·R.

• The width of each guide is d.

We suppose that in the FPR the optic field propagates like a gaussian beam.
Moreover, we suppose also that the power of the guide p is equally divided into the M guides, determing the
follwing tranfer function between two generic guides "p" and "q":

T (p, q) =
η√
M
eφpq

where η is the efficiency. Exploiting the formula describing gaussian beams, to reach an approximated
uniformity in the ouput guides, the following relations is obtained:

R =
M · a · d · πneff

2λ
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4 Filters
The transfer function of a generic filter can be expressed as a Fourier series:

H(f) =

N∑
m=0

cme
φme−2(2mπfT )

where N is the order of the filter and cmeφm are the coefficients. In the classic optics this operation is realized
with interferometers.

4.1 Spectral characteristics
The filtering, in general, is obtained inducing an interference between two or more waves delayed one another.
They must have the same polarization, the same frequency and they must be temporally coherent.
Considering two waves that travels along two differet paths, their relative phase is:

∆φ =
2π

λ
(neff,1(λ)L1 − neff,2(λ)L2)

This difference is equal to multiples of 2π everytime that f = fm, so it’s periodical:

∆φ(fm) =
2πfm
c

∆Leff (fm) = 2mπ ⇒ ∆Leff (fm) =
m · c
fm

Keep in mind that the transfer function mantains the same periodicity of ∆φ, and this periodicity is named
FSR, or free spectral range. We compute it referring to the central frequency, f0, between fm and fm+1.

∆Leff

(
fm+1

fm

)
= ∆Leff (f0)± FSR

2

d∆Leff
df

∣∣∣∣
f0

Now we can isolate FSR:
FSR =

c

∆Leff (f0) + f0
∆Leff
df

∣∣∣
f0

=
c

ng∆L

Where we supposed that neff,1 = neff,2. Besides, ng is commonly called the group index, defined as follows:

ng = neff (f0) + f0
dneff
df

∣∣∣∣
f0

= neff (λ0) + λ0
dneff
dλ

∣∣∣∣
λ0

It can be useful to point out that the FSR is the inverse of the delay between the waves.
In the end, just for the sake of completeness:

∆λFSR ≈
λ2

ng∆L

4.2 Mach-Zehnder filter
It’s the easiest filter in integrated optics. The transfer function is sinusoidal, that is not an excellent function
to filter WDM channels, but it’s in fact the actual basis to realize more efficient filters.
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The filter consists of three elementar blocks: two couplers (usually -3dB) and one phasor shifter in between.
To find the total transfer function we consider the blocks separately, and in the following we suppose that
TC1 = TC2 = TC .
Explicitly:

TC =

[
cos(κLc) − sin(κLc)
− sin(κLc) cos(κLc)

]
TL =

[
exp(−ϕL1) 0

0 exp(−ϕL2)

]
= exp(−ϕL1)

[
1 0
0 exp(∆ϕL)

]
Where ϕLi is the phase shift along the guide i of the shifter. They are computable doing the integral of the
propagation vectors over the lengths of the guides:

ϕL1,2 =

∫ L1,2

0

β1,2(l)dl

Neglecting the dependency of β on the curvature:

∆ϕL = ϕL1 − ϕL2 ' β1L1 − β2L2 =
2π

λ
(neffL1 − neff2L2) =

2π

λ
∆Leff

So we see that the phase shift is due to different lengths, different refractive indexes, or both.

The general input-output relation is:[
Eout,1
Eout,2

]
= TC · TL · TC ·

[
Ein,1
Ein,2

]
≡ TMZ ·

[
Ein,1
Ein,2

]
=

[
T11 T12

T21 T22

] [
Ein,1
Ein,2

]
Hence: 

Pbar = |T11|2 = cos2

(
∆ϕL

2

)
cos2(2κLc) + sin2

(
∆ϕL

2

)

Pcross = |T21|2 = cos2

(
∆ϕL

2

)
sin2(2κLc)

In the case of ideal directional couplers, with κLc = π/4, we have:
Pbar = sin2

(
∆ϕL

2

)

Pcross = cos2

(
∆ϕL

2

)
Obviosluy, under condition of lossless propagation, Pbar + Pcros = 1.
The condition Pbar = 0 ∧ Pcross = 1 is obtained when ∆ϕL = 0 (or 2Nπ, in general).
Even if the Mach-Zehnder transfer function resembles that of a classic directional coupler, it is not
proportional to κL, but to ∆Leff . This is the reason why the Mach-Zehnder is way more controllable.
Moreover, the function can be modified after the realization, changing suitably the neff thanks to different
techniques: we could change the temperature of the guide, or through electro-optic operations, or also with a
UV trimming.

4.2.1 Mach-Zehnder Design: an example

We want to separate two channels: one centered at λ1 = 1550 nm and the other one at λ2 = 1550.8 nm.
We suppose to realize the filter with glass on silicon technology and employing guides with neff = 1.46 and
ng = 1.51.
We must determine ∆L.

Since FSR must be equal to twice the spectral spacing:

∆λ = 0.8 nm ⇔ ∆f =
c∆λ

λ2
= 99.84 GHz
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We obtain:
∆Leff = 1502.34 µm⇒ ∆L = 994.93 µm

However, as it is exaplained for WDM couplers, the latter condition is not enough to guarantee that
Pbar(λ1) = 1 and Pcross(λ2) = 1. In other words, these two conditions cannot be satisfied in the same time.
For example, if we impose Pcross(λ1) = 1, we have:

πneff∆L

λ1
= Nπ ⇒ N = 937.16

"N" will be approximated to the closest integer value, N = 937.
Hence ∆L = 994.76 and the cross-talk (the signal at λ2 flowing in the cross guide) is −25.6 dB, a value that is
acceptable or not depending on the case.

In general it is more important to study the sensibility to errors in the realization of the ∆Leff .
An error in balance does not alter the shape of the tranfer function, but it leads to a translation. Indeed, it’s
sufficient that ∆Leff changes by one wavelength to have the response traslated by a FSR.
For istance, to guarantee a traslation δf ≤ B, where B is the bandwidth for which the cross talk is not higher
than Xt, it must be imposed that

δf ≤ B/2 = FSR
√
Xt/π → δ∆Leff ≤

λ

π

√
Xt

4.3 Multi-state Mach-Zehnder
a) Cascade Mach-Zehnder

If we connect more directional couplers in succession, the total transfer function is the product of the
transfer functions of the single stages.
If we have N stages the project requires 2N couplers.
The simplest design is realized with the same stage repeated. In this way the transfer function is simply
Pbar = sin2(∆ϕ/2). The selectivity and the rejection out-of-bandwidth are high, but the shape of the
bandwidth is not flat.
To increase the rejection, we could realize the filter with growing imbalances in power of 2. This technology
is exploited to realize filters that exctract WDM channels.

As for MUX or DEMUX we need log2N stages in order to merge N channels, that are joined 2 by 2. This
type of device it’s a good choice for a small numbers of channels (from 4 to 8) and when there are not
required strict spectral characteristics, i.e. when the channels are not too close. Actually, to improve the
characteristics each stage can be realized with cascade Mach-Zehnder.
The stages employ 3dB couplers and they are realized to center properly the output signals around the
wavelenghts of interest, thus they can differs one from each other. The transfer function of a generic filter
of order N and for the nth path:

Hn =
1

N

N−1∑
k=0

exp

(
2π

nk

N

)
exp (−βk∆L)

b) Lattice Mach-Zehnder filter
These devices are realized connecting both outputs to the inputs of the next stage. It is a structure way
more flexible but with better properties.
The main advantages consist of small losses in the passband and N+1 couplers for a N-order filter.
The phase shifter are all equal, then we can express the transfer function with Fourier series:

H(λ) =

N1∑
k=0

ck exp(−βk∆L)

Actually, these filters are designed relying on iterative techniques imposing an objective function for
amplitude and phase. To have all the power in the cross guide for the desired frequencies we must impose
β∆L = Mπ/2. Thus, the whole structure can be seen as a big directional coupler long as much as the
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sum of the stages lengths.
It results:

N−1∑
i=0

cos−1(
√
Ki) =

π

2

The main applications of these filters are to realize FIR or function of add/dropp, and equalize amplitude
and phase on large bandwidths.

4.4 Arrayed waveguide gratings
To generilize, an AWG consists of two MMI (or star coupler), the first has N ×M guides while the second one
has M ×N guides. The two devices are joined through the array of the M-guides, which have increasing
length. The difference in optical path of two adjacent array guides is ∆L. If the first has a value of L0 the last
one is long L0 + ∆L · (M − 1).

The operting principle: the signal that reaches the first star coupler incoming from the Nth guide is divided
equally in the M guides of the array. In particular is the power of the signal that is divided !
In the second star coupler the waves recombine.
Consider what happens for the generic central guide "s". We use "p" to indicate the guide in the first star
coupler the wave is coming fro, and "q" for the guide of the second in which the wave is collected.

Epq = Ein
1√
M

1√
M
eφpsq φpsq = φps + φs + φsq

Where φpsq is the total phase shift caused by the three devices (first star coupler, guide s, second star
coupler), shown explicitly in the follwing.

φps = 2π
λ neff ·R · (1− psα

2)

φs = 2π
λ

∫ Ls
0

neff (l)dl ' 2π
λ neff (Ls − L1) = 2π

λ neff · s ·∆L

φsq = 2π
λ neff ·R · (1− sqα

2)

We’ve assumed that the star coupler are identical and we called neff the index of both guides and FPR (Free
Propagation Region). The approximation made is valid for very large radius of curvature, as previoulsy shown
for Mach-Zehnder shifters.
Now, the interesting parameter is the phase shift between two adjacent guides, s and s-1.
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∆φpq = φpsq − φp(s−1)q =
2πneff
λ

[∆L−R(p+ qα2)]

Long story short, the power transfer function between the port p and q is:

Ppq =

∣∣∣∣∣
M−1∑
s=0

Ein
1

M
eφpsq

∣∣∣∣∣
2

=
Pin
M2

∣∣∣∣∣
M−1∑
s=0

es∆φpq

∣∣∣∣∣
2

But computing the series, we obtain in the end:

T (p, q) =
1

M2

sin2
(
M · ∆φpq

2

)
sin2

(
·∆φpq2

)
For M=7:

4.5 Channels sepration, FSR and Applications
The transfer function is sstrongly dependent on M, which represents the number of the guides in the central
array.
This function is periodical with respect to ∆φpq. In each period there are one peak corresponding to a main
lobe, also called primary, and M − 2 secondary lobes separeted by M − 1 zeros.
For the values of ∆φpq for which peaks are determined the transfer of power from the port p to the port q is
complete. Mathematically:

∆φpq
2

= Q · π

where Q is onviously an integer number.
Exploiting the expression derived in the previous subsection:

λpq =
neff∆L

Q
− neff ·R(p+ q)

α2

Q
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Or:
λpq = λ0 − (p+ q)∆λ

If we define:

λ0 =
neff ·∆L

Q
∆λ =

ngRα
2

Q
=
ngα

2

Q ·R
where ng is the group index of the guides.
Recallin what we have said about star coupler, to obtain an approximated uniformity in the ouput guides we
have to optimize the ratio d/a. If N is the number of channels, and FSR is equal to N∆λ, we find that

d

a
≤ 2N

πM

Similarly to what we have said about Mach-Zehnder interferometer, the periodicity of the trasnfer function is
equal to the FSR:

FSR =
c

ng∆L
=

c · neff
λ0 ·Q · ng

The FSR deos not depend on the parameter M, but is dependent on optic path difference.
When we design a filter like this one, we need to choose a good compromise between the available bandwith
and the croostalk. Moreover, AWG are known to be very sensitive to temperature, polarization and
technology process tollerances.

First of all, AWG can be employed to realize DEMUX/MUX. In the first case the input port is only one and
the signal contains different wavelengths. They are suitably spaced one another. Ideally each wavelength will
be directed to a different output guide, respecting the equation of λpq. Changing the input guide also the
distribution of ouput channels will change.
For the second case, from each input guide enters a signal at a different wavelength. However, the values are
such that all the waves end in the same channels, i.e. the same ouput guide.
Another possible application of the AWG is the router. The most promising employment of these WGR is the
realization of Optical ADD/DROP.

4.6 Resonators Filters
The Fabry-Perot cavity consists of two mirrors placed one in front of another with an active medium in
between. It’s the most famous interferometer in the classic optics, but the difficulties inherent in making
mirrors with low losses for integrated optics lead to a different design.
The cavity is substituted with a guide closed in a loop and coupled to the outer guides with a directional
coupler. These devices are called resonant rings, their dimensions are in the order of the wavelength and they
belong to the category of IIR.

4.6.1 The Ring Filter

The model a is a filter. If the signal incoming from the input port has the same frequency of the resonant
signal of the ring, it exits from the drop port. Otherwise, it goes on and reaches the through port. The fourth
port is used to add the resonant signal to the through ouput. The trasfer function is calculcated by placing in
cascade the blocks of the various elementary matrices.
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For istance, in the hypothesis of two different couplers, ring length Lr and round-trip losses of γ, the realation
Ht (through) between input and output (through) is:

Ht =
r1 − γr2e

−βLr

1− γr1r2e−βLr

And similarly we obtain:

Hd = −
t1t2
√
γe−βLr/2

1− γr1r2e−βLr

• The resonance occurs when βLr = 2mπ, that is, when light make a whole number of wavelengths in the
ring. "m" is known as full order of resonance. At resonance, if r1 = γr2 the through port is isolated
because the signal is completely diverted in the drop port.

• Periodicity of the transfer function is FSR = c/(ngLr).

• In the case of identical couplers, with t2i = K, and lossless condition, the rejection (the ratio between Hd

in resonance and anti-resonance) is

ER =
(K − 2)2

K2

It gauges the cross-talk intoduced. The smaller the K and the smaller the cross-talk, although the
bandwidth narrows.

• The bandwidth is:
B =

FSR

π
· K√

1−K

• Other important parameters are the quality factor and the finesse.

Q = fm/B F = FSR/B = Q/m

Finesse is used more and it indicates the filter selectivity and the number of rond trip that light do in
the ring. Moreover: the greater the F , the smaller the K, the greater the effect of losses. However, also
the group delay and the insertion loss are proportional to the finess.

4.6.2 The Ring shifter

The b diagram represents a ring shifter, that is equivalent to an all-pass filter. The phase is non-linear with
the frequency:

Φ(ω) = tan−1

(
K · sin(βLr)

2r − (1 + r2) cos(βLr)

)
In general there are two main applications: if we want to use it as a phase-shifter we need low losses, i.e. γ is
small; otherwise we could employ the ring as a modulator. Especially if r = γ we are in the condition known
as "critic coupling": all the light is dissipated by the ring, letting the output isolated.
At the resonance, r2 = 1 and βLr = 2mπ. Hence we have:

τg = T

(
γ

γ − r
+

γr

1− γr

)
γ=1−−−→ 1 + r

1− r

T is the time that it takes for the light to complete a round trip.
τg can be larger than T, so the rings can be used also to realize optic delay lines.
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4.6.3 Rings resonator filters

The expamples shown in the pciture are two different devices: a pass-band filter with directly coupled rings
and an interleaver realized with a Mach-Zehnder loaded with a ring shifter.
These are possible solution to achieve a larger integration for optic circuit.
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5 Magneto-optic components

5.1 The optical attivity and the Faraday effect
What does it mean the term optical activity?
First of all, it is a shorter way to say that the material in which the light is going to pass through can change
the polarization of the wave, without affecting the other properties.
More specifically, the dielectric tensor has elements outside the main diagonal that lead to the coupling
between the transverse field components. A material like this one is commonly known as anisotropic. For
istance and simplicity:

ε =

∣∣∣∣∣∣
∣∣∣∣∣∣

ε⊥ δε 0
−δε ε⊥ 0

0 0 ε‖

∣∣∣∣∣∣
∣∣∣∣∣∣

If we put this tensor in the wave equation we obtain two scalar equations (the parallel component doesn’t
couple with the others), shown in matrix form:[

−β2 + ω2µ0ε0ε⊥ ω2µ0ε0ε‖
−ω2µ0ε0ε‖ −β2 + ω2µ0ε0ε⊥

]
·
[
Ex
Ey

]
= 0

The eigenvectors and eigenvalues are respectively the fields and their constant propagation. They define which
waves can propagate in the medium. This equation allows non-trivial solutions if the determinant of the
matrix is zero, hence we have:

Eigenvalues βR,L = 2π
λ

√
ε⊥ ± δε

Eigenvectors Ex = ±Ey

The second equation tell us that we have found waves with right/left circular polarization.

Right circular n =
√
ε⊥ + δε

Left circular n =
√
ε⊥ − δε

Now we define the birefringe of the medium, assuming that δε� ε⊥:

nR − nL '
δε
√
ε⊥

Therefore, an optical active medium is a medium with circular birefringe that can rotate the polarization
plane by an angle θ, called also power optical rotation:

θ =
1

2
(βR − betaL)L =

πδε

λ
√
ε⊥
L

Some materials can be activated with a magnetic field directed along the direction of propagation of the wave.
In this case we’re talking about the Faraday effect and the component δε depends linearly to the longitudinal
component of H:

θ = V BL

where V is the Verdet constant, B = µ0H is the magnetic inductance vector and L is the lenght travelled in
the medium by the wave.

5.2 The insulator
It is a device that allows the propagation in one direction but not in the oppisite one. To understand the
working principle do consider the following system:
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• the incident wave in vertically polarized and is approaching the magneto-optic material in the same
direction of the magnetic field applied, H

• the length of the magneto-optical material is such that the polarization plane at the ouput is rotated by
45°

• the right polarizer does not counter the travel of the beam

Now, what happens if the light is moving in the opposite direction?

• the wave is polarized by the first polarizer, the plane rotates by 45°

• the active medium has an opposite effect with respect to the previous case because the sign of H is the
opposite, so the sign of the element outside the diagonal changes

• the wave met the left polarizer (the vertical one) with a plane that is now horizzontal: the light does not
pass!!

5.3 The circulator
The circulators are passive devices with three or more ports that allow the signal to propagate from one port
to the other in one direction. For istance, suppose to have three ports:
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a) the light enters from the port 1 and it is splitted by the birefringence block, BB: the vertical and
horizzontal state of polarization, or the ordinary and extrordinary ray, are divided. Netx, the Faraday
rotator and a λ/2 plate give rise to a rotation of the polarization plane by 90°. Basically they exchange
their polarization, so at the second BB the rays are reunited into a single beam that exits the port 2.

b) the light enters from the port 2. The effect of the second BB is the same as in the previous case, but the
effect of the FR rotator and the plate is opposite! Therefore, when the rays reach the first BB, they are
separated but they present the original polarization: so the BB separates them further. Now, the
extraordinary beam is reflected by a mirror M and it is combined with the ordinary one by a polarizing
beam splitter toward the port 3.

5.3.1 Application of the circulators

They are widely oused to realize devices used in the WDM systems, to make measuremants of reflectometry
type, in bidiectional optical systems and in some optical amplifiers. They are tyipically used:

1. to recover a refelcted signal,

2. to achieve add-drop and demux functions,

3. to compensate the dispersion caused by the optical fiber.
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6 Electro-optics

6.1 Hints on anisotropic materials

Eletric Field: E

Dielectric susceptibility: χ

Polarization vector: P = ε0χE = ε0(εr − 1)E

Dielectric Displacement: D

Dielectric Material: D(E) = ε0E + P(E) = ε0εrE

In general εr is a scalar for isotropic materials, otherwise it is a tensor, because it changes with respect to the
direction that is observed. For the sake of completeness:

Dx = ε0[εxxEx + εxyEy + εxzEz]

Dy = ε0[εyxEx + εyyEy + εyzEz]

Dz = ε0[εzxEx + εzyEy + εzzEz]

However, we assume to have used a system of reference that let us to simplify the matrix: the element outside
diagonal are zeroed, the remaining ones are called principal dielectric constants:

εr =

εx 0 0
0 εy 0
0 0 εz


Now, if εx = εy = εz the material is isotropic, while is anisotropic if they are not equal. In particular, we make
a difference between uniaxal anisotropic (εx = εy 6= εz, like the LiNbO3) and biaxial anisotropic (εx 6= εy 6= εz).
At optical frequencies, the index of refranction along the generic direction is given by ni =

√
εi. For uniaxial

material we have two indexes to compute:

n0 =
√
εx =

√
εy ordinary index

ne =
√
εz extraordinary index

If ne > n0 we call the material positive uniaxial, negative if ne < n0.

6.1.1 The ellipsoid of indeces

It is derived by the expression of the electrical energy density in the material, doing a simple normalization:

1. Energy density:

WE =
1

2
E ·D =

1

2ε0

(
D2
x

εx
+
D2
y

εy
+
D2
z

εz

)

2. Normalization replacing D/
√

2ε0WE with the direction vector ~r:

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1
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We obtain:

The case a represents a positive uniaxial crystal, while b instead represents a negative one.
Once we have decided the direction of propagation of the wave, we consider the plane perpendicular that
passes through the center of the ellipsoid. This intersection gives as result an ellipse whose major and minor
semi-axes are the eigenstates that give the directions of the two othogonal polarizations that propagate
undisturbed in the medium. Note that the optical axis does not necessarily coincide with the direction of
propagation. The optical axis represents the axis of rotational symmetry for the ellipsoid, along which we have
a constant refractive index.

6.2 The elctro-optic effect
The electro-optic effect is defined as the dependance of the dielectric properties of one material on the electric
field E induced in its interior.

• The response of the material is described with the dielectric susceptibility, developed in series as:

χ(E) = χ(0) +
∂χ(E)

∂E

∣∣∣∣
E=0

E +
1

2

∂2χ(E)

∂E2

∣∣∣∣
E=0

E2 + · · · = χ(1) + χ(2)E + χ(3)E2 + · · ·

Now:

χ(1) Linear susceptibility (or first order). If the
field E is much less than the Coulomb at-
traction field of the material, the medium re-
sponds linearly

χ(2) Linear electro-optic effect, also known as
Pockels effect. It causes the dependancy of
the refractive index on the field.

χ(3) Quadratic electro-optic effect, or Kerr effect.
It causes the dependendancy on the intensity
of the field.

The critical step is to remember that the susceptibility is in fact a tensor of range (n+1) having 3n+1

components χnij···.

To better understand this latter property, note that the linear susceptibility has three components per
direction. Besides, it is not multiplied by the field.
Otherwise, when we consider the second order term we have the product with the field Ek, where
k = x, y, z. Indeed, there is a biunivocal relation between χ and Ek, so we add the letter k to relate the
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coefficient to the field component. The number of components for the Pockels coefficient increases: 9 (3
per direction) times 3 (number of components of the field): χ(2)

ijk.

Now in general the scusceptibility is a complex quantity that depends on the frequency: we have a real
part and an imaginary one, linked by the Kramers-Kronig relations. Thus, refractive index variations are
correlated to the variation of the material absorption index.
This coexstince could be a problem, but in many electro-optic materials one of them prevails. Indeed the
material that we will consider is the LiNbO3, in which the type of electro-optic effect is the
electro-refraction: the change in absorption can be ignored.

• The application of the field E causes a re-distribution of the electric charges and a deformation of the
crystal structure, resulting in a change in the size and orientation of the ellipsoid of the indeces and a
variation in the dielectric tensor.
The generic expression of the ellipsoid:

3∑
m,j=1

xm · xj
n2
mj(E)

= 1

We are interested into the variation of nmj , but it is more convenient to determine the variation
∆(1/n2)mj .
In this way, we define the electro-optic coefficients as follows:

∆

(
1

n2

)
mj

= rmjkEk + smjklEkEl

Ther terms of higher order are neglected.
Next we exploit the properties of symmetry of the dielectric tensor and we introduce a compact matrix
notation. For istance: mj = 11, that is the first element of the matrix and the component xx, becomes
the element i = 1.
In the hypothesis that the applied field is much less than the one in the atoms, the Pockels effect
prevails. This linear approximation leads to the following expression:

∆

(
1

n2

)
i

=

3∑
k=1

rikEk i = 1 · · · 6

This tensor gauges how much the elctric field modify the refractive indeces and the orientation of the
principal axis of the ellipsoid.
However, with a little approximation:

∆

(
1

n2 i

)
=

1

[ni + ∆ni]2
− 1

n2
i

∼= −
2∆ni

n2
i [ni2∆ni]

∼= −
2∆ni
n3
i

And finally:

∆ni = −n
3
i

2

3∑
k=1

rikEk, i = 1 · · · 6

6.3 LiNbO3

The Lithium Niobate is a uniaxial negative crystal, birifrangent and non-centrosymmetric. Low index.
Assumed z as optical axis (or c), the refractive index along x and y is the ordinary one (n0), while the one
along z is the extraordinary index (ne). For this particular material, the matrix of the six coefficients obtained
in the previous chapter can be represented as follows:

∆nk = −n
3

2


−r22Ey + r13Ez −r22Ex r51Ex

−r22Ex r22Ey + r13Ez r51Ey

r51Ex r51Ey r33Ez


It’s important to remember that r33 = 30.8 · 10−12m/V , that is the highest coefficient, and n is ne or no
depending on which direction we’re observing.
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Now, it’s important to understand that the variation ∆nk is given by the linear combination of the
corresponding row (or column, the matrix is symmetric).
For istance, if the field applied is directed as x and z, the component y is zero and the expressions of the
variations are:

∆nx = −n
3
0

2 r13Ez +
n3

0

2 r22Ex − n3
0

2 r51Ex

∆ny =
n3

0

2 r22Ex − n3
0

2 r13Ez

∆nz = −n
3
e

2 r51Ex − n3
e

2 r33Ez

First of all, because of Ex there is a rotation of the axis of the ellipsoid.
Secondly, since the indeces change and now nx 6= ny the crystal became biaxial.
In general, once that we decided the optical axis we are interested into the transverse directions. So, it’s useful
to choose x (or y) as optical axis to exploit r33 in the z direction, it allows larger change of index.

The are different processes to realize waveguides with LiNbO3, but the technology that we study is the
titanium diffusion.
There are seven main steps:

1. Preparation and cleaning of the substrate:

2. Photoresist deposition:

3. Masking and exposure:

4. Removing of the exposed photoresist:

5. Titanium deposition:

6. Removing of the remaining photoresist:

7. Titanium diffusion:
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6.4 Electrodes
Note that we can induce a refractive index variation ∆n that exploit the high value of r33 if the optical axis is
aligned with the modulating field and the state of polarization. To avoid rotations we have to direct the
substrate of LiNbO3 such that the optical field enters in parallel with the axis of the crystal. In this way we
would end up obtaining a pure phase modulation.
For istance, if the electric field applied, i.e. the modulating field, has only one component, z, then

∆n = − (n3
e/2) r33 · Em

Since the field can be approximated as V/d, in order to work with small voltages (at high frequencies) we need
a small distance, d. This is the reason why the electrodes are placed on the same surface: to reduce the
distance, the thickness of the substrate is usually around 500, 800 nm.
At this point, the corresponding phase variation is:

∆ϕ =
2π

λ
∆n · L = −2π

λ
· 1

2
n3
er33 · Em · L

where L is the length.

Actually, the crtical step is choosing their position in the design.

Suppose to have a wafer of LiNbO3, cut along the x-y plane (z -cut), with a TE mode. The usual
configurations are shown the following:

The closer the electrodes, the higher the intensity of the field. However they must be placed in order to have
electrical lines of force directed as z in the region of the guide where the titanium diffused.
More precisely, the indeces modulation depends on the distribution of the field E and of the optical field ψ, so
it’s actually convenient defining a superposition integral:

Γ =
d

V

∫
E · |ψ|2dσ

This parameter represents the tradeoff and the problem consists of optimize Γ in according with the
application and the electronic constraints.
Now we can re-write the phase variation definition:

∆ϕ = −π
λ
n3
er33Γ · V

d
· L

How the electrodes are realized?
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First of all, in order to isolate them a thin strate of SiO2 is deposited on the guide through sputtering. With a
process of masking, exposure and liftoff, the useless SiO2 is removed. Above this insulator it is placed a thin
strate of cromium to improve the adhesion to the glass or the crystal. The electrodes are finally made of gold,
deposited by sputtering as well, and they are made thicker through galvanic grows.

6.4.1 Phase Modulation

A phase modulator is obtained by means of a guide and properly placed electrodes. For future pourpose it’s
important to know that, in order to have a phase shift of π, we have to isolate V from the last relation found
in the previous chapter. It is commonly called half-wave voltage or Vπ:

Vπ =
λ · d

n3
er33ΓL

The generic 3D desgin of an integrated phase modultor, with a x-cut wafer of LiNbO3, is the following:

6.4.2 Type of electrodes

The shape of electrodes can affect the electro-optic efficiency, the response of the modulator in frequency and
the quality of the modulated signal. Therefore, the bandwidth is limited either by electrodes and driving
circuits; since the response of the electro-optic effect is in the order of the picosecond.
There are two types of electrodes: lumped or distributed (labeled also as travelling wave).
In both cases the effective relative dielectric constant seen by the modulating field is about the algebric
average between that of air and that of the substrate (LiNbO3: εr,eff = (εrs + 1/2) ' 18).

1- Lumped Electrodes: electrodes are capacitances!
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The figure a represents the actual design of the phase modulator with its driving circuit. The figure b instead
represents the equivalent circuit.
The electrodes are placed to maximize the electro-optic effect, trying to contain the total capacity and hence
the time constant of the driver.
The lumped electrodes assumption makes sense whenever it’s verified the following condition:

L� c

2fm
√
εr,eff

where fm is the maximum modulating frequency and the factor 2 relates L to the half-wavelength.
Just for curiosity: for the LiNbO3, it is fmL� 3.3 GHz · cm.
The most strictly constraints are due to the driving circuit. Actually, the maximum modulating frequency
coincides with the cut-off frequency of the circuit, and it defines also the bandwidth:

fm =
1

2π(Rg +Re)Ce

Re is the resistance of the electrodes, computable as follows:

Re =
ρAuL

Ae

It is much less than the internal resistance of the generator, so it can be neglected.
Suppose that:

Ce = εr,eff
L · w
d

If d is too short, part of the electric field rises directly between the electrodes and the lines of force are too
curvy to satisfy the alignment requirements. On the other hand, decreasing d makes Vπ smaller and Ce higher.
I have smaller voltages but narrower bandwidth.
In general, lumped electrodes are used up to few hundred Mega Hertz. The opposite reasoning can be done
observing what happens if L changes.

2- Travelling wave electrodes: electrodes are transmission lines!
If L is not way smaller than the wavelength we modelize the electodes as a transmission line. They are
characterized by an impedance Z0, effective dielectric constant εr,eff and losses α.
In order to avoid retroflections and stationary waves, the electrodes must be matched either to the generator
resistances and to the load resistance.

Z0 =

√
R+ ωL
ωCe

vm =
c

√
εr,eff

=
1√
LC

β =
2π

λ

√
εr,eff

{The characteristic impedance, the velocity of the wave and the propagation constant}
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These devices are usually made with coaxial cable and micro-striplines.

The dimensioning of the electrodes must respect optical aspects as musch as radiofrequency constraints. This
process is quite delicate, because every geometrical or physiscal parameter affects Z0.
There are two main configurations for the transmission line: coplanar and micro-stripline.
With equal ratio d/w, the coplanar structure has lower impedance. However with the micro-stripline the
matching at Z0 = 50Ω is actually achievable with a good electro-optical efficency.

With travelling wave electrodes the constraint is no more the time constant of the driving circuit. To begin
with, one issue that arises concerns the difference in velocity between the modulating wave and the optical
signal. Indeed, for modulators made with LiNbO3, vm = c/

√
εr,eff ≈ c/4, 4, while vo = c/ne ≈ c/2, 2 : the

electrical signal propagates slower than the optical. Hence, the wave undergoes an electro-optical effect which
depends on the position because it’s not constant along the line. Consequently, the optical wave that is
emitted is not a correct copy of the modulating signal, but it has a longer lifespan and it is distorted. Besides,
the effect is lower because it’s temporally distributed.
Let’s assumed matched electrodes, lossless lines and a sinusoidal modualting electrical signal. The wafer is
z-cut. In other words, the voltage along the elctrode is:

Vm(x, t) = V0 sin

(
2πfm
c

√
εr,eff · x− 2πfm · t

)
When the optic wavefront enters in the guide, at the instant t0, it’s modulated by this value:

Vm(x, t0) = V0 sin

(
2πfm
c

(
√
εr,eff − neff ) · x− 2πfm · t0

)
The phase shift due to the velocity mismatch is:

∆φ(t) = ∆β0L
sin(πfm/f0)

πfm/f0
sin

(
2πfmt− π

fm
f0

)
where

∆β0L =
2π

λ

n3r33

2

V0

d
ΓL

and f0 is the frequency at which the modualtion is zeroed:

f0 =
c

L
(√
εr,eff − neff

)
For the travelling wave the bandwidth is defined as the frequency at which the phase shift is reduced by a
factor 2, B = 2f0/π. Nowadays (2021-2022), on the market, there are modulators in LiNbO3 that work up to
40 GHz of bandwidth.

Now, let’s consider how losses affect the electro-optical effect.
The finite resistivity of the metals causes the skin effect : the electric field does not reach the interior part and
the current remains concentrated on the surface of the electrodes. The depth of penetration (or skin thickness)
at which the field is reducted by a factor e is labeled δ:

δ =

√
ρ

πµ0f

This peculiar behaviour makes Z0 dependent to the frequency.
For the quasi-static approximation we have that:

α =
R

2Z0
= · · · = α0

√
f

The losses can limit the modulator bandwidth because the modulating signal is attenuated along the line. The
phase shift is:

∆φ =

∫ L

0

∆β(z)dz = ∆β0L

[
1− exp(−αL)

αL

]
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6.5 Devices with LiNbO3

6.5.1 Mach-Zhender interferometric modulator

This device is realized with two -3 dB couplers and a pair of uncoupled monomodal lines. However, in the
picture is shown a simplified version of this design: we have two ports instead of fours, thank to the use of Y
bifurcations. It resembles a balanced Mach-Zhender. Obviously, in both cases the obtained transfer function
depends on the phase shift between the optical fields induced by the electro-optical effect.
Also for the electrodes there are two options:

1. the driving voltage is supplied by two electrodes placed on the sides of a guide only,

2. three electrodes are used (coplanar design). The central electrode is fed with the radfiofrequency signal
while the other two are grounded (the roles can be inverted). In this way the voltages are halved, but we
need to point out that with this design the matching is not excellent: tapers are required. This solution
is called push-pull. Indeed, observing the electrodes we can easily understand that the induced phase
variations are opposite in the guides (the verse of the voltage drops are opposite). Hence, at the output,
the total phase shift is 2∆φ.

The total transfer function for a configuration with two electrodes is calculated as the product of the matrices:

I0 = cos2

(
∆βL

2

)
where

∆β =
2π

λ
∆n =

2π

λ

(
1

2
n3r

V

d
Γ

)
In the absence of an electric field the input wave is divided into two equal components which propagate each
in one of the guides. The components would eventually recombine in phase at the output to form the same
signal which enters in the first port. Unfortunately, it’s impossible to technically realize two guides perfectly
identical, so the material must be biased to work without errors.
Observing the transfer function the the status off of the modulator can be also obtained for voltages applied to
the electrodes that cause a phase shift of ∆βL = π. For a push-pull design, this voltage is Vπ/2.
Moreover, since the driving voltages are dissipitaed by the loads, if the voltages are halved the power are
reduced by a factor 4. The push-pull design is much less expensive in terms of driving power.

In general, there is a residual phase variation if we don’t use a push-pull configuration. Resorting on the
equations describing the behaviour of a Mach-Zhender interferometer, if we calculate the field at the ouput we
get:

1 + e−∆φ

2
= e−

∆φ
2
e+∆φ

2 + e−
∆φ
2

2
= e−

∆φ
2 · cos

(
∆φ(t)

2

)
As we can easily understand the modulator change the signal both in intensity and in phase. This residual
phase modualtion is named chirp. Generally the chirp is counter-balanced setting properly electrodes and
voltages, or usign a push-pull configuration. Moreover, to obtain an even more efficient system we could work
with four electrodes in order to have two indipendet modulators. This obviously means that we need two
driving circuits which work indipendently, that is quite expensive but it allows a more strict control of the
component.
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7 Fibers Gratings
The gratings are a class of devices that enable the power transfer between two modes of the same guide.
Indeed, the working principle relies on the fact that modes of the unperturbed guide loss their orthogonality.
To make it happen, in the guide there is a periodic lengthwise variation of the effective index, induced by the
photorefractive effect or alternatively with geometrical corrugations. The coupled modes can be wheather
copropagants or counter-propagating, even of different orders. Since the disruption is usually small, we can
apply the coupled mode theory already seen for the Directional Couplers.
The grating that cause the coupling between counter-propagating modes are called Bragg gratings, or
reflection gratings, and permitt to realize selective refectors in frequency.

7.1 The photorefractive effect
It’s possible to change the physical properties of materials by exposing them to light radiation. More
specifically, if the optical fiber is expososed to sufficiently intense ultraviolet radiation, its refractive index
could be permanently altered. The first time this phenomenon has ben observed the device was a fiber made
with germanium-doped silica.
In this section the two main models will be briefly treated in order to understand the relation between the
variations of refractive index and that of chemical-physical properties.

7.1.1 Color center model

The exposure to ultraviolet radiation can actually change the absorption spectrum of the material, which is
linked to the variation of the refractive index. This is justified by the Kramers-Kronig relations.
The atomic configuration in a germanium-doped silica is the following:

Since the Silicon and Germanium are elements of the same group in the
periodic table, they both create boundings with four atoms of oxygen. After
the doping, some atoms of Si are replaced with some atoms of Ge. However,
the defects can be of two types: GeO and Gee−.

In the first case, the germanium (or silicon) forms three boundigns with the Oxygen and the last one with the
Silicon. In the second case, the germanium steals an electron from a nearby atom of silicon.

Because of these defects, the absorption specturm shows a peak
(a band) around 240 nm. If we expose the fiber to ultraviolet
radiation, the boundings of defects GeO can be broken and defects
Gee− are generated instead. As result, the peak changes position
and progressively shifts from 240 nm to 190 nm. Besides, more
peaks appear at longer wavelengths, but we ignore them.

From the Kramers-Kronig relations we can determine the variations ∆n, which are of the order of 10−4 at the
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wavelengths of interest for otpical communications.
However, higher variations have been measured experimentally (10−3) in the core, proving that this model is
not sufficient to understand (conceptually) the photorefractive effect.

7.1.2 Compaction model

The matrix of SiO2 undergoes a process of densification after being exposed to ultraviolet radiation. This
process leads to periodic corrugations in the core of the preform optical fibers. Moreover this process is not
irreversible because the struct can return to its original form through annealing, that consist of heating up the
fiber up to 1000°C.
The germanium facilitates this mechanism givng to the structure less rigidness and making more likely
phenomena of microstructural reorganization.
Just for the sake of completeness, the mathematical relation modelling the variation in density and
polarizzability is named Lorentz-Lorentz relation.

7.2 Photosensitivity techniques
Since the presence of dopings increases the propagation losses, but the optical fibers are optimized to have
losses as low as possible, the photosensitivity is very small. It’s possible to increase it with an higher Ge
doping, with hydrogen diffusion in the fiber or with boron/phosphrus doping.

7.3 Writing techniques of the fiber gratings
We have two types of technique: holographic (interferometric) and non-interferometric writing. The first
category is preferred when the lattice step is small. The exposure pattern must be stable and the source of
radiation must be both spatially and temporally coherent. On the other hand, the techniques of the second
category are choosen when the lattice step is longer than 1µm. In this case the fiber is directly exposed to the
UV radiation properly modulated in amplitude in the direction of the core.

7.3.1 Interferometric methods

• Volumetric interferometer

If the source is far enough, the
wavefront is assumed to be plane.
Under this condition the lattice
step is:

Λ =
λuv

2nuv sin(θ/2)

where λuv is the wavelength of
the source, nuv is the corrspond-
ing refractive index for the SiO2,
and θ si the angle between the
rays.

First of all, the lattice step can be changed varying the angle θ, that is a simple and quick solution.
However, the mechanical vibrations of the mirrors can affect the quality of the gratings if the time under
exposure is not short.
Concerning the source, the ultraviolet lasers are not sufficiently coherent, hence are usually replaced
with argon ion laser duplicated in frequency.
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• Phase mask interferometer

A phase mask is a quartz plate that is trans-
parent to the ultraviolet radiation and that
has periodic monodimensional corrugations
obtained through photo-litographic processes.
A light beam (λuv) incides on the plate with
angle θ1 and it is diffracted at the angle θ2,
given by:

nuv sin θ1 = sin θ2 +m · λuv
Λpm

where m is an integer that determines the
order of diffraction, and Λpm is the period of
the corrugation.

Usually the angle of incidence is 0°. In this way the most of the diffracted wave is contained between the
orders ±1. To cancel out the order 0, the following condition must be respected:

d(nuv − 1) =
λuv
2

The interferance between diffracted rays gives rise to the periodic pattern of the grating:

Λ =
λuv

2 sin(θ/2)
=

Λpm
2

Differently fromt the volumetric holography it’s much less flexible because the period is fixed by the
mask. However, it’s a technique that allow a serial fabrication of gratings with a elevate reproducibility
of the parameters.

7.3.2 Non-interferometric methods

• Point-point writing

The modulation of the refractive index is obtained by moving rigidly the fiber with respect to the
transverse UV radiation. The main advantge is the extreme flexibility, inasmuch we can obtain also very
complex structure varying dinamically either the mechanical or optical parameters of the writing
support.
We can realize gratings with a variable index modulazion profile (apodized gratings) or with variable
period.
It is generally use to realize long period grating: Λ > 10µm.
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• Amplitude mask

A phase mask is a silica plate equipped with a periodic structure on one of its surface. It’s usually made
of cromium or nickel because they are opacque to the Uv radiation. If the period of the mask is way
larger than the wavelength of the source, and if the distance between mask and fiber is sufficiently small,
the diffraction can be ignored: the variation of the refractive index follows the transparency profile of the
mask.
This technique is less flexible than the point-to-point writing. It is actually more repeatable.

7.4 Coupled mode theory for gratings
First thing to recall: the generic distribution of a field inside a guide can be represent as a linear combination
of a discrete number of guided modes and an eventual continuos spectrum of radiative modes.
Second thing to recall: if the guide remain unperturbed, all modes are orthogonal. Inhomogeneities causes
power losses or reciprocal couplings between guided modes and thus the power is transfered from one mode to
the other.
For simplicity do consider two possible guided modes of the unperturbed structure, ψ1 and ψ2. The total field
Ψ(x, y, z) is :

Ψ(x, y, z) ≈ A(z)ψ1(x, y)e−β1z +B(z)ψ2(x, y)e−β2z

where β1,2 are the propagation constants of the modes.
The amplitudes are functions of z, otherwise they would be solutions of a unperturbed guide.
In this case the index profile can be represented as follows:

np(x, y, z) = n(x, y) + dn(x, y, z)

where the first term is the index of the unperturbed guide, and the second take into account the perturbation.
In the guiding structure with the grating, the propagation is described by the wave equation:

∇2
tΨ +

∂2Ψ

∂z2
+ k2

0n
2
p(x, y, z)Ψ = 0

Differently from the case of the directional couplers, the index profile depends on z.
We assume that:

1. Ψ is a solution of the equation. Rememeber that modes ψ1,2 are solution of the wave equation for the
unperturbed guide;

2. the coupling is weak : d2A/dz2 = 0, d2B/dz2 = 0;

hence we find:
k2

0∆n2Aψ1 + k2
0∆n2Bψ2e

(β1−β2)z − 2β1
dA

dz
− 2β2ψ2

dB

dz
e(β1−β2)z = 0

where ∆n2 = n2
p(x, y, z)− n2(x, y), for small perturbations is aproximately equal to ∆n2 ≈ 2n(x, y)dn(x, y).

As done for directional coupler we multiply the last equation by ψ∗1 and integrating all over the transverse
section we obtain that: 

dA

dz
= −c11A(z)− c12B(z)e(β1−β2)z

dB

dz
= −c21B(z)− c22A(z)e−(β1−β2)z
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We suppose that dn(x, y, z) = δn(x, y)g(z). The coefficients are defined as follows:

cij =
k2

0

β
g(z)

∫∫∞
−∞ ψjn(x, y)δn(x, y)ψ∗i dxdy∫∫∞

−∞ ψiψ∗i dxdy
= κ̃ij(x, y) · g(z)

In particular, if the refractive index of perturbation has a periodicity Λ, the function g(z) can be expressed
with a Fourier series in the form:

g(z) =
∑
m

gme
m 2π

Λ z

Putting these expressions all togheter, we obtain:

A(z) = A(0)− κ̃11

∑
m

gm

∫ z

0

em
2π
Λ νA(ν)dν − κ̃12

∑
m

gm

∫ z

0

e(m
2π
Λ −(β1−β2))νB(ν)dν

Since the function A(z) and B(z) vary slowly with z, we can consider all the contributes nill, except for those
whose complex exponentials have exponent equals to zero. Hence, in the first integral survives only the
contribute for m = 0, that is related to the continous component of the idex perturbation dn. The second
integral is not zero whether the following relation is satisfied:

β1 − β2 = m
2π

Λ

It is commonly known as phase matching condition or synchronism condition.

7.5 Excitation and diagram
Assuming to operate in the single-mode, the only two modes that can be actually excited are the fundamental
mode propagatin towards +z, and the counter propgating mode, directed as -z.
In this case, if the fundamental propagation constant is β1 = β, the counter propagation constant is β2 = −β.
The phase matching condition becomes:

β1 − β2 = 2β = m
2π

Λ
=⇒ β = m

π

Λ

If Λ is given, the wavelength which satisfy the sychronism condition is the following:

λ̄ =
2π

β
neff =

2neffΛ

m

For multimode fibers the counter-propagatin coupling can occur also between two modes of different orders,
provided that the generical phase matching condition is satifsied:

|β1|+ |β2| = m
2π

Λ

The prevailing contribution is usually related to the fundamental harmonic, defined m = 1.
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• in this example, at the fixed value of omega (ω̄) the point A belongs to the fundamental propagating
mode while the point B belongs to the counter-propagating mode of the first higher order. It is important
to remember that this diagram refers to the modes that are solutions of the unperturbed guide.

• the couplings occurs if the lattice has a discontinuity. The exact couplings between the modes in the
diagram occurs if:

1. the disconuity is such that the modes are actually excited;
2. the period Λ is the one related to their propagation constants;
3. the perturbation δn(x, y) is odd. Otherwise, since the counter-propagating mode has an odd field

distribution on the transverse section, the counter porpagating mode wouldnt’ be excited. Indeed,
an even perturbation causes the coupling between modes with same symmetry (a), while an odd
perturbation causes the coupling between modes that are anti-symmetric (b).

The gratings that allow the couplings with counter-propagating modes are called Bragg gratings.

7.6 Uniform Bragg Gratings
Let’s assume that the perturbation along z is periodical. In this way the system of equations for the
computation of the amplitudes (at page 47) can be solved in a closed form. We recall that:

dn(x, y, z) = δn(x, y) · g(z) = δn(x, y) ·
∑
m

gme
m 2π

Λ z

Next, relying on the superposition theorem we can consider every harmonic separately and deduce the
behaviour of the grating summing up all the contributions.
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Formally:

dn(x, y, z) = δn(x, y)

[
g0 + v cos

(
2π

Λ

)
z

]
We call theese gratings uniform because δn and Λ do not depend on z.

The system of equation becomes: 
dA

dz
= −κ11A− κ12Be

∆βz

dB

dz
= −κ21B − κ22Ae

−∆βz

where κ11 = g0 · κ̃11 and κ12 = v · κ̃12/2.
Moreover ∆β = β1 − β2 − 2π/Λ.

Let’s take the case of a counter-propagating coupling between two modes of the same order. For simplicity, ψ1

and ψ2 have the same form and so β1 = −β2 = β. In this way, we obtain:

κ11 = −κ22 = 2π
λ g0δ̄neff

κ12 = −κ21 = κ = π
λvδ̄neff

where we call g0δ̄neff the average perturbation of the refractive index of the guide, and vδ̄neff the
modulation depth.
Next, we do the following substitution:

a(z) = A(z)e−(β1− πΛ )z

a(z) = B(z)e−(β2+ π
Λ )z

So we find: 
da

dz
= −σa(z)− κb(z)

db

dz
= σb(z) + κa(z)

where we have that:
σ = κ11 + β − π

Λ

Inspi<red by the similarity with the directional coupler we want to determine the transfer function between
complex amplitudes at input and the complex amplitudes at the ouput.
For a grating of length L, we have:

TG =

[
TG11

TG12

TG21
TG22

]
=

[
cosh δL− R sinh δL −S sinh δL

S sinh δL cosh δL+ R sinh δL

]
With the following definitions:

R = σ/δ S = κ/δ δ =
√
κ2 − σ2

Without losses S2 −R2 = 1 and det(TG) = 1. For simplicity for now on the losses will be neglected.

In the case of I1 = 1 and O2 = 0 in the grating there is a direct wave whose amplitude at the output
O1 = 1/TG22 . It decreases with the increase of L. In the same time the amplitude at the input I2 = TG21/TG22 ,
that is related to the reflected wave, increase with L.
If the grating is suficiently long, it is possible to reach the condition for which the wave is totally reflected.
The grating resembles a distributed mirror.
In general the power reflectivity of the grating is defined as the ration at the input port between the intensity
of the reflected wave and that of the incident wave:

R =

∣∣∣∣I2I1
∣∣∣∣2 =

∣∣∣∣TG21

TG11

∣∣∣∣2 =
sinh2 δL

cosh2 δL−
(
R
S

)2
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The reflectivity is maximum whenever σ = 0, that occurs when the synchronism condition is satisfied. In this
way:

RM = tanh2 κL

The wavelength corresponding to RM is named Bragg wavelength λB . Its value is derived subtituing in the
expression of σ the expression of κ11 and β:

λB = 2Λneff

(
1 + g0

δneff
neff

)
In the end, note that if g0 = 0 the Bragg wavelength is reduced to λB = 2Λneff , that is the same result
deduced from the phase-matching condition.

7.6.1 Spectral characteristics

a) The maximum refelctivity RM increases with the length of the grating and for values of κL > 3, it is
basically unitary. However, the reflectivity is high only around λB , that is, untill the parameter σ is
small. Note that σ gauges the deviation from the synchronism condition.
For high values of σ (σ � κ):

TG =

[
e−σL 0

0 eσL

]
That is the matrix for a simple line of transmission.

b) If we increase the modulation depth, with equal κL, the reflectivity has the same peak but the
reflectivity bandwidth has increased!
A possible measurement of the bandwidth is the distance in wavelengths between the first zero of the
reflectivity spectrum.

∆Λ

λB
=
vδ̄neff
neff

√
1 +

(
λB

vδ̄neffL

)2

Since the badwidth is proportional to the modulation depth, we need a high depth to have a large
bandwidth.

Weak grating vδ̄neffL� λB ∆λ ≈ λ2
B

neffL

Strong grating vδ̄neffL� λB ∆λ ≈ vδ̄neff
neff

λB
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Secondly, looking at the pictures we can observe secondary side lobes. These are due to the finite length of the
grating, whose input and ouput interfaces are like small but sharp discontinuities behaving like mirrors in a
Fabry-Perot cavity.
The wavelengths at which the grating reflectivity spectrum is nill are the resonant values of the structure.
They are characterized by a unitary transmission, provided that losses are zero. The spacing between
reflectivity zeros is ∆λz ' λ2/(2nL), equals to the FSR of a Fabry-Perot cavity of length L.

7.6.2 Group delay

The grating can introduce a group delay with the reflection, computable as follows:

τg =
dφ

dω
=

λ2

2πc

dφ

dλ

where φ is the phase of the reflection coefficient.
For a uniform grating the group delay is symmetric, like the reflectivity, with respect to λB .
In the chirped grating is possible to obtain non-symmetric diagrams, required by some applications.
It is possible also to define a group length:

Lp =
cτg
neff

=
rMλb

2πvδneff

This parameter is an index of the penetration of the field in the grating, and it defines the point in which the
reflection is assumed to be concentrated.
Keep in mind that the group delay gauges the time inteval between the enter of the incident wave in the
grating and the exit of the reflected wave. Hence, when the reflectivity is maximum, the reflected wave returns
quickly. On the other hand, when reflectivity is zero, the transmission is unitary and the group delay measures
how long the transmitted wave takes to reach the output.

7.7 Non uniform gratings
The unifrom gratings allow the analysis with simple equations in closed form. However, there are many
applications that needs devices performing efficiently out of bandwitdh. In this case we exploit non-uniform
gratings.

dn(x, y, z) = δn(x, y)

[
g0(z) + v(z) cos

(
2π

Λ
z + φ(z)

)]
Differently from the unifrom case, the visibility v and the average value of the perturbation g0 are depending
on z. Besides, there is an additional phase term φ(z), which represents the modualtion along z of the grating
period.

In general we have two cases:

• the apodized gratings are used to minimized the secondary lobes of the reflectivity;

• the chirped gratings are used to compensate the chromatic dispersion.

7.7.1 Apodized gratings

The impedance "jump" that leads to the secondary lobes it’s related to the impedance matching between the
grating and the input/output guides. For this reason, v(z) is designed to decrease gradually from the center
towards the exterior regions of the grating.
For istance, the profile can be gaussian or raised cosine.
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With a gaussian profile we obtain diagrams that are similar to the following ones:

The dotted lines represent the diagram for the uniform grating. As we can see, the secondary lobes are very
small in decibel. Moreover, the group delay undergoes a reduction. In the uniform case the resonance is
caused by the discontinuities at the ends, but in this case the matchinf is better so the peaks are lower.
Viceversa, when the R is at its maximum, the delay is higher with respect to the uniform case. This happens
because the the maximum of R depends on κ which depends on vδneff , thus we have a weak reflective grating
at the beginning of the fiber and the wave penetrates more.
Look at the following field diagrams to see what happens for different wavelengths:
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7.7.2 Chirped gratings

This category of grating does not have a constant period Λ. The chirp function φ(z) represents a degree of
freedom that can be optimized to satisfy specific applications.
We only consider gratings with a linear chirp function, usually called Dispersion Compensating Grating, or
DCG. Note that these devices can only compensate the first order dispersion. To compensate higher order
dispersion non-linear function are required.

If we define ΛL and ΛS the maximum and minimum period, the generic function of the period is:

Λ(z) = Λ(0)± C · z

Where:
Λ0 =

ΛL + ΛS
2

C =
ΛL − ΛS

L
z ∈ [−L/2; +L/2]

Since the period varies, different wavelengths satisfy the synchronism condition in differet points. Thus, the
Bragg wavelength is a function of z. Assuming g0 = 0: λB(z) = 2neffΛ(z).
In first approximation, the bandwidth is the spectral spacing between the maximum and minimum
wavelengths that satisfy the previous definition:

∆λ = 2neff (ΛL − ΛS) = 2neffCL

The bandwidth grows with C and L. However, once that δn is fixed the grating cannot be arbitrarily
elongated. Indeed, to have the generic wavelength reflected it’s necessary that the grating contains a sufficient
number of periods that satisfy the synchronism condition at that wavelength. Hence κ∆L, where ∆L is a
distance along which the period can be considered constant, must be large enough.

For a positively chirped grating, the group delay is:

τg(λ) =
λ− λS
c · C

where the chromatic dispersion is defined as:

DG =
dτg
dλ

=
1

c · C

Once we have fixed DG, i.e. C is fixed as well, the bandwidth increases with L.

For a chirped grating long 564nm, with δn = 5 · 10−5 and C = 5.86 · 10−10:
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The oscillations in the group delay depend on the wavelenght: as shown in the group delay diagram the
frequency of the osccillations increases linearly (for a positive chirped).
Moreover, the field appears perturbated because of the cavity effect, which causes also the oscillations in the
group delay.
These oscillations cannot be ignored because they can deteriorate the devices based on chirped gratings. To
avoid this problem, we rely on the apodization of the infex profile in order to minimize the disconinuity at the
input. In this way, the oscillations of the group delay are reduced, but unfortunately also the operational
bandwith of the device. An even more improved design is derived from an assymetric apodization: since the
discontinuity at the ouput does not affect as the input one, the apodization concern only the input port of the
gratings.

As it is mentioned in the introduction of this subsection, the chirped gratings are used to compensate the
chromatic dispersion. This phenomenon is due to the different velocities with which different spectral
components propagate along the guidance (for istance, an optical fiber).
We can represent formlly the chromatic dispersion extending the constant propagation around the central
frequency of the spectrum:

β(ω) = n(ω)
ω

c
= β0 + β1(ω − ω0) +

β2

2
(ω − ω0)2 + · · ·

where
βm =

dmβm
dωm

∣∣∣∣
ω=ω0

The coefficient β1 is related to the well-known group velocity as follows:

vg =
dω

dβ
=

1

β1

If the group velocity (which gauges the velocity of the envelope) does not depend on ω all the higher
coefficients are zero and the signal can propagate undisturbed.
On the other hand the temporal distribution of the signal is altered. In parituclar, the prevailing contribution
is give by the β2, that has the physical meaning of a delay and that varies linearly with the frequency.
If β2 < 0 the low frequencies are delayed, viceversa if β2 > 0.

To counter-part the chromatic dispersion is exploited the linear relation between the group delay and the
wavelength. For this porpouse the chirped grting is used with a circulator, as shown in the following picture:
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The circulator ha the single duty to separate the compensated signal Eout from the signal coming from the
fiber. In general, the dispersion introduced by the fiber is compensated by the negative chirped grating.
Formally the toal dispersion caused by the fiber is

DF =
dτg
dλ

=
dτg
dω

dω

dλ
= −2πcβ2LF

λ2

where LF is the total length of the fiber.
Next, imposing that DF +DG = 0 the value of C is derived:

C =
λ2

2πcβ2LF

The behaviour of the signal can be generally understood considering the following picture, representing an
example for a sequence of three gaussian pulses:
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