Computational Modelling in Electronics and Biomathematics

Andrea
Bectarzoni
AA. $2000 / 21$

- Electra-uechanical carpling in the human bady

Atonanaus nervous system
\{10 10^{11} neurous\} \longrightarrow cheuricals (like sercotaine)
fow nm
chauical

Numerical Analysis

Partial
Differential Equations

$$
\begin{aligned}
& V=V(t, I)=\psi_{a}-\psi_{b} \\
& V(t)-R(t) I(t)=0
\end{aligned}
$$

ueubrave
Example:

Hodgkin - Huxley 1956: electrical nader of a cell

What is a model then? $F(x, d)=0$
d is a set of data P is the set of adivissible values for d
x is the unknown
V is the set of admissible values for x
 infinite dimensional
 v
\bigcirc \square

$$
F:(x, d) \longrightarrow y=F(x, d) \longleftrightarrow F: V \times \not \longrightarrow Y
$$

Souetives the closed form of $F(x, d)=0$ is uot giren ar is hard to houdle.
reed of replacing the uratheruatical (eract) uodel with the immerical (approximate) model

$$
\begin{gathered}
F_{h}\left(x_{h}, d_{h}\right)=0 \quad h>0 \\
e_{h}:=x-x_{h} \text { evecar } \quad \lim _{h \rightarrow 0} e_{h}=0 \leftrightarrow \text { couvergence } \\
d_{h} \in>_{h} \subset ゆ \quad x_{h} \in V_{h} \subset V
\end{gathered}
$$

firite dimensional
Fn is a family of functious whose pareut functide is F.

$$
\phi \in V \quad\|\phi\|_{V}^{\text {nown }} \geqslant 0 \quad\|\phi\|_{V}=0 \Leftrightarrow \phi \equiv 0
$$

$\left[\left\|e_{h}\right\|_{v} \leqslant c \cdot h^{p}\right] \quad p>0$ order of couvergence >0 indeg. of h

$$
\begin{aligned}
& E_{h}=c h^{P} \\
& P=l: h=h_{0} \longrightarrow E_{0}=c h_{0} \\
& \text { livearly } h=\frac{h_{0}}{2} \longrightarrow \quad E_{1}=c \frac{h_{0}}{2}=\frac{E_{0}}{2} \\
& \text { cowerging } \\
& h=\frac{h_{0}}{4} \longrightarrow \quad E_{2}=c \frac{h_{0}}{4}=\frac{E_{0}}{4} \\
& h=\frac{h_{0}}{2^{n}} \longrightarrow E_{n}=\frac{E_{0}}{2^{p n}}
\end{aligned}
$$

To abtain $E=10^{-6}$ we would ueed $h=\frac{10^{-6}}{C}$

Au higher convergence order allows to obtain a smaller error with larger discretization step h.

However higher order unethods do not always grant stability in the solution.

Example: test equation dissipative term

$$
(e)\left\{\begin{array}{l}
y^{\prime}(t)=-\lambda y(t) \quad t>0 \quad(\lambda>0) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right.
$$

$$
d=\left\{t_{0}, y_{0}, \lambda\right\} \quad x=y(t)=y_{0} e^{-\lambda t}
$$

We expect:

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} y(t)=0 \quad \vee v \\
& y(t) \geqslant 0 \quad \forall t>0 \vee x
\end{aligned}
$$

Crauk-Nicolsou
Crauk-Nicolsou is a second order method, hence. couverguce is faster, however it yields unreliable results for too large values of h.
Backward Euler is a first order method, hence cawergence is slower, but it is always reliable (in this example) for any value of h.

Convergence \Longleftrightarrow Consistency + Stability
Lax-Richtwyer "Equivalence" theorem
Consistency is grouted if a reduction of h causes a reduction of the residual (= error)

$$
\lim _{n \rightarrow 0} e_{h}=0
$$

Stability is granted if a small variation in the data set causes a suall variation in the solution

If $\|\delta d\|_{p} \leqslant \eta$ with η small there exists $K=K(d)$ so that

$$
\begin{aligned}
\|\delta x\|_{v} & \leqslant K(d)\|\delta d\|_{\phi} \\
& \leqslant K(d) \eta
\end{aligned}
$$

Example: evaluate the derivative of $y=y(t)$ at $t=t$.
 condition umber

$x_{h}^{c D}$ is more similar to x thane other methods 3

Assumption: $y \in e^{2}\left(I_{t_{0}}\right)$.
The regularity of the function is of paramant importance when choosing the unnerical unethod.

$$
F(x, d)=0 \quad x=y^{\prime}\left(t_{0}\right) \in \mathbb{R}=V \quad d=I_{t_{0}}
$$

Taylor's series expautiou: $y\left(t_{0}+h\right)=y\left(t_{0}\right)+\overbrace{y^{\prime}\left(t_{0}\right) h}^{x}+y^{\prime \prime}(\xi) \frac{h^{2}}{2}$ (to second order)
where $\xi \in\left[t_{0}, t_{0}+h\right]$
and $\left|y^{\prime \prime}(\xi)\right|<M$ since $y \in C^{2}\left(I_{t_{0}}\right)$
Mathematical madel

Numerical unodel

$$
\begin{aligned}
& \Longrightarrow \frac{y\left(t_{0}+h\right)-y\left(t_{0}\right)}{h}-x-y^{\prime \prime}(\xi) \frac{h}{2}=0 \longleftrightarrow F(x, d)=0 \\
& \Longrightarrow \frac{y\left(t_{0}+h\right)-y\left(t_{0}\right)}{h}-x_{h}^{h}=0 \longleftrightarrow F_{h}\left(x_{h}, d_{h}\right)=0
\end{aligned}
$$

"Forward" finite difference formula:

$$
\left[x_{h}^{\text {pw }}=\frac{y\left(t_{0}+h\right)-y\left(t_{0}\right)}{h}\right]
$$

"Backward" finite difference formula:

$$
\begin{aligned}
& {\left[x_{h}^{\mathrm{BN}}=\frac{\left.y\left(t_{0}\right)-\frac{y\left(t_{0}-h\right)}{h}\right]}{}\right.} \\
& \left|e_{n}\right|=\left|y^{\prime}\left(t_{0}\right)-x_{n}\right| \leqslant c h \longrightarrow \text { first order methods } \\
& \frac{M}{2}
\end{aligned}
$$

"Centered" finite difference formula:

$$
\begin{aligned}
{\left[x_{h}^{c}\right.} & \left.=\frac{y\left(t_{0}+h\right)-y\left(t_{0}-h\right)}{2 h}\right] \\
& =\frac{1}{2}\left[x_{h}^{F w}+x_{h}^{B N}\right]
\end{aligned}
$$

$\left|e_{h}\right|=c h^{2} \longrightarrow$ second order method (requires strictier conditions on y)
What we are doing when using these finite difference methods actually a piecewise polynomial interpolation

$$
\begin{aligned}
& x_{n}^{F w}=\left.\frac{d}{d t} \pi^{1, f w} y(t)\right|_{t=t_{0}} \\
& x_{n}^{s w}=\left.\frac{d}{d t} \pi^{1, B W} y(t)\right|_{t=t_{0} .}
\end{aligned}
$$

Application of this example: Cauchy Problever

$$
\begin{cases}y^{\prime}(t)=f(t, y(t)) & t \in I_{T}=\left(t_{0}, t_{0}+T\right) \\ y\left(t_{0}\right)=y_{0} & \text { if } f(t, y(t))=-\lambda y(t) \\ \text { the probecu becomes }\end{cases}
$$ the test equation

$$
\left\{\begin{array}{l}
t_{k}=t_{0}+k \Delta t \\
k=0,1, \ldots, M_{T}
\end{array}\right\}
$$

we are just going to evaluate the solution of the problem at these modes (the value iu-between is mot known).
$\mu_{k}:=$ approximate solution $y_{k}:=y\left(t_{k}\right)=$ real solution

$$
u_{0}=y_{0}
$$

duly certainty we have

$$
\begin{aligned}
& t_{0} \longrightarrow t_{1}=t_{0}+h \longrightarrow t_{2}=t_{1}+h \longrightarrow t_{3}=t_{2}+h \longrightarrow \ldots \\
& \mu_{0}=y_{0} \quad \mu_{1} \quad \mu_{2} \quad \mu_{3}
\end{aligned}
$$

"Forward Eulere" unethod

$$
\begin{aligned}
& \frac{\mu_{1}-\mu_{0}}{h}=f\left(t_{0}, \mu_{0}\right) \longrightarrow\left\{\begin{array}{l}
\mu_{k+1}=\mu_{k}+h f\left(t_{k}, \mu_{k}\right) \quad k=0,1, \ldots, M_{T}-1 \\
\mu_{0}=y_{0}
\end{array}\right. \\
& \frac{\mu_{1}-\mu_{0}}{h}=f\left(t_{1}, \mu_{1}\right) \longrightarrow\left\{\begin{array}{l}
\mu_{k+1}=\mu_{k}+h f\left(t_{k+1}, \frac{\mu_{k+1}}{\mu_{*}}\right. \\
\mu_{0}=y_{0}
\end{array}\right.
\end{aligned}
$$

"Backward Euler" method

* Abprithur where the solution is not explicitly computable; in other words, it has the form of an algebraic differential equation (if of is uou-luear with respect (lo y).
"Crauk - Nicolsou" uethod

$$
\left\{\begin{array}{l}
\mu_{k+1}=\mu_{k}+\frac{h}{2}\left[f\left(t_{k}, \mu_{k}\right)+f\left(t_{k+1}, \mu_{k+1}\right)\right] \quad K=0,1, \ldots, M_{T}-1 \\
\mu_{0}=y_{0}
\end{array}\right.
$$

$\left|e_{k}\right|=\left|y_{k}-\mu_{k}\right| \leqslant c h$ for Forward/Backward Euler $\left|e_{k}\right|=c h^{2}$ for Grauk-Nicalsou
(2nd ord (lst arder) (2nd order)

Nete:

We abready sow that a drowback of the Gauk-Nicalsou urethod wos that it ascillates for too large h.
\longrightarrow Crank-Nicolsou is not a monotane uethod \Uparrow pasitivity preserving
\Longrightarrow Trade-off between convergence order and monotancity

Backward Euler:

$$
\begin{aligned}
& \mu_{k+1}=\mu_{k}+h f\left(t_{k+1}, \mu_{k+1}\right) \\
& \dot{L}-\mu_{k}-h f\left(t_{k+1}, x\right)=0
\end{aligned}
$$

Algebraic differential equatian

$$
\longrightarrow g(x)=0
$$

Need to account for each zero individually

α_{i} : zeroes of g

1. Choose a and b so that $g(a) g(b)<0$
2. Choose $t_{0} \in(a, b)$
3. Compute $g^{\prime}\left(t_{k}\right)$ and $g\left(t_{k}\right)$
4. Find intersect of tangent at $g\left(t_{k}\right)$ with + axis and call it t_{k+1}
5. Iterate from point 3 until $g\left(t_{k}\right) \approx 0$
second order urethed
"Newton's" method (urethod of tangents)

Even if the method does not reach exactly zero it will anyways reach machine precisicu
smallest umber displayed
by uachive's bits architecture (egg. 64 bits $\sim 10^{-16}$)

9-method: a general form far unuerical methods

$$
\theta \in[0,1]
$$ for differential equations

$$
\begin{gathered}
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)) \quad t \in I_{T}=\left(t_{0}, t_{0}+T\right) \\
y\left(t_{0}\right)=y_{0}
\end{array}\right. \\
\left\{\begin{array}{l}
\mu_{k+1}=\mu_{k}+h[\theta \underbrace{f\left(t_{k+1}, \mu_{k+1}\right)}_{f_{k+1}}+(1-\theta) \underbrace{f\left(t_{k}, \mu_{k}\right)}_{f_{k}}] \quad k=0,1, \ldots, M_{T}-1 \\
\mu_{0}=y_{0}
\end{array}\right.
\end{gathered}
$$

$\left[\theta f_{k+1}+(1-\vartheta) f_{k}\right]$ is a family of functions:

$\theta=0 \longrightarrow$ Forward Euler
$\theta=\frac{1}{2} \longrightarrow$ Gauk-Nicalsou
$\theta=1 \longrightarrow$ Backward Euler

Theorem: There exists a positive constant c INDEPENDENT of h such that

$$
\left|e_{k}\right| \leqslant c h^{p(\theta)}
$$

where $p(\theta)= \begin{cases}1 & \theta \neq \frac{1}{2} \\ 2 & \theta=\frac{1}{2}\end{cases}$

Absolute stability * stability
(P) $\left\{\begin{array}{ll}y^{\prime}(t)=-\lambda y(t), & t>t_{0} \\ y\left(t_{0}\right)=y_{0}\end{array} \quad \Longrightarrow \begin{array}{l}T=+\infty \\ f^{\prime}(t, y(t))=-\lambda y(t) \\ \lambda>0(\lambda \in \mathbb{R})\end{array}\right.$

Use 9 -method to fined the solution of the problem

$$
y(t)=y_{0} e^{-\lambda\left(t-t_{0}\right)}
$$

We know that the mathematical solution is asyuptatically stable since $\lambda>0$ (Lyapumar stable).

$$
\lim _{t \rightarrow+\infty} y(t)=0
$$

What can we say about the ummerical solution?
$\lim _{n \rightarrow+\infty} \mu_{n}=0 \longleftrightarrow$ absolute stability

To grant absolute stability it unit be $\lim _{n \rightarrow+\infty} \mu_{n}=0$ hence $\left|\phi_{\theta}(\lambda, h)\right|<1 \Longrightarrow-1<\frac{1-\lambda h(1-\theta)}{1+\lambda h \theta}<1$

1) $-1-\lambda h \theta<1-\lambda h+\lambda h \theta$
2) $\mu+\lambda \hbar \theta>\mu-\lambda h+\lambda \hbar \theta$

$$
h<\frac{2}{\lambda} \frac{1}{1-2 \theta} \quad h>0
$$

$$
0<h<\frac{2}{\lambda} \frac{1}{1-2 \theta}
$$

can be chosen

$$
0 \leqslant \theta \leqslant 1
$$

$$
\theta=0 \longrightarrow 0<h<\frac{2}{\lambda}
$$

$\vartheta=\frac{1}{2} \longrightarrow$ unconditional absolute stability

$$
\begin{aligned}
& f(y)=-\lambda y \quad f_{n}=-\lambda \mu_{n} \quad f_{n+1}=-\lambda \mu_{n+1} \\
& \theta \text {-method: }\left\{\begin{array}{l}
\frac{\mu_{n+1}-\mu_{n}}{h}=-\theta \lambda \mu_{n+1}-(1-\theta) \lambda \mu_{n} \quad n \geqslant 0 \\
\mu_{0}=y_{0}
\end{array}\right. \\
& \longrightarrow \mu_{n+1}\left[\frac{l}{h}+\theta \lambda\right]=\mu_{n}\left[\frac{l}{h}-(1-\theta) \lambda\right] \\
& \begin{aligned}
\Longrightarrow \mu_{n+1} & =\mu_{n} \frac{1-\lambda h(1-9)}{1+\lambda h 9} \quad n \geqslant 0 \\
& =\mu_{n} \cdot \phi_{9}(\lambda, h)
\end{aligned} \\
& \mu_{1}=\mu_{0} \phi_{9}(\lambda, h) \longrightarrow \mu_{2}=\mu_{1} \phi_{9}(\lambda, h)=\mu_{0}\left[\phi_{9}(\lambda, h)\right]^{2} \\
& \Longrightarrow \frac{\mu_{n}=\mu_{0}\left[\phi_{9}(\lambda, h)\right]^{n}}{1} \quad n \geqslant 0 \\
& y_{n}=y_{0} e^{-\lambda n h}
\end{aligned}
$$

Physical Mechauisurs

St should not be considered as a fixed domain but it has to be desviebed by an evolution equation:

$$
\Omega_{0}=\left.\Omega_{t}\right|_{t=0} \longleftrightarrow t \in[0, T]
$$

For now, we will not consider the time dependency of Ω_{t} and the un-livear differential couplings with the outer world.

$\Longrightarrow \vec{J}$: flux density of μ

$$
\begin{aligned}
& \phi_{\mu}^{s}=\int_{s} \vec{J} \cdot \vec{n} d \Sigma=\text { flux of } u \text { across } S \\
& {\left[\phi_{\mu}\right]=U \frac{m}{s} \cdot m^{2}=v \frac{m^{3}}{s}}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\Omega} \vec{\nabla} \cdot \vec{J} d \Omega=\int_{\text {S }} \vec{J} \cdot \vec{n} d \Sigma \equiv \phi_{\mu}^{\partial \Omega}=\phi_{\mu}^{\partial \Omega}(t) \\
& \text { Stokes theorem }
\end{aligned}
$$

Stokes theorem

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+\vec{\nabla} \cdot \vec{J}=P \quad \text { balance law } \\
\vec{J}=\ldots \text { constitutive law fore } \vec{J} \\
P=\ldots .
\end{array}\right.
$$

We are still lacking: (1) Initial condition and
(2) Boundary conditions
(1) $\mu(\vec{x}, 0)=\mu(\vec{x})$ given function of $\vec{x} \in \Omega$
(2) On the boundary $\partial \Omega$:

$$
\begin{aligned}
\partial \Omega & \hookrightarrow \mu \vec{J} \quad \hookrightarrow
\end{aligned} \begin{array}{rlrl}
\partial \Omega_{D} & \cup & \partial \Omega_{N} & \cup \\
& \partial \Omega_{R} \\
& \text { Dirichlet Nemuaum Robin }
\end{array}
$$

Dirichlet b.c: $\left.u\right|_{\partial \Omega_{D}}=\bar{\mu}_{D}(\vec{x}, t) \quad \vec{x} \in \partial \Omega_{D}$
Neman Bc:: $\left.\vec{J} \cdot \vec{n}\right|_{\partial \Omega_{N}}=\bar{j}_{N}(\vec{x}, t) \vec{x} \in \partial \Omega_{N}$
Rabin b.c: $\left.\quad \bar{\gamma}_{R} \vec{J} \cdot \vec{n}\right|_{\partial \Omega_{R}}=\bar{\alpha}_{R}(\vec{x}, t) \mu-\bar{\beta}_{R}(\vec{x}, t) \vec{x} \in \partial \Omega_{N}$

We now red to explicit the constitutive Rams.

$$
\vec{J}=\vec{V} u-D \vec{\nabla} \mu \longrightarrow \begin{aligned}
& \text { advectiou-diffusiou } \\
& \text { model for the flux } \\
& \text { density of } u
\end{aligned}
$$

$\vec{J}_{a}=\overparen{V} \mu \quad$ velocity field $[\vec{V}]=\frac{m}{s}$
$\vec{J}_{d}=-D \vec{\nabla} \mu \longrightarrow$ Fick's law
\rightarrow diffusion coefficient $[D]=\frac{m^{2}}{s}$
$P=$? \longrightarrow microscopic model of the system

"The smallest possible \vec{x} volume that retains the properties and physics of the material"'
$\longrightarrow P=g-k \mu$ our chosen unadel
production

$$
g=g(\vec{x}, t)>0 \quad k=k(\vec{x}, t)>0 \quad P=P(\vec{x}, t)
$$

consumption
Note: if $P\left(\vec{x}_{0}, t_{0}\right)=0$, then $\mu\left(\vec{x}_{0}, t_{0}\right)=\frac{g\left(\vec{x}_{0}, t_{0}\right)}{K\left(\vec{x}_{0}, t_{0}\right)}$
Under the assumptions that: 1) $\vec{\nabla} \cdot \vec{J}$ is negligible and 2) the system has reached steady-state ($\frac{\partial u}{\partial t}=0$) the solution $\mu(\vec{x}, t)=\mu(t)=\mu(+\infty)$ is exactly that of $P=0$. depend an x

Mathematical Model $F(x, d)=0$
(P) $\left\{\begin{array}{l}\partial t \\ \vec{J}=\vec{V} \mu-D \vec{\nabla} \mu \\ \mu(\vec{x}, 0)=\mu(\vec{x}) \quad \vec{x} \in \Omega \subset \mathbb{R}^{3} \\ \vec{\gamma} \vec{J} \cdot \vec{n}_{\partial \Omega}=\alpha_{\partial \Omega} \mu-\beta_{\partial \Omega} \quad \vec{x} \in \partial \Omega ; \quad t \in(0, T) \\ \text { We will uow causider iD probluus (iustead of 3D) }\end{array}\right.$ for simplicity.

$$
\text { 3D: } \vec{v}=\vec{v}(\vec{x}, t) \quad \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
v_{1}(\vec{x}, t) \\
v_{2}(\vec{x}, t) \\
v_{3}(\vec{x}, t)
\end{array}\right] \quad{ }_{x_{3}} \underbrace{}_{x_{1}}
$$

1D: $\vec{v}=\vec{e}_{1} v_{1}\left(x_{1}, t\right)$

Solving for u :

$$
\mu \rightarrow \mu_{n}
$$

finite element approximation
Derive Un from μ_{n} :

$$
J_{n}=J\left(\mu_{n}\right)=-D \frac{\partial \mu_{n}}{\partial x}
$$

J is very badly approximated (even if μ is well approximated)
Even using a higher order for the piecewise polynomial interpolation for un will improve Jr but woi't rake it continuous.

When approaching a unuerical differential problem (with standard techniques) are has to choose whether he wants to sacrifice due variable or the other, depending an the application and final goal of the problem itself.
"DISPLACEMENT-BASED
Forumbation"

$$
\left(\mu, \mu_{n}\right)
$$

"MIXED /WW O-FIELD / HYBRID
Methods"
$\left(\mu_{n}, J_{n},\left\{\lambda_{n}, \mu_{n}\right\}\right)$
advanced techniques
that allow to retain both variables for a better physical description of the problu

We have to apply discretization to both x and t.
Note: discrete steps in time are typically addressed 3 with " Δt ", while discrete steps in space are typically addressed with "h"

Time seuidiscretization

$$
t_{k}=k \Delta t \quad \Delta t=\frac{T}{M_{T}} \quad M_{T} \geqslant 1
$$

(uniforn) partition in tin
Iuformation available anly
at discrete tives.

$$
\begin{gathered}
\frac{\mu_{k+1}-\mu_{k}}{\Delta t}+\theta \frac{\partial J_{k+1}}{\partial x}+(1-\theta) \frac{\partial J_{k}}{\partial x}= \\
=\theta\left[g_{k+1}-k_{k+1} \mu_{k+1}\right]+(1-\theta)\left[g_{k}+k_{k} \mu_{k}\right] \\
k=0,1, \ldots, M_{T}-1 \quad x \in \Omega
\end{gathered}
$$

$$
\left\{\begin{array}{c}
{\left[\frac{1}{\Delta t}+\theta k_{k+1}\right] \mu_{k+1}+\theta\left(\frac{\partial J_{k+1}}{\partial x}-g_{k+1}\right)=\left[\frac{1}{\Delta t}-(1-\theta) k_{k}\right] \mu_{k}-(1-\theta)\left(\frac{\partial J_{k}}{\partial x}+g_{k}\right)} \\
J_{k+1}=V_{k+1}+D \frac{\partial \mu_{k+1}}{\partial x} \\
t_{k} \rightarrow t_{k+1} \quad k=0,1, \ldots, M_{T}-1 \quad x \in \Omega
\end{array}\right.
$$

Let's choose $\begin{gathered}B=1 \\ \theta=1 \\ \text { Euler simplify the uotatiou: }\end{gathered}$
($\tilde{P})$

$$
\begin{cases}\frac{\partial J_{k+1}}{\partial x}+\theta_{k+1} \mu_{k+1}=\frac{\overline{\mu_{k}}}{\Delta t}+g_{k+1} & x \in(0, L)=\Omega \\ J_{k+1}=v_{k+1}: \mu_{k+1}-D \frac{\partial \mu_{1,1}}{\partial x} & \sigma_{k+1}:=\frac{1}{\Delta t}+k_{k+1}>0 \\ \gamma_{k+1} \vec{J}_{k+1} \cdot \vec{n}=\alpha_{k+1} \mu_{k+1}+\beta_{k+1} & x=0 ; x=L\end{cases}
$$

$$
\mu_{0}(x) \text { giveu } \geqslant 0 \quad \forall x \in \bar{\Omega}
$$

$\Longrightarrow f_{1} \geqslant 0$ and what about future tives?
Manotare aperaters

$$
V:=e^{2}(\Omega) \cap \tau^{1}(\bar{\Omega})
$$

$$
\alpha \mu(x):=\frac{\partial J(\mu(x))}{\partial x \text { matrix }} \partial(x) \mu(x)
$$

$$
\Longrightarrow \alpha u=f \longleftrightarrow u=\alpha^{-1} f
$$

"Placehdder" uotation

In terms of linear algebra: $\underline{\underline{u}}=\underline{f} \longleftrightarrow \underline{u}=\underline{L}^{-1} \underline{f}$
Def (Iuverse-Manotaicity):
Let $w \in V$ be such that

$$
\left.\begin{array}{ll}
\alpha \omega(x) \geqslant 0 \quad & \forall x \in \Omega \\
\omega(x) \geqslant 0 \quad & \forall x \in \partial \Omega
\end{array}\right\} \Longrightarrow \omega(x) \geqslant 0 \quad \forall x \in \bar{\Omega}
$$

Then \mathcal{L} is said to be inverse-manotone.

Is this relevant for ar applications? YES
The canditious to apply ivererse unarotonicity are almost always granted in physical applications of our interest (" μ " is concentration, temperature etc.) so our variable will never take negative values.

Def (Maximum Principle $)$:
Let α be inverse uanatave. Then α satisfies a unaxium principle if

$$
\alpha w(x)=0 \quad x \in \Omega \Longrightarrow \min _{x \in \partial \Omega}\{w(x), 0\} \leqslant w(x) \leqslant \max _{x \in \partial \Omega}\{w(x), 0\} \quad x \in \bar{\Omega}
$$

This property ensures that our variable will always be banded.

$$
\begin{aligned}
& \begin{array}{|l|l}
\alpha \mu=f \text { au } \Omega \\
\beta_{\partial \Omega} \mu=0 \text { an } \partial \Omega
\end{array} \leftrightarrow \begin{cases}\frac{\partial J(\mu)}{\partial x}+o \mu=f & \text { in } \Omega \\
J(\mu)=v \mu-D \frac{\partial \mu}{\partial x} & \text { au } \Omega \\
\gamma_{\partial \Omega} \vec{J}(\mu) \cdot \vec{n}=\alpha_{\partial \Omega} \mu-\beta_{\partial \Omega} & \text { au } \partial \Omega\end{cases} \\
& \underset{a}{\stackrel{e_{n}}{r}} \quad \Omega \quad \underset{b}{\stackrel{e_{n}}{\longrightarrow}} \quad f(x) \geqslant 0 \quad \sigma(x) \geqslant 0 \\
& \vec{e}_{x} \quad{ }_{x} \\
& x \in \bar{\Omega}
\end{aligned}
$$

Assume now $\left\{\begin{array}{l}\gamma_{\partial \Omega}=0 \\ \alpha_{\partial \Omega}=1 \\ \beta_{\partial \Omega}=0\end{array} \Longrightarrow\left\{\begin{array}{l}\frac{\partial J(\mu)}{\partial x}+\sigma \mu=f \text { in }(a, b) \\ J(\mu)=v \mu-D \frac{\partial \mu}{\partial x} \\ \mu=0 \text { at } x=a, x=b \\ \mu=0\end{array}\right.\right.$
Homogeneous Dirichlet
We will now describe the numerical method to solve this boundary value problem (\tilde{P}).

Finite Elements Method
Fcrual Steps to introduce the method:

1) $\phi\left(\frac{\partial J}{\partial x}+\theta u\right)=\phi \delta \quad \phi=\phi(x) \neq 0$
2) $\int_{a}^{b} \phi\left(\frac{\partial J}{\partial x}+\sigma u\right)=\int_{a}^{b} \phi f \quad \forall \phi$

3) $\int_{a}^{b} \frac{\partial}{\partial x}(\phi J)-\int_{a}^{b} J \frac{\partial \phi}{\partial x}+\int_{a}^{b} \phi o u=\int_{a}^{b} \phi f \quad \forall \phi \in e^{1}$

Assume $\phi(a)=\phi(b)=0 \sim \mu(a)=\mu(b)=0$
Then $\int_{a}^{b} \frac{\partial}{\partial x}(\phi J)=\phi(b) J(b)-\phi(a) J(a)=0$
\Rightarrow Weak formulation of the BVP (\widetilde{P}) is: find $\mu(x) \in X=\{w:(a, b) \rightarrow \mathbb{R} \mid . \# . w(a)=w(b)=0\}$ so that:
$(W)\left[\int_{a}^{b}\left(D \frac{\partial u}{\partial x}-V \mu\right) \frac{\partial \phi}{\partial x}+\int_{a}^{b} \sigma \mu \phi=\int_{a}^{b} \phi f \quad \forall \phi \in X\right]$
integral problem
while (P) was a differential probeur
ϕ is called "test function" there wight be \# save fur the properties

Short notation: (w) $B(\phi, \mu)=F(\phi) \quad \forall \phi \in X$ bilinear form $\leftrightarrows \rightarrow$ linear form (linear functional)

Since ϕ belongs to the same pace as μ we can arbitrarily set:

$$
\begin{gathered}
\phi=\mu \\
B(\mu, \mu)=F(\mu)
\end{gathered}
$$

$$
\int_{a}^{b}\left[D \frac{\partial \mu}{\partial x} \frac{\partial u}{\partial x}-V \mu \frac{\partial u}{\partial x}+\sigma \mu \mu\right]=\int_{a}^{b} \mu g
$$

$$
\mu \frac{\partial \mu}{\partial x}=\frac{1}{2} \frac{\partial\left(\mu^{2}\right)^{2}}{\partial x}{ }^{3} \int_{a}^{b}\left[D\left(\frac{\partial u}{\partial x}\right)^{2}-V \mu \frac{\partial u}{\partial x}+o \mu^{2}\right]=\int_{a}^{b} \mu \cdot f
$$

$$
\int_{a}^{b}\left[D\left(\frac{\partial u}{\partial x}\right)^{2}-\frac{V}{2} \frac{\partial\left(u^{2}\right)}{\partial x}+\sigma \mu^{2}\right]=\int_{a}^{b} u \cdot f
$$

$$
\int_{a}^{b}\left[D\left(\frac{\partial u}{\partial x}\right)^{2}-\frac{1}{2} \frac{\partial}{\partial x}\left(V \mu^{2}\right)+\frac{\mu^{2}}{2} \frac{\partial V}{\partial x}+\sigma \mu^{2}\right]=\int_{a}^{b} \mu f, V(x) \in e^{1}
$$

$$
\frac{1}{2}\left[V(b) \mu^{2}(b)-V(a) \mu^{2}(a)\right]=0
$$

$$
\Longrightarrow \int_{a}^{b}\left[D\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\sigma+\frac{1}{2} \frac{\partial V}{\partial x}\right) \mu^{2}\right] d x=\int_{a}^{b} u f d x
$$

Assume that:

1. $D(x) \geqslant D_{\min }>0 \quad \forall x \in \bar{\Omega}$
2. $\sigma(x)+\frac{1}{2} \frac{\partial V(x)}{\partial x} \geqslant \sigma_{\text {min }}>0 \quad \forall x \in \bar{\Omega}$

$$
\longrightarrow B(\mu, \mu) \geqslant D_{\min } \int_{a}^{b}\left(\frac{\partial \mu(x)}{\partial x}\right)^{2} d x+\sigma_{\operatorname{mix}} \int_{a}^{b} \mu^{2}(x) d x
$$

Cut also $B(\mu, \mu)=F(\mu)=\int_{a}^{b} f(x) \mu(x) d x$
Let us introduce the following space of functions

$$
L^{2}(\Omega):=\left\{w: \Omega \rightarrow \mathbb{R} \mid \int_{\Omega} w^{2}(x) d x<+\infty\right\}
$$

which is an example of Hilbert space.
A property of Hilbert spaces is that functions con be treated as vectors: a scalar product between functions is therefore defined through the use of a norm.
For the L^{2} space this uru is: $\|w\|_{L^{2}}:=\sqrt{\int w_{\Omega}^{2}(x) d x}<+\infty$

So assuming now that $\mu($ and $\phi)$ and its derivative belong to L^{2} we can write:

$$
B(\mu, \mu) \geqslant D_{\min }\left\|\frac{\partial u}{\partial x}\right\|_{L^{2}}^{2}+\sigma_{\min }\|u\|_{L^{2}}^{2}
$$

This assumption adds a specification to the regularity of u and therefore to the space of functions X :

$$
X=\left\{w: \Omega \rightarrow \mathbb{R} \mid \text { a) } w \in L^{2}(\Omega)\right\} \text { \# }
$$

A function space with such properties is typically indicated with the syeubal:

$$
X=H_{0}^{l}(\Omega)
$$

and its norms is defined as: $\|W\|_{H_{0}^{1}}=\sqrt{\|W\|_{L^{2}}^{2}+\left\|\frac{\partial W}{\partial x}\right\|_{L^{2}}^{2}}<+\infty$

$$
\begin{gathered}
\longrightarrow B(\mu, \mu) \geqslant \underbrace{\operatorname{miu}\left\{D_{\min }, O_{\min }^{\prime}\right\} \cdot\|\mu\|_{H_{0}^{1}}^{2}} \\
\alpha_{0}\|\mu\|_{H_{0}^{1}}^{2} \leqslant \int_{a}^{b} f \mu d x
\end{gathered}
$$

If we also assume $f \in L^{2}(\Omega)$ then we can apply the Caucus - Schwartz inequality:

$$
\|f \cdot \mu\|_{L^{2}}=\int_{a}^{b} f \cdot \mu d x \leqslant\|f\|_{L^{2}}\|u\|_{L^{2}}
$$

Also by definition: $\|\mu\|_{H_{0}^{1}} \geqslant\|\mu\|_{L^{2}}$.
We can finally write:

$$
\alpha_{0}\|\mu\|_{H_{0}^{1}}^{2} \leqslant \int_{a}^{b} f \mu d x \leqslant\|f\|_{L^{2}}\|\mu\|_{L^{2}} \leqslant\|f\|_{L^{2}}\|\mu\|_{H_{0}^{1}}
$$

$\Longrightarrow\left[\|\mu\|_{H_{0}^{1}} \leqslant \frac{\|f\|_{L^{2}}}{\alpha_{0}}\right] \rightarrow a$ priori estimate of the solution

This estimate was abtaired through several assumptions. Let's summarize then stability estimate all together:

- $\mu \in H_{0}^{1}(\Omega)$
- $V \in e^{1}(\Omega)\left(V(x)\right.$ is differentiable and $\left.\frac{\partial V}{\partial x} \in L^{\infty}(\Omega)\right)$
- $\quad D(x) \geqslant D_{\text {mix }}>0 \quad \forall x \in \bar{\Omega}$
- $\quad O(x)+\frac{1}{2} \frac{\partial V(x)}{\partial x} \geqslant \sigma_{\text {mix }}>0 \quad \forall x \in \bar{\Omega}$
- $f(x) \geqslant 0$ and $f \in L^{2}(\Omega)$

Orly under these assumptions we can say that the weak formulation of problem ((P) admits a unique solution that depends with coutiunity on the data according to the aforesecu stability estimate.
(P) strong formation
\longrightarrow (W) weak formulation Ind order BVP "fud $\mu \in X=H_{0}^{1}(\Omega)$ so that

$$
F(x, d)=0 \leftrightarrow B(\mu, \phi)-F(\phi)=0 \quad \forall \phi \in X^{\prime \prime}
$$

H_{0}^{1} is a Sobaler space

We need to apply a discretizatiou of Ω to the analitical problem (W) in order to obtain a computable problem. In this way we will define the finite element urethod.

$$
\begin{aligned}
F(\mu, d) & \longrightarrow F_{h}\left(\mu_{h}, d_{h}\right) \\
x & \longrightarrow X_{h}
\end{aligned}
$$

$$
\operatorname{dicu}\left(X_{n}\right)=M_{n}-1
$$

$$
\mu_{n}(a)=\mu_{h}(b)=0
$$

$$
u_{h} \in e^{0}(\bar{\Omega})
$$

Mn: \# of elements
h : discretizatiou parameter

$$
\forall K \in \tau_{\downarrow}:\left.\quad \mu_{n}\right|_{k} \in \mathbb{P}_{\downarrow}(K)
$$

An element is a subinterval union of al polinouials of of the entire domain.

$$
M_{n} \longrightarrow+\infty \quad h \longrightarrow 0
$$

The space of functions X_{n} so defined is called "finite element space of degree l associated with the partition $\tau_{n}{ }^{\prime \prime}$
The orly receded information to derive the entire μ_{n} is the value at each urge.

The difference between finite elements and finite differences reathodolagies is that the former returns the evian of polynomial functions as approxicuated solution while the latter only returns a set of values that approximate the solution just at the nodes.

$$
\begin{gathered}
X_{h}=\operatorname{spau}\left\{\phi_{j}\right\}_{j=1}^{V_{n}} \quad \mathcal{N}_{h}=\operatorname{diu}\left(X_{h}\right)=M_{h}-1 \\
\longrightarrow \forall \mu_{n} \in X_{n}: \mu_{n}(x)=\sum_{j=1}^{N_{n}} \mu_{j} \phi_{j}(x)
\end{gathered}
$$

Let's see how the basis functions $\phi_{j}(x)$ are urge

Since ϕ_{l} and $\phi_{M n+1}$ are set by bandary conditions ($\mu_{1}=\mu(a)$ and $\left.\mu_{n+1}=\mu(b)\right)$ they are μ_{0} accounted for in the aforesaid expression (se ϕ_{2} is actually \$1 in the previous notation).
A moe general untation would be:

$$
X_{h}=\operatorname{spau}\left\{\phi_{j}\right\}_{j=1}^{V_{h}+2} \longrightarrow \mu_{h}(x)=\sum_{j=1}^{N_{n}+2} \mu_{j} \phi_{j}(x)
$$

where for $j=1$ and $j=N+2$ the polynomial is given by the boundary conditions.

We can finally define the finite element method for our weak formulation of the BVP: find $\mu_{n} \in X_{n}$ so that $B\left(\mu_{n}, \phi_{i}\right)=F\left(\phi_{i}\right) \quad i=1, \ldots, N_{n}+2$

$$
\mu_{h}(x)=\sum_{j=1}^{N_{k+2}} \mu_{j} \phi_{j}(x) \quad \begin{aligned}
& \text { Finite } \\
& \begin{array}{l}
\text { Eleureut } \\
\text { equations }
\end{array}
\end{aligned} \sum_{j=1}^{N_{i+2}} \mu_{j} B\left(\phi_{j}, \phi_{i}\right)=F\left(\phi_{i}\right)
$$

In terms of linear algebra:
\rightarrow The finite element method entails the resolution of $\mathcal{N}_{h}+2$ equations (plus the
computation of the stiffness matrix B and the load vector E) to obtain the vector of modal unknowns u
This linear algebraic system is solvable only if $\frac{B}{\bar{D}}$ is invertible (uou-sugular), which is granted by the assumptions made in our preliminary discussion.
In other words, because of these a assumptions, it can be demonstrated that $\underline{\underline{B}}$ is positive definite.

The are discussed so for is a FEM of degree 1, since the polyuanials used for interpolation were of first order (linear).
A higher degree FEM can also be used with higher order palyuavials, possibly increasing the accuracy of

Error estimate
find $\mu \in X$ so that
BUT we know that
$(W) B(\mu, \phi)=F(\phi) \quad \forall \phi \in X$

$$
\|\mu\|_{x} \leqslant \frac{\|f\|_{L^{2}}}{\alpha_{0}}
$$

find $u_{n} \in X_{n} \subset X$ so that

$$
\left(w_{h}\right) B\left(u_{n}, \phi_{h}\right)=F\left(\phi_{h}\right) \quad \forall \phi_{h} \in X_{h}-
$$

Theareu. Assume that $\mu \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Then $\left\|\mu-\mu_{h}\right\|_{H_{0}^{1}}^{\uparrow} \leqslant c h^{\uparrow}\|\mu\|_{H^{2}} \leftarrow$
Theareu. Assume that $\mu \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$.
Then $\left\|\mu-\mu_{h}\right\|_{L^{2}}^{\downarrow} \leqslant C h^{2 \downarrow}\|\mu\|_{H^{2}}$

The two theareus are consistent with each other, since the uru in H_{0}^{1} is always greater, by definition, than the norm in L. Nerefore the error estiunate is lass restrictive (list order convergence) for the H_{0}^{-}worm while it is ere restrictive (and order convergence) for the L2 norm.

The weak formulation we wrote for our problem (I्P):

$$
\text { (W) } \int_{a}^{b}\left(\Delta \frac{\partial u}{\partial x}-V u\right) \frac{\partial \phi}{\partial x}+\int_{a}^{b} \sigma u \phi=\int_{a}^{b} \phi f
$$

is called displacement-based weak formulation, as it uses " u " as a variable and loses the dependency on " J "
This, as we have already highlighted, will cause same issues when retrieving the values for J.

$$
J(\mu)=V \mu-\Delta \frac{\partial \mu}{\partial x}
$$

last order FEM

$$
\text { where }\left\{\begin{array}{l}
\left.\frac{\partial \mu_{n}}{\partial x}\right|_{k}=\frac{\mu_{n}^{+}-\mu_{n}^{-}}{h} \\
\left.\tilde{\mu}_{n}\right|_{k}=\frac{\partial x}{h} \frac{\int_{k} \mu_{n}}{h}=\frac{\mu_{n}^{-}+\mu_{n}^{+}}{2}
\end{array}\right.
$$

$$
\left.\Longrightarrow J_{h}\right|_{k}=V \frac{\mu_{n}^{+}+\mu_{n}^{-}}{2}-D \frac{\mu_{n}^{+}-\mu_{n}^{-}}{h} \quad \forall K \in \tau_{n}
$$

If for example $V(x)=D(x)=\sigma(x)=f(x) \equiv 1$,

$$
(a, b)=(0,1) \text { and } \mathcal{N}_{h}=5:
$$

flux density is not continuous! not so accurate!

Another issue associated with the FEM we have analyzed resides in the "a priari" estimate of the solution:

$$
\|\mu\|_{H_{0}^{1}} \leqslant \frac{\|f\|_{L^{2}}}{\alpha_{0}}
$$

where $\alpha_{0}=\min \left\{D_{\text {mix }}, \sigma_{\text {min }}\right\}, D_{\text {mix }} \leqslant D(x), \sigma_{\text {min }} \leqslant \sigma(x)+\frac{1}{2} \frac{\partial V}{\partial x}(x)$
This estimate also holds for the unverical solution:

$$
\left\|u_{h}\right\|_{H_{0}^{1}} \leqslant \frac{\|f\|_{L^{2}}}{\alpha_{0}}
$$

It is evident that, as α_{0} decreases, the estimate allows un to reach very high values.
It then happens that far very low α_{0} the unuerical solution suffers from spurious oscillations unless a very maroon discretization parameter h is adopted. There osillations of course rake the computed solution unreliable fran a physical stand paint.

Let us now introduce the Pedet Numbers:

$$
\begin{aligned}
& \mathbb{P e}_{\text {ad }}=\frac{|V| h}{2 D} \text { Peclet unuber associated } \\
& \text { with advection } \\
& \mathbb{P e}_{\text {read }}=\frac{O h^{2}}{\sigma D} \quad \begin{array}{l}
\text { Pellet unuber associated } \\
\text { with reaction }
\end{array}
\end{aligned}
$$

It can le demonstrated that if either of the two Picket numbers is greater than one than the unverical solution is affected by spurious oscillations.

There exist "artificial" ways to decrease the Pèclet unuber (whichever is too high) without reducing the discretization parameter, which typically requires too high computational costs.
Since both unubers depend an D, these techingues generally consist of a (moderate) increase of the diffusion parameter:

$$
\begin{aligned}
D \longrightarrow D_{h} & =D+\text { "extra diffusivity" } \\
& =D(1+G(\mathbb{P e}))
\end{aligned}
$$

$$
E . g .: G\left(\mathbb{P}_{e d}\right)=\mathbb{P}_{e d} \longrightarrow D_{h}=D\left(1+\mathbb{P}_{e a d}\right)=
$$

"Upwind stabilization" $\quad \widetilde{\mathbb{E}}_{\alpha}=\frac{|V| h}{2 D_{h}}=\frac{|V| h}{2 D\left(1+\mathbb{P e}_{\text {ed }}\right)}$

$$
=\frac{\mathbb{P}_{\text {ed }}}{1+\mathbb{P e}_{\text {ad }}}<1 \text { always! }
$$

The result will be perturbed but it won't have oscillascious!

Note: the condition an the Packet unubers is reumiscent of the absolute stability condition of the forward Euler method.

$$
\left.\right\} \lambda \approx \frac{|V|}{D}
$$

Cellular Biology and Electrophisidogy
The col

ruedraincal stability (cytoskeletan)
mechanical forces

HOMEOSTASIS
balance lows + constitutive equations in a cell
charged fluids (extracellular fluid environment) (fluid + partides)

Mueubrave proteins

5-7nm fixed charges electric field central iou flux

We will focus an the electrochemical activity of the call and forget about other enechanisur to simplify the study of such complex systems.

Malar density of α iou species: $C_{\alpha}=\left[\frac{\mathrm{mol}}{\mathrm{m}^{3}}\right]=[\mathrm{mM}]$

$$
\frac{m a l}{m^{3}}=\frac{m a l}{10^{3} \mathrm{dm}^{3}}=10^{-3} \frac{\mathrm{md}}{\mathrm{l}}=10^{-3} \mathrm{M} \text { where } 1 \frac{\text { mole }}{\text { liter }}=1 \mathrm{M} \text { "ulnar" }
$$

e.g: α is $\frac{\mathrm{Ca}^{2+}}{\leftrightarrows}$ and store is endoplasmic reticulum \longrightarrow noxious at high concentrations

$$
\vec{J}_{\alpha}^{t+t} \cdot \vec{n}=j_{\alpha}^{t+t}=\left[\frac{A}{m^{2}}\right]=\left[\frac{C}{s m^{2}}\right]
$$

$\frac{\partial v_{\alpha}^{\prime}}{\partial t}$ variation of charge density

$$
\sigma_{\alpha, 1}^{\alpha}(t)+\sigma_{\alpha, 2}^{\alpha d}(t)=0 \quad \forall t
$$

Continuity equation:

$$
\operatorname{rot}(\vec{H})=\vec{J}+\frac{\partial \vec{D}}{\partial t}=\vec{J}_{t+t} \longrightarrow \vec{\nabla} \cdot \vec{J}=0
$$

conduction
displacement

$$
\begin{gathered}
\text { KCL: }-j_{\alpha, 1}^{\text {tot }}+\frac{\partial \sigma_{\alpha, 1}^{d}}{\partial t}+j_{\alpha, 1}^{\text {cold }}=0 \\
K C L:-j_{\alpha, 2}^{\text {tot }}+\frac{\partial \sigma_{\alpha, 2}^{d}}{\partial t}+j_{\alpha, 2}^{\text {cond }}=0 \\
j_{\alpha, 1}^{\text {tot }}=\vec{J}_{\alpha, 1}^{\text {tot }} \cdot \vec{n}_{1} \\
j_{\alpha, 2}^{\text {tot }}=\vec{J}_{\alpha, 2}^{\text {tot }} \cdot \vec{n}_{2}
\end{gathered}
$$

$$
\stackrel{\rightharpoonup}{\nabla} \cdot \vec{J}_{\alpha}^{\text {tot }}=0
$$

$$
\theta_{\alpha, 1}^{\Omega}+\sigma_{\alpha, 2}^{\Omega}=0
$$

coutimity
electroueutrality of the ureubrame

$$
\begin{aligned}
\Longrightarrow & -j_{\alpha, 1}^{\text {tot }}-j_{\alpha, 2}^{\text {tot }}+\underbrace{j_{\alpha \text { and }}^{\text {en }}+j_{\alpha, 2}^{\text {cond }}}_{\alpha, 1}=0 \quad \forall t \\
& =0 \text { because of } K C L
\end{aligned}
$$

($\frac{0}{0}$ absorpticu of ions within
the ueubrave) the ueverave)

In the cell timescale it is typically: quasi-static $\operatorname{rot}(\vec{E})=\frac{\partial \vec{B}}{\partial t} \simeq 0 \rightarrow \frac{\vec{E}=-\vec{\nabla} \psi}{\text { approx. }}$

$$
V_{m}(t):=\psi^{i n}(t)-\psi^{a n t}(t)[\text { Volt }]
$$

The electric field can be considered iveotaticual. In other words, we are dealing with stationary fields.

$$
\psi^{i m}(t):=\psi\left(\vec{x}^{\prime}, t\right) \quad \psi^{\text {ant }}(t):=\psi\left(\vec{x}^{\prime \prime}, t\right)
$$

But $\vec{x}^{\prime} \simeq \vec{x} \simeq \vec{x}^{\prime \prime}$. because of the short thickness of the membrane with respect to the surroundings.
However $\psi^{\text {in }} \neq \psi^{\text {art }}$ certainly.
If we them let $t_{m} \rightarrow 0$ we obtain a discoutimous function of ψ where the discoutiminty corresponds to the uveubraue and is equal in amplitude to V_{m}.

the electric potential indeed changes within and outside the cell, however fran now an we will assume it to be constant

$$
\left\lceil V_{m}(\vec{x}, t)=\psi_{x}^{i n}(t)-\psi_{x}^{m+}(t)\right\rceil
$$

local ineubrane potential

Definition: $j_{\alpha}^{c a p}(\vec{x}, t):=e_{\downarrow} \frac{\partial V_{m}(\vec{x}, t)}{\partial t}$
specific capacitance

$$
e_{m}=\int \frac{\varepsilon_{m}}{t_{m}}=\left[\frac{F}{m^{2}}\right]
$$

dielectric constant
of the membrane
Frau experiments (Hadgkiu-Huxley): $\frac{\varepsilon_{m}}{t_{m}}=e_{m} \sim 10^{-2} \frac{\mathrm{~F}}{\mathrm{~m}^{2}}$

usu-lineare
gating variables:

$$
\left[\begin{array}{c}
S_{g_{1}}(\vec{x}, t) \\
S_{g_{2}}(\vec{x}, t) \\
\vdots \\
S_{g_{n}}(\vec{x}, t)
\end{array}\right]
$$

$$
g_{m}=g_{m}\left(\vec{x}, t, \frac{C_{\downarrow}}{\downarrow}(\vec{x}, t), V_{m}(\vec{x}, t), s_{g}(\vec{x}, t)\right)
$$

accounts for the urdar densities of all iou species (n-size vector)
The gating variables $g_{j} \in[0,1]$ are probabilistic quantities that describe the likelihood of the uneubraure pares of being open or closed.

This is the equivalent mathematical model of a piece of urubraue (local ODE model)
Nate how for each fixed \vec{x} it resembles a Cauchy problem.

Characterization of the trausuembraue conductance
Let's apply all previous considerations, rot just to a portucu of the membrane (\vec{x} inside the wambtave), but to the whole cell volume (\vec{x} at the center of the cell).

$$
\begin{aligned}
\vec{J}_{\alpha}^{+\alpha+}(\vec{x}, t) \cdot \vec{n}= & j_{\alpha}^{+\infty+}(\vec{x}, t) \longrightarrow \int_{S_{\alpha a k}} \vec{J}_{\alpha}^{+\alpha}(\vec{x}, t) \cdot \vec{n} d \Sigma=I_{\alpha}^{+\alpha+}(t) \\
& -I_{\alpha}^{+\alpha+}(t)+I_{c}(t)+I_{G}(t)=0
\end{aligned}
$$

where $I_{c}(t)=C_{m} \cdot \frac{d V_{m}(t)}{d t}$ with $C_{m}=e_{m} \cdot S$ cole

$$
\begin{aligned}
I_{a}(t) & =\text { ? } \\
\text { e.g: }: I_{a}(t) & =G_{m, \alpha}\left(t, V_{m}(t)\right)\left[V_{m}(t)-E_{m, \alpha}\left(t, V_{m}(t)\right)\right]
\end{aligned}
$$

1) Linear resistor model: $I_{G}(t)=G_{m, \alpha}^{0}\left[V_{m}(t)-E_{m, \alpha}^{0}\right]$

At steady-state: $i_{c}=0$
If $\quad V_{m}=E_{m, \alpha}^{+}: \quad i_{G}=0$
$I_{\alpha}^{\text {tot }}=0$
"therme ${ }^{\prime \prime}$ inane equilibrium"
α issus are not allowed to cross the rueubrome, even if $C_{\alpha}^{\text {in }} \neq C_{\alpha}^{\text {out }}$

)diffusion
action
$C_{\alpha}^{\text {ant }}$

This is achievable aby for a special value of the ueurbrame potential:

$$
V_{m}=E_{m, \alpha}^{\infty}
$$

which has to be associated to sour form of work within the cell that apposes to the ratural gradient diffinsicu of the ions.
\Longrightarrow Nernst potential associated with iou species α :

$$
E_{m, \alpha}^{0}:=\frac{V_{\text {th }}}{z_{\alpha}} \ln \left(\frac{C_{\alpha}^{e u t}}{C_{\alpha}^{i n}}\right)
$$

where $V_{\text {th }}:=\frac{K_{B} T}{9}$ thermal voltage ($V_{\text {th }} \simeq 26 \mathrm{mV}$ @ $T=300 \mathrm{~K}$)

$$
K_{B}=1,38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K} \quad q=1,602 \cdot 10^{-19} \mathrm{C}
$$

z_{α} : chemical valence of ion species α
Demonstration of Nernst potential formula:
 volumetric charge density

Ions can move by:

+ diffusion $\vec{J}_{\text {diff }}=-F z_{\alpha} D_{\alpha} \vec{\nabla} \cdot C_{\alpha}$ $\underset{\text { current }}{\text { density }}=\left[\frac{C}{m d} \cdot \frac{m^{2}}{s} \cdot \frac{1}{m} \cdot \frac{m d}{m^{3}}\right]=\left[\frac{A}{m^{2}}\right]$
+ electric force $\vec{F}=F z_{\alpha} C_{\alpha} \vec{E}$

$$
\underset{\text { density }}{\text { force }}=\left[\frac{C}{m a l} \cdot \frac{m d}{m^{3}} \cdot \frac{V}{m}\right]=\left[\frac{N}{m^{3}}\right]
$$

electrical usability $\mu_{\alpha}^{\ell}=\left[\frac{\mathrm{m}^{2}}{\mathrm{~V} \cdot \mathrm{~s}}\right]$

$$
\vec{J}_{\text {durst }}=\mu_{\alpha}^{d} F\left|z_{\alpha}\right| C_{\alpha} \vec{E}=\sigma_{\alpha} \vec{E}
$$

where $\sigma_{\alpha}=F\left|z_{\alpha}\right| C_{\alpha} \mu_{\alpha}^{\mu}=\left[\frac{\Omega^{-1}}{m}\right]$
electrical conductivity
\Longrightarrow Nerust-Plauck transport unodel:

$$
\overrightarrow{J_{\alpha}}=F\left|z_{\alpha}\right| \mu_{\alpha}^{d} C_{\alpha} \vec{E}-F z_{\alpha} D_{\alpha} \vec{\nabla} \cdot C_{\alpha}
$$

It is a unodel for ian electrodiffusian (drift-diffusian, like alectrous and holes in a sauicoudrectar)

Inepese now $J_{\alpha}=F\left|z_{\alpha}\right| \mu_{\alpha}^{\ell} C_{\alpha} E-F z_{\alpha} D_{\alpha} \frac{\partial C_{\alpha}}{\partial x} \bar{\uparrow} 0$ equilibrium

$$
\left|z_{\alpha}\right| \mu_{\alpha}^{l} C_{\alpha} \frac{\partial \psi}{\partial x}+z_{\alpha} D_{\alpha} \frac{\partial C_{\alpha}}{\partial x}=0
$$

Einstein-Stokes-Sualuchowski equation: $D_{\alpha}=\frac{V_{\text {th }} \mu_{\alpha}^{d}}{\left|z_{\alpha}\right|}$

$$
\begin{aligned}
& \frac{\partial C_{\alpha}}{\partial x}=-\frac{\left|z_{\alpha}\right|^{2}}{z_{\alpha}} \frac{C_{\alpha}}{V_{\text {th }}} \frac{\partial \psi}{\partial x} \\
& \frac{\partial \psi}{\partial x}=-\frac{V_{\text {th }}}{z_{\alpha}} \frac{\partial C_{\alpha}}{\partial x} \frac{1}{C_{\alpha}}=-\frac{V_{\text {th }}}{z_{\alpha}} \frac{\partial}{\partial x} \ln \left(\frac{C_{\alpha}}{C_{+\phi}}\right)
\end{aligned}
$$

$\Psi=\psi(x)$ and $C_{\alpha}=C_{\alpha}(x)$ since we are at equilibrium (steady-state, no time dependence).

$$
\begin{aligned}
& \Psi(x)-\Psi(0)=-\frac{V_{\text {th }}}{z_{\alpha}} \ln \left(\frac{C_{\alpha}(x)}{C_{\alpha}(0)}\right)=\begin{array}{c}
\text { "chemical } \\
\text { potential" }
\end{array} \\
& x=t_{m} \Longrightarrow V_{m}=\frac{V_{\text {th }}}{z_{\alpha}} \ln \left(\frac{C_{\alpha}^{2+t}}{C_{\alpha}^{\text {in }}}\right)
\end{aligned}
$$

Whale - cell (livear resistor) uradel

Let's now aualyze the Nerust-Planck equation by unodifying its expression in a unare faniliar form:

$$
\begin{aligned}
\vec{J}_{\alpha} & =q \mu_{\alpha}^{\mu}\left|z_{\alpha}\right| n_{\alpha} \vec{E}-q z_{\alpha} D_{\alpha} \vec{\nabla} \cdot n_{\alpha} n_{\alpha}(\vec{x})=C_{\alpha}(\vec{x}) \cdot N_{\alpha v} \\
& =\vec{e}_{x}\left[q \mu_{\alpha}^{\mu}\left|z_{\alpha}\right| n_{\alpha}(x) E-q z_{\alpha} D_{\alpha} \frac{\partial n_{\alpha}(x)}{\partial x}\right] \\
J_{\alpha} & =q z_{\alpha}\left[\mu_{\alpha}^{\mu} \frac{\left|z_{\alpha}\right| n_{\alpha}}{z_{\alpha}} E-D_{\alpha} \frac{\partial n_{\alpha}}{\partial x}\right] \\
& \longleftrightarrow f_{\alpha}=\frac{J_{\alpha}}{q z_{\alpha}}=\left[\frac{C}{s m^{2} \cdot C}\right]=\left[m^{-1} s^{-1}\right] \\
f_{\alpha}\left(n_{\alpha}\right) & =\underbrace{\mu_{\alpha}^{e l} \frac{\left|z_{\alpha}\right|}{z_{\alpha}} \in n_{\alpha}-D_{\alpha} \frac{\partial n_{\alpha}}{\partial x} \longleftrightarrow J(\mu)=V \mu-D \frac{\partial \mu}{\partial x}}
\end{aligned}
$$

Coupute the Peclet unuber asseciated to this aderection-diffusion problou:

$$
\left.\mathbb{P}_{e_{\alpha d}}=\frac{h|V|}{2 D}=\frac{h \mu_{\alpha}^{d}|E|}{2 D_{\alpha}}=\frac{h \mu_{\alpha}^{e}|E|}{2 \mu_{\alpha}^{e} V_{\text {th }}} \right\rvert\, z_{\alpha \mid}\left(z_{\alpha} \left\lvert\, \frac{h|E|}{2 V+h}>1\right.\right.
$$

$$
\Longrightarrow|\Delta \psi|>\frac{2 V_{+h}}{\left|z_{\alpha}\right|} \longleftarrow \text { advecticu-dowinated }
$$

$\psi^{\prime \prime}$.

$$
\begin{aligned}
& I_{c}=C_{m} \frac{d V_{m}}{d t} \quad I_{G}=G_{m, \alpha}^{0}\left(V_{m}-E_{m, \alpha}^{a}\right) \\
& -I_{\alpha}(t)+C_{m} \frac{d V_{m}(t)}{d t}+G_{m, \alpha}^{\circ}\left(V_{m}(t)-E_{m, \alpha}^{\circ}\right)=0 \\
& \left(R_{m, \alpha}^{0}=\frac{1}{G_{m, \alpha}^{\circ}}\right) \quad \frac{d V_{m}(t)}{d t}=\frac{I_{\alpha}^{+o t}}{C_{m}}+\frac{E_{m, \alpha}^{0}}{R_{m, \alpha}^{0} C_{m}}-\frac{V_{m}(t)}{R_{m, \alpha}^{0} C_{m}} \tau \tau \\
& \left\{\begin{array}{l}
\frac{d V_{m}}{d t}=-\frac{V_{m}}{\tau}+\frac{l}{\tau}\left[E_{m, \alpha}^{0}+I_{\alpha}^{t o t} R_{m, \alpha}^{0}\right] \quad t \in I_{T}=\left(t_{0}, t_{0}+T\right) \\
V_{m}\left(t_{0}\right)=V_{m}^{\circ}=E_{m, \alpha}^{0} \longrightarrow \text { equilibricue at starting conditiou }
\end{array}\right.
\end{aligned}
$$

Since in cellular electrophisidogy $V_{m} \sim 90 m V$ the valtage drop between discretizatian steps is in general munch lower thou $2 V_{\text {th }} \sim 50 \mathrm{mV}$, there are Typically ne issues (such as spurious oscillations) where computing for the unuerical solution of the problems.

Example: $\vec{E} \equiv$ coust (it is often a reasonable approx.)
E is constant troughout the channel pare

$$
\begin{align*}
& E=-\frac{\partial \psi}{\partial t}=-\frac{\psi^{\text {out }}-\psi^{i n}}{t_{m}}=\frac{\psi^{i n}-\psi^{\text {out }}}{t_{m}}=\frac{V_{m}}{t_{m}} \\
& V=\mu_{\alpha}^{d \ell} \frac{\left|z_{\alpha}\right|}{z_{\alpha}} E=\mu_{\alpha}^{d \ell} \frac{\left|z_{\alpha}\right|}{z_{\alpha}} \frac{V_{m}}{t_{m}} \\
& \mathbb{P e}_{\text {ad }}=\frac{h|V|}{2 D_{\alpha}}=\frac{h \mu_{\alpha}^{d \alpha}\left|V_{m}\right|}{2 t_{m} \frac{\mu_{\alpha}^{\alpha} V_{+h}}{\left|z_{\alpha}\right|}=\left|z_{\alpha}\right| \frac{h}{t_{m}} \frac{V_{m}}{2 V_{+n}}} \rightarrow \sim
\end{align*}
$$

So as previansly denoted we typically dart used any stabilizazian technique for the picket umber.
This however can change in presence of fixed charges within the chancel.
The electric field associated to these charges, which are located along the chanel walls and
should therefore
be cousidered as
boundary conditions, acts an a and dimension that cam mot be accounted for

can have fixed charges in their structure which generate are electric field
\rightarrow folded proteins specialized ide the passage of specific iou species thanks to receptors
in our previous model.
It is then clear that cur iD representation can be a good starting paint for the study of this problem but it can defuetely be improved.

Areother aspect of higher datail that uright play a siguificaut sale in the evaluatia of the peclet umbere is the intrachamel watere.

As a unatter of fact, so for we reglected any interactian between water undecules and iaus (sobent and solute). To account for any possible "push-pull" unechamisu between lous and fluid we use the fallowing:
\Longrightarrow Veloity - exturded Poissau-Nerust-Plauck unodel:

$$
\overrightarrow{J_{\alpha}}=q\left|z_{\alpha}\right| \mu_{\alpha}^{\alpha} n_{\alpha} \vec{E}-q z_{\alpha} D_{\alpha} \vec{\nabla} n_{\alpha}+q z_{\alpha} n_{\alpha} \overrightarrow{v_{\rho}}
$$

It is a unedel for iou electro-fluid-diffusiou.

$$
\begin{aligned}
\vec{f}_{\alpha}=\frac{\vec{J}_{\alpha}}{q z_{\alpha}} & =\frac{\left|z_{\alpha}\right|}{z_{\alpha}} \mu_{\alpha}^{\ell l} n_{\alpha} \vec{E}+n_{\alpha} \vec{ज}_{\beta}-D_{\alpha} \vec{\nabla} n_{\alpha} \\
& =n_{\alpha}\left(\vec{J}_{\beta}+\frac{\left|z_{\alpha}\right|}{z_{\alpha}} \mu_{\alpha}^{l} \vec{E}\right)-D_{\alpha} \vec{\nabla} n_{\alpha}
\end{aligned}
$$

\checkmark can now be grater thau before!
Numerical ascillations due to $\mathbb{P}_{\text {sad }}>1$ uight uow be realevaut.

Cansider now the simpler problou:

- Nerust-Plouck unodel
- 10 case $\left(x \in\left[0, t_{m}\right]\right)$
- caustant electric field $\left(E=\frac{V_{m}}{t_{m}}\right)$
- steady-state canditiou $\left(\frac{\partial n_{\alpha}}{\partial t}=0\right)$

$$
J_{\alpha}^{\infty \times n}=q \mu_{\alpha}^{d}\left|z_{\alpha}\right| n_{\alpha} \frac{V_{m}}{t_{m}}-q z_{\alpha} D_{\alpha} \frac{\partial n_{\alpha}}{\partial x}
$$

The questiou is: how ruuch is $J_{\infty}^{\text {end }}$? and so gm_{m} ?
To solve this problan, we add a fifth hypothesis:

- $J^{\text {cand }}=$ const. i.e. uo cousumptiou or geuereatiou
iuside the chaurel

$$
\left.\begin{array}{l}
0 \longrightarrow \frac{\partial}{\partial x}\left(q \mu_{\alpha}^{\alpha}\left|z_{\alpha}\right| n_{\alpha} \frac{V_{m}}{t_{m}}-q^{2} z_{\alpha} D_{\alpha} \frac{\partial n_{\alpha}}{\partial x}\right)=0 \\
\frac{\partial n_{\alpha}}{\partial x} \frac{V_{m}}{t_{m}}-\frac{V_{+h}}{z_{\alpha}} \frac{\partial^{2} n_{\alpha}}{\partial x^{2}}=0
\end{array}\right\} \begin{aligned}
& \left\{\begin{array}{l}
-\frac{\partial^{2} n_{\alpha}^{\alpha}}{\partial x^{2}}+\frac{z_{\alpha}}{V_{\text {th }}} \frac{V_{m}}{t_{m}} \frac{\partial n_{\alpha}}{\partial x}=0, \quad x \in\left(0, t_{m}\right) \\
n_{\alpha}(\theta)=n_{\alpha}^{i n} \quad n_{\alpha}\left(t_{m}\right)=n_{\alpha}^{\omega+}
\end{array}\right.
\end{aligned}
$$

$n_{\alpha}(x)$ is the ouly unknown of the systen.
Characteristic polyuauial $P(\lambda)$
Eigeuvalue aualysis: $-\lambda^{2}+\frac{z_{\infty}}{V_{\text {th }}} \frac{V_{m}}{t_{m}} \lambda=0$

$$
\begin{aligned}
& \lambda\left(\frac{z_{\infty}}{V_{\text {th }}} \frac{V_{m}}{t_{m}}-\lambda\right)=0 \\
& \lambda_{1}=0 \quad \lambda_{2}=\gamma=\frac{z_{\alpha} V_{m}}{V_{\text {th }} t_{m}} \quad \lambda=\left[m^{-1}\right] \\
& \Longrightarrow n_{\alpha}(x)=A+B e^{\gamma^{x}} \\
& \left\{\begin{array}{l}
A+B=n_{\alpha}^{i m} \\
A+B e^{\gamma t_{m}}=n_{\alpha}^{\text {aut }}
\end{array}\right. \\
& \left\{\begin{array}{l}
A=\frac{n_{\alpha}^{i n} e^{\gamma_{m}}-n_{\alpha}^{a+t}}{e^{\gamma^{t_{m}}}-l} \\
B=\frac{n_{\alpha}^{a+}-n_{\alpha}^{i n}}{e^{\gamma_{m}}-l}
\end{array}\right. \\
& \Longrightarrow J_{\alpha}^{\text {cond }}=q \mu_{\alpha}^{d}\left|z_{\alpha}\right| \frac{V_{m}}{t_{m}}\left(A+B e^{\gamma^{x}}\right)-q z_{\alpha} D_{\alpha} B \gamma e^{\gamma^{x}}=\text { eonst. } \\
& =q \mu_{\alpha}^{\ell}\left|z_{\alpha}\right| \frac{V_{m}}{t_{m}} A+q \mu_{\alpha}^{\ell}\left|z_{\alpha}\right| \frac{V_{m}}{t_{m}} B e^{\gamma x}-q z_{\alpha} \frac{\mu_{\alpha}^{d} V_{+h}}{\left|z_{\alpha}\right|} \beta \frac{z_{\alpha} V_{m}}{V_{t h} t_{m}} e^{\gamma x}
\end{aligned}
$$

carrectly does not depend an x as it was supposed to be constaut and apposite

$$
\begin{aligned}
& =q \mu_{\alpha}^{d}\left|z_{\alpha}\right| V_{m} \frac{n_{\alpha}^{\text {in }} e^{r_{m}^{t_{m}}}-n_{\alpha}^{\text {out }}}{e^{r_{m}}-1} \\
& \begin{aligned}
\beta_{m}= & z_{\alpha} V_{m}=\gamma t_{m} \\
& \left\lvert\,=q \frac{D_{\alpha}}{V_{m}} z_{\alpha} \beta_{m} \frac{n_{\alpha}^{i n} e^{\beta_{m}}-n_{\alpha}^{\text {at }}}{e^{\beta_{m}}-1}\right.
\end{aligned}
\end{aligned}
$$

Iuteoducing the inverse of the Beruanlli function:

$$
\left[\operatorname{Be}(x):=\frac{x}{e^{x}-1}\right]
$$

we can then write: $J_{\alpha}^{\text {end }}=9 \frac{D_{\alpha}}{t_{m}} z_{\alpha} B e\left(\beta_{m}\right)\left[n_{\alpha}^{i n} e^{\beta_{m}}-n_{\alpha}^{\alpha+}\right]$

$$
\begin{aligned}
\operatorname{Be}(x) \cdot e^{x} & =\frac{x}{1-e^{-x}}=\frac{-x}{e^{-x}-1}=\operatorname{Be}(-x) \\
& =q \frac{D_{\alpha}}{t_{m}} z_{\alpha}\left[\operatorname{Be}\left(-\beta_{m}\right) n_{\alpha}^{i n}-\operatorname{Be}\left(\beta_{m}\right) n_{\alpha}^{-x}\right]
\end{aligned}
$$

2) Goldenau - Hodgkin - Katz (GHK) model:

$$
J_{\alpha}^{G H K}=-q \frac{D_{\alpha}}{t_{m}} z_{\alpha}\left[\operatorname{Be}\left(\beta_{m}\right) n_{\alpha}^{a+t}-\operatorname{Be}\left(-\beta_{m}\right) n_{\alpha}^{i n}\right]=\frac{I_{a}}{S_{\alpha \infty}}
$$

with $\left[\beta_{m}=z_{\alpha} \frac{V_{m}}{V_{+n}}\right]$
$g_{m, \alpha}=q \frac{z_{\alpha}^{2} n_{\alpha}^{\text {in }}}{V_{\text {th }}} \frac{D_{\alpha}}{t_{m}}$ effective conductance $\left[\frac{\Omega^{-1}}{m^{2}}\right]$
$E_{m, \alpha}=\frac{V_{4 h}}{Z_{\alpha}}\left(\frac{n_{\alpha}^{\text {out }}}{n_{\alpha}^{2 x}}-1\right) \operatorname{Be}\left(\beta_{m}\right)$ effective Nernst potential [V]
In general it is very hard to know the exact value of the diffusivity D_{α} within the eneubrave chanel, as eunuch as it is hard to know its thickness t_{m}. However, it is possible to experimentally derive the uneubrave permeability (with respect to a certain ion species α):

$$
P_{\alpha}=\frac{D_{\alpha}}{t_{m}}=\left[\frac{m}{s}\right]
$$

Note: the GHK result for conduction current resembles the general formula for current density:

$$
\vec{J}_{\alpha}=q n_{\alpha} z_{\alpha}{\overrightarrow{G_{\alpha}}}^{\text {drift velocity }}
$$

It is then evident that the GHK current displays the same terms through the use of effective parameters:

$$
J_{\alpha}^{G H K}=q \eta_{\alpha}^{2 f 1} z_{\alpha} P_{\alpha}
$$

where $n_{\alpha}^{\text {wi }}=\operatorname{Be}\left(-\beta_{m}\right) n_{\alpha}^{\text {in }}-\operatorname{Be}\left(\beta_{m}\right) n_{\alpha}^{\text {ut }}$ and $P_{\alpha}=\frac{D_{\alpha}}{t m}$ are the effective parameters for conceutratioum and velocity, in the sense that they efficiently approximate with a single constant terce then respective variable, which in reality may vary
in both tiure and space along the ueubraue chanel.

The whole GHK equation is an efficient model to approximate with a constant effective current the actual channel current.

Let's now see how well this model can estimate the conduction current in sane limit cases.

$$
\begin{aligned}
& J_{\alpha}^{G H K}=-q P_{\alpha} z_{\alpha}\left[\operatorname{Be}\left(\beta_{m}\right) n_{\alpha}^{\alpha u t}-\operatorname{Be}\left(-\beta_{m}\right) n_{\alpha}^{i n}\right] \\
& V S . \\
& J_{\alpha}^{\alpha+\infty}=q \mu_{\alpha}^{l}\left|z_{\alpha}\right| n_{\alpha} \frac{V_{m}}{t_{m}}-q z_{\alpha} D_{\alpha} \frac{\partial n_{\alpha}}{\partial x}
\end{aligned}
$$

$\operatorname{Be}(0)=1$

1. Zero electric field $\longrightarrow E=0, \quad V_{m}=0, \quad \beta_{m}=0$

$$
J_{\alpha}^{\mathrm{CHk}}=-q z_{\alpha} \frac{D_{\alpha}}{t_{m}}\left(n_{\alpha}^{\alpha+}-n_{\alpha}^{i m}\right) \quad V S . \quad J_{\alpha}^{\text {cond }}=-q z_{\alpha} D_{\alpha} \frac{\partial n_{\alpha}}{\partial x}
$$

The GHK faruurla approximates the coucutratiau gradient through the incremental ratio between the two endpoints of the domain:

$$
\frac{\partial n_{\alpha}}{\partial x} \approx \frac{n_{\alpha}^{a+}-n_{\alpha}^{i m}}{t_{m}}
$$

2. Uniform concentration $\longrightarrow n_{\alpha}^{\text {out }_{\alpha}}=n_{\alpha}^{\text {in }}=\bar{n}_{\alpha}$

$$
\begin{aligned}
J_{\alpha}^{a+k} & =-q z_{\alpha} \frac{D_{\alpha}}{t_{m}} \bar{n}_{\alpha}\left[B e\left(\beta_{m}\right)-B e\left(-\beta_{m}\right)\right]= \\
x+B e(x) & =x+\frac{x}{e^{x}-1}=\frac{x e^{x}}{e^{x}-1}=e^{x} B_{e}(x)=B e(-x) \\
& \bar{I}-q z_{\alpha} \frac{D_{\alpha}}{t_{m}} \bar{n}_{\alpha}\left[-\beta_{m}\right] \\
& =q z_{\alpha} \frac{1}{t_{m}}\left(\mu_{\alpha}^{l} \frac{V_{t h}}{\left|z_{\alpha \alpha}\right|}\right) \bar{n}_{\alpha}\left(z_{\alpha} \frac{V_{m}}{V_{\text {th }}}\right) \\
& =q\left|z_{\alpha}\right| \mu_{\alpha}^{d} \bar{n}_{\alpha} \frac{V_{m}}{t_{m}} \quad V S . \quad J_{\alpha}^{c o n d}=q\left|z_{\alpha}\right| \mu_{\alpha}^{d} \bar{n}_{\alpha} \frac{V_{m}}{t_{m}}
\end{aligned}
$$

The GHK fareunla is exactly equal to the the retical are, which is reasonable since $J^{\text {conn }}$ is constant and $J_{a}^{\text {cHi }}$ is also constant by definition, so it has mo issues with approximating the real behourour.

As the GHK approxicuation is reliable in both limit cases, lt is expected to always yield a reliable value far any intermediate case.

We will hereafter consider the following velocityextended problem:

- Paissou-Nerust-Plauck uodel
- 3D case
to evaluate the complete expressicen of the drift velocity \vec{J}_{α}.

$$
\begin{aligned}
& \overrightarrow{J_{\alpha}}=q\left|z_{\alpha}\right| \mu_{\alpha}^{d} n_{\alpha} \vec{E}-q z_{\alpha} D \alpha \vec{\nabla} n_{\alpha}+q z_{\alpha} n_{\alpha} \overrightarrow{U_{\alpha}} \longleftrightarrow \vec{J}_{\alpha}=q n_{\alpha} z_{\alpha} \vec{U}_{\alpha} \\
& \vec{\sigma}_{\alpha}=\text { ? } \\
& \overrightarrow{J_{\alpha}}=q\left|z_{\alpha}\right| \mu_{\alpha}^{\alpha} n_{\alpha} \vec{E}-q z_{\alpha} D_{\alpha} \vec{\nabla} n_{\alpha}+q z_{\alpha} n_{\alpha} \overrightarrow{v_{\rho}} \\
& =q z_{\alpha} n_{\alpha}\left[\vec{U}_{g}-\mu_{\alpha}^{\alpha l} \frac{\left|z_{\alpha}\right|}{z_{\alpha}} \vec{\nabla} \psi-D_{\alpha} \frac{1}{n_{\alpha}} \vec{\nabla} n_{\alpha}\right] \\
& =q z_{\alpha} n_{\alpha}\left[\overrightarrow{v_{g}}-\mu_{\alpha}^{e} \frac{\left|z_{\alpha}\right|}{z_{\alpha}} \vec{\nabla} \psi-\mu_{\alpha}^{e} \frac{V_{+k}}{\left|z_{\alpha}\right|} \vec{\nabla} \operatorname{lu}\left(\frac{n_{\alpha}}{n_{x \alpha}}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =q z_{\alpha} n_{\alpha}[\vec{\sigma}_{g}-\frac{\mu_{\alpha}^{e l} V_{+h}}{\left|z_{\alpha}\right|} \frac{z_{\infty}}{V_{+h}} \vec{\nabla}(\psi+\underbrace{\frac{V_{+h}}{z_{\alpha}} h^{\mu}\left(\frac{n_{\alpha}}{n_{n}}\right)})] \\
& \text { electric chemical } \\
& \text { potentials }
\end{aligned}
$$

Electrochenucal potential $\left[\varphi_{\alpha}^{E C}:=\psi+\frac{V_{N \mu}}{z_{\alpha}} \ln \left(\frac{n_{\alpha}}{n_{* \alpha}}\right)\right]$

$$
\overrightarrow{J_{\alpha}}=q z_{\alpha} n_{\alpha}[{\overrightarrow{J_{f}}}_{f}-\left.\mu_{\alpha}^{\alpha}\right|_{\mid z_{\alpha} \alpha} ^{z_{\alpha}} \underbrace{\vec{\nabla} \varphi_{\alpha}^{\text {Ec }}}_{\downarrow}]
$$

electrochemical field $\left[E_{\alpha}^{E C}=-\vec{\nabla} \varphi_{\alpha}^{* c}\right]$
3) Hodgkin -Huxley (ueurau) cell model and characterization of the gating variables

\bar{g}_{L} : "leakage conductance"
E_{L} : Nernst potential \qquad associated with chlorine ions (+ some other issus)
$g_{k}=g_{k}\left(t, V_{m}\right)$: conductance
E_{k} : Nernst potential \qquad \} a s s o c i a t e d ~ w i t h ~ p o t a s s i u m ~ i o n s ~
$g_{N a}=g_{N_{a}}\left(t, V_{m}\right)$: conductance
$E_{N a}$: Nernst potential associated with sodimu ions
\qquad

$$
\mathrm{K}^{+}, \mathrm{Na}^{+}, \mathrm{Cl}^{-}
$$

$$
z_{\alpha}:+1+1-1
$$

KCL at made (A):

$$
-J_{\text {tot }}+C_{m} \frac{d V_{m}}{d t}+g_{N_{a}}\left(V_{m}-E_{N_{a}}\right)+g_{k}\left(V_{m}-E_{k}\right)+\bar{g}_{L}\left(V_{m}-E_{L}\right)=0
$$

with initial couditious: $\quad V_{m}\left(t=t_{0}\right)=V_{m}^{\circ}$
If we unanage to find an expression for g_{Na} and g_{k} then we know how V_{m} will evolve caber time.

Notation charge: $J_{\alpha}=g_{\alpha} \cdot\left(V_{m}-E_{m, \alpha}\right)$

$$
=g_{\alpha} \cdot\left(V_{m}-E_{m}+E_{m}-E_{m, \alpha}\right)
$$

where E_{m} is the resting (Nernst) potential of the coll while Em, is the Nernst potential associated to iou species o (e.g. Eva)!
E_{m} is a constant that holds information related to each $E_{m, \alpha}$.

$$
\longrightarrow \quad J_{\alpha}=g_{\alpha} \cdot\left(v-v_{\alpha}\right)
$$

where $v:=V_{m}-E_{m}$ and $v_{\alpha}:=E_{m, \alpha}-E_{m}$
With this change in the rotation it is easier to see when the cell is not at equilibrium ($v=0$).

$$
\begin{gathered}
\Longrightarrow \begin{array}{|l|l|l}
\hline-J_{\text {tot }}+C_{m} \frac{d v}{d t}+g_{N_{a}}\left(v-v_{N a}\right)+g_{k}\left(v-v_{k}\right)+g_{L}\left(v-v_{L}\right)=0 \\
E_{m}=\text { constr: } & v(0)=0
\end{array} \\
\\
t_{a}=0
\end{gathered}
$$

Nernst potential for ion species $\alpha: \quad E_{m, \alpha}=\frac{V_{\text {+h }}}{z_{\alpha}} \ln \left(\frac{C_{\alpha}^{a+1}}{C_{\alpha}^{i n}}\right)$ Nernst potential of the cell: $E_{m}=$?

Assumption: all ions are unouavalent $\left(z_{*}= \pm 1\right)$
\Longrightarrow Golducau potential:

$$
E_{\Uparrow}:=V_{\text {th }} \operatorname{lu}\left[\frac{\sum_{i=1}^{N_{+}^{+}} P_{i}^{+} C_{i}^{+(\text {out })}+\sum_{i=1}^{N_{i}^{-}} P_{i}^{-} C_{i}^{-(n)}}{\sum_{i=1}^{N_{i}^{+}} P_{i}^{+} C_{i}^{+(i n)}+\sum_{i=1}^{N-1} P_{i}^{-} C_{i}^{-(\text {ant })}}\right]
$$

$$
J_{\text {tot }}^{\text {cold }}=0
$$

, concentration
where $J_{\text {tot }}^{\text {cold }}=\sum_{i=1}^{\mu^{+}} J_{i}^{+}+\sum_{i=1}^{M-1} J_{i}^{-}$
$M^{+}=2$ umber of cations species $\left(K^{+}, \mathrm{Na}^{+}\right)$
$M^{-}=1$ unuber of anions species $\left(\mathrm{Cl}^{-}\right)$

Gating variables
$g_{\alpha}=g_{\alpha}\left(\underline{s}_{8}\right)$ where $\underline{\underline{s}}_{g}$ are "gating variables"

$$
\begin{aligned}
& s_{g}=s_{0}(t, v) \quad 0 \leqslant s_{g i} \leqslant 1 \\
& \alpha \text {-ion channel } \rightarrow \alpha \text {-ion chamuel } \\
& \text { ceased }
\end{aligned}
$$ -pen

We now need au expression for $g_{\alpha}\left(\xi_{9}\right)$ and, wore importantly, for $S_{8}(t, v)$.

Frau Hodgkin - Huxby (1952): (i) Potassium

$$
g_{k}=\bar{g}_{k} \cdot n^{4} \quad S_{g}=n
$$

differential equation

$$
\text { (Balance equation) } \quad \frac{d n}{d t}=\alpha_{n}(1-n)-\beta_{n} n
$$

$$
\begin{aligned}
& \alpha_{n}=\left(0,1 \cdot \frac{1}{m s}\right) \cdot \operatorname{Be}\left(\frac{-v}{10 m V}+1\right) \\
& \beta_{n}=\left(0,125 \cdot \frac{1}{m s}\right) e^{-\sigma / 80 m V}
\end{aligned}
$$

(ii) Sodium

$$
\begin{aligned}
& g_{N a}=\bar{g}_{N a} m^{3} h \\
& \frac{d m}{d t}=\alpha_{m}(1-m)-\beta_{m} m \\
& \frac{d h}{d t}=\alpha_{h}(1-h)-\beta_{n} h
\end{aligned}
$$

generation consumption rate rate

$$
\begin{aligned}
& \alpha_{m}=\left(\frac{l}{m s}\right) \cdot \operatorname{Be}\left(\frac{-v}{10 m V}+2,5\right) \\
& \beta_{m}=\left(4 \cdot \frac{1}{m s}\right) e^{-v / 18 m V} \\
& \alpha_{n}=\left(0,07 \cdot \frac{1}{m s}\right) e^{-\sigma / 20 m V} \\
& \beta_{n}=\frac{\left(\frac{1}{m s}\right)}{e^{\left(\frac{-m}{10 m v}\right)}+1}
\end{aligned}
$$

$$
\bar{g}_{\alpha}=\text { const. }=\left[\frac{\Omega^{-1}}{m^{2}}\right] \quad \alpha_{s_{g}}=\alpha_{s_{g}}(v)=\left[s^{-1}\right] \quad \beta_{s_{2}}=\beta_{s_{g}}(v)=\left[s^{-1}\right]
$$

S_{g} : proportion of ions inside the uneubbaue $1-S_{g}:$ outside
$\alpha_{s_{g}}$: rate of transfer from outside to inside $\beta_{s_{g}}:$ inside " outside

These equations wore the result of a careful interpolation between mathematical unodels and experimental data.

We finally have everything we needed to determine the menbiraue conductances and therefore the solution of the Hodgkie-Huxley inodel:

$$
\begin{aligned}
& e_{m} \frac{d \sigma}{d t}=J_{\text {tor }}-J_{N_{k}}-J_{k}-J_{L} \\
& J_{\text {Na }}=g_{N a}\left(v-v_{N a}\right) \quad g_{k}=\bar{g}_{K} n^{4} \\
& \begin{array}{l}
J_{k}=g_{k}\left(v-v_{k}\right) \\
J_{L}=\bar{g}_{L}\left(v-v_{L}\right)
\end{array} \quad \begin{array}{l}
\text { grab }
\end{array} \quad g_{N_{a}} m^{3} h \\
& \frac{d n}{d t}=\alpha_{n}(v)(1-n)-\beta_{n}(v) n \\
& \frac{d m}{d t}=\alpha_{m}(v)(1-m)-\beta_{m}(v) m \\
& \frac{d h}{d t}=\alpha_{h}(v)(1-h)-\beta_{n}(v) h \\
& \left\{\begin{array}{l}
\frac{d y}{d t}=f(t, y(t)) \\
f\left(t_{0}\right)=y
\end{array}\right. \\
& \text { nan-linear } \\
& \text { (use ODE15s) }
\end{aligned}
$$

The Cable Equation model

It's mot just a time-varying problem but it is space - varying too!

Depending on the value of a / L we are allowed or not to ueglect the y dimension. Since a / L is typically very small (especially in the human body: $a / L \simeq 5.10^{-5}$) we caul consider just the x dimension in our problem.

Assumptions: 1 in the iutra/extra cellular region $C_{\alpha}=C_{\alpha}(x, t)=$ canst.
2. $\Psi^{\text {att }}(x, t)=0$
3. in the intracellular region

$$
\left[\frac{\Omega}{m}\right] \text { resistivity } \quad \rho_{a x}=\text { const }>0
$$

Characterization of the axon duct

1) Current constitutive equation (along x axis) \longrightarrow electric conductivity $\left.\left[\frac{\Omega^{-1}}{m}\right]\right\}$
Ohm's law:
electric current' density $\left[\frac{\mathrm{A}}{\mathrm{m}^{2}}\right]$
Hooke's law $P=E \varepsilon$
selectric field $\left[\frac{\mathrm{v}}{\mathrm{m}}\right]$ mechanical relative elongation stress $\left[\frac{\mathrm{N}}{\mathrm{m}^{2}}\right]$

$$
\begin{aligned}
d R(x)=\frac{\rho_{a x} d x}{S}=\frac{\rho_{a x} d x}{\pi a^{2}} \quad d V_{m}(x, t) & =V_{m}(x, t)-V_{m}(x+d x, t) \\
& =d R(x) \cdot I_{i n}(x, t) \\
& =\frac{\rho_{a x} d x}{\pi a^{2}} \cdot I_{i n}(x, t) \\
I_{m}(x, t) & =\frac{d V_{m}(x, t) \frac{\pi a^{2}}{d x}}{\rho_{a x}} \longleftarrow \\
& =-\frac{V_{m}(x+d x, t)-V_{m}(x, t) \frac{\pi a^{2}}{d x}}{\rho_{a x}}
\end{aligned}
$$

$$
d x \rightarrow 0 \longrightarrow I_{i n}(x, t)=-\frac{\pi a^{2}}{\rho_{a x}} \frac{\partial V_{m}(x, t)}{\partial x}
$$

Qhu's law: $J_{x}=\sim E_{x}=\frac{1}{\rho}\left(-\frac{\partial \psi_{x}}{\partial x}\right)$
2) Current balance law

$d x \rightarrow 0 \longrightarrow \frac{\partial \operatorname{In}(x, t)}{\partial x}=0 \leadsto$ in the vertical direction

$$
\left\{\begin{array}{l}
1) \\
2)
\end{array} \leadsto-\frac{\partial^{2} V_{m}(x, t)}{\partial x^{2}}=0 \leadsto\right. \text { Laplace equation }
$$

However this assumption was not correct. In reality it is:

$$
\begin{aligned}
\text { KCL at } x: & I_{i n}\left(x+\frac{d x}{2}, t\right)-I_{i n}\left(x-\frac{d x}{2}, t\right)+I_{+m}(x, t)=0 \\
& I_{i m}\left(x+\frac{d x}{2}, t\right)-I_{i m}\left(x-\frac{d x}{2}, t\right)+\left[I_{t_{m}}^{\cos x}(x, t)+I_{t_{m}}^{\operatorname{cop}}(x, t)\right]=0 \\
* I_{+m}^{\operatorname{cop}}(x, t)= & j_{t_{m}}^{\operatorname{cop}}(t, m) \cdot d x 2 \pi a=e_{m} \frac{\partial V_{m}(x, t)}{\partial t} d x 2 \pi a
\end{aligned}
$$

Assumptiou: use the linear resistare undel to characterize the cenductive t_{m} curreut

$$
\begin{aligned}
& =\left[\sum_{\alpha} g_{m, \alpha}\left(V_{m}(x, t)-E_{m, \alpha}\right)\right] d x \cdot 2 \pi a \\
& \Longrightarrow\left[\sum_{\alpha} g_{m, \alpha}\left(V_{m}(x, t)-E_{m, \alpha}\right)+e_{m} \frac{\partial V_{m}(x, t)}{\partial t}\right] d x \cdot 2 \pi \bar{a}= \\
& =\frac{I_{i n}\left(x-\frac{d x}{2}, t\right)-I_{i n}\left(x+\frac{d x}{2}, t\right)}{d x 2 \pi a} \\
& \left(C_{m} \frac{\partial V_{m}(x, t)}{\partial t}+\frac{1}{2 \omega a} \frac{\partial I_{i n}(x, t)}{\partial x}+\left(\sum_{\alpha} g_{m, \alpha}\right) V_{m}(x, t)=\sum_{\alpha} g_{m, \alpha} E_{m, \alpha}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
I_{i n}(x, t)=-\frac{\pi a^{2}}{\rho_{\text {ax }}} \frac{\partial V_{m}(x, t)}{\partial x} \\
\text { i.c. } V_{m}(x, 0)=V_{m}(x) \quad \forall x \in(0, L)
\end{array}\right. \\
& \text { b.c. for } V_{m} \text { at } x=0, x=L \quad \forall t \in\left({ }^{(0}, T\right)
\end{aligned}
$$

Livear Cable eq. unodel

Remove the previous livear resistar undal assump. Nou-livear resistore unadel: $j_{m, \alpha}^{\text {eand }}=g_{m, \alpha}\left(V_{m}\right)\left[V_{m}-E_{m, \alpha}\left(V_{m}\right)\right]$

$$
\Longrightarrow\left\{\begin{array}{l}
C_{m} \frac{\partial V_{m}(x, t)}{\partial t}+\frac{1}{2 \pi} \frac{\partial I_{i m}(x, t)}{\partial x}+\left[\sum_{\alpha} g_{m, \alpha}\left(V_{m}\right)\right] V_{m}(x, t)=\sum_{\alpha} g_{m, \alpha} \\
I_{i n}(x, t)=-\frac{\pi a^{2}}{\rho_{a \alpha}} \frac{\partial V_{m}(x, t)}{\partial x} \\
i . c . V_{m}(x, 0)=V_{m}^{\circ}(x) \quad \forall x \in(0, L) \\
\text { G.c. for } V_{m} \text { at } x=0, \quad x=L \quad \forall t \in(0, T)
\end{array}\right.
$$

Nou-Linear Cable eq. uodel
Note the faniliar form of the problem:
(1) $\frac{\partial \mu}{\partial t}+\frac{\partial J}{\partial x}=g-k \mu$
(2) $J=-D \frac{\partial u}{\partial x}+V_{\mu}$
(1)

$$
\begin{aligned}
\frac{\partial V_{m}}{\partial t}+\frac{1}{2 \pi a C_{m}} \frac{\partial I_{i n}\left(V_{m}\right)}{\partial x} & =-\sum_{\alpha} \frac{g_{m, \alpha}\left(V_{m}\right)}{e_{m}}\left[V_{m}-E_{m, \alpha}\left(V_{m}\right)\right] \int \sum_{\alpha} g_{m, \alpha}\left(V_{m},\right. \\
& =\underbrace{\sum_{\alpha} g_{m, \alpha}\left(V_{m}\right) E_{m, \alpha}\left(V_{m}\right)}_{e_{m}}-\underbrace{g_{t_{0}+}\left(V_{m}\right) \cdot V_{m}}_{e_{m}}
\end{aligned}
$$

(2)

$$
\begin{array}{rlr}
I_{\text {in }}\left(V_{m}\right) & =-\frac{\pi a^{2}}{\rho_{\alpha x}} \frac{\partial V_{m}}{\partial x} & G\left(V_{m}\right) \\
\mu & =V_{m} \quad J(\mu)=I_{\text {in }}\left(V_{m}\right) & D=\frac{a}{2 C_{m} \rho_{a x}} \quad V=0 \\
g(\mu)=\sum_{\alpha} g_{\frac{g, \alpha x}{}\left(V_{m}\right)}^{C_{m}} E_{m, x}\left(V_{m}\right) & K(\mu)=\frac{g_{\operatorname{tat}}\left(V_{m}\right)}{\tau_{m}}
\end{array}
$$

Since this probleu invalves both time and space variables, as abready seeu we unst proceed to time semidiscretizatian
$\rightarrow \theta$-methed with $\theta=1$
(i.e. Backward Euler uethod, auly first order couverg. but unceuditionally stable + positivity preserving)

$$
\begin{gathered}
N_{T} \geqslant 1 \quad \Delta t=\frac{T}{N_{T}} \quad n=0, l, \ldots, N_{T} \\
\longrightarrow \frac{V_{m}^{n+1}}{\Delta t}+\frac{1}{\left.2 \pi a C_{m} \frac{\partial I_{i n}\left(V_{m}^{n+1}\right.}{\partial x}\right)}=\frac{V_{m}^{n}}{\Delta t}+\frac{1}{e_{m}}\left[\sum_{\alpha} g_{m, \alpha}\left(V_{m}^{n+1}\right) E_{m, \alpha}\left(V_{m}^{n+1}\right)-g_{t_{0}+}\left(V_{m}^{n+1}\right) \cdot V_{m}^{n+1}\right]
\end{gathered}
$$

giver i.c: $V_{m}^{\circ}=V_{m}(x, 0)$
and b.c.?

Baudary cauditious

$\left.\gamma_{0} \vec{I}_{i n}(0, t) \cdot \vec{n}\right|_{x=0}=\alpha_{0} V_{m}(0, t)-\beta_{0}(t)$ valtage clamp where $\gamma_{0}=l \quad \alpha_{0}=\frac{1}{R_{\text {tot }}} \quad \beta_{0}=\frac{v_{3}(t)}{R_{\text {tot }}}$ baudary

What about a current daup experiment (i.e. eurreut source)?

$$
\begin{gathered}
\psi_{A}(t)-R_{\text {ip }} I_{\text {in }}(0, t)- \\
-V_{m}(0, t)=0 \\
i_{s}(t)-I_{\text {in }}(0, t)+i_{G}(t)=0 \\
i_{G}(t)=G_{s} \psi_{A}(t)
\end{gathered}
$$

$V_{m}(0, t)$

$$
I_{i n}(0, t)\left[1+G_{s} R_{\text {eip }}\right]-i_{s}(t)+G_{s} V_{m}(0, t)=0
$$

$$
-I_{i n}(0, t)=\frac{G_{s}}{1+G_{s} R_{\text {Rip }}} V_{m}(0, t)-\frac{l_{s}(t)}{1+G_{s} R_{\text {eip }}}
$$

$\left.\gamma_{0} \vec{I}_{\text {in }}(0, t) \cdot \vec{n}\right|_{x=0}=\alpha_{0} V_{m}(0, t)-\beta_{0}(t) \quad$ curreut claup where $\quad \gamma_{0}=l \quad \alpha_{0}=\frac{G_{s}}{1+G_{s} R_{\text {pip }}} \quad \beta_{0}=\frac{l_{s}(t)}{1+G_{s} R_{\text {Rip }}}$ baudary caditian

$$
x=D
$$

"load" resistance that approximates the syuaptic O.ft equeiromenent at the acou's termivation

$$
V_{m}(L, t)=R_{L} \cdot I_{\text {in }}(L, t) \Longrightarrow \quad I_{\text {in }}(L, t)=\frac{l}{R_{L}} V_{m}(L, t)
$$

$$
\left.\gamma_{L} \vec{I}_{i n}(L, t) \cdot \vec{n}\right|_{x=L}=\alpha_{L} V_{m}(L, t)-\beta_{L}(t)
$$

where $\gamma_{2}=l \quad \alpha_{L}=\frac{1}{R_{L}} \quad \beta_{L}=0$
syuaptic and baudary conditiou

Our problem has, at this paint, the following forme: given $V_{m}^{\dot{0}}=V_{m}^{0}(x), \quad x \in \Omega=(0, L), \quad \forall n=0, l, \ldots, N_{T}$ solve

$$
\left\{\begin{array}{l}
\frac{l}{2 \pi a e_{m}} \frac{\partial I_{i n}\left(V_{m}^{n+1}\right.}{\partial x}+\frac{V_{m}^{n+1}}{\Delta t}=\frac{V_{m}^{n}}{\Delta t}-\frac{1}{C_{m}} j_{m}^{\text {cold }}\left(x, V_{m}^{n+1} j C_{\alpha}, S_{g}^{n+1}\right) \\
I_{i n}\left(V_{m}\right)=-\frac{\pi a^{2}}{\rho_{a a}} \frac{\partial V_{m}}{\partial x} \quad-\frac{\partial V}{\partial x}=E \text { quasi-static approx. } \\
J_{t m}^{c o m}=R-G=V_{m} \cdot K-G \\
\left.\gamma_{\partial \Omega} \vec{I}_{i n}^{n+1} \cdot \vec{n}\right|_{\partial \Omega}=\alpha_{\partial \Omega} V_{m}^{n+1}-\beta_{\partial \Omega}^{n+1}
\end{array}\right.
$$

depends on the model
(no current, linear resistor, CHE, H-H, etc.)
quasi-
linear" since the uou-livearity $\mathcal{N}(\mu)=\varepsilon \frac{\partial I_{i}(\mu)}{\partial x}+\sigma \mu-g(\mu)+r(\mu)$ is in the zero order terms $\mu:=V_{m}^{n+1} \quad \varepsilon=\frac{l}{2 \pi e_{m}} \quad \sigma^{\prime}=\frac{l}{\Delta t}$

$$
G=g(\mu)=\frac{l}{e_{m}} \sum_{\alpha} g_{\alpha}(\mu) E_{\alpha}(\mu) \quad \pi(\mu)=-\frac{V_{m}^{n}}{\Delta t}+\frac{\mu}{e_{m}} g_{\text {tot }}(\mu)
$$

It can be a highly nou-linear problem, whose solution (which might not even be unique) unit be computed inmerically

Newton's method
\rightarrow NON - linear
$I_{\alpha}=[a, b]$ such that
$\bar{\exists}!\alpha^{-} \bar{f}(\bar{\alpha})=0 \overline{i n}_{I_{\alpha}} \mid$

Stopping criterion (or "terminating test"): $\left|x^{(k+1)}-x^{(k)}\right|<\varepsilon^{0}$

Newton's method is a FIXEO-POINT (or "Picard")
ITERATION:

$$
x^{(k+1)}=T_{f}\left(x^{(k)}\right)
$$

k : iteration canter $x^{(k)}$: iterate

The concept behind fixed-paint iterations is to traufarm the initial problem:

$$
\text { find } \alpha \text { st. } f(\alpha)=0
$$

whose solution cannot be obtained analitically, into a new problem:

$$
\text { find } \alpha \text { st. } T_{f}(\alpha)=\alpha
$$

whose solution can be obtained through the previously sen iteration.
To guarantee the validity of such trauformation it gust be:

1. $f(\alpha)=0 \Longleftrightarrow T_{f}(\alpha)=\alpha$
2. $\lim _{k \rightarrow \infty} x^{(k)}=\alpha \longleftarrow e^{(k)}:=\left|\alpha-x^{(k)}\right| \longrightarrow \lim _{k \rightarrow \infty} e^{(k)}=0$
so that for $x^{\left(k_{0}\right)}=\alpha$ convergence is reached and $\forall k \geqslant k_{0}$ $x^{(k)}=\alpha$ (hence α is a fixed-psint of the iteration T_{f}).

Theorem (existence, uniqueness and cowergence of a fixed point of an iteration)
Let T_{f} be a fixed-paint unap (or iteration function) such that:
a) $T_{f}: I_{\alpha} \longrightarrow I_{\alpha}\left(e . g: I_{\alpha}=[a, b] \subset \mathbb{R}\right) \quad T_{b}(\alpha)=\alpha$
b) $T_{g} \in e^{0}\left(I_{\alpha}\right)$
c) $T_{g} \in e^{-1}\left(I_{\alpha}\right)$

d) $\exists h$ such that $0<h<1$ and $\left|T_{\alpha}^{\prime}(x)\right| \leqslant h \quad \forall x \in I_{\alpha}$ Then $\exists!\alpha \in I_{\alpha}$ such that $\alpha=T_{f}(\alpha)$ and

$$
\left[\lim _{k \rightarrow \infty} x^{(k)}=\alpha\right] \quad\left[\lim _{k \rightarrow \infty} \frac{\alpha-x^{(k+1)}}{\alpha-x^{(k)}}=T_{f}^{\prime}(\alpha)\right]
$$

The second result of the theron gives an indication about the speed of convergence of the iteration:

$$
\left|\alpha-x^{(k+1)}\right| \leqslant h\left|\alpha-x^{(k)}\right|<\left|\alpha-x^{(k)}\right| \quad \forall k \geqslant k_{0}>0
$$

i.e.: $e^{(k+1)}<e^{(k)}$ for k sufficiently high
$1>h \geqslant \mid \underline{T_{f}^{\prime}(\alpha) \mid=\text { asymptotic error reduction factor }}$

Newton's method: $T_{f}(x)=x-\frac{f(x)}{f^{\prime}(x)} \rightarrow f \in \mathcal{C}^{u}\left(I_{\alpha}\right), f \in e^{2}\left(I_{\alpha}\right)$

$$
\begin{array}{rlr}
T_{f}^{\prime}(x) & =l-\left(f^{\prime}(x)\right)^{2}-f(x) f^{\prime \prime}(x) \\
& =\frac{f(x) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} & f^{\prime}(\alpha) \neq 0 \\
T_{f}^{\prime}(x) & =f(x))^{2} & \\
0 & =r \text { great } \\
\left(f^{\prime \prime}(\alpha)\right)^{2} & \rightarrow 0 & \text { reduction } \\
\text { factor! }
\end{array}
$$

Theorem
Assume $f \in e^{2}\left(I_{\alpha}\right)$ with $f^{\prime}(\alpha) \neq 0$. Then $\forall x^{(0)} \in I_{\alpha}$ the Newton's unethod converges and it is:

$$
\left[\lim _{k \rightarrow \infty} \frac{\alpha-x^{(k+1)}}{\left(\alpha-x^{(k)}\right)^{2}}=C_{\alpha}=\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right]
$$

ie: $\left|e^{(k+1)}\right| \leqslant\left|C_{\alpha}\right|\left|e^{(k)}\right|^{2}$ for k sufficiently high secoud order unethod

Issue of Newton's ruethod: do we always know $f^{\prime}(x)$?
Typically, just like $f(x)$, also $f^{\prime}(x)$ came nt be dealt with analiticably. Therefore we would reed to somehow apprexiunate $f^{\prime}(x)$, thus introducing inaccuracies in the unethod.
In cauchusian, the high cawergence rate of Newton's method courses with the requirement of knowing the derivative of the function for which we want to find the zero. If this information is missing, then the convergence order euight be less thou the theoretical our.

Back to eur problem:
find μ_{\uparrow}^{*} such that $\gamma_{X}\left(\mu^{*}\right)=0 \longleftrightarrow \mu^{(k+1)}=T_{r}\left(\mu^{(k)}\right)$

$$
T_{x}=?
$$

\mathcal{N} is a usu-livear differential aperatore

$$
\begin{aligned}
& \mathcal{N}: X \longrightarrow Y \\
& \mu \in X=?
\end{aligned}
$$

As we will need to use the finite element method, we can expect: and alse:

$$
\begin{aligned}
& x=H^{1}(\Omega) \\
& y=x=H^{1}(\Omega)
\end{aligned}
$$

Let's see the implementation of T_{r} through Newton's method:

$$
\mu^{(k+1)}=\mu^{(k)}-\frac{\mathcal{N}\left(u^{(k)}\right)}{\mathcal{N}^{\prime}\left(\mu^{(k)}\right)}
$$

given $u^{(0)} \in X$
increment set $\overline{\delta u^{(k)}}:=\mu^{(k+1)}-\mu^{(k)}$

$$
\Longrightarrow\left\{\begin{array}{l}
\text { solve: } \mathcal{N}^{\prime}\left(\mu^{(k)}\right) \delta \mu^{(k)}=\mathcal{N}\left(\mu^{(k)}\right) \\
\text { update: } \quad \mu^{(k+1)}=\mu^{(k)}+\delta \mu^{(k)}
\end{array}\right.
$$

$\forall k \geqslant 0$ until convergence
Note that the expression $\mathcal{N}^{\prime}\left(\mu^{(k)}\right) \delta \mu^{(k)}=-\mathcal{N}\left(\mu^{(k)}\right)$ is a linear partial differential equation $A x=b$
$\mathcal{N}^{\prime}\left(\mu^{(k)}\right)$ is the so called "Freshet derivative":

$$
\begin{aligned}
& \mathcal{N}^{\prime}\left(\mu^{(k)}\right) \delta \mu^{(k)}=\varepsilon \frac{\partial I_{i}\left(\delta \mu^{(k)}\right.}{\partial x}+\sigma \delta \mu^{(k)}+\left[\frac{\partial r\left(\mu^{(k)}\right)}{\partial \mu}-\frac{\partial g\left(\mu^{(v)}\right.}{\partial \mu}\right] \delta \mu^{(k)}=-\mathcal{X}\left(\mu^{(\omega)}\right) \\
& \varepsilon \frac{\partial I_{1}\left(\delta \mu^{(k)}\right)}{\partial x}+\gamma^{(k)} \delta \mu^{(k)}=-\mathcal{N}\left(\mu^{(k)}\right) \\
& \text { where } \gamma^{(k)}=\sigma+\left[\frac{\partial r\left(\mu^{(k)}\right)}{\partial \mu}-\frac{\partial g\left(\mu^{(i)}\right)}{\partial \mu}\right]
\end{aligned}
$$

The issue with Newton's method is the recessity to know the derivative of $r(\mu)$ and $g(\mu)$

Alternatively, we can use another method (i.e. another fixed-paint iteration), based on the expression of ar problem:

$$
\mathcal{N}(\mu)=\varepsilon \frac{\partial I_{m}(\mu)}{\partial x}+\frac{\mu}{\Delta t}-\frac{V_{m}^{n}}{\Delta t}+\frac{\mu}{e_{m}} g_{\text {tot }}(\mu)-\frac{1}{e_{m}} \sum_{\alpha} g_{\alpha}(\mu) E_{\alpha}(\mu)=0
$$

Idea: compute the new value $\mu^{(k+1)}$ using the old value $\mu^{(k)}$ for the evaluation of the uou-linear trues
given $\mu^{(0)} \in X$
solve: $\varepsilon \frac{\partial T_{i n}\left(\mu^{(k+1)}\right)}{\partial x}+\left[\frac{1}{\Delta t}+\frac{g_{\text {tot }}\left(\mu^{(k)}\right)}{E_{m}}\right] \mu^{(k+1)}=\frac{V_{m}^{n}}{\Delta t}+\frac{1}{C_{m}} \sum_{\alpha} g_{\alpha}\left(u^{(k)}\right) E_{\alpha}\left(\mu^{(k)}\right)$

+ bandary condition
$\forall K \geqslant 0$ until cowergance
Defining $\gamma^{(k)}=\frac{1}{\Delta t}+g_{\operatorname{tot}}\left(\mu_{m}^{(k)}\right)>0$ and $f^{(k)}=\frac{V_{m}^{n}}{\Delta t}+\frac{1}{C_{m}} \sum_{m}^{\alpha} g_{\alpha}\left(\mu^{(k)}\right) E_{\alpha}\left(\mu^{(k)}\right)$ we get: $\quad \frac{\partial}{\partial x}\left(-\frac{a}{2 \rho_{a} e_{m}} \frac{\partial u^{(k+1)}}{\partial x}\right)+\gamma^{(k)} \mu^{(k+1)}=f^{(k)}$
that resembles a diffusian-reaction problem for which we can express the weak formulation (rating that $\gamma^{(k)}>0$)
(Remember that $\mu^{(k)}=\mu^{(k)}(x)$ is still a function- a paint in the space of functions $H^{1}(\Omega)$)

$$
\int_{0}^{L} \phi\left[\frac{l}{2 \pi a e_{m}} \frac{\partial I_{m}(\mu)}{\partial x}+\gamma^{(k)} \mu\right]=\int_{0}^{L} \phi f^{(k)} \quad \forall \phi \in X=H^{1}(\Omega)
$$

(w)

$$
\begin{gathered}
{\left[\frac{l}{2 \pi a C_{m}} \int_{\partial \rho} \phi \vec{I}_{n} \cdot \vec{n}-\frac{l}{2 \pi a e_{m}} \int_{0}^{L} I_{i n}(\mu) \frac{\partial \phi}{\partial x}+\int_{0}^{2} \gamma^{(k)} \mu \phi=\int_{0}^{L} f^{(k)} \phi\right]} \\
\frac{l}{2 \pi a e_{m}}\left[\phi(0)\left(\alpha_{0} \mu(0)-\beta_{0}\right)+\phi(L)\left(\alpha_{L} \mu(L)-\beta-\beta\right)\right]+ \\
+\int_{0}^{L} \frac{a}{2 \rho_{0 x} e_{m}} \frac{\partial \mu}{\partial x} \frac{\partial \phi}{\partial x}+\int_{0}^{L} \gamma^{(k)} \mu \phi=\int_{0}^{L} f^{(k)} \phi \\
B(\mu, \phi)=F(\phi) \quad \forall \phi \in X
\end{gathered}
$$

Solvability of the problem and uniqueness of the
solution are granted like for any other weak formulation, as already seen:

$$
\begin{gathered}
B(\mu, \mu)=\frac{l}{2 \pi a e_{m}}\left[\alpha_{0}(\mu(0))^{2}+\alpha_{L}(\mu(L))^{2}-\mu(0) \beta_{0}\right]+\frac{a}{2 \rho_{a \cdot} e_{m}} \int_{0}^{L}\left(\frac{\partial u}{\partial x}\right)^{2}+\int_{0}^{2} \gamma(k) \mu^{2} \geqslant \frac{\|\mu\|_{x}^{2}}{K} \\
\frac{l}{K}=\operatorname{miu}\left\{\frac{a}{\left.2 \rho_{a x} e_{m}\right)} \min _{x \in \Omega} \gamma^{(k)}\right\} \\
\frac{\|u\|_{x}^{2}}{K} \leqslant B(\mu, \mu)=F(u)=\|f \mu\|_{L^{1}} \leqslant\|f\|_{L^{2}}\|\mu\|_{L^{2}} \leqslant\|f\|_{L^{2}}\|u\|_{x} \\
\text { Cauchy-Schwartz} \\
\\
\left.\quad\|\mu\|_{x} \leqslant K\|f\|_{L^{2}}\right]
\end{gathered}
$$

This verification ensures that every step of the iteration embodies a finite elenvert method for the weak formulation of a problem that is well posed.
(It does not guarantee, however, that our fixed paint iteration will caverge)

Velocity-Exteuded Paisou-Nerust-Plauck mode
for ion electro-fluid-diffusion

Water and ions are the moving parts of the model that both affect and are effected by whatever variable in play invucbile elements are instead fixed objects whose influence an the system is always the same, since they are in turn not influenced by the eviramment (like fixed charges in a chanel).

Need to upscale all the microscopic enovemuts of particles into au "average" unodel: the VE-PNP model satisfies this used.
(3)

(1) What is the umber density n_{α} of the moving ions, if we look at the microscopic scale?
\longrightarrow notion of unaterial value
single charged particle $d Q \leftrightarrow$ material volume $d v_{t}^{e}$ (in paint \vec{x})

$$
\begin{aligned}
& d Q_{\alpha}(\vec{x}, t)=q z_{\alpha} n_{\alpha}(\vec{x}, t) d v_{t} \\
& \Longrightarrow n_{\alpha}(\vec{x}, t)=\frac{1}{q z_{\alpha}} \frac{d Q(\vec{x}, t)}{d v_{t}}
\end{aligned}
$$

(2) $\overrightarrow{G_{f}}$ and \vec{p} are the velocity vector and pressure field, respectively, associated to the fluid (i.e. water)
(3) \vec{E} is the electric field generated by both fixed charges and moving ions themselves.
integral quantity local quantity
Mass of α ions in volume $P: M_{\alpha}(P, t):=\int_{v_{+}} m_{\alpha} n_{\alpha}(\vec{x}, t) d v_{t}$ Mass density of α ions: $f_{\alpha}^{m}(\vec{x}, t):=m_{\alpha} n_{\alpha}(\vec{x}, t)$
Charge of α icus in value P : $Q_{\alpha}(P, t):=\int_{\sigma_{+}} q z_{\alpha} n_{\alpha}(\vec{x}, t) d v_{t}$ Electric charge density of α ions: $g_{\alpha}^{l}(\vec{x}, t):=q z_{\alpha} n_{\alpha}(\vec{x}, t)$

Now that we have all the definitions we need, we have to relate each of them through balance equations.
The domain Ω fran which we are going to derive these equations is a homogeneous charged mixture (ie. an ionic solution), whose constituents are in aqueous phase all
$\xrightarrow{\prime}-\rightarrow+1$ constituents (M ion species + water) incompressible,
 electrically ventral fluid ($\rho_{f}^{m}=$ cost., $S_{f}^{2}=0$)

Hierarch of balance equations:

\rightarrow focus on these two for the derivation of VE-PNP model
. " " energy \longrightarrow ionic solution is isothermal
\qquad antanatically satisfied
it is are approx. That right not be good in some real scenarios

Balance of mass: $\frac{\partial g_{\alpha}^{m}}{\partial t}=\beta_{\alpha}-\vec{\nabla} \cdot\left(f_{\alpha}^{m} \vec{v}_{\alpha}\right)\left[\frac{k_{g}}{m^{3} s}\right]$
time rate of \longleftrightarrow ret production rate charge of iou upas density
balance of forces: $\frac{\partial\left(\rho_{\alpha}^{m} \vec{v}_{\alpha}\right)}{\partial t}+\vec{\nabla} \cdot\left(\rho_{\alpha}^{a} \vec{v}_{\alpha} \otimes \vec{v}_{\alpha}\right)=\vec{\nabla} \cdot T_{\alpha}+\vec{b}_{\alpha}\left[\frac{N}{m^{3}}\right]$
tenser product stress tensor oolvimetric

$$
\underline{a}, \underline{b} \in \mathbb{R}^{n}: \underline{a} \otimes \underline{b}=\left[a_{i}, b_{j}\right]_{i, j=1}^{n} \in \mathbb{R}^{n \times n} \quad \text { force density }
$$

We assume that ions, from the point of view of coutinumin urechairics, may be regarded as a COMPRESSIBLE fluid:
electric field (included in \vec{b}_{α})
ian velocity $\vec{\sigma}_{\alpha} L / \uparrow$

vs fluid velocity
friction (stress) against fluid and other ions as well

$$
\begin{aligned}
& \text { bulk unadulus } \\
&+ \underbrace{\lambda_{\alpha} \vec{\nabla} \cdot \vec{\sigma}_{\alpha} I}+\underbrace{2 \mu_{\alpha}} \underbrace{D\left(\vec{\sigma}_{\alpha}\right)}\left[\frac{N}{m^{2}}\right]
\end{aligned}
$$

stress due to resistance friction
pressure (compression) to compression
where $\left.\frac{D_{n}}{(\vec{v}}\right):=1 / 2\left(F(\vec{v})+(I(\vec{v}))^{\top}\right)$ is the "symmetric gradient" and $\mathcal{F}(\vec{v})$ is the Jacobian of \vec{v}
temperatwe
$p_{\alpha}=k_{B} \theta n_{\alpha}$ ideal gas law
$\vec{b}_{\alpha}=q \vec{E} z_{\alpha} n_{\alpha}$ electric field
$-\sum_{\substack{r=1 \\ \gamma \neq \alpha}}^{M} C_{\alpha \gamma}\left(\vec{v}_{\alpha}-\vec{v}_{\gamma}\right)$ iau-idu iuteractiou

- $C_{\alpha f}\left(\vec{v}_{\alpha}-\vec{v}_{f}\right)$ iau-fluid interactiou
(reglecting graoitatianal farces)

$$
\begin{aligned}
& \frac{\partial \rho_{\alpha}^{m}}{\partial t}+\vec{\nabla} \cdot\left(\mathcal{F}_{\alpha}^{m} \vec{v}_{\alpha}\right)=\beta_{\alpha} \\
& \frac{\partial\left(\rho_{\alpha}^{m} \vec{G}_{\alpha}\right)}{\partial t}+\vec{\nabla} \cdot\left(\rho_{\alpha}^{m} \vec{U}_{\alpha} \otimes \vec{U}_{\alpha}\right)=\vec{\nabla} \cdot \underline{\underline{I}}_{\alpha}+\vec{b}_{\alpha} \\
& \text { Iou undel } \\
& \underline{\underline{I}}_{\alpha}=-K_{B} \theta n_{\alpha} \underline{\underline{I}}+\lambda_{\alpha} \vec{\nabla} \cdot \vec{v}_{\alpha} \underline{\underline{I}}+2 \mu_{\alpha} \underline{D}^{D}\left(\vec{v}_{\alpha}\right) \\
& \vec{b}_{\alpha}=q z_{\alpha} n_{\alpha} \vec{E}-\sum_{\gamma \neq \alpha} C_{\alpha \gamma}\left(\vec{ज}_{\alpha}-\vec{\sigma}_{\gamma}\right)-C_{\alpha \rho}\left(\vec{\sigma}_{\alpha}-\vec{\sigma}_{f}\right)
\end{aligned}
$$

- Regarding the fluid:
balance of urass: $\vec{\nabla} \cdot \vec{v}_{f}=0 \longrightarrow$ iucaupressibility of watere $\left(\rho_{8}^{m}=\right.$ const., $\left.\beta_{8}=0\right)$
balance of forces: $S_{f}^{m} \frac{\partial \vec{v}_{f}}{\partial t}+S_{f}^{m} \vec{\nabla} \cdot\left(\overrightarrow{v_{f}} \otimes \overrightarrow{v_{f}}\right)=\vec{\nabla} \cdot \overrightarrow{I_{f}}+\overrightarrow{b_{f}}$
μ_{0} coupressicu $\quad T_{f}=-p_{f} I+2 \mu_{f} D_{f}\left(\vec{U}_{f}\right)$
uecharisurs $\quad \vec{b}_{f}=-\sum_{\alpha=1}^{M} C_{\alpha, p}\left(\vec{\sigma}_{f}-\vec{ज}_{\alpha}\right)$
suentral fluid

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{v}_{f}=0 \\
& \begin{array}{l}
S_{f}^{m} \frac{\partial \vec{v}_{f}}{\partial t}+S_{f}^{m} \vec{\nabla} \cdot\left(\vec{v}_{f} \otimes \vec{v}_{f}\right)=\vec{\nabla} \cdot I_{f}+\vec{b}_{f} \\
I_{f}=-P_{f} I_{=}+2 \mu_{f} D_{f}\left(\vec{v}_{f}\right) \quad \quad \quad \text { Fluid unadel } \\
\vec{b}_{f}=-\sum_{\alpha} C_{\alpha f}\left(\vec{v}_{f}-\vec{v}_{\alpha}\right) \quad
\end{array} l
\end{aligned}
$$

- We also used a coupling with electric forces:

Electranaguetic (Maxwell's) equations:

$$
\begin{array}{ll}
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} & \vec{\nabla} \times \vec{E}=0 \leftrightarrow \vec{E}=-\vec{\nabla} \psi \\
\vec{\nabla} \times \vec{H}=\vec{J}+\frac{\partial \vec{D}}{\partial t} \quad \text { quasi- } & \overrightarrow{\text { static }} \rightarrow \vec{H}=0 \\
\vec{\nabla} \cdot \vec{D}=\rho^{e l} & \overrightarrow{\text { approx. }} \\
\vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \cdot \vec{D}=\rho^{e l}
\end{array}
$$

where e $\vec{B}=\mu \vec{H}, \quad \vec{D}=\varepsilon \vec{E}$.

$$
\rho^{d}=\rho_{\text {fined }}^{d}(\vec{x})+\rho_{\text {mealie }}^{d}(\vec{x}, t)=\rho_{\text {fined }}^{d}(\vec{x})+\varphi_{\alpha=1}^{M} z_{\alpha} n_{\alpha}(\vec{x}, t)
$$

$\varepsilon=\varepsilon_{0} \cdot \varepsilon_{r}^{\Omega}$ but what ε_{r}^{Ω} should we consider? We will simply assume $\varepsilon_{l}=\varepsilon_{m}=$ ernst, where ε_{m} gathers the peruutivity of all the unaterials in the system (chanel fluid, uneubeare, etc.) in cu effective parameter.
$\Longrightarrow \vec{\nabla} \cdot\left(-\varepsilon_{m} \vec{\nabla} \psi\right)=\mathcal{S}_{\text {sired }}^{e l}+9 \sum_{\alpha=1}^{M} z_{\alpha} n_{\alpha}$ Poisson equation

$$
\begin{aligned}
& \vec{\nabla} \cdot\left(-\varepsilon_{m} \vec{\nabla} \psi\right)=\rho_{\text {sired }}^{d}+q \sum_{\alpha} z_{\alpha} n_{\alpha} \\
& \vec{E}=-\vec{\nabla} \psi \\
& \text { Electric ruedel }
\end{aligned}
$$

Iou
\&
Fluid unadels \& Electric

Fully coupled unadel Lore a homogeneous charged unixture

The VE-PNP model is a simplified farce of this fully coupled unadel:

1) $\beta_{\alpha}=0$
2) neglect all inertial tereus in the momentum balance equation
3) $\lambda_{\alpha}, \mu_{\alpha}=0$
4) neglect iou-iau interactian $\left(C_{\alpha \gamma}=0\right)$

$$
\begin{align*}
& \frac{\partial \rho_{\alpha}^{m}}{\partial t}+\vec{\nabla} \cdot\left(\rho_{\alpha}^{m} \vec{v}_{a}\right)=0 \text { (b) } \\
& \vec{\theta}=-k_{B} \theta \vec{\nabla} n_{\alpha}+q z_{\alpha} n_{\alpha} \vec{E}-C_{\alpha f}\left(\vec{v}_{\alpha}-\vec{v}_{f}\right) \tag{a}\\
& \vec{\nabla} \cdot \overrightarrow{v_{f}}=0 \\
& \vec{\theta}=-\vec{\nabla} p_{f}+2 \mu_{f} \vec{\nabla} \cdot\left(\underline{D}\left(\vec{v}_{f}\right)\right)-\sum_{\alpha} C_{\alpha f}\left(\vec{v}_{\alpha}-\vec{v}_{f}\right)
\end{align*}
$$

Frour (a) we can derive:

$$
\begin{equation*}
\vec{v}_{\alpha}=\vec{v}_{\beta}+\frac{l}{C_{\alpha y}}\left[-k_{B} \theta \vec{\nabla}_{\alpha}+q z z_{\alpha} n_{\alpha} \vec{E}\right] \tag{1}
\end{equation*}
$$

coupare with

$$
\begin{equation*}
\overrightarrow{J_{\mu}}=q z_{\alpha} n_{\alpha} \overrightarrow{v_{\alpha}}=q z_{\alpha} n_{\alpha} \vec{v}_{f}+q\left|z_{\alpha}\right| \mu_{\alpha}^{\mu} n_{\alpha} \vec{E}-q z_{\alpha} D_{\alpha} \vec{\nabla} n_{\alpha} \tag{2}
\end{equation*}
$$

which we sow in our previous discussious.

$$
\begin{aligned}
& \longrightarrow C_{\alpha f}=\frac{k_{B} \theta n_{\alpha}}{D_{\alpha}} \quad \text { Stokes' drag theory } \\
& \longrightarrow D_{\alpha}=\frac{\mu_{\alpha}^{e l}}{\left|z_{\alpha}\right|} \frac{k_{B} \theta}{q} \quad \text { Eiusteiu's relatiou } \\
& \longrightarrow C_{a y}=\frac{q\left|z_{\alpha}\right| n_{\alpha}}{\mu_{\alpha}^{u}}
\end{aligned}
$$

Multiply (1) by $q z_{\alpha} n_{\alpha}$, substituting Cof:

$$
\begin{aligned}
q z_{\alpha} n_{\alpha} \vec{v}_{\alpha} & =q z_{\alpha} n_{\alpha} \vec{v}_{f}+q z_{\alpha} n_{\alpha} \frac{\mu_{\alpha}^{e l}}{q \mid z_{\alpha} n_{\alpha}}\left[-k_{\beta} \theta \vec{\nabla} n_{\alpha}+q z_{\alpha} n_{\alpha} \vec{E}\right] \\
& =q z_{\alpha} n_{\alpha} \overrightarrow{v_{f}}-q z_{\alpha} \frac{\mu_{\alpha}^{e l}}{\left|z_{a}\right|} \frac{k_{B} \theta}{q} \vec{\nabla} n_{\alpha}+\frac{q^{2} z_{\alpha}^{2} n_{\alpha} \vec{E}}{q\left|z_{\alpha}\right|} \\
& =q z_{\alpha} n_{\alpha} \vec{v}_{f}-q z_{\alpha} D_{\alpha} \vec{\nabla} n_{\alpha}+q\left|z_{\alpha}\right| n_{\alpha} \vec{E}
\end{aligned}
$$

which is exactly equatiou (2).

Now look at equatiou (b). Siuce $f_{\alpha}^{m}=m_{\alpha} n_{\alpha}$ it is:

$$
\frac{\partial n_{\alpha}}{\partial t}+\vec{\nabla} \cdot\left(n_{\alpha} \vec{\sigma}_{\alpha}\right)=0
$$

Multiplying bath sides by $q z \times$ we get:

$$
q z_{a} \frac{\partial n_{\alpha}}{\partial t}+\vec{\nabla} \cdot \vec{J}_{\alpha}=0
$$

So the final farer of VE-PNP unodel is

$$
\begin{aligned}
& q z_{\alpha} \frac{\partial n_{\alpha}}{\partial t}+\vec{\nabla} \cdot \vec{J}_{\alpha}=0 \\
& \overrightarrow{J_{\alpha}}=q z_{\alpha} n_{\alpha} \vec{v}_{f}+q\left|z_{\alpha}\right| \mu_{\alpha}^{d} n_{\alpha} \vec{E}-q z_{\alpha} D_{\alpha} \vec{\nabla} n_{\alpha} \\
& \vec{\nabla} \cdot \overrightarrow{v_{f}}=0 \\
& -\vec{\nabla} p_{f}+2 \mu_{f} \vec{\nabla} \cdot\left(\underline{D}\left(\vec{v}_{f}\right)\right)-\sum_{\alpha} C_{\alpha f}\left(\vec{v}_{\alpha}-\vec{v}_{f}\right)=\overrightarrow{0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{+}{\bar{\nabla}\left(-\varepsilon_{\infty} \vec{\nabla} \psi\right)=\rho_{\text {fined }}^{2}+q \sum_{\alpha} z_{\alpha} n_{\alpha}} \\
& \vec{E}=-\vec{\nabla} \psi
\end{aligned}
$$

Miveolectrouics

It is of paramant importance understanding the physical scale at which electronic devices operate.
$1 / 8$
$1 / 8$

$1 / 8$
\longrightarrow
Lattice constant

$$
\begin{gathered}
a_{0}^{3 i}=0,543 \mathrm{~nm}=5,43 \dot{A} \\
1 \dot{A}=10^{-10} \mathrm{~m}
\end{gathered}
$$

All these concepts are aloe valid covalent bounds

Silicau-vystal lattice of a unit cell

Solid silicon has a periodic structure (crystal) whose primary component is a tetrahedron of four ataus. These tetrahedra baud together to form the wit cell, which is the periodic element (i.e. the sue that is repeated identically) of the crystal.

Aton density:

\# atous in a unit cell $=4+6 \cdot \frac{1}{2}+8 \cdot \frac{l}{8}=8$ within the cell an the faces at the concurs wit col volume $=a^{3}$.
\Longrightarrow Silicon aton density: $n_{a}^{3 i}=5 \cdot 10^{22} \mathrm{cu}^{-3}$
(Distance between nearest ataus: $\frac{\sqrt{3} a_{0}}{4}=2,35 \dot{A}$)

Suppose we have an electron travelling through the reticle.

Can we still see it as a particle, even in a a sub-manoweter scale ($a_{0}<1 \mathrm{lnm}$)?

Wave -particle duality

- Particle view: Newtai's (macroscopic) low of motion subscript ' n ' and 'p' refer to ergative and \leftarrow positive charged $m_{e}=m_{0} \cdot \gamma=m_{n}^{*}$: effective electrou upas particles

$$
\vec{F}=m_{e} \cdot \vec{a}
$$

m_{0} : electron rest mas might differ
m: electron rest mas depending an the enveirament
What is typically the source of \vec{F} ?

$$
\begin{aligned}
& {\left[-q \vec{E}=m_{n}^{*} \vec{a}\right]}
\end{aligned}
$$

Need to unerge macroscopic and huicooscopic $\frac{\text { phenomena }}{\text { N en }}$
the electron collides (as if it was solid body) with the lattice atoms, whose mass m_{a} is munch larger than that of the electron. This interaction takes the name of SCATERING.
Serpposing that the electron, accelerated by the electric field \vec{E}, calides with an aton an aurerage every τ losing its kinetic energy in the process, we can
assume that an average it will move with a constant velocity v_{0}, since same times it is accelerating (no collision) and same times it is at rest (collision).

We can then approximate the acceleration with the ratio of these two quantities:
it's au "effective" $\left[a \sim \frac{\sigma_{D}}{\tau}\right]$ collision tine approx.

$$
\begin{aligned}
& \Longrightarrow-q \vec{E}=m_{n}^{*} \frac{{\overrightarrow{v_{D}}}_{\tau}^{\tau}}{\longrightarrow}\left[\left[\vec{v}_{D}=-q \frac{\tau}{m_{n}^{*}} \vec{E}\right]\right] \\
& \underline{\text { electrau u ability } \mu_{n}^{e l}}
\end{aligned}
$$

In general, we should consider an euseunble of alectrous rather thou just are.
electron density n
Now we con compute the current density (associated to electrons):

$$
\overrightarrow{J_{n}}=-q n \vec{v}_{D}=-q n\left(-\mu_{n}^{\ell} \vec{E}\right)=q n \mu_{n}^{\ell} \vec{E}
$$

Beuacroscopic
electric conductivity o_{n}^{\prime}

Reurueler that for each electron (in un-daped material) there is also a hale, whose equivalent charge is + is that participates to the overall current density.
Hence we can define a $\mu_{p}^{e l}$ and o_{p} associated to holes, as well as a current density \vec{J}_{p} of holes duly.
intrinsic concentration
of conductive carriers $\leftarrow n_{i}^{s i}=8,2 \cdot 10^{9} \mathrm{cu}^{-3}=n=p$

$$
\begin{array}{r}
\mu_{n}^{s i}=0,14 \frac{m^{2}}{V_{s}} \quad \mu_{p}^{s i}=0,048 \frac{m^{2}}{V_{s}} \\
0^{s_{i}}=2,5 \cdot 10^{-4} \frac{1}{\Omega m}=9 n_{i} \mu_{n}^{s i}+g n_{i} \mu_{p}^{s i}
\end{array}
$$

(at rose temperature)

- War view: Schrodinger equation...

Why, in the first place, do we reed an alternate description of the "identity" of a travelling electron?
Because Newton's mechanics does not "get along" with the uneasureurent of unicroscopical phenomena. The sole particle description cannot explain in its entirety the behaviour of, for example, a travelling electron when you try to measure its velocity ar position.
Need of travelling wave interpretation:
$\mu(z, t)=\sum_{r} a_{r} e^{-i\left(\omega_{r} t-k_{r} z\right)} \quad$ "train of waves"
frequency wove
For γ large enough:

$$
\mu(z, t)=\int_{-\infty}^{+\infty} a e^{-i(\omega t-k z)} d k
$$

where both a and w are functions of k.
$a=a(K) \longrightarrow$ "amplitude dispersion"
$\Gamma \bar{\omega}=\bar{\omega}(\bar{k})] \xlongequal[T]{ } \bar{T}$ "frequency dispersion"
Idispersiau equation'

These travelling waves (along the z axis) are oscillating. To show this property, consider an amplitude dispersion as the one below:
"wave packet"

$$
\begin{aligned}
\mu(z, 0) & =\int_{k_{0}-\frac{\Delta k}{2}}^{k_{0}+\frac{\Delta k}{2}} e^{+i k z} d k=\frac{1}{i z} \cdot\left[e^{i k z}\right]_{k_{0}-\frac{k k}{2}}^{k_{0}+\frac{\Delta k}{2}}=\frac{e^{i\left(k_{0}+\frac{\Delta k}{2}\right) z}-e^{i\left(k_{0}-\frac{\Delta k}{2}\right) z}}{i z} \\
& =\frac{\Delta k e^{i k_{0} z}}{\frac{\Delta k}{2} \cdot z} \frac{e^{i \frac{\Delta k}{2} z}-e^{-i \frac{\Delta k}{2} z}}{2 i}=\Delta k e^{i k_{0} z} \frac{\operatorname{siu}\left(\frac{\Delta k}{2} z\right)}{\frac{\Delta k}{2} z}
\end{aligned}
$$

$\longrightarrow \mu(z)=\Delta k e^{i k_{0} z} \operatorname{sinc}\left(\frac{\Delta k}{2} z\right)$
travelling undulating wave envelop

Def (amplitude of a wave packet):
it is determined by the paint on the x-axis at which sine (x) changes frame 1 to $\frac{2}{\pi}=\frac{1}{\pi / 2} \cong 0,63$
$\Delta x=\frac{\Delta K}{2} \cdot \Delta z$ amplitude of the wave packet
By definition: $\operatorname{sinc}\left(\frac{\Delta x}{2}\right)=\frac{2}{\pi} \longrightarrow \frac{\Delta x}{2}=\frac{\pi}{2}$
If we want to measure 3 ξ the position of the wave packet with high precisian (small Δz) than the amplitude Idispersion grows

$$
\begin{aligned}
\frac{\Delta k}{2} \Delta z & =\pi \\
\Delta k \Delta z & =2 \pi
\end{aligned}
$$

Heisenberg indetermination principle
$\xi(\operatorname{big} \Delta K)$
wave packet \longleftrightarrow electron
In Classical Mechanics: $P=m \cdot v$ momentum
In Quantum Mechanics: $P=\hbar \cdot K$ where $\hbar=\frac{h}{2 \pi}$
If we want to measure 2 the position of the electrons

$$
\begin{aligned}
\Delta p & =\hbar \Delta K \\
& =\frac{h}{2 \pi} \frac{\Delta K}{\Delta z}
\end{aligned}
$$ quantifying its

Inameutum becomes
ξ harder ($\operatorname{big} \Delta p$)

Schrodinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+V \psi
$$

renown, $\psi=\psi(\vec{x}, t) \quad V=V(\vec{x}, t)$
given

$$
\vec{x} \in \Omega \subseteq \mathbb{R}^{d}, \quad d \geqslant l
$$

Ψ is the wave function that gives the probability of finding a particle in position \vec{x}, at a certain line t.
Being a probability function, ψ satisfies the urualization canditisu:

$$
\int_{\Omega}|\psi(\vec{x}, t)|^{2} d \Omega=1
$$

V is a given potential (energy) field, typically obtained from the solution of a Poisson equation in the same domain Ω.

Example 0:
Assume now it is passible to apply separation of variables to ψ :

$$
\psi(\vec{x}, t)=\psi(\vec{x}) \omega(t)
$$

Then we can rewrite Schrodinger equation as:

$$
\psi(\vec{x}) i \hbar \frac{d \omega(t)}{d t}=\omega(t)\left[-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{x})+V(\vec{x}, t) \psi(\vec{x})\right]
$$

Also assume that $V=V(\vec{x})$ does not vary with t.

$$
\underbrace{\frac{i \hbar}{w(t)} \frac{d w(t)}{d t}}_{f(t)}=\underbrace{-\frac{\hbar^{2}}{2 m} \frac{\Delta \psi(\vec{x})}{\psi(\vec{x})}+V(\vec{x})}_{g(\vec{x})}=E_{2}
$$

The orly way for $f(t)$ and $g(\vec{x})$ to be equal is to be both equal to the same constant E.

$$
\left\{\begin{array}{l}
i \hbar \frac{d \omega(t)}{d t}=E \omega(t) \longrightarrow \omega(t)=\bar{\omega} e^{-i \frac{E}{\hbar} t} \\
-\frac{\hbar^{2}}{2 m} \Delta \psi(\vec{x})+V(\vec{x}) \psi(\vec{x})=E \psi(\vec{x}) \longrightarrow \text { eigenvalue }
\end{array}\right.
$$

Au eigenvalue-eigenvectar problem in differential form is extremely hard to solve and is very costly from a computational standpoint (for a fiver disuretization of the problem, the computational effort becomes marmously larger).
This shows how hard it is to solve Sclveidinger equation, even after all the semplifications we made.

Example 1: Free Election Model
1D domain $(\Omega \subseteq \mathbb{R}, d=1)$ for simplicity.
Electrons in lattice of a metal conductor:

$$
V(x)=0
$$

since potential within a conductor is constant egg. equal to zero. In other wards, valence electrons (those occupying the cuter orbital in the atoms) ore free to enove within the material in the so called sea of electrons".
Under these assumptions, an top of previous semplifications, Schroediuger equation becomes:

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)=E \psi(x)
$$

Introducing $\left[\begin{array}{l}K^{2}:=-2 \overline{E_{1}} \\ \hbar^{-}\end{array}\right]$we write:

$$
\psi^{\prime \prime}(x)+k^{2} \psi(x)=0
$$

Note that k corresponds to the wave u umber. As a matter of fact, the fallowing relation holds:

$$
E=\frac{\hbar^{2} k^{2}}{2 m}=\frac{|p|^{2}}{2 m}
$$

which is indeed the expression for kinetic energy (in fact, up potential energy is present being the potential rib, hence the electron energy corresponds to kinetic energy alone)

Example 2: Electran Canfinenent

Electrous are coufined in a linited seegian by two patential barociers of iufinite height (wen a barrier as high as 5 eV can be causidered as iufinite since the arabability of an electran crossirg it $\left.\sim e^{-\frac{\text { sel }}{k j t}} \simeq 0\right)$. Heuce $\psi(x)=0$ outside (0, a).

The curvent preblem is the same as before $(V=0)$ with the addition of baundary conditious in $x=0$ and $x=a$:

$$
\begin{aligned}
& \psi^{\prime \prime}+k^{2} \psi=0 \\
P(\lambda)= & \lambda^{2}+k^{2}=0 \\
& \lambda_{1-2}= \pm i k \\
\longrightarrow & \psi(x)=A e^{i k x}+B e^{-i k x}
\end{aligned}
$$

b.c.: (1) $\psi(0)=0$

$$
\begin{aligned}
A & =-B \\
\longrightarrow \psi(x) & =A\left(e^{i k x}-e^{-i k x}\right) \\
& =2 i \sin (k x)
\end{aligned}
$$

(2) $\psi(a)=8$

$$
\begin{aligned}
& \sin (k a)=0 \\
& \Gamma---\overline{-}, \quad n=1,2, \ldots \\
& 1 k=n \frac{\pi}{a}, \quad n \\
& \psi(x)=2 i \sin \left(\frac{n \pi}{a} x\right)
\end{aligned}
$$

Note that now the evergy distributian is NOT coutimuous, since k^{2} is quautized!

$$
E=E_{n}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}} \quad \begin{aligned}
& \text { ground level }
\end{aligned} \quad \rightarrow E_{4}=16 E_{1}
$$

Example 3: Kronig-Peurey model
for the Energy Bound theory

It is a more accurate urodel of the electron confinement example, where energy, barriers occur for every aton in the lattice and orth finite height. \longrightarrow egg. of a semiconductor

It can be deurastrated that periodicity of the wave function can be achieved if and ably if the following condition holds:

$$
\cos (k a)=\frac{e \sin (\alpha a)}{\alpha a}+\cos (\alpha a)
$$

where $P=\frac{m a}{\hbar^{2}} V_{0} w$

$$
\alpha=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

Note: 1$)$ For $V_{0}=0$ it is $K=\alpha$
\longrightarrow Free electra u
2) Far $V_{0}=\infty$ it is $0=\sin (\alpha a)$
\rightarrow Electron confinement

Let us plot this uan-livear expression of k :

$$
1 k=1
$$

 the arcos of these lines, carly for specific values of α

Keeping in mind the expression of α as a function of E, it is possible to pot the energy dispersion graph for the Kranig-Paney undel

energy bauds where energy is allowed energy gaps where energy is forbidden

Example 4: electron colisian with finite potential step

$$
\psi(x)=\left\{\begin{array}{ll}
\psi_{1}(x), & x<0 \\
\psi_{2}(x), & x>0
\end{array} \quad(V \equiv 0)\right.
$$

(1)

$$
\begin{aligned}
& \psi_{1}^{\prime \prime}(x)+\frac{2 m E}{\hbar^{2}} \psi_{1}(x)=0 \\
& \longrightarrow \psi_{1}(x)=A e^{i k x}+B e^{-i k x} \text { with } K^{2}:=\frac{2 m E}{\hbar^{2}}
\end{aligned}
$$

(2) $\psi_{2}^{\prime \prime}(x)+\frac{2 m(E-\bar{V})}{\hbar^{2}} \psi_{2}(x)=0$

Two cases: a $E<\bar{V}$ and (b) $E>\bar{V}$
(a) Let $\Gamma \alpha^{2}:=\frac{2 \bar{m}-\overline{\hbar^{2}}(\bar{V}-\bar{E}) \backslash}{L}>0$. Then we can write:
elliptic $>\psi_{2}^{\prime \prime}(x)-\alpha^{2} \psi_{2}(x)=0$
equation $\longrightarrow \psi_{1}(x)=C e^{-\alpha x}+D e^{\alpha x}$
To find the exact solution $\psi(x)$, impose:

- normalization condition: $\int_{-\infty}^{+\infty}|\psi(x)|^{2} d x=1$
- tronsuissiou conditions: $\psi\left(\theta^{-}\right)=\psi\left(\theta^{+}\right)$

$$
\psi^{\prime}\left(0^{\prime}\right)=\psi^{\prime}\left(0^{+}\right)
$$

$D=0$ (otherwise ψ_{2} would
explode and normalization would fail)

$$
\begin{array}{r}
\Longrightarrow\left\{\begin{array}{l}
A+B=C \\
A i k-B i k=-\alpha C
\end{array}\right. \\
\Longrightarrow B=\frac{i k+\alpha}{i k-\alpha} A, \quad C=\frac{2 i k}{i k-\alpha} A
\end{array}
$$

$$
\begin{aligned}
& \Psi(x)= \begin{cases}A\left(e^{i k x}+\frac{i k+\alpha}{i k-\alpha} e^{-i k x}\right) & x<0 \\
A\left(\frac{2 i k}{i k-\alpha} e^{-\alpha x}\right. & x>0\end{cases} \\
& \begin{array}{ll}
A\left(e^{-i k x}-e^{-i k x}\right)=A \sin \sin (k x) & x<0
\end{array} \\
& \lim _{V \rightarrow+\infty} \Psi(x)= \begin{cases}A\left(e^{i k}\right) \\
\varnothing & x>0\end{cases}
\end{aligned}
$$

The result is interesting since in CM if the potential boovier is higher than the energy of the electron $P(\bar{V}>E)$ them there is no possibrlity of ending up in region (2). QM shows instead that there is a suable probability of finding the ebectren beyond the boverier; this probobrity opuickly vanishes the higher is the potential step. $(\bar{V} \rightarrow+\infty)$ or the farther is the electron from the interface $(x \rightarrow+\infty)$.
(b) Let $\overline{L^{\prime}}\left(k^{\prime}\right)^{2}:=\frac{2 m}{\hbar^{2}}\left(\overline{E^{-}-\bar{V}}\right)^{\prime}>0$. Then we can write:

$$
\begin{aligned}
& \psi_{2}^{\prime \prime}(x)+\left(k^{\prime}\right)^{2} \psi_{2}(x)=0 \\
& \longrightarrow \psi_{1}(x)=A^{\prime} e^{i k^{\prime} x}+B^{\prime} e^{-i k^{\prime} x}
\end{aligned}
$$

Applying same conditions of previous case:

$$
\begin{aligned}
& \Longrightarrow\left\{\begin{array}{l}
B^{\prime}=0 \quad \text { (since there is nothing that au } \\
A+B=A^{\prime} \quad \text { produce a reflected wave } \\
A i k-B i k=i k^{\prime} A^{\prime}
\end{array}\right. \\
& B=\frac{k-k^{\prime}}{k+k^{\prime}} A, \quad A^{\prime}=\frac{2 k}{k+k^{\prime}} A \\
& \Longrightarrow \psi(x)= \begin{cases}A\left(e^{i k x}+\frac{k-k}{k+k^{\prime}} e^{-i k x}\right) & x<0 \\
A \frac{2 k}{k+k^{2}} e^{i k^{\prime} x} & x>0\end{cases} \\
& \lim _{\bar{v} \rightarrow 0} \psi(x)=A e^{i k x} \quad \forall x
\end{aligned}
$$

Also this result is interesting since in care if the potential barrier is lower than the energy of the electesu $(\bar{V}<E)$ there is no possibility of being reflected. QM shows instead that a reflected electron can still be found in region (1), with a probability that decreases the lower is the potential step $(\bar{V} \rightarrow 0)$

States density in euetals

$3 D$ electron corfinervent
Electrons are forced to stay within a box of volume a^{3}. (it represents electrons in a cubic shaped enetal).

In analogy with the $1 D$ example:

$$
E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
$$

$$
\begin{aligned}
& n_{x}=1,2, \ldots \\
& n_{y}=1,2, \ldots \\
& n_{z}=1,2, \ldots
\end{aligned}
$$

$\left(n_{x}, n_{y}, n_{z}\right)$ are the se called "Miller indices".

$$
\begin{aligned}
& \rightarrow 12 E_{1} \\
& \rightarrow 11 E_{1} \\
& \hline \text { quantized }(3,1,1)(1,3,1)(1,1,3) \\
& \text { query } \\
& \text { engels } \rightarrow 9 E_{1} \\
& \hline \text { levels }(2,2,1)(2,1,2)(1,2,2) \\
& \rightarrow 6 E_{1} \quad(2,1,1)(1,2,1)(1,1,2) \\
& \rightarrow 3 E_{1} \quad(1,1,1)
\end{aligned}
$$

Even if energy is not continuous, for large values of E, ie. when the confinement box is inch bigger than the atomic scale, the difference between consecutive levels became relatively so small that it is then appropriate to speak of a density of energy states as if energy was continuous.
E.g: $a=1 \mathrm{~cm}=10^{-2} \mathrm{~m} \rightarrow E_{1}=\frac{\pi^{2} \hbar^{2}}{2 m_{n}^{*} a^{2}} \simeq 1,5 \cdot 10^{-14} \mathrm{eV}$
$E_{m}=3 E_{1} m^{2} \quad\left(n_{x}=n_{y}=n_{z}=m\right)$ above this havel, electrons
it's actually assuming $E_{\text {max }}=1 \mathrm{eV} \longrightarrow m_{\max } \sim 5 \cdot 10^{6}$ of the box wore than the
difference $\quad \Delta E=E_{m+1}-E_{m}=3 E_{1}(2 m+1) \rightarrow \Delta E_{\max } \sim 4,5 \cdot 10^{-7} \mathrm{eV} \ll E_{\text {max }}$ between \leftarrow
consecutive hence it is licit to see such highly dense discrete levels anergy distribution as a coutuum

$N(E)$ is the umber of energy states within the interval ($E, E+d E$) per unit volume
It can be demdustrated that $N(E)$ is given by the following relation:

$$
[N(E)=g(E) d E]
$$

where $\left[g(E)=\frac{4 \pi \sqrt{2 E m^{3}}}{h^{3}}\right]$ is the energy states density

We now have the umber of available states that an electron is elbowed to occupy in our unetal box.
How runny of then, however, are actually accupied?
Fermi-Diran distribution function

$$
F(E, T)=\frac{1}{e^{\frac{E-E_{F}}{k_{5} T}}+1}
$$

where E_{F} is the Fermi level of the material, such that

$F(E, T)$ is the probability of a state with energy E at temperature T of being occupied.

Conduction in solids

resistance $R=\rho \frac{L}{A}=\frac{l}{\sigma} \frac{L}{A}$
resistivity $\rho[\Omega \mathrm{m}]$ and conductivity o $\left[\frac{\mathrm{s}}{\mathrm{m}}\right]$

$$
A=\pi r^{2}
$$

What deterumes the couducibility of a enaterial?
Fran Krouig - Penney theory for energy bauds in a crystalline maternal:

5 Conduction level E_{c}
\uparrow Energy gap $E_{g}=E_{c}-E_{v}$
Valence level Eu

It is the energy gap which determines the conductivity of the unatericis:

- in conductors (metals), energy distribution is coutiunaus hence $E_{g}=0$)
- in senicanduetors and insulators, Eg has a finite uan-zero value; the higher E_{8}, the less conductive the unaterial

$$
\left(E_{g}^{s i}=1,12 \mathrm{eV} \quad E_{g}^{E^{G e}}=0,66 \quad E_{g}^{\text {diam }}=5,47\right.
$$

\vec{E}
conduction band
$-\mu_{n}^{\prime} \vec{E} \longleftarrow 0^{0-}$

Electrons in the conduction band are free to move in the material, hence they can contribute to conduction
If the electron is provided energy greater thou the gap it can undergo "band-to-Eaud" transition

Electrons in the valence band are bound to the cavabut bounds of the atoms in the lattice, meaning that they counct be part of the conduction.
Note that rect ally electedus but alse holes are part "o the excitation process. A hale is equivalent to a "negated" electron: its energy is higher the lover it is in the band diagram, hence it eraturally occupies higher energy states (where electraus are uatwrably unissing). This also eneaus that hales are conductive in the valance bound and they are not in higher energy bands.
Exciting an electron therefore produces bath a conductive electear in the conductive baud and a conductive hale in the valence bour.

By applying an external electric field, free electrons and hates will unove thus producing a current.
The overall current (sem of all contribriting electrons and hales) will depend an both the speed of the carriers, which in turn depends an their eudbility and an the applied Sectric field, as well as the umber of carriers, which is a function of the energy gap and of the energy provided in the excitation.

Semiconductors are especially interesting since Their energy gap is mot too high.
This uneaus that same electrons in the valence band are able to reach conduction band just by thermal agitation, even at low temperatwes.
Between silicon and geremanimu, the former is preferred thanks to its thermouechamieal properties which allow it to endure very high temperatures (rlo00k for removal of impurities) without enelting.

The umber of carriers available for conduction can be derived in analogy with the states density and states occupation descieptian for metals:

$$
\begin{aligned}
& \begin{array}{l}
E \uparrow \\
\hline E_{c} \\
\hline E_{\sigma} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\hline
\end{array} \\
& g(E)=\left\{\begin{array}{ll}
g_{e}(E)=C_{e} \sqrt{E-E_{c}} & E \geqslant E_{c} \\
g_{h}(E)=C_{h} \sqrt{E_{v}-E} & E \leqslant E_{v}
\end{array}\right. \text { where } \\
& \Longrightarrow n=\int_{E_{c}}^{+\infty} g_{e}(E) F(E) d E=\frac{N_{c} e^{-\frac{E_{c}-E_{F}}{k_{B} T}}}{\underline{\uparrow}} \\
& \text { where } \\
& \text { electrou/hale lass } \\
& 1,08 \mathrm{~m}_{0} 0,81 \mathrm{~m} \text {. } \\
& \begin{array}{l}
C_{e}=\frac{4 \pi\left(m_{n}^{*}\right)^{3 / 2}}{h^{3}} \\
C_{h}=\frac{4 \pi\left(m_{p}^{*}\right)^{3 / 2}}{h^{3}}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& N_{c}=\frac{2}{h^{3}} \frac{\left(2 \pi m_{n}^{*} k_{B} T\right)^{3 / 2}}{} \\
& \text { (\# } E_{\left.E_{c} \text { states }\right) \times(\text { prod }}^{E_{0}} \text { of cccupatiou) }
\end{aligned}
$$

umber of conducting electrou/hales per unit volume
effective conductiou/valluce band density of states

Fran ave previous discussion, in pristine conditions (ie. no doping) it rust be $n=p=n_{i}$

$$
\begin{gathered}
N_{c} e^{-\frac{E_{c}-E_{F}}{k_{B}}} \stackrel{N_{v}}{ } e^{-\frac{E_{F}-E_{G}}{k_{s}}} \\
e^{\frac{-E_{c}+E_{F}+E_{F}-E_{G}}{k_{B} T}}=\frac{N_{c}}{N_{v}} \\
\frac{2 E_{F}-E_{c}-E_{G}}{K_{0} T}=\ln \left(\frac{N_{c}}{N_{v}}\right) \\
E_{F}=\frac{E_{v}+E_{c}}{2}+\frac{K_{B} T \ln \left(\frac{N_{c}}{N_{v}}\right)}{2}<
\end{gathered}
$$

neglecting the second tore $\left(N_{c} \approx N_{c}\right)$

$$
\begin{aligned}
& E_{F} \approx \frac{E_{0}+E_{c}}{2} \text { (the Fermi level is about } \\
& \text { halfway through the gap) }
\end{aligned}
$$

Note that $n \cdot p=n_{i}^{2}=N_{c} N_{v} e^{-\frac{E_{c}-E_{v}}{K_{B} T}}=N_{c} N_{v} e^{-\frac{E_{g}}{K_{B} T}}$

$$
\longrightarrow n_{i}=\sqrt{N_{c} N_{v}} e^{-\frac{E_{g}}{2 k_{B} t}}
$$

$$
(T=300 K)
$$

In $S_{i}: N_{c} \simeq N_{v} \approx 10^{19} \mathrm{cu}^{-3} \quad E_{g}=1,12 \mathrm{eV} \longrightarrow n_{i} \approx 10^{10} \mathrm{cu}^{-3}$
In diamond: $N_{c} \simeq N_{v} \approx 10^{19} \mathrm{~cm}^{-3} E_{g}=5,47 \mathrm{eV} \longrightarrow n_{i} \approx 10^{-27} \mathrm{cu}^{-3}$
It is evident how semiconductors have sane (but ut many) free carriers at roan temperature, unlike insulators which have basically uso conducting carrier whatsoever.

It is possible to exploit the below-average conductivity and resilience to theruraucechamical stress of semiconductors (especially silicon) to realize new unaterials whose resistance can be accurately set and undulated.
each line is
1 shared electron

Doping

The process of doping cousists of the substitution of due silicon aton in the lattice with an aton from the 3 rd or 5 th group of the Periodic Table, Typically boron ar phaspharews. Note that silicon belongs to the lith group.

The result is that the doping aton will have either too few ar too many electrons to perform the four fouls of the tetrahedron. As a consequence, the dopant will have to either steal ar release an electron thus increasing the number of free hales or free electrous. Since charge uentrality has to be ruantarined, the dopaut will negatively or positively ionize.

Departs of the former type are called acceptors, while of the latter are called damars.

Since we can decide. how unary doping atoms we introduce, in the lattice, we can also control the concentration of conducting carriers:

$$
p=p\left(N_{A}^{-}, N_{D}^{+}\right) \quad n=n\left(N_{D}^{+}, N_{A}^{-}\right)
$$

We are unadifying the concentration from intrinsic to extrinsic.

Let's see what this uranus fran the energetic stand paint, and what the resulting carrier concentrations will be:
$E_{i}:=E_{F}$ in pristine conditions

E
E_{i}
E
intrinsic

$$
\begin{aligned}
& n=n_{i}=N_{c} e^{-\frac{E_{c}-E_{i}}{k_{g}}} \\
& p=n_{i}=N_{v} e^{-\frac{E_{i}-E_{v}}{k_{g}}}
\end{aligned}
$$

"Doping undoes the Forum anergy level"

$$
\Longrightarrow\left[n=n_{i} e^{\frac{E_{F}-e_{i}}{k_{0} T}} \quad p=n_{i} e^{\frac{E_{i}-E_{F}}{k_{0} T}}\right]
$$

$\Longrightarrow p \cdot n=n_{i}^{2}$ Mass-action law extrinsic p-type

$$
\begin{aligned}
& n=N_{c} e^{-\frac{E_{C}-E_{F}}{k_{B} T}} \\
& P=N_{G} e^{-\frac{E_{T}-E_{0}}{k_{O} T}}
\end{aligned}
$$ extrinsic n-type

$$
\left\{\begin{array}{l}
\text { Mass-actiou low } \longrightarrow n \cdot p=n_{i}^{2} \longrightarrow n_{p}-n_{i}^{2}=0 \\
\text { Elactrouentrality } \longrightarrow \rho^{2}=0 \longrightarrow q(\underbrace{N_{0}^{+}-N_{A}^{-}}+\underbrace{p-n})=0
\end{array}\right.
$$

Let us define $\phi:=N_{D}^{+}-N_{A}^{-}$ charges

We will now suppose to be dealing with a n-type region (i.e. $P \gg 0$):

$$
\begin{aligned}
& \left\{\begin{array}{l}
p=\frac{n_{i}^{2}}{n} \\
p+p-n=0
\end{array} \Longrightarrow n D+n_{i}^{2}-n^{2}=0 \longrightarrow\left[n=\frac{p+\sqrt{D^{2}+4 n_{i}^{2}}}{2}\right]\right. \\
& N_{D}^{+}=n_{i} e^{\frac{\epsilon_{E}-\epsilon_{i}}{k_{0} T}} \quad\left[n \simeq N_{D}^{+}\right. \\
& {\left[E_{F}=E_{i}+k_{B} T \ln \frac{N_{D}^{+}}{n_{i}}\right] \Longleftarrow \begin{array}{l}
N_{D}=n_{i} e^{k_{0} T} \\
\frac{n_{i}^{2}}{N_{0}^{+}}=n_{i} e^{\frac{E_{i}-E_{F}}{k_{0} T}} \Longleftarrow\left[\begin{array}{l}
n \simeq N_{D}^{+} \\
{\left[P \simeq \frac{n_{i}^{2}}{N_{D}^{+}}\right.}
\end{array}\right]
\end{array}}
\end{aligned}
$$

By analogy, in a p-type region ($(><0$):

$$
\begin{aligned}
& {\left[p=\frac{-D+\sqrt{D^{2}+4 n_{i}^{2}}}{2}\right]} \\
& N_{A}^{-} \mid
\end{aligned} \begin{aligned}
& \downarrow n_{i} \\
& \left.p \simeq N_{A}^{-}\right] \Longrightarrow \frac{n_{i}^{2}}{N_{A}^{-}}=n_{i} e^{\frac{E_{E}-e_{i}}{K_{B} T}} \\
& {\left[n \simeq \frac{n_{i}^{2}}{N_{A}^{-}}\right] \Longrightarrow N_{A}^{-}=n_{i} e^{\frac{E_{i}-E_{F}}{k_{S T} T}} \Longrightarrow\left[E_{F}=E_{i}-K_{B} T \ln \frac{N_{A}^{-}}{n_{i}}\right]}
\end{aligned}
$$

In uan-equilibrimu cauditious, this formulas for the Fermi level do not hold anyunare and a mare complex model from thermadyuamics should be adapted!
In practice, effective values for the Fermi level, called "quasi-Ferui levels" $E_{F_{n}}$ and $E_{F_{P}}$, are used within al the foreseen theory, instead of adapting a whole new uncolel.

$$
\begin{gathered}
{\left[n=n_{i} e^{\frac{E_{E_{m}}-E_{i}}{k_{0 T}}} \quad p=n_{i} e^{\frac{E_{i}-E_{F}}{k_{\Delta} T}}\right]} \\
n \cdot p=n_{i}^{2} e^{\frac{E_{F n}-E_{r p}}{k_{B} T}}
\end{gathered}
$$

In uou-equilibrimes: $E_{F_{n}} \neq E_{F_{p}}$. If $E_{F_{n}}>E_{F_{p}}$ then $n p>n_{i}^{2}$ which uranus that carrier concentration is overwhelming and recombination predominant, thus restoring equilibrimes. Viceversa, if $E_{F n}<E_{T p}$ then coverier concentration is
underwholuing and geveration predaninant, thus again restoring equilibrime.

Drift-diffusicu uodel

$$
\begin{aligned}
& \begin{array}{l}
3 \text { balauce } \\
\text { equatieus }
\end{array}\left\{\begin{array}{l}
\vec{\nabla} \cdot \vec{D}=g^{d} \\
-9 \frac{\partial n}{\partial t}+\vec{\nabla} \cdot \overrightarrow{J_{n}}=q(R-G) \\
9 \frac{\partial p}{\partial t}+\vec{\nabla} \cdot \overrightarrow{J_{p}}=-q(R-G)
\end{array}\right\} \vec{\nabla}\left(\vec{J}+\frac{\partial \vec{D}}{\partial t}\right)=0 \\
& \rho^{d}=q\left(N_{D}^{+}-N_{A}^{-}\right)+q(p-n) \quad \vec{D}=\varepsilon \vec{E}=\varepsilon_{0} \varepsilon_{r}^{Q} \vec{E} \\
& \overrightarrow{J_{n}}=q \mu_{n}^{e l} n \vec{E}+q D_{n} \vec{\nabla} n \\
& \vec{J}_{p}=q \mu_{p}^{2 l} p \vec{E}-q D_{p} \vec{\nabla}_{p}
\end{aligned}
$$

Shockley-

$$
\begin{aligned}
& \frac{\text { Rhockly }}{\frac{\text { Read-Hall }}{\text { recoubiuatiau }} \text { frumla }}\left[R-G=\frac{p \cdot n-n_{i}^{2}}{\tau_{n}\left(p+n_{i}\right)+\tau_{p}\left(n+n_{i}\right)}\right]=0 \Longleftrightarrow \text { Therew. } \\
& \text { equi. } \\
& \left(n p=n_{i}^{2}\right)
\end{aligned}
$$

carrier éfetimes
uneasure the rapidity with which an excited carcrier is reabsorbed back to mentrabity

τ_{n} and τ_{p} strangly depend an the atanic structure of the incaterial and an the presence of dopants (heuce they unight be uan-rerifarm in the domaire).

$$
\vec{E}=-\vec{\nabla} \psi \leftrightarrows \text { valtage }
$$

Sumplificatious: $\frac{l D}{}+$ statiarary $\longrightarrow \frac{\partial n}{\partial t}=\frac{\partial p}{\partial t}=0$

Putting everything together:

$$
\text { (1) }\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial \psi}{\partial x}\right)-q p+q n-q D=0 \\
-\frac{\partial}{\partial x}\left(-q \mu_{n}^{i} n \frac{\partial \psi}{\partial x}+q D_{n} \frac{\partial n}{\partial x}\right)+q \frac{p \cdot n-n_{i}^{2}}{\tau_{n}\left(p+n_{i}\right)+\tau_{p}\left(n+n_{i}\right)}=0 \quad x \in \Omega \\
\frac{\partial}{\partial x}\left(-q \mu_{p}^{e} p \frac{\partial \psi}{\partial x}-q D_{p} \frac{\partial p}{\partial x}\right)+q \frac{p n-n_{i}^{2}}{\tau_{n}\left(p+n_{i}\right)+\tau_{p}\left(n+n_{i}\right)}=0
\end{array}\right.
$$

$E(\underline{\mu})=\underline{0} \quad$ we assume it,
solve as a fixed point iteration (like in a cable equation problem):
find u* such that

$$
\underline{E}\left(\underline{u}^{*}\right)=\underline{Q}
$$

find e** such that $\underline{\mu}^{*}=\underline{T}_{F}\left(\underline{\mu}^{*}\right)$

Let's first explicitly write what are u and E of problem (1):

$$
\begin{aligned}
\underline{\mu}=\left[\begin{array}{l}
\psi(x) \\
n(x) \\
p(x)
\end{array}\right] \quad E(\underline{\mu})=\left[\begin{array}{l}
f_{\mu}(\underline{\mu}) \\
f_{n}(\underline{\mu}) \\
f_{p}(\underline{\mu})
\end{array}\right] \\
\cdot f_{\psi}(\underline{\mu})=\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial \psi}{\partial x}\right)-q p+q n-q P \\
\text { • } f_{n}(\underline{\mu})=-\frac{\partial}{\partial x}\left(-q \mu_{n}^{l} n \frac{\partial \psi}{\partial x}+q D_{n} \frac{\partial n}{\partial x}\right)+q R(n, p) \\
\cdot f_{p}(\underline{\mu})=\frac{\partial}{\partial x}\left(-q \mu_{p}^{l} p \frac{\partial \psi}{\partial x}-q D_{p} \frac{\partial n}{\partial x}\right)+q R(n, p)
\end{aligned}
$$

where $R(n, p)=\frac{p \cdot n-n_{i}^{2}}{\tau_{n}\left(p+n_{i}\right)+\tau_{p}\left(n+n_{i}\right)}$

Now, what fixed point operator I_{F} should we use?

1) Newton's method

Given $\underline{\mu}^{(0)}=\left[\begin{array}{l}\Psi_{(0)}^{(0)}(x) \\ n_{0}^{(0)}(x) \\ P^{(0)}(x)\end{array}\right], \quad \forall k \geqslant 0$ until convergence:

Frèchet derivative solve: $\underline{F}^{\prime}\left(\underline{\mu}^{(k)}\right) \delta \mu^{(k)}=-E\left(\mu^{(k)}\right)$ where E^{\prime} is the Jacobian of E such that $\left(E^{\prime}\right)_{i, j}=\frac{\partial F_{i}}{\partial \mu_{j}}$ update: $\mu^{(k+1)}=\mu^{(k)}+\delta \mu^{(k)}$

As already seen, Newton's ruethod benefits frame local convergence of second order. In other words:
$\exists B^{*} \ni \underline{\mu}^{*}$ such that $\forall \underline{\mu}^{(0)} \in B^{*}: \lim _{k \rightarrow+\infty} \underline{\mu}^{(k)}=\underline{\mu}^{*}$ and also $\left\|\underline{\mu}^{(k+1)}-\underline{\mu}^{*}\right\|_{v} \leqslant C\left\|\underline{\mu}^{(k)}-\underline{\mu}^{*}\right\|_{v}^{2} \quad \forall k \geqslant k_{0}>0$

$B^{*} \subseteq V$
This is a mice property, which however requires the initial guess ${ }^{(0)}$ to be sufficiently close to u^{*} (i.e. within B^{*}) to guarantee mat arty convergence order, but also convergence itself.

Newton's method has very thight requireurents to work properly, but when they ore granted it is ane of the fastest and unast reliable among all fixed paint enethods.

Let's now determine the explicit form of all terns seeded to reuse Newton's iteraticu:

$$
\begin{aligned}
& \quad \underline{F^{\prime}\left(\mu^{(k)}\right) \cdot \underline{\delta \mu^{(k)}}=-E\left(\mu^{(k)}\right)} \\
& \text { - } \frac{\partial f \mu}{\partial \mu}\left(\underline{\mu}^{(k)}\right)=\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial}{\partial x}(\cdot)\right) \\
& \text { - } \frac{\partial f \mu}{\partial n}\left(\underline{\mu}^{(k)}\right)=q(\cdot)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } \begin{aligned}
\frac{\partial f \mu}{\partial p}\left(\underline{\mu}^{(k)}\right) & =-q(\cdot) \\
\text { - } \frac{\partial f_{n}}{\partial \mu}\left(\mu^{(k)}\right) & =-\frac{\partial}{\partial x}\left(-q \mu_{n}^{l} n^{(k)} \frac{\partial}{\partial x}(\cdot)\right) \\
\text { - } \frac{\partial f_{n}}{\partial n}\left(\mu^{(k)}\right) & =-\frac{\partial}{\partial x}\left(-q \mu_{n}^{d}(\cdot) \frac{\partial}{\partial x} \psi^{(k)}+q D_{n} \frac{\partial}{\partial x}(\cdot)\right)+q \frac{\partial Q}{\partial n}\left(n^{(k)} p^{(k)}\right)(\cdot) \\
\text { - } \frac{\partial f_{n}}{\partial p}\left(\mu^{(k)}\right) & =q \frac{\partial Q}{\partial p}\left(n^{(k)}, p^{(k)}\right)(\cdot) \\
\text { - } \frac{\partial f_{p}}{\partial \psi}\left(\mu^{(k)}\right) & =\frac{\partial}{\partial x}\left(-q \mu_{p}^{l} p^{(k)} \frac{\partial}{\partial x}(\cdot)\right) \\
\text { - } \frac{\partial f_{p}}{\partial \mu}\left(\underline{\mu}^{(k)}\right) & =q \frac{\partial R}{\partial n}\left(n^{(k)}, p^{(k)}\right)(\cdot) \\
\text { - } \frac{\partial f_{p}}{\partial p}\left(\mu^{(k)}\right) & =\frac{\partial}{\partial x}\left(-q \mu_{p}^{l}(\cdot) \frac{\partial}{\partial x} \psi^{(k)}-q D_{p} \frac{\partial}{\partial x}(\cdot)\right)+q \frac{\partial R}{\partial p}\left(n^{(k)} p^{(k)}\right)(\cdot)
\end{aligned} \text { (•) }
\end{aligned}
$$

Notes: - a the diagonal, all torus are associated to the varratiau (derivative in x) of their reespective quantity ($\left.\delta \mu_{i}^{(k)}\right)$

- in the first alum (associated to $\delta \psi^{(k)}$), all terms have the form of an eliptic equation

We now have to snake the problem coupertable frau a numerical standpoint' (finite eleureut method for differential equations of each iteration).

Boundary conditions:

Dirichlet

$$
\begin{array}{ll}
\varphi(0)=\bar{\varphi}_{0} & \psi(L)=\bar{\mu}_{L} \\
n(0)=\bar{n}_{0}>0 & n(L)=\bar{n}_{L}>0 \\
p(0)=\bar{p}_{0}>0 & p(L)=\bar{p}_{L}>0
\end{array}
$$

At the bandaries it has to be: $\delta \psi(0)=\delta \psi(L)=0$

$$
\text { houggereus Dirichlet Q.c. } \leftrightarrows\left\{\begin{array}{l}
\delta n(0)=\delta n(L)=0 \\
\delta p(0)=\delta p(L)=0
\end{array}\right.
$$

since $\underline{\mu}^{(k)}(0)=\mu_{\text {. }}$ and $\underline{\mu}^{(k)}(L)=\underline{\mu}_{L} \forall K$, therefore:

$$
\begin{aligned}
& \delta \psi \in H_{0}^{1}(\Omega) \\
& \delta n \in H_{0}^{1}(\Omega) \\
& \delta p \in H_{0}^{1}(\Omega)
\end{aligned}
$$

Weak formulation of problem (2):

$$
\begin{aligned}
& \left(\int_{0}^{L}\left[\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial}{\partial x}(\delta \psi)\right)+\phi^{\delta n}-q \delta p\right] \phi^{i}=-\int_{0}^{L} f_{\psi} \phi^{i} \quad \forall \phi^{i} \in H_{0}^{1}(\Omega)\right. \\
& \left\{\begin{array}{r}
\int_{0}^{2}\left[-\frac{\partial}{\partial x}\left(-q \mu_{n}^{l} n \frac{\partial}{\partial x}(\delta \psi)\right)-\frac{\partial}{\partial x}\left(-q \mu_{n}^{l} \delta n \frac{\partial \psi}{\partial x}+q D_{n} \frac{\partial}{\partial x}(\delta n)\right)+q \frac{\partial R}{\partial n} \cdot \delta n+q \frac{\partial R}{\partial p} \delta p\right] \phi^{i i}= \\
\\
=-\int_{0}^{L} f_{n} \phi^{i i} \quad \forall \phi^{i} \in H_{0}^{1}(\Omega)
\end{array}\right. \\
& \begin{aligned}
& \int_{0}^{2}\left[\frac{\partial}{\partial x}\left(-q \mu_{p}^{l} p \frac{\partial}{\partial x}(\delta \psi)\right)+q \frac{\partial R}{\partial n} \cdot \delta n+\frac{\partial}{\partial x}\left(-q \mu_{p}^{l} \delta p \frac{\partial \psi}{\partial x}-q D_{p} \frac{\partial}{\partial x}(\delta p)\right)+q \frac{\partial R}{\partial p} \delta p\right] \phi^{i i \prime}= \\
&=-\int_{0}^{L} f_{p} \phi^{i i \prime} \quad \forall \phi^{i i \prime} \in H_{0}^{1}(\Omega)
\end{aligned} \\
& \int_{0}^{L} \varepsilon \frac{\partial}{\partial x}(\delta \psi) \cdot \frac{\partial \phi^{i}}{\partial x}+\int_{0}^{L} q^{\delta} \delta n \phi^{i}-\int_{0}^{L} q \delta p \phi^{i}=-\int_{0}^{L} f_{\psi} \phi^{i} \\
& -\int_{0}^{L} q \mu_{n}^{d} n \frac{\partial}{\partial x}(\delta \psi) \frac{\partial \phi^{i}}{\partial x}+\int_{0}^{L}\left(-q \mu_{n}^{2} \delta n \frac{\partial \psi}{\partial x}+q^{D_{n}} \frac{\partial}{\partial x}(\delta n)\right) \frac{\partial \phi^{i i}}{\partial x}+\int_{0}^{L} q \frac{\partial R}{\partial n} \cdot \delta n \phi^{i i}+\int_{0}^{L} \frac{\partial R}{\partial p} \cdot \delta p \phi^{i i}= \\
& =-\int_{0}^{L} f_{n} \phi^{i} \\
& \int_{0}^{L} q \mu_{p}^{l} p \frac{\partial}{\partial x}(\delta \psi) \frac{\partial \phi_{i i i}}{\partial x}+\int_{0}^{L} q \frac{\partial R}{\partial n} \cdot \delta n \phi^{i i}+\int_{0}^{L}\left(q \mu_{p}^{d} \delta p \frac{\partial \psi}{\partial x}+q D_{p} \frac{\partial}{\partial x}(\delta p)\right) \frac{\partial \phi^{i i i}}{\partial x}+\int_{0}^{L} q \frac{\partial R}{\partial p} \cdot \delta p \phi^{i i}= \\
& =-\int_{0}^{L} g_{P} \phi^{i i}
\end{aligned}
$$

Space discretizatiou: $\delta \mu \leadsto \delta \mu_{n}$

$$
\begin{aligned}
& M_{n} \geqslant 1 \\
& h=\frac{L}{M_{n}}
\end{aligned}
$$

$$
\delta \psi_{n}(x)=\sum_{j=1}^{\mu_{n+1}} \delta \psi_{j} \cdot \phi_{j}(x)=\sum_{j=2}^{N_{h}} \delta \psi_{j} \cdot \phi_{j}(x)
$$

houogeureus bc.
Repeating the same process for δn and δp :

$$
\left\{\begin{array}{l}
\underline{K}_{\psi \psi} \delta \psi+\underline{K}_{\psi n} \underline{\delta n}+\underline{\underline{K}}_{\psi p} \underline{\delta p}=-\underline{F_{\psi}} \\
\underline{K}_{m \psi} \delta \psi+\underline{K}_{m} \underline{\delta n}+\underline{\underline{K}}_{n p} \underline{\delta p}=-\underline{F_{n}} \\
\underline{K}_{p \psi} \delta \psi+\underline{K}_{p n} \underline{\delta n}+\underline{\underline{K}}_{p p} \frac{\delta p}{}=-\underline{F}_{p}
\end{array}\right.
$$

Notes: - K $\mu_{i \mu_{i}}$ has all elements of the first and last row equal to θ, except the first and last eloureut, respectively, which are equal to 1

- K $\mu_{i u_{j}} \forall i \neq j$ has all elements of the first and last row equal to es
- Eui has the first and bast element equal to θ

These are necessary conditions for aefercing houggenean B.c..

A few additional comments:

- We considered, throughout the entirety of the discussion, $\mu^{l l}$ to be constant; however for large electric fields (big ψ), carrier vebecety saturates unaunug that the mobility is mot caustaut but depends an ψ itself. This physical description of Mel would unake our model unare accurate but also much more complicated.
- Matrices we obtained for the finite element method can be badly conditioned because of the several diverse units aud orders of unaguitude involved. A technique called "balancing" is typically adopted in unmerical elvers to improve the enatix condition umber.
- Convergence speed of the unethod can be hindered by the usu-ekact description of the derivatives that are captained in the iteration e ruatricos.

2) Gumbel's method

Given $\underline{x}^{(0)}, \forall K \geqslant 0$ until convergence:

$$
\underline{x}^{(k+1)}=\underline{T}_{\underline{G}}\left(\underline{x}^{(k)}\right)
$$

Far Nentali's method it was: $\underline{\mu}^{(k+1)}=I_{N}\left(\underline{\mu}^{(k)}\right) \quad(\underline{\mu} \neq \underline{x}!!)$

$$
I_{N}(\underline{\mu})=\underline{\mu}-\left(\underline{F}^{\prime}(\underline{\mu})\right)^{-1} E(\underline{\mu})
$$

Let's see what \underline{x} and T_{G} stand for.

$$
\underline{x}=\left[\begin{array}{l}
\varphi_{n} \\
\phi_{p}
\end{array}\right]
$$

where ϕ_{n} and ϕ_{p} embody the quasi-Ferui potentials of n and p, respectively.
(a) $n=n_{i} e^{\frac{\psi-\varphi_{n}}{V_{1 n}}}$
(b)

$$
p=n_{i} e^{\varphi_{p}-\psi} v_{4 h}
$$ statistics

Let us nw introduce the nou-livear eperatars:
(1) $M_{\psi}(\psi, \underline{x})=0 \rightarrow$ nou-livear w.r.t.
(2) $\mathcal{X}_{n}(n, \psi(\underline{x}), P(\underline{x}, \psi(\underline{x})))=0 \rightarrow$ hou-livear
(3) $\mathcal{N}_{p}(p, \psi(\underline{x}), n(\underline{x}, \psi(\underline{x})))=0$
which written in full are: wart.
sou-livear wort.

$$
\begin{aligned}
& \mathcal{N}_{\psi}=\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial \psi}{\partial x}\right)+q n_{i} e^{\varphi-Q_{n}}-q n_{i} e^{Q_{p-\psi}-q}-q D \\
& \mathcal{V}_{n}=-\frac{\partial}{\partial x}\left[-q \mu_{n}^{d} n \frac{\partial \psi(\underline{x})}{\partial x}+q D_{n} \frac{\partial n}{\partial x}\right]+q \frac{p(\underline{x}, \psi(x)) \cdot n-n_{i}^{2}}{\tau_{n}\left(p(x, \psi(x))+n_{i}\right)+\tau_{p}\left(n+n_{i}\right)} \\
& \mathcal{N}_{p}=\frac{\partial}{\partial x}\left[-q \mu_{p}^{d} p \frac{\partial \psi(x)}{\partial x}-q D_{p} \frac{\partial p}{\partial x}\right]+q \frac{p \cdot n(x, \psi(x))-n_{i}^{2}}{\tau_{n}\left(p+n_{i}\right)+\tau_{p}\left(n(x, \psi(x))+n_{i}\right)}
\end{aligned}
$$

Then, the approach of Gumbel's unethod is to:
$\frac{x^{(k+1)}}{1}$ given the initial guess $\underline{x}^{(0)}$
\rightarrow obtain 4 by plugging x in (1)
obtain " $n\left(\underline{x}, \psi(\underline{x})\right.$) by plugging Φ_{n} and ψ in a obtain $n^{(k+1)} " P(\underline{x}, \psi(\underline{x}))$ by plugging φ_{p} and ψ in (b) obtain in by plugging ψ and $p(\underline{x}, \psi(\underline{x}))$ in (2) obtain " p by plugging ψ and $n(\underline{x}, \psi(\underline{x})$) in (3) derive" x by plugging n and p in @ and (b) respectively "gunnel's map" until convergence

Therefore: $\underline{T_{G}}\left(\underline{x}^{(k)}\right)=\left[\begin{array}{l}\psi^{(k+1)}-V_{\text {th }} \ln \left(\frac{n^{(k+1)}}{n_{i}}\right) \\ \psi^{(k+1)}+V_{\text {th }} \ln \left(\frac{p^{(k+1)}}{n_{i}}\right)\end{array}\right]$
where $\psi^{(k+1)}, n^{(k+1)}$ and $p^{(k+1)}$ are the apes obtained in Gumbel's remap through the rou-livear pisan and contimity equations.

Issue: caupertation of ucu-liveor equations.
A possible solution to partially overcome the uou-livear nature of the method, which otherwise would be extreunely simple and straightforward, is to use the "lagging" techilique for what cancercus the compentatiou of $n^{(k+1)}$ and $p^{(k+1)}$ (ie. for equations (2) and' (3))
"Lagging" eneaus to substitute the unknown values to computed for the current step ($n^{(k+1)}$ and $p^{(k+1)}$) that make up the uau-livearity with the kuocure values abready computed for the previous step ($n^{(k)}$ and $p^{(k)}$). By applyung this concept to our equations we get:

$$
\begin{aligned}
& \text { linear terms } \\
& \tilde{N}_{n}=-\frac{\partial}{\partial x}\left[-q \mu_{n}^{e l} n \frac{\partial \psi(x)}{\partial x}+q D_{n} \frac{\partial n}{\partial x}\right]+q \frac{p(x, \psi(x)) n-n_{i}^{2}}{\tau_{n}\left(p(x, \psi(x))+n_{i}\right)+\tau_{p}\left(n(x, \psi(x))+n_{i}\right)}
\end{aligned}
$$

which are linear advectiou-diffusian-reactian equations thus inheriting all properties associated with them (such as the uraxiumur principle, as we will see).
Note that this approach would mot work with (1) since we don't have a value of $\psi^{(k)}$ to substitute in the rar-linearity.

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x}\left(-\varepsilon \frac{\partial \psi}{\partial x}\right)+q n_{i} e^{\psi \frac{\varphi-q_{n}}{V+h}}-q n_{i} e^{q_{p-\psi}^{V+h}}-q D=0, \quad x \in(0, L) \\
\left.\psi(0)=\bar{\psi}_{0}\right) \quad \psi(L)=\bar{\psi}_{L}
\end{array}\right.
$$

To avercoure also this uan-linearity, we could use Newton's method:
given $\psi^{(0)}, \forall j \geqslant 0$ compute $\left\{\psi^{(j)}\right\}$ until convergence
solve: $\mathcal{N}_{\psi}^{\prime}\left(\psi^{(j)}\right) \delta \psi^{(j)}=-\mathcal{N}_{\psi}\left(\psi^{(j)}\right)$
update: $\quad \psi^{(j+1)}=\psi^{(j)}+\delta \psi^{(j)}$

Also this equation, to be solved for each step of Newton's iteration, is an advection-diffusionreaction problem.

Existence, Uniqueness and convergence of a solution of Gumbel's rap

Quiqueuess: we will just assume that \exists ! solution of the problem denoted as

$$
\varphi^{*}, \varphi_{n}^{*}, \varphi_{p}^{*}, \quad n^{*}=n_{i} e^{\frac{x^{*}-\varphi_{i n}^{*}}{*}}, \quad p^{*}=n_{i} e^{\frac{\varphi_{0}^{*}-\psi^{*}}{v_{1+}^{*}}}
$$

Existence:
introduce $V_{x}:=\left\{v \in L^{2}(\Omega) \mid \Theta \leqslant v(x) \leqslant \beta \beta_{x=0} \forall x \in \bar{\Omega}\right\}$ and suppose $\underline{x}^{(0)} \in V_{\underline{x}}$.

$$
\alpha=\min \left(V_{a}, O\right)
$$

$\beta=\max \left(V_{a}, O\right)$

By these suppositious it can be shown that:

$$
\Longrightarrow \forall k \geqslant 0 \quad \psi\left(\underline{x}^{(\omega)}\right) \equiv \psi^{(N)} \in \mathcal{V}_{\psi}
$$

where $V_{\psi}:=\left\{w \in H^{1}(\Omega) \mid(A) \leqslant w(x) \leqslant B \quad \forall x \in \Omega\right\}$

$$
\begin{aligned}
& A=\operatorname{miu}\left(\dot{\psi}_{0}, \overleftarrow{\psi}\right) \text { depend ai the doping } \\
& B=\max \left(\psi_{0}=\min \left(\psi_{D}, \psi_{L}\right)\right. \\
& \psi_{0}=\max \left(\psi_{0}, \psi_{L}\right)
\end{aligned}
$$

$V_{\underline{x}}$ is called "invariant regicu" for the quasi-Ferui potentials.
V_{ψ} is an "invariant regisu" for the potential.
This grants the existence of the fixed paint of the iteration since

$$
V_{\underline{x}} \longrightarrow T_{\underline{c}}\left(V_{\underline{x}}\right) \subseteq V_{\underline{x}}
$$

Convergence: it can be dencustrated that the contraction condition
$\exists c<1$ such that $\left\|y^{(1)}-\underline{x}^{(1)}\right\|_{\left(L^{2}(\Omega)\right)^{2}}^{2}\left\|y^{(0)}-\underline{x}^{(0)}\right\|_{\left(L^{2}(\Omega)\right)^{2}}$

$$
\forall \underline{x}^{(0)}, y^{(0)} \in V_{\underline{x}} \quad \underline{x}^{(0)} \neq y^{(0)} \quad \underline{x}^{(1)}=\underline{T_{G}}\left(\underline{x}^{(0)}\right) \quad y^{(4)}=\underline{T}_{G}\left(y^{(0)}\right)
$$

which grants convergence for $T_{G} \quad \forall \underline{x}^{(0)} \in V_{\underline{x}}$, holds true for V_{a} suall enough (i.e. Va comparable with $V_{\text {th }}$)

Well-poseduess of the current continuity equations
(2) $\tilde{\mathscr{N}}_{n}(n)=0$
(3) $\tilde{\mathscr{N}}_{p}(p)=0$
as abready painted ant, can be written in the form:

$$
\begin{aligned}
& \frac{\partial J(\mu)}{\partial x}+r \cdot \mu=g \\
& J(\mu)=V \cdot \mu-D \frac{\partial \mu}{\partial x}
\end{aligned}
$$

where in ease (2) it is:

$$
\begin{gathered}
\mu=n^{(k+1)} \quad V=-\mu_{n}^{d} E^{(k+1)} \quad D=D_{n} \\
x=\frac{p^{(k)}}{\tau_{n}\left(p^{(k)}+n_{i}\right)+\tau_{p}\left(n^{(k)}+n_{i}\right)}>0 \quad g=\frac{n_{i}^{2}}{\tau_{n}\left(p^{(k)}+n_{i}\right)+\tau_{p}\left(n^{(k)}+n_{i}\right)}>\theta
\end{gathered}
$$

while in case (3) it is:

$$
\begin{gathered}
\mu=p^{(k+1)} \\
x=\frac{n^{(k)}}{\tau_{n}\left(p^{(k)}+n_{i}\right)+\tau_{p}\left(n^{(k)}+n_{i}\right)}>0 \quad D \mu_{p}^{e l} E^{(k+1)} \quad D=\frac{D_{p}}{\tau_{n}\left(p^{(k)}+n_{i}\right)+\tau_{p}\left(n^{(k)}+n_{i}\right)}>0
\end{gathered}
$$

(remembering that $E^{(k+1)}=-\frac{\partial \psi^{(k+1)}}{\partial x^{(k+1}}$ is a given quantity).
Dirichlet B.c: $\mu(0)=\bar{\mu}_{0}>0$ and $\mu(L)=\bar{\mu}_{L}>0$ are also to be enforced to solve the two equations.
To demonstrate the validity of maximum principle, we apply a rotation change to the ruknowis n and p that cares from equatisus
(a) and

$$
\left.\begin{array}{ll}
n=\rho_{n} e^{\frac{\Psi}{1+n}} \\
p=\rho_{p} e^{-\frac{\Psi}{v n}} & \rho_{n}=n_{i} e^{-\frac{\varphi_{n}}{V+n}} \\
\rho_{p}=n_{i} e^{\frac{g_{P}}{V_{n}}}
\end{array}\right\} \text { slotbeau} \text { couceutratious }
$$

Cousidering now just prabbem (3) (i.e. just $p(x)$):

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(\mu_{p}^{e l} p E-D_{p} \frac{\partial p}{\partial x}\right)+r p=g \\
& -\mu_{p}^{e l} \rho_{i} e^{-\frac{\psi}{W^{2}}} \frac{\partial \psi}{\partial x}-\mu_{p}^{e l} V_{\text {th }}\left(\frac{\partial g_{p}}{\partial x} \cdot e^{-\frac{\Psi}{V_{1}}}-\frac{\partial \psi}{\partial x} \frac{1}{V_{t h}} \rho_{p} e^{-\frac{\Psi}{V_{k}}}\right) \\
& \Longrightarrow \frac{\partial}{\partial x}\left(-D_{p} e^{-\frac{y}{1+n}} \frac{\partial \rho_{p}}{\partial x}\right)+\pi e^{-\frac{y}{v+m}} \rho_{p}=g \\
& \frac{\partial}{\partial x}\left(-\underset{v}{D_{p}^{\prime}} \frac{\partial g_{p}}{\partial x}\right)+\underset{0}{r^{\prime}} \rho_{p}=g
\end{aligned}
$$

Given the positiveness of all quantities invared, ,uaximun principle cau now be applied to the problew:

$$
\exists!\rho_{p} \in H_{0}^{1}(\Omega) \text { s.t. } \rho_{p}>0
$$

hence $p(\operatorname{and} n)$ is unique and steictly positive

Note how with this uotation chauge (which gaes under the rame of Cole-Hepf trausformatiau) we chauged a drift-diffusiau eurrent iuto a purely diffusive curreut:

$$
J_{p}=q \mu_{p}^{\ell l} E-q D_{p} \frac{\partial p}{\partial x}=-q D_{p}^{\prime} \frac{\partial p_{p}}{\partial x}
$$

Alse the opposite cau be doue. Noting that:

$$
\frac{\partial}{\partial x} p=\frac{\partial}{\partial x}\left[n_{i} e^{\varphi_{P-\psi}-\psi}\right]=\frac{n_{i}}{V_{t h}} e^{\frac{\varphi_{i}-\psi}{V_{t h}}}\left(\frac{\partial \varphi_{i}}{\partial x}-\frac{\partial \psi}{\partial x}\right)=\frac{p}{V_{t h}}\left(\frac{\partial \varphi_{i}}{\partial x}+E\right)
$$

substituting in the drift-diffusion equation we get:

$$
\begin{aligned}
J_{p} & =q \mu_{p}^{d} p E-q D_{p} \frac{\partial p}{\partial x}=q \mu_{p}^{d} p \in-q \mu_{p}^{d} \nu_{\text {th }} \frac{p}{V_{\text {in }}}\left(\frac{\partial \varphi_{p}}{\partial x}+E\right)= \\
& =-q \mu_{p}^{d} p \frac{\partial \varphi_{p}}{\partial x}=q \mu_{p}^{l} p E_{p}=\text { effective electeic field }
\end{aligned}
$$

thus changing a drift-diffusiou curerent into a perrely couductive curreut

Fiually, uote that: $\rho_{p} \xrightarrow{\psi \rightarrow 0} p$ and $E_{p} \xrightarrow{p \rightarrow n_{i}} E$

Finite element discretization of the current contimity equation

$$
\begin{aligned}
& \int_{0}^{L} \frac{\partial J_{p}}{\partial x_{e}} \phi+\int_{0}^{L} x p \phi=\int_{0}^{L} g \phi \quad \phi \in H^{1}(\Omega) \quad x \in \Omega=(0, L) \\
& \int_{\partial \Omega} \phi \vec{J}_{p} \cdot \vec{n}-\int_{0}^{L} J_{p} \frac{\partial \phi}{\partial x}+\int_{0}^{L} x p \phi=\int_{0}^{L} g \phi
\end{aligned}
$$

(w) $\left.\phi(0) \cdot \overrightarrow{J_{p}} \cdot \vec{n}\right|_{x=0}+\left.\phi(L) \cdot \overrightarrow{J_{p}} \cdot \vec{n}\right|_{x=i}-\int_{a}^{L} J_{p} \frac{\partial \phi}{\partial x}+\int_{0}^{L} x p \phi=\int_{0}^{L} 8 \phi$

$$
p \in V:=H^{1}(\Omega)
$$

space disucetization

$$
\begin{aligned}
& p_{n} \in V_{n} \subset V
\end{aligned}
$$

$$
\begin{aligned}
& \forall k \in \tau_{n}: J_{p_{k}}=\text { cons over } k
\end{aligned}
$$

Considering row $i=3$:

$$
\begin{aligned}
& -\int_{x_{2}}^{x_{3}} J_{p} \frac{\partial \phi_{3}}{\partial x}-\int_{x_{3}}^{x_{4}} J_{p} \frac{\partial \phi_{3}}{\partial x}+\int_{x_{2}}^{x_{3}} \pi p \phi_{3}+\int_{x_{3}}^{x_{4}} r p \phi_{3}=\int_{x_{2}}^{x_{3}} \delta \phi_{3}+\int_{x_{3}}^{x_{4}} g \phi_{3} \\
& -\int_{x_{2}}^{x_{3}} J_{p_{2}} \frac{l}{H_{2}}-\int_{x_{3}}^{x_{4}} J_{3}\left(-\frac{1}{H_{3}}\right)+\int_{x_{2}}^{x_{3}} \pi p \phi_{3}+\int_{x_{3}}^{x_{4}} \pi p \phi_{3}=\int_{x_{2}}^{x_{3}} g \phi_{3}+\int_{x_{3}}^{x_{4}} g \phi_{3} \\
& J p_{3}-J p_{2}+\int_{x_{2}}^{x_{3}} r p \phi_{3}+\int_{x_{3}}^{x_{4}} \pi p \phi_{3}=\int_{x_{2}}^{x_{3}} \delta \phi_{3}+\int_{x_{3}}^{x_{4}} g \phi_{3} \\
& \Longrightarrow J P_{3}-J P_{2}=G_{3}-R_{3} \\
& \text { Discrete equservation law }
\end{aligned}
$$

It can be seen as Kirchhoff's Current Law:

Hence, the finite aleuent method applied to the current contiunity equation embodies under this assumption, a set of KCLs to be solved for each rode of the
R and G can be computed using a quadrature forunela ie. a umuerical algorithue that approximates the exact integral of a function:

$$
I(f)=\int_{a}^{b} f(x) d x \sim Q(f)
$$

For example, Q can be the trapezaidal-rule:

$$
Q(f)=(f(a)-f(b)) \frac{b-a}{2}
$$

The advantage of using this formula for the computation of R and G canes fran the simple expression of ϕ :

$$
\begin{aligned}
\int_{x_{2}}^{x_{3}} f \phi_{3}+\int_{x_{3}}^{x_{4}} f \phi_{3} & \simeq\left(f\left(x_{2}\right) \phi_{3}\left(x_{2}\right)+f\left(x_{3}\right) \phi_{3}\left(x_{3}\right)\right) \frac{H_{2}}{2}+\left(f\left(x_{3}\right) \phi_{3}\left(x_{3}\right)+f\left(x_{4}\right) \phi_{3}\left(x_{4}\right) \frac{H_{3}}{2}\right. \\
& =f\left(x_{3}\right) \frac{H_{2}+H_{3}}{2}
\end{aligned}
$$

Hence the conservation law of the previous case becoues.

$$
J_{p_{3}}-J p_{2}+r_{3} p_{3} \frac{H_{2}+H_{3}}{2}=g_{3} \frac{H_{2}+H_{3}}{2}
$$

As a last step, we reed an expression for the constant current density $J_{p_{i}}$:

$$
J_{p_{i}}=-q \cdot \frac{D_{p}}{H_{i}} \cdot\left[\operatorname{Be}\left(\frac{\psi\left(x_{i+1}\right)-\psi\left(x_{i}\right)}{V_{t h}}\right) p_{i+1}-\operatorname{Be}\left(-\frac{\psi\left(x_{i+1}\right)-\psi\left(x_{i}\right)}{V_{t h}}\right) p_{i}\right]
$$

Scharfetter-Gummel piecewise constant ewerent model
It can be noted that the conservation law equation eventually depends ae p_{i-1}, p_{i} and p^{i+1} only (as are would naturally expect). This ureaus that the finite element matrix \underline{k}_{p}, whose rows represent the conservation law of each mode, unit necessarily be a tridiagoual matrix.

Def. (M-matrix)
$\left.\begin{array}{l}\left.\begin{array}{l}A \in \mathbb{R}^{n \times n} \text { invertible } w / \underline{\underline{A}}^{-1} \geqslant 0 \\ (\underline{\underline{A}})_{i i}>0 \\ (\underline{\underline{A}})_{i j} \leqslant 0 \quad(i \neq j)\end{array}\right\} \Longrightarrow \text { "Monotone" }\end{array}\right\} \Longrightarrow$ is an M-matrix

Theareu
Assume that $\underline{\underline{A}} \in \mathbb{R}^{n \times n}$ satisfies the following properties:
$(a)(\underline{\underline{A}})_{i i}>0$
(b) $(\stackrel{A}{\underline{A}})_{i j} \leqslant 0 \quad(i \neq j)$
(c) $\sum_{i=1}^{n}(\stackrel{A}{=}) i j>0 \quad \forall j$
(d) $\exists j^{*}$ st. $\sum_{i=1}^{n}(A)_{i j^{*}}>0$

Then $\underline{\underline{A}}$ is an M-matrix and $\underline{\underline{A}}^{-1}>0$.

It is passible to demousteate that \underline{K}_{p} is au M-uateix and satisfies the theorem above.
Being the load vector g (given by the generation term) strictly positive, we can conclude that the linear system:

$$
\underline{K}_{p} p=g
$$

returns all positive values of the concentration p. so the cancenteations (p and n) at every iteration step will be positive and well-defined.

Sour concluding comments:

- Gomel's map uses Baltzuraun's statistics and (b)) to precondition the result of the prableu, this allowing the use of a decoupled (ie. sequential, without any system of equations) unethod, whereas Newton's unethod was fully coupled.
- Gumuel's untrod is very wall conditioned, thanks to the fact that the relevant variables $\left(\varphi_{n}\right) \varphi_{p}$ and 4) are of the same type and uraguitude.
- The advantage of this method, with respect to Newton's, is that it is verey robust, does not need any particular requirement to work and it converges for (almost) any initial guess (ie. it benefits from global convergence).
The disadvantage is that its caurergence is not as fast.
- It can be deundutrated that Gumbel's method becomes much shower for langer devices (ie. bigger domain Ω).

Mobility models
As we have abready discussed, we so far assumed electrical undility to be constant while in truth it is mot.

$$
\vec{v}_{d}=\mu^{d} \vec{E}=\frac{q^{2}}{m^{*}} \vec{E}
$$

m^{*} : effective mas of the particle τ : average scattering time
(1)

τ varies with temperature T. (since atoms in the lattice vibrate thus affecting the collision rate and intensity, and with the umber of impurities N_{o}^{+}and N_{A}^{-}(since celbisious become wore frequent).
Furthermore, it would sem that $|\vec{J} a|$ diverges with $|\vec{E}|$; however in reality it saturates at a certain saturation velocity $v_{\text {sat }}$ for high electric fields.
(1) $\left[\mu^{2}=\mu^{0}\left(\frac{T}{T_{x q}}\right)^{-\kappa}\right]$
(2) $\left[\mu^{L I}=\mu_{\text {min }}+\frac{\mu^{L}-\mu_{\text {min }}}{l+\left(\frac{N_{0}^{+}+N_{A}^{-}}{N_{\text {red }}}\right)^{\beta}}\right]$

$$
\left.\Longrightarrow \mu^{\text {irs }}=\frac{\mu^{\text {Ls }}}{\frac{1}{2}\left(1+\sqrt{1+4\left(\mu_{0}|\vec{E}|\right.}\right)_{\text {sat }}^{2}}\right)
$$

Remember that these mobilities may also vary with x !

Seuricanductor devices

- PAN JUNCTION

Confinement of electrical pheusurua:

$$
\left.\begin{array}{rl}
\overrightarrow{J_{n}} \cdot \vec{n} & =0 \\
\overrightarrow{J_{p}} \cdot \vec{n} & =0 \\
\vec{D} \cdot \vec{n} & =0
\end{array}\right\} \text { an lateral surface } \Gamma
$$

Doping and external voltage affect the energy baud diagram.
With mo voltage applied the two separated ${ }^{\circledast}$ regions have their induridual band diagrams:

When forming a $p-n$ junction, the two diagrams have to share the same Forum level, which is determined by Va .

- Thermal equilibrimu

(1), (5): (quasi-)uentral regieus $\quad \begin{aligned} \rho & =q\left(r-n+N_{D}^{+}-N_{A}^{-}\right) \\ & \simeq q\left(-N_{D}^{+}+N_{D}^{+}\right) \simeq 0\end{aligned}$
(3): depleted region
(2), (4): minority diffusing regions \rightarrow typically merged with (1) and (5) because of complex physical description and enargival relevance
In the depleted region:
Obi built - in
 potential

$$
\begin{aligned}
& \rho=q\left(p-n+N_{D}^{+}-N_{A}^{-}\right) \\
& \rho \simeq \begin{cases}q N_{D}^{+} & x>L / 2 \\
-g N_{D}^{-} & x<L / 2\end{cases}
\end{aligned}
$$

an electric
 field \vec{F} is induced

The brilt-in potential and energy barrier are strictly related:

$$
\begin{aligned}
& \left|E_{b i}=E_{i}\right|_{x=0}-\left.E_{i}\right|_{x=L}=\left(\left.E_{i}\right|_{x=0}-E_{F}\right)+\left(E_{F}-\left.E_{i}\right|_{x=L}=\right. \\
& \left.=K_{B} T \ln \left(\frac{N_{A}^{-}}{n_{i}}\right)+K_{B} T \ln \left(\frac{N_{B}^{+}}{n_{i}}\right)=K_{B} T \ln \left(\frac{N_{A}^{-} N_{0}^{+}}{n_{i}^{2}}\right)\right] \\
& \left.\varphi_{b i}=\frac{E_{b i}}{q}=\frac{K_{B} T}{q} \ln \left(\frac{N_{A}^{-} N_{0}^{+}}{n_{i}^{2}}\right)=\underline{V_{t h} \ln }\left(\frac{N_{A}^{-} N_{0}^{+}}{n_{i}^{2}}\right)\right]
\end{aligned}
$$

The brilt-iu potential barrier generates a drift current that goes against the natural diffusion current due to the concentration gradients between the n-type and p-type regions.

At thermal equilibrimur, as are would expect, the TOTAL current is θ, which uranus that drift and diffusion currents perfectly compensate each other.
(Be careful that in inmerical simulations the net current will be therefore given by the subtraction of two lovage contribution, which right sometimes yield a small but nan-zere value).

- Forward bias

A forward bias has a direction of the electric field such that it opposes the built-in potential. The barrier is thus seduced!
For $V_{a}>\varphi_{b i}$, there is no drift current apposing the diffusion of carriers: hales and electrons can now easily diffuse in the rental regions.

Concentration near the depleted region increases exponentially with V_{a}. Carriers diffusing further in the neutral regions recombine with the majority carriers, eventually reaching their equilibrium values.
A diffusion current evidently arises in the ventral region, whose dependency an V_{a} has to be exponential.

- Reverse bias

In a reverse bias, the built-in boverier is enhanced by the external voltage. Drift forces in the depleted region are now munch stranger than diffusive trends. Almost any carrier reaching depleted region is dragged against the gradient: hales and electrons are basically confined in the p-type and n-type regiaus, respectively.

Concentration of minority carriers rear the depleted region is almost vil since they are dragged by the intense electric field.

A seal diffusion current is present in the mental regears, which is almost constant with respect to Va .

Au additiaral uredrauisu called breakdown may occur in reverse bias when $V_{a} \ll$. The electric field in the depleted regiau becomes so strong that an accelerated elected (or hale) nay carry enough surgy to free another electron when colliding with an at an of the lattice.
The freed electron, together with the corresponding hale, produces the sarre effect an other electrons, thus triggering an ardauche urechanisu that produces a Large auraunt of current.)

Breakdown

Reverse Rios
Forward bias

Thermal equilibrium

- mos capacitor
p-type doped substrate:

$$
n-M O S
$$

n-type doped substrate:

$$
p-M o s
$$

A variation of V_{G} attracts or repels free carriers lu the semi conductor.

"Gate"

semiconductor egg. g. p-type
doped
n-Mos

In a n-MOS, $V_{G}>0$ repels hales frau the oxide interface and attracts electrons.

Far a sufficiently high voltage cabled threshold valtage V_{T}, electron carcentratiou becomes equal to that of dopants.
A electron chanel is forcwed. By applyireg a transversal electric field frau sidle to side of the device, current is allowed to flow.
The higher the gate voltage, the higher the electron concentration in the channel, the stranger the current for the same applied trausversal voltage.
\rightarrow MOS TRANSISTOR
high n^{+} doping moves Ec E_{F} even
beyoud Ec

Increasing V_{a} will reduce the barrier from source to drain.
Increasing $\left|V_{D}-V_{S}\right|=\left|V_{D S}\right|$ will help electrons unove from source to drain.

The device effectively warks as a modulated resistary between source and train, whose value is determined by the gate.

Note: boundary couditidus of ohmic contacs metal contact + equilibrium \& electrouentrality

$$
\begin{gathered}
\left\{\bar{\varphi}_{n}=\bar{\varphi}_{p}=V_{\text {ext }}\right\} \quad\left\{\bar{p} \cdot \bar{n}=n_{i}^{2} \quad \bar{p}-\bar{n}+N_{D}^{+}-N_{A}^{-}=0\right\} \\
\longrightarrow\left\{\bar{\psi}=\bar{\varphi}_{n}+V_{\text {th }} \ln \left(\frac{\bar{n}}{n_{i}}\right)=\bar{\varphi}_{p}-V_{\text {th }} \ln \left(\frac{\bar{p}}{n_{i}}\right)\right\}
\end{gathered}
$$

