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1900 – Blackbody radiation Spectrum and Plank constant 
Max Planck introduced a revolutionary idea to solve the ultraviolet catastrophe in blackbody radiation. He proposed that electromagnetic 
energy could only be emitted or absorbed in discrete packets, or "quanta", proportional to the frequency: 𝐸 = ℎ𝜈.  This marked the birth 
of quantum theory and introduced Planck’s constant ℎ, a fundamental quantity in modern physics. 

According to Plank, the radiation of a blackbody can be expressed as: 𝑢(𝜈, 𝑇) = 8𝜋𝜈3
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1905 – Photoelectric Effect 
Albert Einstein explained the photoelectric effect by suggesting that light is made up of individual quanta called photons. He showed that 
light can eject electrons from a metal surface only if its frequency is above a certain threshold, regardless of intensity. This experiment 
confirmed the particle-like behavior of light and earned Einstein the Nobel Prize in Physics in 1921. 
 

1913 – Bohr Atom Model 
Niels Bohr proposed a new model of the atom in which electrons orbit the nucleus in quantized energy levels. Electrons could jump 
between these levels by absorbing or emitting photons with energy equal to the difference between levels. This model successfully 
explained the spectral lines of hydrogen and introduced the concept of quantized orbits. 
 

1923 – Compton Effect 
Arthur Compton demonstrated that X-rays scattered off electrons experience a shift in wavelength that depends on the scattering angle. 
This effect could only be explained if photons carried both energy and momentum, providing strong evidence for the particle nature of 
light and supporting the concept of photon-electron collisions. 
 

1924 – De Broglie Wavelength 

Louis de Broglie proposed that particles, like electrons, also have wave-like properties, with a wavelength given by 𝜆𝐵 =
 ℎ

𝑝
. This hypothesis 

suggested that matter has both wave and particle nature, laying the foundation for wave mechanics and the later development of quantum 
mechanics. 
 

1927 – Heisenberg’s Uncertainty Principle 
Werner Heisenberg formulated the Uncertainty Principle, stating that it is fundamentally impossible to know both the exact position and 
exact momentum of a particle at the same time. This principle reflects the inherent limitations of measurements in quantum mechanics 
and signifies a major departure from classical determinism. 
 

1927 – Davisson-Germer Experiment 
Clinton Davisson and Lester Germer experimentally confirmed electron diffraction by observing interference patterns when electrons 
were scattered off a crystal. This provided direct evidence of wave behavior in particles, confirming de Broglie’s hypothesis and further 
establishing the wave-particle duality of matter. 
 

Single Slit Experiment – Wave Nature of Light and Matter 
The single slit diffraction experiment demonstrates how light behaves as a wave when it passes through a narrow opening. In this setup, 
a coherent light source, such as a laser, is directed at a single narrow slit (with width D). As the light passes through the slit, it spreads out 
and interferes with itself, forming a characteristic diffraction pattern on a screen placed behind the slit. This pattern consists of a central 
bright fringe (called the central maximum) flanked by several dimmer fringes (minima and secondary maxima) on both sides. The width of 
the slit and the wavelength of the light influence the spacing and intensity of these fringes. The experiment provides strong evidence for 
the wave nature of light and can be used to calculate the wavelength using the diffraction condition for minima: a·sin(θ) = mλ, where a is 
the slit width, θ the angle of the minima, λ the wavelength, and m an integer (excluding zero). 
 
The wave at position z=0, corresponding to the slit can be expressed as: 

𝝍(𝒙, 𝟎) = 𝒓𝒆𝒄𝒕 (
𝒙

𝑫
) 

It can be demonstrated that in “Fraunhofer diffraction regime” (when 𝑳 ≫ 𝑫𝟐

𝝀
), the spherical waves 

emerging from the slit can be approximated as plane waves. After that, we use the space Fourier 
Transform to move from 𝒙 to 𝒌𝒙  

𝝍(𝒌𝒙, 𝟎) ∝ 𝓕(𝒓𝒆𝒄𝒕 (
𝒙

𝑫
)) = 𝑫 𝒔𝒊𝒏𝒄(

𝑫𝒌𝒙

𝟐𝝅
) = [𝒌𝒙 =

𝟐𝝅

𝝀
𝒔𝒆𝒏𝜽] = 𝑫 𝒔𝒊𝒏𝒄(

𝑫 𝒔𝒆𝒏𝜽

𝝀
)  

That gives a probability of: 

𝑷(𝜽) = |𝝍(𝜽)|𝟐 ∝ 𝒔𝒊𝒏𝒄𝟐 (
𝑫 𝒔𝒆𝒏𝜽

𝝀
)  In Fraunhofer diffraction we can say that 𝒔𝒆𝒏𝜽 ~ 𝒙

𝑳
, resulting: 

𝑷(𝒙) ∝ 𝒔𝒊𝒏𝒄𝟐 (
𝑫𝒙

𝝀𝑳
) 

Since the intensity is proportional to the amplitude of the wave squared, it will also be: 

𝑰(𝒙) = 𝑰𝟎𝒔𝒊𝒏𝒄
𝟐 (
𝑫𝒙

𝝀𝑳
) 

  



 

 

Some useful parameters we can calculate to study deeper these phenomena are: 
▪ Zeros of the sinc function: 

The intensity pattern reaches zero when: 𝒙𝒎 = 𝒎
𝝀𝑳

𝑫
 

where 𝒎 ∈ 𝒁 ∖ {𝟎} . These positions correspond to destructive interference (dark fringes) in the diffraction pattern. 
▪ Fresnel Number 

Defined as: 𝑵𝑭 = (
𝑫

𝟐
)
𝟐 𝟏

𝝀𝑳
 

This number helps determine the diffraction regime: 
❖ 𝑵𝑭 ≫ 𝟏: geometric optics 
❖ 𝑵𝑭 ~ 𝟏: Fresnel (near-field) diffraction 
❖ 𝑵𝑭 ≪ 𝟏: Fraunhofer (far-field) diffraction 

 
▪ Diffraction Angle 

The angle at which a given minimum occurs is given by: 𝒔𝒆𝒏 𝜽𝒎 =
𝒎𝝀

𝑫
 

 
 
We can derive the same results also using the Indetermination Principle: 
At position 𝒛 < 𝟎  (before the slit) we have:         𝚫𝒙 = 𝚫𝒚 = 𝚫𝒛 = ∞         𝚫𝒑̅ = 𝟎  
At position 𝒛 = 𝟎 (in the slit)                                       𝚫𝐱 = 𝐃                                   𝚫𝒑𝒙 =

ℏ

𝟐𝑫
  

Then moving with z:                                                        𝚫𝒗𝒙
𝒗𝒛
= 𝒕𝒈𝜽𝑩 =

𝝀𝑩

𝑫
 

Knowing that 𝚫𝒗𝒙 =
𝚫𝒑𝒙

𝒎𝒆
= 

ℏ

𝟐𝑫𝒎𝒆
   𝚫𝒗𝒙

𝒗𝒛
= 𝒕𝒈𝜽𝑩 =

𝝀𝑩

𝑫
=  

ℏ

𝟐𝑫𝒎𝒆 𝒗𝒛
  

 
  
 
Double Slit Experiment – Wave and Particle Nature of Light and Matter 
Double slit diffraction is a fundamental experiment in physics that demonstrates the wave nature of light and other particles. When a 
coherent light source, such as a laser, passes through two closely spaced slits, it produces an interference pattern of bright and dark 
fringes on a screen, due to the constructive and destructive interference of the light waves. However, if a detector is placed to observe 
which slit the particle goes through, the interference pattern disappears, and a particle-like behavior is observed instead. This surprising 
result highlights the wave-particle duality of matter and light, a central concept in quantum mechanics. The experiment, first performed 
by Thomas Young in the early 19th century, remains one of the most striking illustrations of quantum behavior. 
 
The wave at position z=0, corresponding to the slit can be expressed as: 

𝝍(𝒙, 𝟎) ∝ [𝒓𝒆𝒄𝒕 (
𝒙 −

𝒂
𝟐

𝑫
)+ 𝒓𝒆𝒄𝒕(

𝒙 +
𝒂
𝟐

𝑫
)] 

 
Each rect, if the width of the hole is small enough, can be seen as two deltas and each of them is a source of spherical wave. 
 

𝝍(𝒌𝒙, 𝒛) ∝
𝒆𝒊𝒌𝒙𝒓𝒂

𝒓𝒂
+
𝒆𝒊𝒌𝒙𝒓𝒃

𝒓𝒃
      𝒇𝒐𝒓 𝟎 < 𝒛 < 𝑳   (the wavefunction must be unitary, that’s why we normalized) 

 
In general, if a wavefunction is expressed as 𝝍 = 𝝍𝟏 +𝝍𝟐, the probability to find the particle in a certain 
position is given by: 
𝑷 = |𝝍|𝟐 = [𝝍𝟏

∗ +𝝍𝟐
∗ ][𝝍𝟏 +𝝍𝟐] = |𝝍𝟏|

𝟐 + |𝝍𝟐|
𝟐 + 𝟐 𝑹𝒆{𝝍𝟏𝝍𝟐} = 𝑷𝟏 + 𝑷𝟐 + 𝟐 √𝑷𝟏𝑷𝟐 𝒄𝒐𝒔𝝓  

 
So, the probability of finding the particle in a certain position is given to the probability distribution given 
from the first slit + the probability distribution given by the second slit + an interference term. 
 

In paraxial approximation (near x=0) we can say that 𝝍 ∝
𝒆𝒊𝒌𝒙𝒓𝒂

𝒓𝒂
+
𝒆𝒊𝒌𝒙𝒓𝒃

𝒓𝒃
 ~ 

𝒆𝒊𝒌𝒙𝒓𝒂

𝑳
+
𝒆𝒊𝒌𝒙𝒓𝒃

𝑳
, each rect will introduce a sinc in the pattern, but 

since the two rects are very close, we can assume that the two sinc are identical as the single slit experiment 𝑷𝟏(𝒙) = 𝑷𝟐(𝒙) = 𝒔𝒊𝒏𝒄𝟐 (
𝑫𝒙

𝝀𝑳
) 

 
 

{
 
 
 
 

 
 
 
 𝑷 = |𝝍𝟏|

𝟐 + |𝝍𝟐|
𝟐 + 𝟐 𝑹𝒆{𝝍𝟏𝝍𝟐} = |𝝍𝟏|

𝟐 + |𝝍𝟐|
𝟐 + 𝟐√𝝍𝟏𝝍𝟐 𝐜𝐨𝐬𝝓(𝒙) ∝  𝒔𝒊𝒏𝒄

𝟐 (
𝑫𝒙

𝝀𝑳
) (𝟏 + 𝐜𝐨𝐬 (𝒌𝒙

𝒂𝒙

𝑳
))

𝝓(𝒙) = 𝐚𝐫𝐠(𝝍𝟏(𝒙)) − 𝐚𝐫𝐠(𝝍𝟐(𝒙)) = 𝐚𝐫𝐠 (
𝒆𝒊𝒌𝒙𝒓𝒂

𝑳
) − 𝐚𝐫𝐠 (

𝒆𝒊𝒌𝒙𝒓𝒃

𝑳
) = 𝒌𝒙(𝒓𝒂(𝒙) − 𝒓𝒃(𝒙)) →   𝒌𝒙

𝒂𝒙

𝑳

𝒓𝒂(𝒙) = √(𝒙 +
𝒂

𝟐
)
𝟐
+ 𝑳𝟐 = 𝑳 √𝟏 + (

𝒙+
𝒂

𝟐

𝑳
)
𝟐

= [√𝟏 + 𝒙  ≈ 𝟏 +
𝟏

𝟐
𝒙] = 𝑳 [𝟏 +

𝟏

𝟐
(
𝒙+

𝒂

𝟐

𝑳
)
𝟐

] = 𝑳 +
(𝒙+

𝒂

𝟐
)
𝟐

𝟐𝑳

𝒓𝒂(𝒙) = √(𝒙 −
𝒂

𝟐
)
𝟐
+ 𝑳𝟐 =  𝑳 +

(𝒙−
𝒂

𝟐
)
𝟐

𝟐𝑳

   

 
  



 

 

After all, we find that: 
 

𝑷𝒐𝒖𝒕 = |𝝍𝟏 +𝝍𝟐|
𝟐 ∝ 𝒔𝒊𝒏𝒄𝟐 (

𝑫𝒙

𝝀𝑳
) (𝟏 + 𝐜𝐨𝐬 (

𝟐𝝅

𝝀

𝒙𝒂

𝑳
))  

 
 
Instead, if we introduce a path detector that measures whether the particle passes through slit 1 or slit 2, the patter changes!  
This happens because measuring the particle 3forces the particle to be there, or, in other words, taking a measurement changes the 
quantum state of the particle. 
 
In a double slit experiment with a path detector, we find: 

𝑷𝒐𝒖𝒕 = |𝝍𝟏|
𝟐 + |𝝍𝟐|

𝟐
∝ 𝒔𝒊𝒏𝒄𝟐 (

𝑫𝒙

𝝀𝑳
)  

 
 
 
 
 
 
An additional concept that is useful to study this, is the “visibility of interference”. Visibility quantifies how clearly the interference fringes 
appear and is defined as: 

𝑉 =
𝑃𝑚𝑎𝑥 − 𝑃𝑚𝑖𝑛
𝑃𝑚𝑎𝑥 + 𝑃𝑚𝑖𝑛

 

 
A visibility of 1 indicates perfect interference (clear, high-contrast fringes) (wave nature), while a visibility of 0 means no interference is 
observed (particle nature). In the context of quantum mechanics, the visibility is often used to measure the coherence of the system and 
the degree to which "which-path" information destroys the interference, reflecting the balance between wave-like and particle-like 
behavior. 
In a complementary way, we define the parameter of “distinguishability”: 

𝜂 = 1 − 𝑉 
𝜂 of 1 means no interference while a 𝜂 of 0 means full interference.  
 
 
In this way we can write the probability of finding a particle in a certain position in a single equation, both for the wave nature and when a 
path detector is added: 

𝑷𝒐𝒖𝒕 ∝ 𝒔𝒊𝒏𝑐
2 (
𝐷𝑥

𝜆𝐿
) (1 + (1 − 𝜂) 𝑐𝑜𝑠 (

2𝜋

𝜆

𝑥𝑎

𝐿
)) 
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1) The mathematical model for quantum physics (Hilbert Space, Inner Products, Operators and so on) 
 
Why and How modeling Quantum Mechanics with Linear Algebra. 
https://www.youtube.com/watch?v=3nvbBEzfmE8 
 
In classical physics we know that physical quantities are: 
▪ Single-valued 
▪ Continuous 
And given that, we use continuous functions to study these phenomena (s(t), v(t), a(t), T(t), etc.) 
 
In quantum physics out physical quantities are: 
▪ Random but probabilistic 
▪ Discrete (quantization of energy) 
For example, when measuring the energy emitted by irradiated hydrogen, one would typically expect the measured energy to correspond 
to the energy gap. However, the presence of defects can alter this expectation. In rarer cases, different energy values may be observed, 
depending on the energy levels introduced by such defects. 
Given that, we clearly understand that a continuous function cannot represent our model. 
 
We can represent each possible value (of energy for example) like 𝐴, 𝐵, 𝐶,𝐷,… , so our particle in these specific cases can be represented 
by mathematical objects, vectors, like 𝑀𝐴, 𝑀𝐵,𝑀𝐶 , 𝑀𝐷, …  
Then we must create a mathematical object that contains all possible vectors because before the measurement we do not know the 
output = 𝑀𝐴 ∙  𝑀𝐵 ∙  𝑀𝐶 ∙  𝑀𝐷… , a space that may contains all the possible vectors. 
Each mathematical object must carry a weight to indicate its probability: 𝑎𝐴𝑀𝐴 ∙  𝑎𝐵𝑀𝐵 ∙  𝑎𝐶𝑀𝐶 ∙  𝑎𝐷𝑀𝐷… that indicates a linear 
combination, so we can deduct that a particle is a linear combination of all outcome-possibilities with each possibility represented by a 
vector. In this way we described the random but probabilistic feature. 
To describe the discrete feature of a physical quantity we use a matrix. When we are interested in calculating the physical quantity of a 
particle, we will have to submit our particle (linear combination) to the matrix (physical quantity). 
 
Our vectors (𝑀𝐴, 𝑀𝐵,𝑀𝐶 , 𝑀𝐷) are called eigenvectors, the values (𝐴, 𝐵, 𝐶, 𝐷) are called eigenvalues and our matrix is an operator. 
 
Vectors, Ket and Wavefunctions 
https://www.youtube.com/watch?v=DBZ_hCmj8Mk 
 
We start defining what a vector space is: a vector space is a set of objects, called vectors, that satisfy these rules: 
 𝑣⃗ + 𝑢⃗⃗  gives a vector as an output; 
𝑎𝑣⃗  gives a vector as an output; 
(𝑣⃗ + 𝑢⃗⃗) + 𝑤⃗⃗⃗ = 𝑣⃗ + (𝑢⃗⃗ + 𝑤⃗⃗⃗) 
𝑣⃗ + 𝑢⃗⃗ = 𝑢⃗⃗ + 𝑣⃗ 

𝑎(𝑏𝑢⃗⃗) = (𝑎𝑏)𝑢⃗⃗ 
1𝑢⃗⃗ = 𝑢⃗⃗ 
𝑎(𝑣⃗ + 𝑢⃗⃗) = 𝑎𝑣⃗ + 𝑎𝑢⃗⃗ 
(𝑎 + 𝑏)𝑢⃗⃗ = 𝑎𝑢⃗⃗ + 𝑏𝑢⃗⃗  

Keeping in mind that a vector is not only the traditional arrow but any mathematical object that follows these rules. 
 
In quantum mechanics, we define a particle as a vector in the vector space. We call this vector a quantum state 𝜓⃗⃗. From this quantum 
state we should be able to extract all the information like energy and position and all the relative weights.  
A quantum state, or in general a vector, can be represent both like 𝜓⃗⃗ and |𝜓⟩.  
A quantum state that represents all the possible values of energy that can be measured by irradiated hydrogen can be written as: 

|𝜙⟩ = 𝑐1|𝐸1⟩ + 𝑐2|𝐸2⟩ + 𝑐3|𝐸3⟩  
and can be seen as a superposition of all quantum states that our particles can be seen. 
A quantum state that represents all the possible values of momentum, in a similar way, can be written as: 

|𝜙⟩ = 𝑐1|𝑃1⟩ + 𝑐2|𝑃2⟩ + 𝑐3|𝑃3⟩  
The same quantum state |𝜙⟩ can both be represented as a linear combination of energy or momentum or position … 
 
 
Now we should consider that energy is quantized (thanks Plank), but some other physical quantities, like position, are continuous.  
Until now we have described the quantum state as a sum of all possible values and now, we should pass to the integral form: 
|𝜙⟩ = 𝑐1|𝐸1⟩ + 𝑐2|𝐸2⟩ + 𝑐3|𝐸3⟩  = ∑ 𝑐𝑖|𝐸𝑖⟩𝑖      |𝜙⟩ = ∫ 𝑑𝑥 𝑐(𝑥)|𝑥⟩ 

+∞

−∞
= ∫ 𝑑𝑥 𝜙(𝑥)|𝑥⟩ 

+∞

−∞
  

When we represent the quantum state as the integral of all the possible positions, we write our continuous weight coefficients 𝑐(𝑥) as a 
position wavefunction because that what it is!  
In quantum mechanics a wavefunction is a mathematical function that encapsulates the quantum state of a system. It provides the 
probability amplitude for the outcomes of measurements of physical quantities. 
 
  

https://www.youtube.com/watch?v=3nvbBEzfmE8
https://www.youtube.com/watch?v=DBZ_hCmj8Mk


 

 

Hilbert Space and the concept of infinity 
https://www.youtube.com/watch?v=_kJUUxjJ_FY&t=24s 
 
The dimensions of a vector space is the number of (independent) vectors to form that space, for example, if we can describe our quantum 
state as: |𝜙⟩ = 𝑐1|𝐸1⟩ +  𝑐2|𝐸2⟩ + 𝑐3|𝐸3⟩ it means that the dimension of the space that represents our quantum state is 3. 
In some cases, we may have that a quantum state can be represented as a superposition of infinite number of vectors leading to an infinite 
dimension of the space.  
The concept of infinite may be dangerous because a sum of infinite vectors may lead to a quantum state that is outside the vector space!  
The general vector space as a representation of our mathematical object is no longer sufficient. We would like to add the constraint: Every 
convergent sum of vectors must converge to an element inside the vector space: ∑ |𝐸𝑖⟩ → |𝜙⟩∞

𝑖 , and with that, we described a Hilbert 
Space! 
A Hilbert Space is a vector space with an inner product (scalar product) that is Cauchy complete, in simple, every convergent sequence 
of vectors (partial or infinite linear combination) converges to an element inside the vector space. Every quantum state represents a ray 
of an Hilbert Space. 
 
Focus on the Inner Product 
https://www.youtube.com/watch?v=3N2vN76E-QA 
 
We first review the importance of the scalar product in Euclidean Space 𝑢⃗⃗  ⋅  𝑣⃗ = |𝑢⃗⃗||𝑣⃗| cos 𝜃: 
▪ When the scalar product gives 0 (with non-null vectors), the two vectors are defined as orthogonal. 

▪ We define the length of a vector, following Pythagoras, as |𝑢⃗⃗| = √𝑢𝑥2  ⋅ 𝑢𝑦2 = √𝑢⃗⃗  ⋅ 𝑢⃗⃗ 

 
In our Hilbert Space, since we use a fancier way to write vectors, we define our scalar product as 𝐼𝑛𝑃𝑟𝑜𝑑(|𝜓 ⟩, |𝜙⟩)  or simply ⟨𝜓|𝜙⟩  
All the properties of the vectors are applied also to our bras and kets, so: 
|𝜙⟩ + |𝜓⟩ = |𝜙 + 𝜓⟩  
⟨𝜓|𝑎𝜙⟩ = 𝑎 ⟨𝜓|𝜙⟩  
⟨𝜓|𝜙 + 𝜁⟩ =  ⟨𝜓|𝜙⟩ + ⟨𝜓|𝜁⟩  

⟨𝜙| + ⟨𝜓| = ⟨𝜙 + 𝜓|  
⟨𝑎 𝜓|𝜙⟩ = 𝑎∗ ⟨𝜓|𝜙⟩  
⟨𝜓 + 𝜙|𝜁⟩ =  ⟨𝜓|𝜁⟩ +  ⟨𝜙|𝜁⟩  

 
So, the kets are linear while the bras are antilinear. 
In particular, ⟨𝑎 𝜓| 𝑎 𝜓⟩ = 𝑎 𝑎∗ ⟨𝜓|𝜓⟩ = 1 , ⟨𝜓|𝜙⟩ = ⟨𝜙|𝜓⟩∗ and we also ensure that the only the zero vector has zero length. 
As the Euclidean space, we define the length as: √⟨𝜓|𝜓⟩ and the definition of orthogonality as ⟨𝜓|𝜙⟩ = 0  

We say that a vector is normalized if ||𝜓||
2
= 1 and to normalize a vector: |𝜓′⟩ = |𝜓⟩

√⟨𝜓|𝜓⟩
 

 
Inner Product as the method to extract information of a quantum state 
https://www.youtube.com/watch?v=nDa3cqFk80o&t=414s 
 
Now we will see the reason we are interested in the inner product: the inner product has the capacity to extract a value of the wavefunction, 
so a single probability of a quantum state. 
First of all, we need to introduce what an orthonormal basis is: {|𝐸𝑖⟩} is an orthonormal basis if ⟨𝐸𝑖|𝐸𝑖⟩ = 1 and ⟨𝐸𝑖|𝐸𝑗⟩ = 0.  
In the discrete world we can indicate an orthonormal basis with the Kronecker delta 𝛿𝑖𝑗  that it’s equal to 1 when 𝑖 = 𝑗 and 0 otherwise. 
In the continuous world we use a Dirac delta to indicate an orthonormal basis 𝛿(𝑥)  
Our definition of Dirac delta is not just the spike definition, but we define it as any function that satisfies 𝑓(𝑐) = ∫ 𝑑𝑥 𝑓(𝑥)|𝛿(𝑐 − 𝑥). 
 
Now we can start with a quantum state defined as a superposition of finite quantum states and see how we can extract a single coefficient 
through the inner product: 
⟨𝐸2|𝜙⟩ = ⟨𝐸2|(∑ 𝑐𝑖|𝐸𝑖⟩)𝑖 = ∑ 𝑐𝑖⟨𝐸2|𝐸𝑖⟩𝑖  
Taking to account that 𝐸2, 𝐸𝑖 are orthonormal basis (we would just need another coefficient outside) we can write: 
⟨𝐸2|𝜙⟩ = ⟨𝐸2|(∑ 𝑐𝑖|𝐸𝑖⟩)𝑖 = ∑ 𝑐𝑖⟨𝐸2|𝐸𝑖⟩𝑖 = ∑ 𝑐𝑖  𝛿2𝑖𝑖 = 𝑐2 
For two general quantum states we have: 
⟨𝜓|𝜙⟩ = (∑ ⟨𝑎𝑖𝐸𝑖|𝑖 )(∑ |𝑏𝑗𝐸𝑗⟩𝑗 ) = ∑ ∑ ⟨𝑎𝑖𝐸𝑖|𝑏𝑗𝐸𝑗⟩ = ∑ ∑ 𝑎𝑖

∗𝑏𝑗  ⟨𝐸𝑖|𝐸𝑗⟩ =𝑗𝑖𝑗 ∑ ∑ 𝑎𝑖
∗𝑏𝑗  𝛿𝑖𝑗𝑗𝑖𝑖 = ∑ 𝑎𝑖

∗𝑏𝑖𝑖  that is the scalar product!!  
 
In a similar way, for a quantum state defined as a superposition of infinite  
⟨2.71|𝜙⟩ = ⟨2.71 |∫ 𝑑𝑥 𝑐(𝑥)|𝑥⟩ =  ∫ 𝑑𝑥 𝑐(𝑥) ⟨2.71|𝑥⟩ =  ∫ 𝑑𝑥 𝑐(𝑥) 𝛿(2.71 − 𝑥) = 𝑐(2.71)  
For two general quantum states we have: 
⟨𝜓|𝜙⟩ = (∫ 𝑑𝑥 𝜓(𝑥)⟨𝑥|)(∫ 𝑑𝑦 𝜙(𝑦)|𝑦⟩) = ∫ ∫ 𝑑𝑥 𝑑𝑦 𝜓(𝑥)∗𝜙(𝑦) ⟨𝑥|𝑦⟩ =  ∫ (∫ 𝑑𝑥  𝜓(𝑥)∗𝜙(𝑦) 𝛿(𝑥 − 𝑦)) 𝑑𝑦 =   

∫ 𝑑𝑥  𝜓(𝑥)∗𝜙(𝑥) 𝛿(𝑥 − 𝑥)  = ∫ 𝑑𝑥  𝜓(𝑥)∗𝜙(𝑥)   
 
 
 
 
 
  

https://www.youtube.com/watch?v=_kJUUxjJ_FY&t=24s
https://www.youtube.com/watch?v=3N2vN76E-QA
https://www.youtube.com/watch?v=nDa3cqFk80o&t=414s


 

 

Focus on Bra 
https://www.youtube.com/watch?v=lRR-qgjaKlg 
 
We saw that with the inner product, the bra helps us to extract information from the quantum state represented by ket. Let’s define what 
bra really is in math language. A bra is a linear functional living in the Hilber Dual Space. (Riesz Representation Theorem) 
An example can be in ℝ2, with a simple linear functional 𝐿𝑥 that has the role of taking the first component of a vector like:  

𝐿𝑥 ∗ [
−3
7
] =  −3 and so on. It can be calculated that in this case 𝐿𝑥 = [1 0] and it’s a row matrix 

The definition of a linear functional is any linear map that goes from the vector space to a scalar number. 
All the linear functionals (in each ℝ𝑛) form a vector space that is called dual space which definition is: given a vector space 𝑉, the dual 
space 𝑉∗ is the vector space of all linear functionals in 𝑉. In fact, the bra lives in the Hilbert Dual Space ⟨𝜓| ⊑ ℋ∗. 
 
 
Observables Operators 
https://www.youtube.com/watch?v=ANLRQ7X6h5A 
 
Until now we saw that particles can be represented by quantum state with the ket notation and to extract information on the probability 
of having a deterministic value of a physical quantity we use linear functionals represented with the bra notation. 
Now we must discuss how to represent physical quantity in a mathematical way. First of all, in quantum mechanics we do not talk about 
“physical quantity” but rather of “observable” to indicate any physical quantity that can be measured out of a particle (𝑥, 𝑝, 𝐸, 𝐿).  
When we introduced the new model for quantum mechanics, we stated that an “observable” is a matrix that acts on a particle (quantum 
state), returning all the possible values that the particle can assume. This matrix is a linear operator. 
A linear operator is a map on a vector space that preserves the linear structure of the space, so it satisfies these proprieties: 
𝑀̂(|𝜓⟩ + |𝜙⟩) =  𝑀̂(|𝜓⟩) + 𝑀̂(|𝜙⟩)  and  𝑀̂(𝑐|𝜙⟩) = 𝑐𝑀̂(|𝜙⟩)  
Now we should understand how to build this matrix and how the particle submitted to the matrix gives different outputs.  
We can start measuring multiple times a certain physical quantity and obtain all the possible values. Taking the energy output, we may 
measure: 
𝐸1 = 0.44 𝑒𝑉  that represents the first possible quantum state |𝐸1⟩ 
𝐸2 = 0.78 𝑒𝑉  that represents the second possible quantum state |𝐸2⟩ 
𝐸3 = 1.02 𝑒𝑉  that represents the third possible quantum state  |𝐸3⟩ 
𝐸4 = 0.82 𝑒𝑉  that represents the fourth possible quantum state  |𝐸4⟩ 
And overall, we have that 𝐸̂|𝜓⟩ = 𝑎1|𝐸1⟩ + 𝑎2|𝐸2⟩ + 𝑎3|𝐸3⟩ + 𝑎4|𝐸4⟩,   𝐿̂|𝜓⟩ = 𝑎1|𝐿1⟩ + 𝑎2|𝐿2⟩ + 𝑎3|𝐿3⟩,  etc. 
The column on the left are eigenvalues, while the column on the right are eigenstates and an eigenvector |𝜓⟩ is represented by the linear 
combination of eigenstates. 
 
Now we can derive some properties that observables should have: 
1) Observables need to have real eigenvalues  
2) Observables’ eigenstates must span the entire vector space (they are the combination of orthonormal basis of the space and so any 

quantum state can be written as a linear combination of eigenstates) 
3) Eigenstates must be mutually orthogonal 
So, as observable’s eigenstates must form an orthonormal eigenbasis, in fact operators in quantum mechanics are Hermitian operators. 
 
 
Born Rule 
https://www.youtube.com/watch?v=PZUZgOUOOIU 
 
We found that 𝐸̂|𝜓⟩ = 𝑎1|𝐸1⟩ + 𝑎2|𝐸2⟩ + 𝑎3|𝐸3⟩ + 𝑎4|𝐸4⟩ and we said that through the inner product we can extract a certain coefficient. 
Now we focus on how to find the probability coefficient that somewhat is correlated with our coefficients 𝑎1, 𝑎2, 𝑎3, … 
From an intuitive perspective, considering a 2-dimensional space, with  𝑢𝑥̂  𝑎𝑛𝑑 𝑢𝑦̂ as orthonormal basis, a vector that is a linear 
combination of the two has more probability of falling in a particular eigenstate |𝐸𝑥⟩ if the vector is very close to  𝑢𝑥̂; in other words, if a 
projection of a general vector on an eigenvector is high ( 𝑣⃗ cos 𝛼 ~ 𝑣⃗) than the probability of having the eigenstate relative of that 
eigenvector is high. And remember that the projection of a vector on an eigenvector is the inner product!! Now we prove that a certain 
coefficient contains information of the probability of the relative eigenstate of the coefficient. 
⟨𝑢𝑥̂  |𝜓⟩ =  ⟨𝑢𝑥̂| ∑ 𝑐𝑖|𝐸𝑖⟩𝑖 = ∑ 𝑐𝑖⟨𝑢𝑥̂|𝐸𝑖⟩𝑖 = 𝑐𝑥  𝛿𝑥𝑥 + 𝑐𝑦𝛿𝑥𝑦 = 𝑐𝑥    
(we take the dimension of parallel component to the direction we are interested in)  
The actual probability is defined by the magnitude squared of the coefficient 𝑃(𝐸 = 𝐸1) = |𝑐1|2  (the coefficient could be complex but the 
probability must be real and the sum of all the probabilities must be 1) (this result can be achieved resolving a differential equation. If 
interested, watch the video or check the Gleason’s Theorem). Overall, the Born rule says (considering all the eigenvectors normalized): 

𝑃(𝐸 = 𝐸𝑖) = |𝑐𝑖|
2 = |⟨𝐸𝑖|𝜓⟩|

2 𝑎𝑛𝑑 ∑ 𝑝𝑖 = 1 
 
In the same way, for a continuous physical quantity: 

𝑃(𝑥) = |𝜓(𝑥)|2 𝑎𝑛𝑑 ∑ 𝑝𝑖 = 1 
 

In case our eigenvectors aren’t normalized, a general expression is:  𝑝𝑖 = 𝐹𝐼𝐷𝐸𝐿𝑇𝑌 (𝜓, 𝐸𝑖) =
|⟨𝜓|𝐸𝑖⟩|

2

⟨𝜓|𝜓⟩⟨𝐸𝑖|𝐸𝑖⟩
 

  

https://www.youtube.com/watch?v=lRR-qgjaKlg
https://www.youtube.com/watch?v=ANLRQ7X6h5A
https://www.youtube.com/watch?v=PZUZgOUOOIU


 

 

The Hermitian Operator 
https://www.youtube.com/watch?v=da1rH0Hq62Q 
 
We have seen that operators work like 𝑀̂|𝜓⟩ and return a vector. When we have an inner product with an operator inside ⟨𝜙|𝑀̂|𝜓⟩ that is 
the same as writing ⟨𝜙|𝑀̂𝜓⟩, the result is the projection of |𝑀̂𝜓⟩ on ⟨𝜙|. Intuitively we may also think that should exist an operator  𝑁̂ that 
applies on ⟨𝜙| so that ⟨𝑁̂𝜙| =  |𝑀̂𝜓⟩. This operator  𝑁̂ is called Hermitian adjoint and it’s indicated 𝑀†̂ (Dagger). 
Hermitian adjoint have the following properties:  

(𝑀†̂)
†
= 𝑀̂  (𝐴̂ + 𝐵̂)

†
= 𝐴̂† + 𝐵̂†  (𝐴̂𝐵̂)

†
=  𝐵̂†𝐴̂†  

From these we can derive some other proprieties: (c is a scalar) 
𝑐† = 𝑐∗  
⟨𝜙|𝜓⟩† = ⟨𝜙|𝜓⟩∗ = ⟨𝜓|𝜙⟩  

⟨𝜙|𝜓⟩† = |𝜓⟩† ⟨𝜙|† = ⟨𝜓|𝜙⟩  
|𝜓⟩† = ⟨𝜓| 𝑎𝑛𝑑 ⟨𝜙|† = |𝜙⟩   

 
We introduced Hermitian adjoint because it will be interesting calculating the Hermitian adjoint of an observable: 
We have said that observables are represented by linear operators whose eigenvectors represent definite states and eigenvalues 
represent the corresponding measured value. It can be proved (if interested, watch the video) that, for an observable: 

𝐸̂† = 𝐸̂ 
Operators that are their own Hermitian adjoints are called Hermitian Operators, and so ⟨𝜙|𝐸̂𝜓⟩ =  ⟨𝐸̂𝜙|𝜓⟩ 
 
 
The Observable Commutate 
https://www.youtube.com/watch?v=-pRk9HNh7os 
 
An important mathematical tool to study operators is the commutator. 
We say that two operators commute if 𝐴̂𝐵̂ =  𝐵̂𝐴̂ (usually it is not true for two general operators) and this property helps us to simplify 
many expressions.  
Given two operators 𝐴̂ and 𝐵̂, their commutator is represented by [𝐴̂, 𝐵̂] =  𝐴̂𝐵̂ − 𝐵̂𝐴̂ . So, if two operators commute, their commutator is 
equal to zero and vice versa. In a more general case, we can say [𝐴̂, 𝐵̂] =  𝐴̂𝐵̂ −  𝐵̂𝐴̂ =  𝐶̂. 
We use this property so that we can always slip products (that simplify our life) if we remember to add the commutator 𝐴̂𝐵̂ =  𝐵̂𝐴̂ + 𝐶̂. 
It can be proved that (watch video if interested) if two observables 𝐴̂ and 𝐵̂ commute, then they share a simultaneous eigenbasis {|𝐴𝑖̂𝐵𝑖̂⟩}. 
This is important because it tells us that we can make two measurements at the same time and the quantum state will collapse into a 
definite eigenvector for both the observables: 
[𝑝̂, 𝐸̂] = 0  𝑡ℎ𝑒𝑛  𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒 |𝑝1𝐸1⟩, … , so if I measure 𝑝1 for sure I also know that the energy will be 𝐸1 
 
Instead, if two operators do not commutate, they don’t have a simultaneous eigenbasis and there exists eigenstates of one observable 
that are always in a superposition of the other’s eigenstate.  
[𝑝̂, 𝑥̂]  ≠ 0  𝑡ℎ𝑒𝑛  𝑖𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑡ℎ𝑒 𝑒𝑖𝑔𝑒𝑛𝑠𝑡𝑎𝑡𝑒 |𝑝1⟩ = 𝑐1|𝐸1⟩ + 𝑐2|𝐸2⟩ + ⋯ , so, if I measure 𝑝1 , the energy could assume all the possible values 
and we are not able to measure two physical quantities at the same time because the certainty of one will determine the uncertainty of 
the other. 
 
NB: The position operator and the momentum operator do not commute indeed, and this is the origin of Heisenberg uncertainty principle. 
 
 
The Unitary Operators 
https://www.youtube.com/watch?v=dD-oYfhSKhg 
 
Another important class of operators are the unitary operators. Unitary operators are those operators that satisfy: ⟨𝑈̂𝜓|  𝑈̂𝜙⟩ = ⟨𝜓| 𝜙⟩ 
Another important property is ⟨𝑈̂𝜓|  𝑈̂𝜓⟩ =  ⟨𝜆𝜓|  𝜆𝜓⟩ = 𝜆𝜆∗ ⟨𝜓| 𝜓⟩ = |𝜆|2 ⟨𝜓| 𝜓⟩  = ⟨𝜓| 𝜓⟩ 𝑠𝑜 |𝜆|2 = 1 , so the eigenvalues of a unitary 
operators must have magnitude one. 
Unitary operators are useful since they maintain the inner product and so applying them won’t change the probability of a certain 
eigenvalue. 
 
 
 
  

https://www.youtube.com/watch?v=da1rH0Hq62Q
https://www.youtube.com/watch?v=-pRk9HNh7os
https://www.youtube.com/watch?v=dD-oYfhSKhg


 

 

Lagrangian: quantum state and classical state 
https://www.youtube.com/watch?v=lJorwy0BQGU 
 
We have understood that a quantum state is a powerful mathematical object that contains all the information of a particle. In classical 
mechanics it exists a mathematical object that carries more than one information, this is called the Lagrangian: ℒ(𝑡, 𝑥(𝑡), 𝑥̇(𝑡)) and it 
represent the “classical state” of a particle. 

ℒ = ℰ𝑘 − ℰ𝑝 =
1

2
𝑚 𝑥̇(𝑡) − 𝑉(𝑥) =

𝑝2

2𝑚
− 𝑉(𝑥)  

 
There’s a famous equation that the Lagrangian always should satisfy to be a candidate of the optimal solution: the Euler-Lagrange 
equation  𝔡ℒ

𝔡𝑥
=

𝑑

𝑑𝑡

𝔡ℒ

𝔡𝑥̇
  

 
Let’s solve the Euler-Lagrange equation with the Lagrangian defined as the difference between the kinetic and the potential energy: 
−

𝑑

𝑑𝑥
 𝑉(𝑥) =

𝑑

𝑑𝑡
 (𝑚𝑥̇) → 𝐹 = 𝑚 𝑥̈  that is the second Newton Law!  

𝔡ℒ

𝔡𝑥
=

𝑑

𝑑𝑡
 (𝑚𝑥̇) →  

𝔡ℒ

𝔡𝑥
=

𝑑

𝑑𝑡
 𝑝   so, a variation of position of a particle can be calculated by looking at the change in its momentum 

 
Other laws we can derive are: 
𝔡ℒ

𝔡𝑝
=

𝑝

𝑚
=

𝑑

𝑑𝑡
 𝑥    so, a variation of momentum of a particle can be calculated by looking at the change in its position 

𝑑ℒ

𝑑𝑡
=  

𝔡ℒ

𝔡𝑡
+ 

𝔡ℒ

𝔡𝑥
 
𝔡𝑥

𝔡𝑡
+
𝔡ℒ

𝔡𝑥̇
 
𝔡𝑥̇

𝔡𝑡
= 

𝔡ℒ

𝔡𝑡
+ 

𝑑

𝑑𝑡
(
𝔡ℒ

𝔡𝑥̇
) 𝑥̇ +

𝔡ℒ

𝔡𝑥̇
 (
𝔡𝑥̇

𝔡𝑡
) =

𝔡ℒ

𝔡𝑡
+ 

𝑑

𝑑𝑡
(
𝔡ℒ

𝔡𝑥̇
 𝑥̇)  →   

𝑑ℒ

𝑑𝑡
= 

𝔡ℒ

𝔡𝑡
+ 

𝑑

𝑑𝑡
(
𝔡ℒ

𝔡𝑥̇
 𝑥̇) →    

𝔡ℒ

𝔡𝑡
=  

𝑑

𝑑𝑡
 (ℒ −

𝔡ℒ

𝔡𝑥̇
 𝑥̇)   

𝔡ℒ

𝔡𝑡
= 

𝑑

𝑑𝑡
 (ℒ −𝑚𝑥̇𝑥̇) =

𝑑

𝑑𝑡
(
1

2
𝑚 𝑥̇(𝑡) − 𝑉(𝑥) − 𝑚𝑥̇2) →  

𝔡ℒ

𝔡𝑡
=  −

𝑑

𝑑𝑡 
𝐸   a variation of the particle in time equals a variation of energy 

𝔡ℒ

𝔡𝜃
=

𝑑

𝑑𝑡
 𝐿   

 
We have found that: 
𝔡ℒ

𝔡𝑥
=

𝑑

𝑑𝑡
 𝑝   

 

𝔡ℒ

𝔡𝑝
=

𝑑

𝑑𝑡
 𝑥  

 

𝔡ℒ

𝔡𝑡
= −

𝑑

𝑑𝑡 
𝐸   𝔡ℒ

𝔡𝜃
=

𝑑

𝑑𝑡
 𝐿  

 
We said that our Lagrangian is the “classical state” of a particle.  In the quantum world we have:
𝔡

𝔡𝑥
|𝜓⟩ ∝  𝑝̂   

 

𝔡

𝔡𝑝
|𝜓⟩ ∝ 𝑥̂  

 

𝔡

𝔡𝑡
|𝜓⟩ ∝  𝐸̂   𝔡

𝔡𝜃
|𝜓⟩ ∝  𝐿̂  

 
 
The General Schrodinger Equation 
https://www.youtube.com/watch?v=KmFG_QNSZzA 
 
We want to focus on this equation 𝔡

𝔡𝑡
|𝜓⟩ ∝  −

𝑑

𝑑𝑡 
𝐸̂ to derive the famous Schrodinger Equation 𝑖ℏ 𝑑

𝑑𝑡
|𝜓⟩ =  𝐻̂|𝜓⟩. 

First, we want to discuss how we represent the time evolution in quantum physics. We can think of it as a time evolution operator, like: 
𝑈̂(𝑡)|𝜓⟩ = |𝜓(𝑡)⟩  
The properties of this operator are: 
𝑈̂(0) = 𝐼 (identity operator) 
𝑈̂−1(𝑡)  exist, so we can move forward and backward in time and find the same value again, so time evolution is reversable. 
⟨𝑈̂(𝑡)𝜓|𝑈̂(𝑡)𝜓⟩ = ⟨𝜓|𝜓⟩ = 1 so, the time evolution operator is a unitary operator, so probability is conserved through time. 
 
Now let’s consider the time evolution operator that actions in a small chunk of time dt and use Taylor: 
𝑈̂(𝑑𝑡) = 𝑈̂(0) + 𝑈̇̂(0)𝑑𝑡 + 𝑂̂(𝑑𝑡2)  
𝑈̂(𝑑𝑡)|𝜓⟩ =  |𝜓⟩ + 𝑈̇̂(0)𝑑𝑡|𝜓⟩ + 𝑂̂(𝑑𝑡2)|𝜓⟩   →    |𝜓(𝑑𝑡)⟩ = |𝜓⟩ + 𝑈̇̂(0)𝑑𝑡|𝜓⟩ + 𝑂̂(𝑑𝑡2)|𝜓⟩   →    |𝜓(𝑑𝑡)⟩ − |𝜓⟩ = 𝑈̇̂(0)𝑑𝑡|𝜓⟩ + 𝑂̂(𝑑𝑡2)|𝜓⟩  
|𝜓(𝑑𝑡)⟩−|𝜓⟩

𝑑𝑡
=

𝑈̇̂(0)𝑑𝑡|𝜓⟩+𝑂̂(𝑑𝑡2)|𝜓⟩

𝑑𝑡
      →      𝑙𝑖𝑚𝑑𝑡→0   

𝑑

𝑑𝑡
|𝜓⟩ =  𝑈̇̂(0)|𝜓⟩    

 
Now, from the unitary operator properties we have that 𝑈̇̂†(0) = −𝑈̇̂(0) that means that the derivative on time of a unitary operator is 

Antihermitian, while (𝑖𝑈̇̂(0))
†

= 𝑈̇̂†(0)𝑖† = −𝑈̇̂(0) (−𝑖) = 𝑖𝑈̇̂(0) that is Hermitian!   (The 𝑖 has the role to conserve probability!) 

So, we can say that 𝑖𝑈̇̂(0) live in the class of Hermitian Operator, that we can call 𝐻̂ 
 
Continuing from the equation we derived: 
𝑑

𝑑𝑡
|𝜓⟩ =  𝑈̇̂(0)|𝜓⟩ →   

𝑑

𝑑𝑡
|𝜓⟩ =

𝐻̂

𝑖
|𝜓⟩ →   𝑖

𝑑

𝑑𝑡
|𝜓⟩ = 𝐻̂ |𝜓⟩   and we found the general form of the Schrodinger Equation 

 
Now, we know that a time variation corresponds to an energy operator, so 𝐻̂, called Hamiltonian is somehow related to energy. 
If we look close to this equation    𝑖 𝑑

𝑑𝑡
|𝜓⟩ = 𝐸̂ |𝜓⟩ it says [𝑠−1] = 𝐽 , so we should make a correction of unit. This correction is indeed: 

 

𝑖 ℏ
𝑑

𝑑𝑡
|𝜓⟩ = 𝐸̂ |𝜓⟩ 

https://www.youtube.com/watch?v=lJorwy0BQGU
https://www.youtube.com/watch?v=KmFG_QNSZzA


 

 

Operators and Schrodinger Equations 
https://www.youtube.com/watch?v=A7yDvA8VQC8&t=46s 
 
We have found that the general Schrodinger Equation related to a quantum state, is written as: 

𝒊 ℏ
𝒅

𝒅𝒕
|𝝍⟩ = 𝑯̂ |𝝍⟩ = (

𝒑̂𝟐

𝟐𝒎
+ 𝑽(𝒙̂)) |𝝍⟩ 

Now we want to find three versions of it, specifically related to the position state, momentum state and energy state. 
 
First, let’s derive the definition of the operators we are interested in: 
In a similar way to what we have done before, we start introducing the translation operator 𝑇̂(𝑥0). The translation operator works like: 
𝑇̂(𝑥0)|𝑥⟩ = |𝑥 + 𝑥0⟩ and applied to a general quantum state: 𝑇̂(𝑥0)|𝑥⟩ = 𝑇̂(𝑥0) ∫ 𝑑𝑥 𝜓(𝑥)|𝑥⟩ =  ∫ 𝑑𝑥 𝜓(𝑥)𝑇̂(𝑥0)|𝑥⟩ = ∫ 𝑑𝑥 𝜓(𝑥)|𝑥 + 𝑥0⟩ 
This operator shifts all the position ket of a quantum state and intuitively we can say that this operator is reversable, and the probability is 
maintained, so that the translation operator is unitary.  ⟨𝑇̂𝜓|𝑇̂𝜓⟩ = ⟨𝜓|𝜓⟩ 
 
As we did with the time evolution operator, we look at the action of the translation operator over a small translation dx: 
𝑇̂(𝑑𝑥) = 𝑇̂(0) + 𝑇̇̂(0)𝑑𝑥 + 𝑂̂(𝑑𝑥2)  

𝑇̂(𝑑𝑥)|𝑥⟩ = 𝐼|𝑥⟩ + 𝑇̇̂(0)|𝑥⟩𝑑𝑥 + 𝑂̂(𝑑𝑥2)|𝑥⟩ → (… ) →  
|𝑥(𝑑𝑥)⟩−|𝑥⟩

𝑑𝑥
=

𝑇̇̂(0)𝑑𝑥|𝑥⟩+𝑂̂(𝑑𝑥2)|𝑥⟩

𝑑𝑥
   and taking the limit of x: 

𝑑

𝑑𝑥
|𝑥⟩ = 𝑇̇(0)|𝑥⟩ →   𝑖

𝑑

𝑑𝑥
|𝑥⟩ = 𝐻̂|𝑥⟩   

 
Now we have found once again the Hamiltonian. In this case, from classical physics, we derive that a variation of position corresponds 
somewhat to the momentum. In addition, we have to correct the unity by a factor ℏ  so that [𝑚−1][ℏ = 𝐽𝑠] = [𝐽𝑠 𝑚−1] and we find how the 
momentum operator acts on a position ket: 

𝑖 ℏ
𝑑

𝑑𝑥
|𝑥⟩ = 𝑝̂ |𝑥⟩ 

 
So, time evolution give us the Schrodinger equation with energy, space translation gives the action of the momentum operator, and it can 
be demonstrated that momentum translation gives the action of negative position operator and rotational changes give us the action of 
the angular momentum operator. In brief:  

𝑖 ℏ
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻̂ |𝜓⟩  

 
𝑖 ℏ

𝑑

𝑑𝑥
|𝑥⟩ = 𝑝̂ |𝑥⟩  

 
𝑖 ℏ

𝑑

𝑑𝑝
|𝑝⟩ = −𝑥̂ |𝑝⟩  

 

𝑖 ℏ
𝑑

𝑑𝜃
|𝜃⟩ = 𝐿̂ |𝜃⟩  

 

Now, let’s see how the momentum operator affects the position wavefunction: 

𝑝̂ |𝜓⟩ = 𝑝̂ ∫ 𝑑𝑥 𝜓(𝑥)|𝑥⟩ = ∫ 𝑑𝑥 𝜓(𝑥)𝑝̂ |𝑥⟩ = ∫ 𝑑𝑥 𝜓(𝑥)  𝑖ℏ
𝑑

𝑑𝑥
 |𝑥⟩ = ⋯ = ∫ 𝑑𝑥 (−𝑖ℏ

𝑑

𝑑𝑥
𝜓(𝑥)) |𝑥⟩  , so  ⟨𝑥|𝑝̂|𝜓⟩ =  −𝑖ℏ 𝑑

𝑑𝑥
 𝜓(𝑥) 

 
Knowing that we can rewrite the Schrodinger equation in the position basis: 

𝑖 ℏ
𝑑

𝑑𝑡
|𝜓⟩ = 𝐻̂ |𝜓⟩ = (

𝑝̂2

2𝑚
+ 𝑉(𝑥̂)) |𝜓⟩  

𝑖 ℏ
𝑑

𝑑𝑡
⟨𝑥|𝜓⟩ = (

𝑝̂2

2𝑚
+ 𝑉(𝑥̂)) ⟨𝑥|𝜓⟩  

𝑖 ℏ
𝔡

𝔡𝑡
𝜓(𝑥, 𝑡) = ⟨𝑥 |

𝑝̂2

2𝑚
| 𝜓⟩ + ⟨𝑥|𝑉(𝑥̂)|𝜓⟩ = (−𝑖ℏ

𝔡

𝔡𝑥
)
2 1

2𝑚
  𝜓(𝑥, 𝑡) + 𝑉(𝑥) 𝜓(𝑥, 𝑡), overall, we have: 

 

𝑖 ℏ
𝔡

𝔡𝑡
𝜓(𝑥, 𝑡) =  −

ℏ2

2𝑚
 
𝔡2

𝔡𝑥2
  𝜓(𝑥, 𝑡) + 𝑉(𝑥) 𝜓(𝑥, 𝑡) 

 
We can also find the Schrodinger equation in the momentum basis: 
⟨𝑝|𝑥̂|𝜓⟩ =  𝑖ℏ

𝑑

𝑑𝑝
 𝜓(𝑝)  can be derived as before. 

𝑖 ℏ
𝑑

𝑑𝑡
⟨𝑝|𝜓⟩ = ⟨𝑝 |

𝑝̂2

2𝑚
| 𝜓⟩ + ⟨𝑝|𝑉(𝑥̂)|𝜓⟩ →  𝑖 ℏ

𝔡

𝔡𝑡
𝜓(𝑝, 𝑡) =

𝑝2

2𝑚
 𝜓(𝑝, 𝑡) + 𝑉 (𝑖ℏ

𝔡

𝔡𝑝
 )  𝜓(𝑝, 𝑡). Overall: 

 

𝑖 ℏ
𝔡

𝔡𝑡
𝜓(𝑝, 𝑡) =

𝑝2

2𝑚
 𝜓(𝑝, 𝑡) + 𝑉 (𝑖ℏ

𝔡

𝔡𝑝
 )  𝜓(𝑝, 𝑡) 

 
Finally we find the Schrodinger equation in the energy basis: 
𝑖 ℏ

𝑑

𝑑𝑡
⟨𝐸𝑖|𝜓⟩ = ⟨𝐸𝑖|𝐻̂|𝜓⟩  →   𝑖 ℏ

𝑑

𝑑𝑡
 𝑐𝑖(𝑡) = 𝐸𝑖  𝑐𝑖(𝑡) assuming that the Hamiltonian is time-independent 

𝑖 ℏ
𝑑

𝑑𝑡
 𝑐𝑖(𝑡) = 𝐸𝑖  𝑐𝑖(𝑡) 

 
 
 
Alle these different representations represent the same equation and describes how the coefficients in a particular basis evolve in time. 
  

https://www.youtube.com/watch?v=A7yDvA8VQC8&t=46s


 

 

2) Position and Momentum Representation 

 
https://www.youtube.com/watch?v=ApHzbZja0sI 
 
 
2.1) Position and Momentum: Classical Physics vs Quantum Physics and interpretation of a waveform 
 
In classical physics, the position and momentum of a particle are well-defined quantities at any given time. It is possible to know exactly 
where a particle is (its spatial coordinates) and how fast it is moving (its momentum 𝑝 = 𝑚𝑣) without any uncertainty. The trajectory of an 
object over time is completely determined by its initial conditions. 
 
In quantum physics, however, position and momentum are not simultaneously well-defined (we saw it from the concept of the 
commutator).  
When Schrodinger derived his equation, he thought that a quantum particle disintegrates and the wavefunction 𝜓(𝑥) indicates the 
concentration of the disintegrated particle. 
Then came Bohr and he affirmed that “𝜓(𝑥, 𝑡) does not tell how much of the particle is at 𝑥 at time t but rather the probability to find it at 
𝑥 at time t”.   
Bohr's interpretation turned out to be correct, even though Schrödinger and Einstein never fully accepted the statistical approach 
(Schrödinger even devised his famous cat paradox to highlight what he saw as the absurdity of quantum superposition at macroscopic 
scales). In fact:

𝑃(𝑥) = |𝜓(𝑥)|2 𝑃(𝑝) = |𝜓̃(𝑝)|
2

 
This probabilistic view marks a fundamental shift from classical physics: we can no longer speak of position and momentum as certain 
numbers, but only of probabilities associated with possible measurement outcomes. 
 
 
 
2.2) Statistical Concepts: variance and mean value 
 
Since quantum measurements are inherently probabilistic, we cannot associate a fixed value to an observable like position or 
momentum.  Instead, what we obtain from a measurement is a distribution of possible outcomes. 
To make sense of this distribution, we rely on two important statistical concepts: the mean value (or expectation value) and the variance. 
The mean value represents the average result we would obtain by repeating the same measurement on many identical systems. For the 
position of a particle, the mean value is given by: 

⟨𝑥⟩ = ⟨𝜓|𝑥̂|𝜓⟩ = ∫ 𝑥 |𝜓(𝑥)|2 𝑑𝑥
+∞

−∞

𝑥 =  ∫ 𝑥 𝑃(𝑥) 𝑑𝑥
+∞

−∞

  

 
However, the mean value alone does not tell us how "spread out" the possible outcomes are. This is why we introduce the variance, which 
measures how much the individual results typically deviate from the mean value. 
For position, the variance is defined as:  

(𝛥𝑥)2 = ⟨(𝑥 − ⟨𝑥⟩)2⟩ = ⟨𝑥2⟩ − ⟨𝑥⟩2 
 
NB: In classical physics we indicate the mean value and the variance as 𝑥̅ and 𝜎2, while in quantum physics as ⟨𝑥⟩ and (Δ𝑥)2 
 
 
 
 
2.3) From 𝜓(𝑥) to 𝜓̃(𝑝) : Fourier Transform in space coordinates 
 
Now we want to find how to pass from the wavefunction in space domain to wavefunction in momentum domain.  
We are interested in two main reasons: we want to exploit information from both the domains and sometimes it’s easier to work on a 
domain respect to the other.  
Starting from the space Fourier transform, we have: 

Ψ(𝑥) =
1

√2𝜋
 ∫ Φ(𝑘)𝑒𝑖𝑘𝑥𝑑𝑘     Φ(𝑘) =

1

√2𝜋
 ∫ Ψ(𝑥)𝑒−𝑖𝑘𝑥𝑑𝑥     

 
And we must underline that Φ(𝑘) carries the same information of Ψ(𝑥) and Φ(𝑘) gives the weight of each plain wave that compose Ψ(𝑥) 
and vice versa. 
But we were interested in the momentum, not in the wave vector. Knowing that 𝑝 = ℏ𝑘 we have: 

Φ(
𝑝

ℏ
) =

1

√2𝜋
 ∫ Ψ(𝑥)𝑒−

𝑖𝑝

ℏ
𝑥𝑑𝑥  now, since we want it to be normalized, the correct expressions are: 

 

𝚿(𝒙) =
𝟏

√𝟐𝝅ℏ
 ∫𝚽(𝒑)𝒆

𝒊𝒑
ℏ
𝒙𝒅𝒑     

  

𝚿̃(𝒑) =
𝟏

√𝟐𝝅ℏ
 ∫𝚿(𝒙)𝒆−

𝒊𝒑
ℏ
𝒙𝒅𝒙 

 
  

https://www.youtube.com/watch?v=ApHzbZja0sI


 

 

Now we want to prove the same thing through a different way, a more mathematical approach. 
We start from a define momentum state that can be written as: 𝑝̂|𝑝⟩ = 𝑝0|𝑝⟩, so the operator momentum, a wavefunction, applied to the 
ket momentum, gives an eigenvalue 𝑝0 still multiplied by the ket momentum. 
 
Now we want to see the same in position representation, so we apply the bra position to both terms: 
⟨𝑥|𝑝̂|𝑝⟩ = ⟨𝑥|𝑝0|𝑝⟩  Now we can move out the operator and the constant value 
𝑝̂ ⟨𝑥|𝑝⟩ = 𝑝0⟨𝑥|𝑝⟩   We call ⟨𝑥|𝑝⟩ as 𝑈𝑝(𝑥) 

𝑝̂ 𝑈𝑝(𝑥) = 𝑝0 𝑈𝑝(𝑥)  From the math of quantum mechanics, we know that 𝑝̂ 𝑈𝑝(𝑥) = 𝑖ℏ
𝑑𝑈𝑝(𝑥)

𝑑𝑥
 

𝑖ℏ
𝑑𝑈𝑝(𝑥)

𝑑𝑥
= 𝑝0 𝑈𝑝(𝑥)  And we have to solve this differential equation. From calculus we say 𝑈𝑝(𝑥) = 𝐴 𝑒𝑖

𝑝0
ℏ
𝑥 

 
Now we aim to determine the constant A in order to properly normalize the wave function. It is important to highlight that, in this case, we 
cannot simply set the normalization integral equal to 1, as it is not possible to normalize eigenstates of continuous physical quantities to 
unity in quantum mechanics.  
Unlike discrete systems, where normalizable states have a finite norm, here the states form a continuous spectrum and are not square-
integrable. For this reason, we impose that the normalization condition is equal to a Dirac delta function, reflecting the orthogonality and 
completeness properties typical of continuous bases. 
∫ 𝑑𝑥 𝑈𝑝

∗(𝑥)𝑈𝑝(𝑥)
+∞

−∞
= 𝛿(𝑝 − 𝑝′)    

|𝐴|2ℏ ∫ 𝑑𝑥
1

ℏ
 𝑒𝑖

(𝑝−𝑝′)
𝑥

ℏ
+∞

−∞
= 𝛿(𝑝 − 𝑝′)   that integral is a complex exponential that oscillates and gives: 

|𝐴|2ℏ  2𝜋 𝛿(𝑝 − 𝑝′) = 𝛿(𝑝 − 𝑝′)    at the end of the day we have found that A = 1

√2𝜋ℏ
 , resulting: 

⟨𝑥|𝑝⟩ =
1

√2𝜋ℏ
 𝑒𝑖

𝑝
ℏ
𝑥 ⟨𝑝|𝑥⟩ =

1

√2𝜋ℏ
 𝑒−𝑖

𝑝
ℏ
𝑥 

 
Now, given a quantum state 𝜓, the wavefunction in position representation is 𝜓̃(𝑝) = ⟨𝑝|𝜓⟩, so the quantum state can be written as: 

|𝜓⟩ = ∫ 𝑑𝑝 ⟨𝑝|𝜓⟩ |𝑝⟩
+∞

−∞

=  ∫ 𝑑𝑝 𝜙̃(𝑝) |𝑝⟩
+∞

−∞

  

Now we want to find its position representation: 

⟨𝑥|𝜓⟩ =  ∫ 𝑑𝑝 𝜙̃(𝑝) ⟨𝑥|𝑝⟩
+∞

−∞

= ∫ 𝑑𝑝 𝜙̃(𝑝) 
1

√2𝜋ℏ
 𝑒𝑖

𝑝
ℏ
𝑥

+∞

−∞

  

And so, we have arrived at the same expression: 
 

𝝍(𝒙) = ⟨𝒙|𝝍⟩ =
𝟏

√𝟐𝝅ℏ
 ∫ 𝒅𝒑 𝝓̃(𝒑)  𝒆𝒊

𝒑
ℏ
𝒙

+∞

−∞

  𝝍̃(𝒑) = ⟨𝒑|𝝍⟩ =
𝟏

√𝟐𝝅ℏ
 ∫ 𝒅𝒙 𝝍(𝒙)  𝒆−𝒊

𝒑
ℏ
𝒙

+∞

−∞

  
 
 
 
2.4) From P(x) to P(p) : The Heisenberg Uncertainty Principle 
 
In quantum mechanics, the description of a system is fully encoded in its wavefunction, but often we are particularly interested in the 
probability densities associated with different measurements. As we have seen 𝑃(𝑥) = |ψ(𝑥)|2. 
Since the two wavefunctions are connected through Fourier Transform, we can assume that also the two probabilities are connected. 
 
We start considering 𝑃(𝑥) as a gaussian shape since it’s mathematically convenient and physically reasonable.  

𝑃(𝑥) =
𝑒
−

𝑥2

2(Δ𝑥)2

√2𝜋(Δx)2
 

From this, we know derive the wavefunction in position representation: 

𝜓(𝑥) = √𝑃(𝑥) =
𝑒
−

𝑥2

4(Δ𝑥)2

(2𝜋(Δx)2)
1
4

 

Now through Fourier Transform we move to the wavefunction in momentum representation: 

𝜓̃(𝑝) = ∫ 𝑑𝑥 𝜓(𝑥) 
1

√2𝜋ℏ
 𝑒−𝑖

𝑝
ℏ
𝑥

+∞

−∞

= ∫ 𝑑𝑥 
𝑒
−

𝑥2

4(Δ𝑥)2

(2𝜋(Δx)2)
1
4

 
1

√2𝜋ℏ
 𝑒−𝑖

𝑝
ℏ
𝑥

+∞

−∞

=  
𝑒
−
(Δ𝑥)2𝑝2

ℏ2

(
2𝜋ℏ2

4(Δ𝑥)2 
)

1
4

 

And finally  

𝑃(𝑝) = (𝜓̃(𝑝))
2
=
𝑒
−
2(Δ𝑥)2𝑝2

ℏ2

(
2𝜋ℏ2

4(Δ𝑥)2 
)

1
2

= [Δ𝑝 =
ℏ

2Δ𝑥
]  =

𝑒
−

𝑝2

2(Δ𝑝)2

√2𝜋(Δp)2
 

 
And we find the Heisenberg Uncertainty Principle: 

𝚫𝒑𝚫𝒙 =
ℏ

𝟐
 



 

 

In grey the resolution of the monstrous integral:  

𝜓̃(𝑝) = ∫ 𝑑𝑥 
𝑒
−

𝑥2

4(Δ𝑥)2

(2𝜋(Δx)2)
1
4

 
1

√2𝜋ℏ
 𝑒−𝑖

𝑝

ℏ
𝑥+∞

−∞
=

1

√2𝜋ℏ (2𝜋(Δ𝑥)2)
1
4  
 ∫ 𝑑𝑥 𝑒

−(
𝑥2

4(Δ𝑥)2
+𝑖

𝑝

ℏ
𝑥−

𝑝2

ℏ2
 (Δ𝑥)2)+∞

−∞
𝑒−

𝑝2

ℏ2
(Δ𝑥)2 =  

𝑒
−
𝑝2

ℏ2
(Δ𝑥)2

√2𝜋ℏ (2𝜋(Δ𝑥)2)
1
4

 ∫ 𝑑𝑥 𝑒
−(

𝑥

2Δ𝑥
 + 𝑖

𝑝

ℏ
 Δ𝑥)

2
+∞

−∞
    

 

Given that ∫ 𝑒−𝑓
2(𝑥) 𝑑𝑥 =

1

𝑓′(𝑥)
 √𝜋

+∞

−∞
          →   𝜓̃(𝑝) =

𝑒
−
𝑝2

ℏ2
(Δ𝑥)2

   2Δ𝑥 √𝜋

√2𝜋ℏ (2𝜋(Δ𝑥)2)
1
4

=  
𝑒
−
(Δ𝑥)2𝑝2

ℏ2

(
2𝜋ℏ2

4(Δ𝑥)2 
)

1
4

  

 
 
 
 
 
2.5) Time evolution of Position and Momentum  
 
In quantum mechanics, the time evolution of position and momentum reveals how a system behaves over time. Unlike classical 
mechanics, where particles follow predictable paths, quantum particles are described by evolving wavefunctions. By studying how the 
expectation values of position ⟨𝑥(𝑡)⟩ and momentum ⟨𝑝(𝑡)⟩ evolve, we can uncover the quantum dynamics of a system.  
 
We first derive how the position operator changes over time: 

𝑑

𝑑𝑡
𝑝̂ =  

𝑑

𝑑𝑡
⟨𝜓|𝑝̂|𝜓⟩ = ⟨

𝑑

𝑑𝑡
𝜓|𝑝̂|𝜓⟩ + ⟨𝜓|𝑝̂|

𝑑

𝑑𝑡
𝜓⟩  

 
From the quantum math we know that: 𝑖ℏ 𝑑

𝑑𝑡
 |𝜓⟩ = 𝐻̂ |𝜓⟩ 

𝑑

𝑑𝑡
𝑝̂ =  −

1

 𝑖ℏ
 ⟨𝜓|𝐻̂𝑝̂|𝜓⟩ +

1

𝑖ℏ
⟨𝜓|𝑝̂𝐻̂|𝜓⟩ =

⟨𝜓|𝑝̂𝐻̂|𝜓⟩ − ⟨𝜓|𝐻̂𝑝̂|𝜓⟩

𝑖ℏ
=
⟨𝜓|[𝑝̂, 𝐻̂]|𝜓⟩

𝑖ℏ
 

 
 
We exploit the commutator between the momentum operator and the Hamiltonian 
 

[𝑝̂, 𝐻̂] = [𝑝̂,
𝑝̂2

2𝑚
+ 𝑉̂(𝑥)] =  [𝑝̂,

𝑝̂2

2𝑚
] + [𝑝̂, 𝑉̂(𝑥)] = 0 + [𝑝̂, 𝑉̂(𝑥)] 

 
So, we understand that we have to calculate the commutator between the momentum and the potential energy. We can use Taylor: 
 
𝑉̂(𝑥) = 𝑉(𝑥̂) = 𝑉0 + 𝑉1(𝑥̂) +

𝑉2

2
 (𝑥̂2) + ⋯  

[𝑝̂, 𝑉̂(𝑥)] =  [𝑝̂, 𝑉0] + [𝑝̂, 𝑉1(𝑥̂)] + [𝑝̂,
𝑉2
2
𝑥̂2] + ⋯ = 0 + 𝑉1[𝑝̂, 𝑥̂] +

𝑉2
2
 {[𝑝̂, 𝑥̂]𝑥̂ + 𝑥̂[𝑝̂, 𝑥̂]} + ⋯ = [𝑝̂, 𝑥̂] {𝑉1 + 𝑉2𝑥̂ +

𝑉3
2
𝑥̂2 +⋯ } = [𝑝̂, 𝑥̂]

𝑑𝑉

𝑑𝑥
  

  
Since from quantum math we have that the operator p is defined as  𝑝̂ =  −𝑖ℏ 𝑑

𝑑𝑥
 

[𝑝̂, 𝑥̂] = 𝑝̂𝑥̂ − 𝑥̂𝑝̂ =  −𝑖 ℏ
𝑑

𝑑𝑥
 𝑥̂ + 𝑥̂𝑖 ℏ

𝑑

𝑑𝑥
= −𝑖ℏ + 0 = −𝑖ℏ   

 
So, in the end we have: 

𝑑

𝑑𝑡
𝑝̂ =  

⟨𝜓|[𝑝̂, 𝐻̂]|𝜓⟩

𝑖ℏ
=  
⟨𝜓 |[𝑝̂, 𝑥̂]

𝑑𝑉
𝑑𝑥
|𝜓⟩

𝑖ℏ
=  ⟨𝜓 |

𝑑𝑉

𝑑𝑥
|𝜓⟩ 

 
 
In a similar way it can be proved that: 
 

𝑑

𝑑𝑡
𝑥̂ =  

⟨𝜓|[𝑥̂, 𝐻̂]|𝜓⟩

𝑖ℏ
=  
⟨𝜓 |

𝑖ℏ
𝑚
 𝑝̂| 𝜓⟩

𝑖ℏ
=
⟨𝜓|𝑝̂|𝜓⟩

𝑚
 

 
With  

[𝑥̂, 𝐻̂] = [𝑥̂,
𝑝̂2

2𝑚
] + [𝑥̂, 𝑉(𝑥̂)] =  [𝑥̂,

𝑝̂2

2𝑚
] + 0   and   

[𝑥,𝑝̂2]

2𝑚
=

1

2𝑚
{[𝑥̂, 𝑝̂]𝑝̂ + 𝑝̂[𝑥̂, 𝑝̂]} =

2𝑖ℏ

2𝑚
 𝑝̂ 

 
  



 

 

2a) Ex07: Well Defined Position -----------------------------------------------------------------------------------------------------------------------  
 
Consider an electron in a quantum state with well-defined position (at a given instant time) in a point P described by the position vector 
𝑟𝑝 = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝). 
a) Write the general expression of a wave function in position representation for a quantum state describing an electron with a well-

defined position 
b) Verify that the above well-defined position quantum state is an eigenstate of the position vector operator and calculate the 

corresponding eigenvalues 
c) Calculate the expectation value (mean value) and the uncertainty of the position and momentum observable in case of the above 

quantum state 
d) Write the quantum state in position representation 
 
 
 
a) Write the general expression of a wave function in position representation for a quantum state describing an electron with a 

well-defined position 
 
A quantum state with well-defined position in position representation (wavefunction) can be written as: 
𝜓(𝑟̅) = 𝛿(𝑟̅ − 𝑟𝑝̅)     𝑤𝑖𝑡ℎ 𝑟𝑝̅ = (𝑥𝑝, 𝑦𝑝, 𝑧𝑝), 𝑠𝑜  𝜓(𝑥, 𝑦, 𝑧) = 𝛿(𝑥 − 𝑥𝑝) 𝛿(𝑦 − 𝑦𝑝) 𝛿(𝑧 − 𝑧𝑝)    
 
 
 
b) Verify that the above well-defined position quantum state is an eigenstate of the position vector operator and calculate the 

corresponding eigenvalues 
 
In fact, for a well-defined position, we only have one eigenstate that corresponds at that value. All 𝑓(𝑥) multiplied by 𝛿(𝑟̅ − 𝑟𝑝̅) will make 
the position collapse in 𝑟𝑝̅, so 𝜓(𝑟̅) = 𝛿(𝑟̅ − 𝑟𝑝̅) is eigenfunction of 𝑥̂, 𝑦̂, 𝑧̂ with eigenvalues 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 
𝑥̂|𝜓(𝑟̅)⟩ = 𝑥𝑝|𝜓(𝑟̅)⟩  
𝑦̂|𝜓(𝑟̅)⟩ = 𝑦𝑝|𝜓(𝑟̅)⟩  
𝑧̂|𝜓(𝑟̅)⟩ = 𝑧𝑝|𝜓(𝑟̅)⟩  
 
 
c) Calculate the expectation value (mean value) and the uncertainty of the position and momentum observable in case of the 

above quantum state 
 
The mean value is defined as: 

⟨𝑥⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑥 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

  ⟨𝑦⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑦 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

  ⟨𝑧⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑧 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

  

 
That in our case are:  

⟨𝑥⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑥 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

=
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑥 𝛿2(𝑥−𝑥𝑝)𝛿

2(𝑦−𝑦𝑝)𝛿
2(𝑧−𝑧𝑝) 

+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝛿2(𝑥−𝑥𝑝)𝛿
2(𝑦−𝑦𝑝)𝛿

2(𝑧−𝑧𝑝) 
+∞

−∞

=  
𝑥𝑝   ∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝛿2(𝑥−𝑥𝑝)𝛿

2(𝑦−𝑦𝑝)𝛿
2(𝑧−𝑧𝑝) 

+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝛿2(𝑥−𝑥𝑝)𝛿
2(𝑦−𝑦𝑝)𝛿

2(𝑧−𝑧𝑝) 
+∞

−∞

= 𝑥𝑝  

 
In the same way for y and z: 

⟨𝑦⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑦 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

= 𝑦𝑝   

⟨𝑧⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑧 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

= 𝑧𝑝  

 
NB: For a quantum state well defined, we restore the classical physics results! 
 
Now, the uncertainty or variance is defined as: 

Δ𝑥 = √⟨𝑥2⟩ − ⟨𝑥⟩2 Δ𝑦 = √⟨𝑦2⟩ − ⟨𝑦⟩2 Δ𝑧 = √⟨𝑧2⟩ − ⟨𝑧⟩2 
That in our cases are: 

⟨𝑥2⟩ =
∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑥2 |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

∫ 𝑑𝑥𝑑𝑦𝑑𝑧  |𝜓(𝑥,𝑦,𝑧)|2 
+∞

−∞

= 𝑥𝑝
2  

⟨𝑥⟩ = 𝑥𝑝  →    ⟨𝑥⟩
2 = 𝑥𝑝

2  
 
For all the coordinates resulting: 
Δ𝑥 = 𝑥𝑝

2 − 𝑥𝑝
2 = 0  Δ𝑦 = 𝑦𝑝

2 − 𝑦𝑝
2 = 0  Δ𝑧 = 𝑧𝑝

2 − 𝑧𝑝
2 = 0  

 
From the Heisenberg Uncertanty Principle we know that  Δ𝑥Δ𝑝𝑥 ≥

ℏ

2
 , so we find: 

Δ𝑝𝑥 → ∞  
Δ𝑝𝑦 → ∞  
Δ𝑝𝑧 → ∞  
 

  



 

 

d) Write the quantum state in position representation 
 

 

From the theory we know that the wavefunction in position representation and the wavefunction in momentum representation are linked 
with a special Fourier transform 

𝜓̃(𝑝) = ⟨𝑝|𝜓⟩ =
1

√2𝜋ℏ
 ∫ 𝑑𝑥 𝜓(𝑥)  𝑒−𝑖

𝑝
ℏ
𝑥

+∞

−∞

So, in our case we have: 

𝜓̃(𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) =
1

√2𝜋ℏ
 ∫ 𝑑𝑥 𝛿(𝑥 − 𝑥𝑝)  𝑒

−𝑖
𝑝

ℏ
𝑥+∞

−∞
  

1

√2𝜋ℏ
 ∫ 𝑑𝑦 𝛿(𝑦 − 𝑦𝑝) 𝑒

−𝑖
𝑝

ℏ
𝑦+∞

−∞

1

√2𝜋ℏ
 ∫ 𝑑𝑧 𝛿(𝑧 − 𝑧𝑝)  𝑒

−𝑖
𝑝

ℏ
𝑧+∞

−∞
=

1

√ℎ3
 𝑒−

𝑖

ℏ
 (𝑝𝑥𝑥𝑝+𝑝𝑦𝑦𝑝+𝑝𝑧𝑧𝑝) 

 
This expression of the momentum waveform corresponds to a plane wave! In fact the probability is spread over all the momentum space 
and the uncertainty tends to infinity. 
 
 
 
 
 
2a) Ex08: Well Defined Momentum --------------------------------------------------------------------------------------------------------------------  
 
Consider a quantum state for an electron with well-defined momentum corresponding to a well-defined velocity 𝑣𝑧 = 3 ∙ 106 𝑚/𝑠. 
a) Write the wave function for both momentum and position representation 
b) Verify that the above quantum state is an eigenstate of the momentum vector operator and determinate the corresponding 

eigenvalues of the three components of momentum operator 
c) Determine the expectation value (mean value) and uncertainty of both momentum and position 
 
 
 
a) Write the wave function for both momentum and position representation 
 
We understood that in this case we should have a delta in the momentum representation and a plane wave in the position representation. 
Let’s start with the plane wave that should be: 

𝜓(𝑥, 𝑦, 𝑧) ∝  𝑒
𝑖

ℏ
 (𝑝′𝑥𝑥+𝑝′𝑦𝑦+𝑝′𝑧𝑧) ∝ 𝑒

𝑖

ℏ
 (𝑝𝑧

′𝑧)   since the particle is moving along the z direction 
 
To pass to the momentum representation we do the Fourier Transform: 
 

𝜓̃(𝑝𝑥, 𝑝𝑦 , 𝑝𝑧) ∝  ∫ 𝑑𝑥𝑑𝑦𝑑𝑧  𝑒
𝑖

ℏ
 (𝑝𝑧

′𝑧)𝑒−𝑖
(𝑝𝑥𝑥+𝑝𝑦𝑦+𝑝𝑧𝑧)

ℏ
+∞

−∞
= ∫ 𝑑𝑥 𝑒−

𝑖

ℏ
 𝑝𝑥𝑥  ∫ 𝑑𝑦 𝑒−

𝑖

ℏ
 𝑝𝑦𝑦  ∫ 𝑑𝑧 𝑒−

𝑖

ℏ
 (𝑝𝑧−𝑝𝑧

′)𝑧  ∝ 𝛿(𝑝𝑥)𝛿(𝑝𝑦)𝛿(𝑝𝑧 − 𝑝𝑧
′) = 𝛿(𝑝̅ − 𝑝0̅̅ ̅)  

 
 
 
b) Verify that the above quantum state is an eigenstate of the momentum vector operator and determinate the corresponding 

eigenvalues of the three components of momentum operator 
 
For the above quantum state, since the multiplication for a delta makes the state collapse to the value, we find: 
𝑝𝑥̂|𝜓̃(𝑝̅)⟩ = 𝑝𝑥𝛿(𝑝𝑥)𝛿(𝑝𝑦)𝛿(𝑝𝑧 − 𝑝𝑧

′) = 0  because 𝛿(𝑝𝑥) is non null for 𝑝𝑥 = 0 
𝑝𝑦̂|𝜓̃(𝑝̅)⟩ = 𝑝𝑦𝛿(𝑝𝑥)𝛿(𝑝𝑦)𝛿(𝑝𝑧 − 𝑝𝑧

′) = 0  same as before 
𝑝𝑧̂|𝜓̃(𝑝̅)⟩ = 𝑝𝑧𝛿(𝑝𝑥)𝛿(𝑝𝑦)𝛿(𝑝𝑧 − 𝑝𝑧

′) = 𝑝𝑧
′ |𝜓̃(𝑝̅)⟩ = 𝑚 𝑣𝑧|𝜓̃(𝑝̅)⟩  because 𝛿(𝑝𝑧 − 𝑝𝑧′) is non null for 𝑝𝑧 = 𝑝𝑧′  

  
Otherwise, we can use position representation to verify: (we should remember that 𝑝𝑥̂ = −𝑖ℏ

𝑑

𝑑𝑥
 , etc.)  

𝑝𝑥̂|𝜓(𝑟̅)⟩ = −𝑖ℏ
𝑑

𝑑𝑥
(𝑒

𝑖

ℏ
 (𝑝𝑥

′𝑥+𝑝𝑦
′ 𝑦+𝑝𝑧

′𝑧)) ∝ 𝑝𝑥
′  |𝜓(𝑟̅)⟩ = 0  

𝑝𝑦̂|𝜓(𝑟̅)⟩ = −𝑖ℏ
𝑑

𝑑𝑦
(𝑒

𝑖

ℏ
 (𝑝𝑥

′𝑥+𝑝𝑦
′𝑦+𝑝𝑧

′𝑧)) ∝ 𝑝𝑦
′  |𝜓(𝑟̅)⟩ = 0  

𝑝𝑧̂|𝜓(𝑟̅)⟩ = −𝑖ℏ
𝑑

𝑑𝑧
(𝑒

𝑖

ℏ
 (𝑝𝑥

′𝑥+𝑝𝑦
′ 𝑦+𝑝𝑧

′𝑧)) ∝ 𝑝𝑧
′  |𝜓(𝑟̅)⟩ = 𝑚 𝑣𝑧 |𝜓(𝑟̅)⟩  

 
NB: We can use any representation to verify properties. 
 
 
c) Determine the expectation value (mean value) and uncertainty of both momentum and position 
 

⟨𝑝𝑥⟩ = 𝑝𝑥
′  

⟨𝑝𝑦⟩ = 𝑝𝑦
′  

⟨𝑝𝑧⟩ = 𝑝𝑧
′  

 
Δ𝑥 → ∞ 
Δ𝑦 → ∞ 
Δ𝑧 → ∞
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1. All you need to know about Qubit 

2. Block Sphere and Pauli Operators 

3. Fundamentals for Quantum Cryptography 

4. Quantum Key Distribution 

 

 
Cool Materials you may be interested in: 
 
3Blue1Brown (Quantum Computing): 
https://www.youtube.com/watch?v=RQWpF2Gb-gU&t=1760s 
https://www.youtube.com/watch?v=Dlsa9EBKDGI 
 
Looking Glass Universe (Quantum Mechanics): 
What is a Qubit? : https://www.youtube.com/watch?v=kgSVkVNxXyU  
 
 

 
 

 

 

 

 

 

 

Appunti di Sara 
Una rivisitazione del corso di Quantum Communication 

 
THESE ARE NOT THE NOTES OF THE QUANTUM COMMUNICATION COURSE. 

SEE THE LAST PAGE FOR MORE DETAILS. 
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1. All you need to know about Qubit 

 
Check all the website: “Quantum computing for the very curious” https://quantum.country/qcvc 

2. Block Sphere and Pauli Operators 
 
A quantum state—more formally a ray in a two-dimensional Hilbert space—can be represented as a point on the 
Bloch sphere, where its position is specified by the colatitude (θ) and the longitude (φ). The Bloch sphere is 
analogous to the unit circle in trigonometry, which serves as the geometrical representation of angles; here, it 
elegantly depicts the state space of a two-level quantum system.  
The sphere is structured around three orthogonal axes, each corresponding to a different measurement basis. The 
intersections of these axes with the sphere yield six significant points: the North Pole, associated with the state |0⟩ 
(often linked to horizontal polarization in the context of light), while the South Pole represents |1⟩; the West Pole |+⟩ 
and the East Pole |-⟩; the Left Pole |i⟩ and the Right Pole |-i⟩.  
In this framework, any two orthogonal qubits are represented by points that lie diametrically opposite each 
other on the sphere. Moreover, quantum operations — especially rotations generated by the Pauli 
operators — allow us to traverse the sphere, thereby transforming one quantum state into another. This 
geometric representation not only deepens our understanding of quantum superposition and coherence 
but also provides a powerful tool for visualizing and manipulating qubit states in quantum computation 
and information theory. 
 
A quantum gate 𝑈̂ with orthogonal eigenstates can be characterized by two diametrically opposite points, (𝑃0) and (𝑃1), on the Bloch 
sphere. These points correspond to the eigenvalues (𝜆0  =  e𝑖𝜙0) and (𝜆1  =  e𝑖𝜙1). The effect of (𝑈̂) on the Bloch sphere is a rotation around 
the axis passing through 𝑃0 and 𝑃1, with an angle 𝜙 = 𝜙0 − 𝜙1, which represents the phase difference between the eigenvalues. 
We will study Pauli operators, including: 

❖ Z (quantum NOT gate), which flips the phase of the qubit, 
1) X, which acts as a bit-flip operation, 

❖ Y, which combines both bit-flip and phase-flip effects, 
❖ R (phase shift gate), which modifies the phase of the quantum state, 
❖ H (Hadamard gate), which creates equal superpositions of basis states, enabling quantum interference. 

Each of these operators plays a crucial role in quantum computation, influencing how qubits evolve and interact within quantum circuits. 
 

Z – |𝟎⟩ & |𝟏⟩ - N-S base 

[
1 0
0 −1

]  N-S base 

X – |+⟩ & |−⟩ - E-W base 

[
0 1
1 0

]  N-S base     [1 0
0 −1

]  E-W base 

Y – |𝒊⟩ & | − 𝒊⟩ - L-R base 

[
0 −𝑖
𝑖 0

]  N-S base     [1 0
0 −1

]  R-L base 

R (Z extended) – |+⟩ & |−⟩ - N-S base 

[
1 0
0 𝑒𝑖𝜃

]  N-S base      

H – From Z to X 

1

√2
[
1 1
1 −1

]  N-S base

 

 

3. Fundamentals for Quantum Cryptography 

 
Quantum cryptography is built upon fundamental principles of quantum mechanics that ensure the security of key distribution. Before 
diving into Quantum Key Distribution (QKD), it is essential to understand these core concepts: 
 
Compatible Observables 
In quantum mechanics, observables are physical quantities that can be measured. Two observables are considered compatible if their 
measurements do not disturb each other.  
Mathematically, this means that their corresponding operators commute: [𝐴̂, 𝐵̂] =  𝐴̂𝐵̂ −  𝐵̂𝐴̂ = 0 . For instance, position and 
momentum do not commute, leading to Heisenberg’s Uncertainty Principle, whereas certain spin components might commute under 
specific conditions. 
The core concept is that two compatible observables are simultaneously measurable while two NOT compatible observables are NOT 
simultaneously measurable. 
 
Mutually Unbiased Bases (MUBs) 
Mutually Unbiased Bases (MUBs) play a crucial role in quantum cryptography. Two bases are mutually unbiased if measuring a quantum 
state prepared in one basis in the other basis yields completely random outcomes. A well-known example involves the Pauli X and Pauli 
Z bases in qubit representation: If a qubit is prepared in the Z basis and measured in the X basis, the outcome is completely random (50% 
chance of getting |+⟩ or |−⟩. This randomness is fundamental to the security of QKD. 
  

Click here for the GIF 

https://quantum.country/qcvc
https://raw.githubusercontent.com/cduck/bloch_sphere/master/examples/xyss_gate.gif


 

 

Complementary Observables 
Observables are complementary when knowing the exact measurement outcome of one makes it impossible to predict the outcome of 
the other with certainty, respectively, with a probability of 1

𝐷
 with D the dimension of the Hilbert Space. 

Two Observables are complementary when they are compatible and the two basis formed by the respective eigenstates must be mutually 
unbiased. The three Pauli Operators X, Y, Z form a set of mutually complementary unbiased bases since they are complementary and their 
axis on the Bloch Spere are orthogonal. 
 
 
 
4. Quantum Key Distribution 
 
Quantum Key Distribution (QKD) is a groundbreaking method for secure communication that leverages the principles of quantum 
mechanics to exchange cryptographic keys. The BB84 protocol, introduced by Charles Bennett and Gilles Brassard in 1984, is one of the 
most widely used QKD schemes. It ensures security through the quantum properties of photons, particularly the concept of mutually 
unbiased bases, which prevent undetected eavesdropping. 
In BB84, Alice transmits quantum states encoded in one of two bases: the rectilinear basis (|0⟩) & (|1⟩) (horizontal and vertical 
polarization) and the diagonal basis (|+⟩) & (|-⟩) (diagonal polarization). 
Bob, upon receiving these photons, randomly selects a basis for measurement. After transmission, Bob publicly informs Alice of the 
bases he used, and Alice reveals which measurements were made in the correct basis. Bob keeps only those bits that match, forming a 
shared key. 
If an eavesdropper (Eve) attempts to intercept the photons, quantum mechanics ensures that her intrusion introduces errors due to the 
no-cloning theorem and the collapse of quantum states upon measurement. By analyzing the Quantum Bit Error Rate (QBER), 
typically around 25% when eavesdropping occurs, Alice and Bob can assess the security of their key. To verify its integrity, they 
occasionally sacrifice a portion of their decrypted bits to compare the sent and received values. If discrepancies arise, it indicates that 
photons were absorbed and re-emitted in a random basis, potentially differing from Alice’s original encoding, revealing Eve’s presence. 
 
BB84 provides a provably secure method for key distribution, making it a fundamental protocol in quantum cryptography. 
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CONCLUSIONS 
 
The exploration of quantum communication begins with the foundations of quantum mechanics: the wave-particle duality, uncertainty 
principle, and the mathematical framework that underpins quantum theory. Through the formalism of Hilbert spaces, inner products, and 
operators, the theoretical structure necessary for understanding qubits emerges. 
Qubits, unlike classical bits, introduce new possibilities through superposition and entanglement. The Bloch sphere provides a geometric 
representation of quantum states, while Pauli operators define key transformations in quantum systems. These principles form the basis 
for quantum computation and, crucially, quantum cryptography. 
Quantum Key Distribution (QKD) leverages these unique quantum properties to ensure secure communication. The BB84 protocol 
demonstrates how mutually unbiased bases allow for the detection of eavesdroppers, providing a provably secure method for key 
exchange. The interplay between measurement, information disturbance, and classical verification techniques confirms that quantum 
communication is fundamentally different from classical encryption methods. 
This journey through quantum mechanics, qubits, and cryptographic protocols establishes a framework for further advancements. 
Quantum networks, quantum-secure communication, and future innovations will continue to shape the field, bridging theoretical 
developments with practical applications. The fundamental principles outlined here serve as a foundation for deeper study and 
technological breakthroughs in quantum information science. 
 
 
PS: These are not the notes from the Quantum Communication course (Polimi, 2024/2025). Instead, starting from the notes of this 
course (hoping to have covered everything), I have enriched them with additional mathematical formalism, as I believed it was the 
right approach to truly understand the subject. While not all of it is strictly necessary, I consider it useful for a student trying to 
determine their level of interest in the topic and whether it could be part of their future studies or career. 
I do not guarantee the absolute accuracy of these notes, but I tried to put everything together in a coherent and well-structured 
resource. Hopefully this will be useful to someone else <3.  
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