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Introduction to Heterogenous Systems

Heterogeneous systems are systems made by different types of processing elements.

Since late '90s, the number of cores on chips, machines, and architectures has been

increasing, and from the mid 2000s they have been specialized: even chips designed for

specialized applications have to tackle a range of diverse tasks - e.g. autonomous

driving deals not only with machine learning, but also with videostreams of the

environment; these systems can be made both faster and more power efficient by using

heterogenous hardware to accelerate their tasks, provided the designer is able to

distribute the workloads and coordinate the components effectively.

Energy & Power Efficiency

Moore's law: "The number of transistors on consumer grade CPUs doubles every

two years"

Dennard scaling: "If the transistor density doubles, the circuit becomes 40%

faster and the total power consumption remains the same"

Koomey's Law: "For a fixed computing load, the amout of energy needed halves

every 2 and ½ years"

Moore's law mainly refers to the halving in the size of the transistors; but as

transitors become smaller and smaller, further reducing their size has become has

become harder and harder.

To keep up with performance demands - and sometimes as publicity stunts - sometimes

companies may double the number of transistor, without a corresponding decrease in

size: in turn, the energy/power efficiency does not decrease according to Dennard

scaling and Koomey's law; in fact Koomey's law hasn't been met since the mid-2000s.

Energy and power efficiency requirements are very relevant: devices must not consume

too much of energy and must not overheat.

Additionally, when keeping the power constant, as the transistors shrink a bigger

percentage of the area of the chip must be powered down - i.e. dark silicon; if not

all components in a chip can be active at all times, adding more general purpose

processors won't result in better performance: a solution is to have specialized

hardware that does not run constantly, but is turned on only when tackling some

workloads, though this requires a scalable infrastracture and an efficient power

management system.

Hardware acellerators can be placed on the chip or on an external device;nowadays, in

commercial SoC, more than 50% of the surface area is dedicated to out-of-core

accelerators.



Systems-on-Chip (SoCs)

Systems-on-Chip (SoCs) are architectures where components are connected at the same

physical layer. SoCs are small, power efficient, and reliable, but they have extremely

high design costs, and component-testing/prototyping may be difficult.

In general, an SoC is made of the following components:

General-Purpose Processors (GPP)

Memory Elements

Interconnection Infrastructure

Pre-defined IP Blocks

Platform-Based Design

The design of an SoC, often starts from a predefined architecture called platform

template; on the template a number of components and interconnections is already

present.

The designer of the accelerator has to interface with the pre-existing components, in

the limited space available on the chip: once all the components have been placed and

the designed is finalized, the SoC platform becomes an Soc Architecture through the

use of an EDA Integrator.

A first degree of customization is represented by what can be added to the platform:

soldering hardware IPs (soft or hard), programming FPGA logic, or writing embedded

software.

Another degree of customization is represented by the level of flexibility of the

added component: programmable cores (e.g. GPU or specialized CPU), configurable cores,

or dedicated cores; greater flexibility usually equates to some degree of loss of

performance.

Not only the SoC platforms, but the accelerators' designs are themselves reused: the

percentage of reused components rises with the number of IP blocks - e.g. whenever a

core is replicated, its accelerators, memory controllers, etc. are also reused.

Adding an accelerator to a system requires an integration process - e.g. any

accelerator is a possible source of data and potentially requires adding bandwidth on

the databus.

Adding an accelerator has its monetary cost: either for designing the accelerator

itself, paying its license or designing the integration; this means that accelerators

must be used efficiently.

SoC Components

General-Purpose Processor (GPP)

General-Purporse Processors (GPPs) are flexible; to execute a new functionality, there

is no need to design/rewire the hardware: in a GPP, a new tasks is executed by loading

the instructions into the control units, and the data into the datapath accordingly.

GPPs are almost always present: functionalities interacting with the storage and the

file-system are bottlenecked by I/O latency, and accelerating them in hardware

wouldn't yield benefits; the GPP prepares the data for the hardware accelerator,



either by writing it to a scratch-pad memory or loading it from storage onto the main

memory.

On the contrary, accelerators cannot load different programs as their functionalities

are fixed and built in hardware: they only load data; usually custom accelerators are

used to execute critical kernels that are common to more programs.

An issue is to determine the specialization of our accelerators, that is decide the

granularity of the kernels to implement in hardware. E.g. we have an application that

requires voice recognition: we can design a small accelerator only for matrix

multiplications, leaving the rest to the GPP, or we can design an accelerator for the

entire voice recognition function; naturally, the smaller accelerator is more general

and more reusable for purposes outside voice recognition, while the larger one will be

more efficient.

Software/Hardware Stack & Instruction Set Architecture (ISA)

1. Problem

2. Algorithm

3. Program (in high level programming language)

4. Runtime System/OS

5. (Istruction Set) Architecture

6. Microarchitecture

7. Logic

8. Circuit

9. Electrons

The Instruction Set Architecture (ISA) is the interface between software (1 through

4), and hardware (6 through 9): it provides a way to tell the hardware what should be

done.

The microarchitecture refers to the underlying implementation through which the

compiler executes the instructions of the ISA: two processors might share the same

ISA, but provide very different implementations as long as the semantic of ISA

specification is respected (e.g. out-of-order execution).

CISC vs RISC

Complex Instruction Set Computers expose ISAs with > 1000 instruction, of variable

lenghts (from 1 to 15 bytes); CISCs offer different addressing modes: operands for an

instruction may come from different locations - e.g. registers, stack, etc... E.g.

Intel x86

Reduce Instruction Set Computers expose ISAs with around 200 instructions, usually of

the same length; the architectures are load/store, so the operands must always be

loaded from the stack to the registers first. E.g. MIPS, ARM

Tightly-Coupled Accelerators & Loosely-Couple Accelerators

On an SoC the accelerators may be:

Tightly-Coupled Accelerators (TCA) are accelerators integrated inside the CPU, either

optimizing pre-existing instructions or adding an ISA-extension.

Being tighly-coupled, TCA share key resources with the CPU - i.e. register file, MMU,

L1 cache; the size of a TCA must be limited and its execution time must be in line

with the other Functional Units of the CPU (otherwise it will stall the entire CPU);

the amount of data used must also be limited to the registers.



It is ideal for simple operations that are frequently used.

Examples are: MAC operations, encryption operations.

In terms of programmability, adding an extension to the ISA is not always possible as

the most used ISAs are fixed and proprietary, which means extension cannot be freely

added; RISC-V is an open-source ISA, that allows anyone to add a custom ISA.

Loosely-Couple Accelerators (LCA) are accelerators outside found the CPU and

controlled through drivers; they access the data can be passed to them by the CPU

through scratch-pad memory or they can fetch it from main memory through DMA

controllers; The CPU can offload the data and computation to the accelerator and run

in parallel; these accelerator are more efficient for large data sets.

In terms of programmability, the software interface must offer functions to copy data

into and get data out of the accelerators; additionally, synchronization mechanism are

also need. All of these functions must a corresponding hardware to support them.

The designer must decide on the size of the PLM, the number of ports and

synchronization mechanisms.

Storage Elements

Storage elements can be either:

On-Chip, temporary storage for direct and fast access

Cache, non-programmable/transparent storage between memory and another

component; caches reduce the average access time, but also make it

unpredictable.

Scratchpad, programmable memory through software directives; data has to

be manually loaded, but access times are predictable (no misses).

Private Local Memory, memory local to the component and not visible to

the system.

Off-Chip, larger memories accessed through memory controllers

Main Memory

Disk

Memory Design in LCA

The design of memory in an accelerator has huge impact on performance:

firstly, memory represents 80% to 90% of the accelerator's total area: any memory

increase result in a significant increase in the total area of the accelerator;

secondly, since nowadays the size of the problems are many order of magnitudes greater

than available on-chip memory, data transfers are constant and usually represent the

bottleneck of our applications.

An important decision regarding the technology is between:

Distributed Registers (e.g. flip-flops)

Memory IP blocks (i.e. SRAM)

For the same storage capacity, SRAM is around a quarter of the size of distributed

registers, but usually offers only 2 reading ports and 1 wiriting port - meaning data

accesses must be sequentialized and parallel opportunities will be lost; more ports

can be implemented using multiple banks, but then the data must be partitioned and



accessed accordingly.

Ultimately the choice must consider how much data is accessed per clock cycle.

CPU and Memory Hierarchy

An ideal memory would offer infite capactiy, no latency, and infinite bandwidth at

zero cost; in reality, these requirements are conflicting: for a fixed cost, the

faster the memory, the smaller the capacity.

It is possible to approximate an ideal memory exploiting the principle of locality and

using a well-engineered Memory Hierarchy - i.e. multiple levels of storage - like

registers, on-chip caches, off-chip caches, main memory, storage disks and remote

storage.

The same principle can be applied to accelerators.

In the presence of multiple processing elements, a memory hierarchy introduces the

problem of coherence.

When the execution is offloaded to the accelerator while the CPU is on hold, then data

transmission at the beginning and end of the computation is sufficient. When the

execution is parallel, more complex synchronization/coherence mechanisms are required.

Some accelerators have Direct Memory Access (DMA) - i.e. indipendent access to main

memory -, loading from main memory input data to the PLM, and then storing to it

output data.

Other accelerators utilize scratchpad memory, where is the CPU that loads and stores

the necessary data.

Interconnection System & Communication Synthesis

Whenever on an SoC resides more than one component - whether they are two GPP cores, a

GPP and an a coprocessor or even two coprocessor - there arises the need for an

Communication Infrastructure - or Interconnection System: a communication medium used

to manage on-chip resources and exchange massive data among cores; ideally it will

provide low latency and low energy dissipation.

The communication infrastructures costs around 50% of the chip's power consuption, and

it's still increases due to the increasing intereconnection between the chip's

component.

Latency is largely determined by the physical distance between components on the SoC

and the connection bitwidth; the designer should pay special attention to latency of

the communication as it represents a possible bottleneck for the components

throughput, in which case a lower component frequency may save power.

In communication we defined the following terms:

Master (or Initiator): the component who initiates the data transfer

Slave (or Target): the component who responds to the data request

Arbiter: the component that controls the access to the shared bus, and grants

the initiator's request

Decoder: the componenent which the trasnfer is intended for

Bridge: an element that connects two buses, acting as a slave on one side and a

master on the other

In general, the communication can follow shared address or message passing paradigm.

In the shared address paradigm, there exist some physical memory resource that

multiple components can access to perform implicit communication; the access must be

coordinated and authorized.



In the message passing paradigm, the messages are sent explicitly between the

components; appropriate protocols and interfaces are required.

The communication can be physically implemented through point-to-point connections, a

bus-based interconnection or a network-on-chip.

Shared Address

In the shared address paradigm, there exist some physical memory resource that

multiple components can access to perform implicit communication.

According to the architecture, the memory can be a Uniform Access Memory (UMA), where

access times does not depend on the processor that perform the access, or a Non-

Uniform Access Memory (NUMA), where some processors can access the memory faster than

others.

NUMAs are more scalable because they don't need to guarantee the same access times to

all processors.

Message Passing

Point-to-Point (P2P)

A Point-to-Point (P2P) is a solution made of fixed wires; it is highly specialized,

but it is not reusable.

It is particularly useful at a component level: it maximizes performance inside the

single accelerator, and changes to the network are automatized.

Bus-Based Interconnection

A Bus-Based Interconnection is simple solution to communication, with low area

occupation: the bus itself is a collection of wires (unidirectional, for control, or

bidirectional, for data) and if the number of components is limited, the arbiter -

i.e. the component who grants access to others - is also relatively simple.

Interfacing with the bus is also simple: the bus protocols are described thorugh

timing diagrams, and there are standard interfaces -e.g. the AXI interface - that can

be synthetized automatically.

More complex solutions are variantions can be used, such as multi-level, hierarchical

or segmented busses.

Ultimately, it's not highly scalable as the bus represent a bottleneck.

It's typically used with UMA: the memory is a separate component on the bus.

Network-on-Chip (NoC)

A Network-on-Chip (NoC) is most scalable and extensible solution; it's more complex

and more expensive in terms of area: additional components that act as routers are

needed.

It should be used only when the communication among components is concurrent and

unpredictable.

It's typically used with NUMA: each processor has a memory that can be also accessed

by others; using a UMA would create a bottleneck on the network towards the only

memory.

A NoC is made of:

Tiles, the space for the computational nodes

Switch/Routers



Network Adapter or Network Interface, used to decouple the computation from the

communication

Links, the P2P channels that implement a network insensitive protocol

NOC TOPOLOGIES

Different Topologies can be created starting from the NoC elements.

The mesh is the most typical, but the components at the boundaries have few adjacent

components; a variations on it is the torus or mesh-torus. There are many other e.g.

Ring, Binary Trees, and even Irregular Topologies.

NOC PROTOCOLS

A NoC uses either circuit switching or packet switching; packet switching in

particular requires buffering of the packets which can be costly - in terms of area,

especially in FPGA where memory resources are costly.

A NoC implements either a fixed routing schemes or a adaptive routing schemes: in the

fixed routing schemes, the path followed by communication with between 2 components is

predetermined, but can lead to congestion; the adaptive solution is complex as it must

implement a complex algorithm, but may solve congestion problems.

A NoC also implements communication on a stack, the μ-stack divided into transport,

network, data-link and physical layers.

Communication Synthesis

Communication Synthesis is a top-down design task that, starting from an high-level

communication abstraction, produces a synthetizable product; it is performed through:

Channel Binding

Communication Refinement

Interface Generation

Channel Binding

In Channel Binding the abstract channels are assigned to physical resources; a design

may use multiple abstract channels, but those may be physically implemented by a

single one grouping togheter channels that aren't used concurrently or that are used

by the same processes.

Naturally, where multiple abstract channels are mapped into the same physical channel,

a multiplexer will have to be placed.

Communication Refinement

Once the number and placement of physical channel is determined, the Communication

Refinment step determines the other details: the width of the channels - depending on

the usage -, the control strategy - the arbiter that assigns controls of the bus -,

and the communication protocols.

Two common communication protocols are:

the Strobe Protocol, where the master simply makes a request for data on the

request line and the transfer can be considered complete after some fixed

interval.

the Handshake Protocol, where the slave signals the master with an ack signal,

when the transfer is completed.

Interface Generation

In Interface Generation the interfaces are generated, based on the previous 2 steps;

the interfaces may be software (e.g. device drivers) or hardware.



Design Flow & Design Challenges

TODO

ASICs and FPGAs

An Application Specific Integrated Circuit (ASIC)n is a circuit designed to perform a

specific function; it does not necessarily mean that the chip is not able to perform

general tasks, but it is not as efficient.

Physically the circuit is a small silicon die, surrounded by a larger packaging area

made of pins that expose the interface of the chip.

ASICs can be of different types:

Fixed-Function ASICs

Full-Custom ASICs, in which the designer has the possibility to place

every single transistor

Standard-Cell-Based ASICs, in which the designer creates the chip by

combining predefined cells

...

Reprogrammable ASICs

Field-Programmable Gate Array or FPGA, here the functionality of the

chip is its programmability.

...

As usual the tradeoff is between speed/cost and flexibility.

Full-Custom ASICs

Full-Custom designs offer the highest performances and the lowest part cost (smallest

die size, smallest number of transistors); the software equivalent would be writing

code using assembly: the product can be very optimized both in speed and size, but is

time-consuming and error-prone.

Standard-Cell-Based ASICs

Standard-Cell-Based ASICs are made from on a set of full-custom macros that implement

very well optimized small functions (standard cells); those designs are then

repeatetly reused.

Physically, these chips are organized in a stardard-cell area and a fixed-block area.

ASIC Cell Libraries are a collection of cells implementing basic logic functions;

libraries can be provided by the ASIC vendor, who will then complete the design when

the designers hands-off the netlist, by a library vendor, which allows designers to

own the mask for the part, or be custom-made.

The standard cells have the same height so that the can be placed in predefined rows

in the stardard-cell area.

Design Flow of ASICs

Starting from HDL code, the designer obtains a netlist of the system which is then

partitioned in macro-blocks; then the designer decides the layout of the blocks on the

chip, and then create the blocks by placing the cells and interconnecting them through



routing.

Finally, the designer must check that the design still works when accounting for the

added delays/loads of the wiring.

Gate-Array-Based ASICs (FPGAs)

Field-Programmable Gate Array (FPGA) are integrated circuits that can be configured by

the user to emulate any digital circuit (if there are enough resources avaiable on the

FPGA). Programmability is achieved through a core of configurable logic blocks (CLBs),

that can implement combinational and sequential logic; each CLB os connected to its

neightbours through programmable interconnects (Switch Boxes); finally, surrounding

the core are memory blocks (BRAM) and programmable I/O cells.

Each CLB has a Look-Up Table (LUT), that is used to implement a combinational

function, and a flip-flop, that is used to implement sequential logic; they are bot

connected to a mux that selects the signal depending on the configuration.

The SB are similarly configured, so that the signal from a cell can be fowarded to any

of the 9 adjacent cells; additionally, so CLBs may have to be used as routing cells.

Because of the regularity of its design, a large number of CLB and SB can be fit onto

the chip.

Economis of ASICs

The total cost of a single ASIC chip is:

total part cost = fixed part cost (or non-recurring cost or design cost) / volume +

variable part cost

In a Fixed-Function ASIC, the design cost dominates the fabrication cost, while in an

FPGA, the opposite is true.

Latency-Insensitive Systems

Systems have become progressively more complex: they are made of hundreds of IP

blocks, designed and owned by different companies; additionally each IP block is

reused in many architectures where it must work correctly interacting with other

components, often unknown at design time.

Timing violations

Ultimately the clock period for the entire system will be determined by the maximum

latency on the components' critical paths.

Furthermore, when laying out the components on the chip, additional delay is created

by the interconnection between - i.e. the length of the wire; this could lead to

timing violations.

When dealing with Deep Sub-Micron Process Technology (sub-micron meaning < 1000nm, and

deep sub-micron meaning < 100-90nm, which nowadays common use even in

microcontrollers) improvements in transistors technology do not correspond to

improvements in the wire technology: wire delay becomes more dominant as the

transistors shrink;

Additionally, when transistor are at this scale, there is an high delay variability.

A first remedy is to add registers at the output and input of the components,

buffering the data.



A second remedy would be to reconsider the layout of the components, as ultimately an

excessively long wire is a topological problem, by placing interacting componenets as

close as possible.

Ultimately, this solution is insufficient at scale.

There is a need for a design paradigm that is insensitive to delays.

Latency-Insensitive Design

The problem is the following:

Given a Synchronous Design composed of communicating modules, how can we make it

tolerant to Arbitrary Communication Latency?

Naturally, the system to remain synchronous.

Additionally, the solution must be a reusable pattern.

Asynchronous vs Latency-Insensitive Systems

Asynchronous Systems require designers to think digital systems in completely

different way: there is no clock, but event-based system where all the componenents

communicate using the same protocol with a complex and technology dependent

handshacking.

In a Latency-Insensitive Design (LID), the system remains synchronous but the

components can expect an arbitrary delay (which will be a multiple of a clock period)

in data exchanges.

It is the sequence of events, and not the timing that determines its correctness; this

complicates somewhat the testing, as two equivalent component do not produce the same

signals at the same time.

Such a Latency-Insensitive System is called a Patient System.

Latency-Insensitive Protocol

Protocol is simple: at each clock cycle the source sends packets with a void and a

data field; additionally, the sink at each clock cycle sends back a stop signal.

data is naturally the payload, while void indicates if the current data is valid or

not.

If void = 1, the data is not informative and the packet is a stalling event.

stop indicates that the sink is not able to process/buffer additional data; this can

happen for a number of reasons: it might be busy with data coming from another

component, or its latency his higher than the source's so it has to stall it.

Implementation

Practically the protocol is implemented using 2 hardware components:

Relay Stations

An arbitrary number of Relay Stations is added along the wire, each introducing a

latency of 1 due to 2 flip-flop that buffer the data and void signals.

If the data is informative and the stop is high, the data is buffered into an

additional flip-flop until the stop signal low again.

The stop signal is also relayed up the wire to the previous relay station, until it

gets to the source's shell, that stalls the source component.



Shell

The Shell is a wrapper for a component that has not been designed with this latency-

insensitive protocol, assuming the component is stallable; then the Shell is able to

manage the void/stop signals in a transparent way.

Incoming data, if it's informative, is enqueued in FIFO queue; when the queue is full,

the Shell sends a stop signal applying backpressure along the chain of relay stations

back to the source.

For outgoing data, the component is stalled if a stop signal is high.

Latency-Insensitive Protocol for Physical Design

During the synthetisazion of the layout, if a wire introduces a latency greater than

the clock than it is segmented using Relay Stations and Shells.

Latency-Insensitive Protocol for System Design

Latency-Insensitive Protocol allows for the creation of complex system where the

components can be optimized indipendently.

Ultimately, the system built will be synchronous but reactive to a data availability

event. These latency-insensitive primitives can be synthetized with low overhead: 3%

in both ASIC and FPGA technologies.

Intro to High Level Synthesis

The standard methodology for designing an IC is High Level Synthesis (HLS): the

designer starts from a description of the algorithm written in a high level software

language (e.g C, C++, SystemC, Python - and principle any software language), that is

automatically translated in an RTL description.

In particular, the automatic translation process is parametrized, and can be

controlled by the hardware designer: this allows to produce multiple solutions

exploring the design space and selecting the best configuration both a component and

at a system level.

The designer then uses the logic synthesis allows us to go from

behavioural/RTL/structural levels to the actual netlist.

Design Tradeoffs

Exploring the design space means manually looking at the different solutions and

evaluating the space-time tradeoffs between them: here "space" are the area and the

resources used in the component, and "time" are frequency, latency and throughput.

First the designer must discard the solutions that are Pareto-dominated by others -

i.e. solutions that are strictly dominated in all aspects by other available solution.

Additionally since the number of Pareto dominant solution is still high, the designer

must analyze only solutions that have significant differences in the performance/cost

tradeoff.

Advantages of HLS

High Level Synthesis brings plenty of advantages to companies:



Productivity

Allow for easier modelling

Reduce the LoC by an order of magnitude

Generate RTL much faster than manual method

Quality of the Results

Automatic parallelism extraction

Multi-cycle functionality

Loop Optimization

Optimazation of Memory Accesses

To enable design exploration of HW/SW solutions by parametrizing the

translation

HLS also provides an easier entry point into hardware design, as it requires less

expertise (e.g. knowing C as opposed to knowing Verilog), making it easier to find

personnel.

That said, it is often said that HLS is not a tool for software designers; it is an

auxillary tool for hardware designers who can then tune optimization or manually write

performance critical parts of the result obtained through HLS.

HLS History

HLS technolgies became of research interest in the mid 80's.

Starting from the early 90's the first commercial solutions appeared: they translated

behavioural HDL and targeted ASIC chips; these solutions were ultimately failures as

programmers that knew behavioural-level HDL often knew RTL HDL, and the cost of ASIC

chips made optimizations critical: thusly, the only engineers capable of using these

tools could already do a more cost efficient job manually.

From the early 2000s, thanks to HLS tools capable of synthetizing from higher level

languages (e.g. C, C++ and various extensions) and the introduction of FPGAs, the

tools started having commercial success.

Vivado HLS is the most famous tools in the HLS family.

The tool was born from a small company of 25 employees, started from a research group;

at the time it was named AutoPilot.

The company was acquired by Xilinx Inc, the larget FPGA manufacturer, and released as

Vivado HLS; it was licensed for free to anyone buying an FPGA; using HLS anyone who

knew C could program the FPGA itself.

Xilinx itself was later acquired by AMD.

LegUp is the most used OpenSource tool for HLS founded by Altera, and targeting Altera

FPGAs.

Later Altera was acquired by Intel.

The High Level Synthetizer

The translation of high level code into an RTL description is carried out

automatically by an High Level Synthetizer; the HLS is built on compiler's theory and

technology, and as such it is split between a front-end and a back-end.

Input:



High Level Programming Language, which will then be turned into an

Intermediate Representation

Functional Resources, which are the resources that can be used in the

synthesis, each with an area/delay so that synthetizer can make optimal

choices and respect the constraints

Constraints

Objectives

Output:

Hardware description of the Datapath and Controller

Ultimately, the High Level Synthetizer's work consist in placing the operations of an

high level algorithm in time - i.e Scheduling - and space - i.e. Binding.

Constraints and Objectives

Constraints and Objectives shape the resulting values of Area, Latency, Throughput,

etc.

Constraints are rules that the solutions must respect to be considered valid,

restricting the design space; they are usually represented by an hard limit.

Objectives are targets that make some solutions preferable to others - i.e. we discard

solutions that are Pareto dominated by others based on the objectives; they are not

strict and are usually represented with a range.

Area is the number of modules/resources available or the size of the silicon die.

Latency is the number of cycles that elapses from the beginning of input to the

complete output.

Throughput is the amount of data can processed in a given amount of time; it usually

applies to repeated or continuous computations.

Datapath and Controller

It is a paradigm for describing architectures by partitioning them in 2 logical

components:

the Datapath takes the external datainputs and converts them into dataoutputs through:

functional units (e.g. adders, MACs), memory resources (i.e. registers and memory IP

blocks), and interconnection resources (e.g. mux, buses, ports).

the Controller is a finite state machine (FSM) that handles control signals that can

be external (e.g. start, reset) or coming from the datapath (e.g. the result of a

comparison that determines the branch) and transforms them into signals to the

datapath.

Together these components are functionally complete in respect to the specification:

they model all possible behaviour we want to synthetize.

HLS and Compilers Front-End

The front-end use to extract IR from High Level Software Languages is based on

existing mature compilers like GCC or LLVM; the reasons is that compiler theory and

compilers has been around for more than 40years, and compilers already implement the

interfaces to extract, analyse and optimize IRs.

Intermediate Representation (IR)



Intermediate Representations are language agnostic representations used by the

synthetizer to represent the semantic of the code; analysis and optimization are all

done on IRs and a synthetizer may switch from an IR to another more suitable at a

particular stage;

The concept is equivalent to IR for compilers.

Abstract Syntex Tree (AST)

Abstract Syntax Trees is language dependent representation where each node is a

terminal character of a grammar production: in particular internal nodes are operators

and operands are the leaves

3-Address Code

In 3-Address Code each statement is converted into the form res = operand1 operator

operand2; this IR turns all operators into a standard format that can be more easily

translated

Control-Flow Graph (CFG) with Basic Blocks

A Basic Block is a maximal sequence of instructions containing no label and no jumps:

the control flow can only enter at the beginning and exit at the end, and once inside,

all instructions of the basic block will be executed.

To obtain basic blocks, the synthetizer must find the leaders - i.e. the beginning of

the blocks - which are jump targets like functions entry points and branches; the

basic block extends from one leader to the next.

From the relationship of conditional/unconditional jumps between blocks, then the

synthetizer composes the Control-Flow Graph; this representation is used to synthetize

the controller that signals each component that represents a single basic block.

Single Static Assingment (SSA)

In Single Static Assingment each variable is assigned only once. Whenever a variable

is assigned multiple times in the source code, a new variant of the variable is used

instead, and if an expression uses a variable whose variant is only known at runtime,

phi-functions is used instead: the phi-functions will determine at run-time the

correct assignment.

Phi-functions are always found at the beginning of a basic block and create a new

variant that can then be used throughout the basic block. Physically they are

implemented as multiplexers or registers; if the variants bind to the same the

register, then there is no movement of data and the phi-function is absolved by the

register.

This IR highlights true data dependencies, distinguishing them from name dependencies.

Data-Flow Graph (DFG)

Each basic block will need to synthetized as datapath; to do this, the synthetizer

builds a Data-Flow Graph that represent a single basic block and shows the data

dependencies between the statements:

Read-after-Read (RaR or Input) dependencies do not represent real dependencies and can

be executed in parallel Write-after-Write (WaW or Output) dependencies and Write-

after-Read (WaR or Anti-) dependencies are name dependencies and can be eliminated

using SSA.



In the end the DFG models only true dependencies highlighting what operations can be

executed in parallel; using this graph the synthetizer can builda modularized data-

path.

HLS and Compilers Back-End

Naturally, HLS analysis and optimization are hardware specific (e.g. memory

partitioning in banks, bitwidth analysis) as is the final translation to RTL; for this

reasons the HLS Core Engine (i.e. proprietary algorithms and back-end) is added to

traditional open-source compilers back-end.

Compiler transformations are controlled by the hardware designer through pragma

annotations, which easier to read since they are inside the code written next to the

statements they refer to, or TCL directives, which are easier to change since they

don't does not require modifying the source code and easier to automatize for

automatic design space explorations.

Examples are: inlining functions, parallelizing or pipelining loops, partitioning

memories into banks, etc.

The synthetizer allows the designer to choose the opportune bidwidth: the default

choice is the size of the corresponding types in software (e.g. C integers, floats

will be translated to 32bits, doubles to 64bits), but, using synthetizable libraries,

we can specify types of arbitrary length saving unnecessary logic for unnecessary

bits.

The synthetizer also translates function signatures into interfaces that maintan the

same semantic: values that are passed-by-copy are converted into inputs ports, while

value that are passed-by-reference are converted into memory interfaces to either

local data (PLM/Scratchpad Memory with fixed latency) or remote data (Cache/Off-Chip

memories with variable latency).

Standardized interfaces are available. Additional ports are also automatically added

for the start, reset, done signals.

HLS: Scheduling and Binding

Scheduling

Scheduling is the assignment of operations to time (control steps), within the given

constraints on hardware resources and latency.

Scheduling is one of the first steps of the HLS core engine: it analyzes data

dependencies for parallelism, exploits mutual exclusion (code that is never executed

at the same time can be scheduled together), and optimizes loops (through

parallelization or pipelining).

The inputs for the scheduling are:

IRs, like the Data-Flow Graph or the Control-Data-Flow Graph

Clock Period

Functional Units Latencies (in nanoseconds, indipendently of the clock period)

The outputs is the start time (the clock cycle) of every operation.

The costraints are the data dependencies, resources, and timing constraint.

The goal is the minimum latency or a area/latency trade-off.

Scheduling Constraints



Scheduling is usually performed under some constraints, but can also perform

uncostrained analysis: using infinite resources will provide the designer with the

lower bound on the latency, and an estimation on the maximum amount of hardware

resources.

Scheduling can be performed under some resource constraints: if some indipendent

operations are serialized, more resources will be shared and the final result might

stay under a certain resource budget.

This may be particularly useful when the target is an FPGA, since it has a set of

CLBs.

Scheduling can be also performed under some timing constraints: the operations will be

scheduled so that the last operations will finish before a certain time budget.

Scheduling Algorithms

Scheduling optimization can be done through exact algorithms: Linear Programming or

Integer Linear Programming where the variables are the clock cycles and the resources

and constraints are the order of operations according to data dependencies and the

variables.

Being an NP-hard problem, scheduling is usually solved through heuristic algorithms or

meta-heuristic (based on simulations).

As-Soon-As-Possible (ASAP) Scheduling

ASAP is an algorithm for unconstrained scheduling, and as such it provides a lower

bound on latency.

When an operation is available - i.e. when all the predecessor operation in the Data-

Flow Graph are completed, based on their clock cycle delays - the operation is

scheduled.

start_time(op) = max(start_time(pred(op)))

As-Late-As-Possible (ALAP) Scheduling

ALAP is an algorithm for latency-constrained scheduling, without constraints on the

resources.

Assuming the sink NOP is scheduled at the last possible clock cycle, the algorithm

walks backwards through the DFG to find the last possible cycle at which an operation

can be scheduled without creating delays.

Critical Path

Combining ASAP with the ALAP - i.e. setting the sink NOP time as the one found through

ASAP - we can find the critical path: the difference between the ASAP time and the

ALAP time for each operation represents the operation's mobility; those operations

with 0 mobility cannot be delayed without causing delays to the overall computation.

Operations that are not critical may be delayed to allow for resource sharing, without

impacting latency.

Even operations that are critical may be delayed, sometimes at little latency cost,

but with large impacts on resources.

List-Based Scheduling

List-Based Scheduling, along with its many variants, is one of the most used algorithm

in constrained scheduling.



It is a greedy, heuristic, polinomial (O(n)) algorithm that selects the operations to

be scheduled based on a criticality metric (e.g. low mobility).

For each available resource, it selects an operation in that resource's ready list,

based on the critically metric; the resource is set as busy, and when the operation

completes it is removed and all its successors are added to the ready list.

The process is repeated until all operations have been scheduled.

What determines the quality of the final result is the quality of the criticality

metric; if the algorithms uses only static mobility, then an operation with high

mobility is likely to be starved.

Using dynamic mobility yields better results: the mobility of an operation is

decreased each time it is passed over.

Scheduling Challenges

Complicating the algorithms is the existence of multi-function FUs that can execute

more than one operation at a time, pipelined FU that can start an operation before

compliting the previous one.

Some FUs may take less than a clock-cycle to complete, allowing then to perform more

operation in the same clock-cycle chaining.

Some FUs, e.g. FUs that communicate with an external memory, may have unbounded

latency; then a synchronization protocol is needed to schedule the successor.

Binding

Binding is the assignment of operations to hardware resources (functional units), such

that there are no conflicts in using them and their total number is minimized.

The naive approach to avoid conflicts would be to assign each operation to a different

functional unit. Since binding is usually ran after scheduling, we can use scheduling

information to identify sharing opportunities: 2 operations that are never executed in

the same clock cycle may be binded to the same FU.

Binding can be also ran before scheduling: binding 2 operations to the same FU will

force their serialization.

Binding, like scheduling, it is a NP-Complete problem, usually solved through

heuristic.

Binding algorithms consider operation types indipendently, since different kind of

operations do not compete for the same resources.

Compatibility Graph

Two operations are said compatible if they are not concurrent and can be executed by

the same resource.

Then, a Compatibility Graph can be built by adding an edge to between 2 compatible

vertexes.

The binding problem can be re-formulated as the problem of partitioning the graph in

cliques (fully connected subgraphs); each clique can share the same resource, and

minimizing the number of cliques means minimizing the number of resources needed.

A variant of the problem imposes a minimum number of cliques - and consequentially a

minimum number of FUs - to reduce the interconnection logic: in FPGAs, the cost of a



multiplexers - which are needed for resource sharing - might be comparable to the cost

of a FU.

Another variant of the problem utilizes weighted edges.

Conflict Graph

Two operations are said conflicting if they are not compatible. Then, a Conflict Graph

can be built by adding an edge to between 2 conflicting vertexes.

The Conflict Graph is the complementary of the compatibility graph and identifies

operations that cannot share resources.

Solving the Coloring Problem on the conflict graph, where each color is a resource,

will yield the minimum number of resources; a trivial solution, maximizing the number

of colors, is an admissible solution and provides an upper-bound on the number of

resources.

HLS: Synthesis of the Micro-Architecture

After the operations of scheduling and binding, HLS proceeds with defining the RTL

microarchitecture of Controller, Datapath and of the interfaces with local/external

memories.

Controller

The Controller is described as a Finite State Machine with States and Transitions; the

Controller guides the control-flow of the Datapath through its Output Function (e.g.

signals to multiplexers, write enable in the registers, etc.).

The States represent the operations that must be executed in a clock cycle.

The Transitions represent the evolution of the behaviour overtime.

Among basic blocks, the controller transitions from from the last operation of a block

to the first operation of the next one, as defined by the CFG.

Inside a basic block, the controller transitions between states that represent the

sequence of operations that must be executed from beginning to end of the basic block,

as defined by the in block scheduling.

The Output Function depends on the state of the controller, external signals and

signals coming from the datapath.

Datapath

The Datapath is a collection of hardware resources for computation (i.e. functional

units) and storage (local memories, e.g. registers) and interconnection (e.g. wires,

multiplexers).

In particular, multiplexers are needed when there are multiple sources for an operand

of a functional unit; and this is often due to resource sharing. In FPGAs, cost of a

multiplexer can be comparable to the cost of a FU (n possible sources need n-1

multiplexers); so we might reduce resource sharing, and still impact the area

positively.

Memories amd Memory Operations



Memories have a big impact on the design of accelerators: the main reason to add

hardware accelerators to a SoC is to exploit massive parallelism, which implies a

steady stream of a lot of data in and out of the accelerator.

Pointer Synthesis

Up until now we've seen how to map software operations to hardware resources, but

there is also the problem of mapping memory:

C-based languages allow the user to operate on a Unified Memory Space, using pointers

that can target any variable regardless of the placement in memory; pointers to

arbitrary memory are inconvenient to translate in hardware as the memory location is

not transparent as every memory resource to which the pointer can refer to must be

then connected to component.

Hardware synthesis of pointers requires:

to partition the software unified memory model and map it onto different

hardware resources

to generate logic to resolve at pointer to a hardware resource, and access the

data

Some pointers can be resolved statically; when it is not possible, an hardware

architecture must be designed to allow access to multiple hardware resources; this is

done through a daisy chain architecture, that broadcasts the request through an

internal memory bus to various harware component, and the correct one responds - the

cost is that memory access must then be sequentialized and parallelism is lost.

Private Local Memory

One of the advantages of HLS is being able to retarget the designs to many

architectures; the memory design should also be indipendent of the architecture.

One of the design choices is the amount of memory banks that should be used:

each memory bank contains a fixed number of ports (usually 2), and splitting the PLM

into banks allows for more parallel accesses; A first drawback is that the parallelism

can be used only if the memory is accessed without creating conflicts, either by

partitioning the data into the banks according to the known pattern or duplicating all

the data into every bank. A second drawback is using multiple banks takes up more

hardware resources for the same amount of memory: in FPGA a bank is mapped to a BRAM

block, while in ASIC bank introduces a fixed area overhead of around 20%.

Array Paritioning and PLM Generation

To achieve maximum parallelism, it is possible to partition the local arrays into more

memory banks, according to the access pattern of the component.

When the access pattern is linear, the partitioning is trivial; otherwise a

specialized PLM can be generated starting from the scheduling obtained in the HLS

process.

In general even if the access pattern looks linear and parallelizable in the high-

level code, it is the scheduling of the operations which the determines the real

access pattern in the hardware.

Compatible PLM

If two arrays have lifetimes that are not overlapping then they are compatible and

they can be mapped on the same memory IP.

This is the case when two accelerators are not executed at the same time; but this

information can only obtain at system level: it is possible to have HLS design first



the logic of the single components, and then a common Memory Subsystem according to

the memory requirements of the components.

A classic example of a memory subsystem optimized for specific application is the

ping-pong buffer (or double buffer) architecture used in producer-consumer pattern:

using two buffers, the producer writes data on a buffer, while the consumer reads from

the other; the two components never access the same memory at the same time and no

conflict are created.

Memory Compatibility Graph

As in the binding phase, where the problem was mapping operations onto FUs, the

problem of allocating data structures to memory resources can be represented through a

graph.

Each node represent a data structure; two data structures are compatible if their

lifetime is not overlapping, and their are connected by an edge.

The problem of Memory Compatibility can be re-formulated by partitioning the graph in

cliques (fully connected subgraphs); a memory cost can be defined for each clique, and

the goal is to find the partition the minimizes the total cost of all the cliques.

Then the address space is split into a number of caches; with an appropriate

translation, the results can be fetch from the banks using tags and simple static

logic, much like in a processor cache.

Interfaces with External Memory

While the size of the external memories has been growing linearly through the years,

the size of internal memories has not; additionally the size of the problems are

evergrowing.

For these reasons, the SoC will have to perform a large of data transfer to the off-

chip memories, and these will be a bottleneck for the application.

HLS: Design Challenges

HW/SW Codesign

Hardware accelerators are used to speed up the execution of a software application;

implementing the entire application in hardware is rarely, if ever, advantageous -

e.g. interacting with the filesystem is bottleneck by I/O speed, so there is no

advantage in executing it in hardware. Additionally, there might not be enough space

to implement the whole application on the target device.

The designer has to integrate the software and the hardware.

On the software side, the designer has to:

partition the application into tasks

map them onto hardware components (among which is the CPU that will execute the

tasks in software)

schedule tasks to solve contention on shared resources

The SW/HW partitioning is a bi-partitioning problem (i.e. there are only 2

partitions).

The designer can use a software oriented approach, starting from the entire

application in software and moving tasks to hardware depending on their performance,



or an hardware oriented approach, starting from the the entire application in hardware

and moving the tasks to software depending on the cost of the hardware implementation.

On the hardware side, the designer has to customize the application; this can happen

either before fabrication (as in the case of an SoC platform) or after fabrication (as

in the case of an FPGA).

Challenges in Heterogeneous Systems' Design

The approach taken in the development of heterogeneous system is bottom-up, following

a compositional design; this approach allows the design to tackle the evergrowing

complexity of hardware design.

The problems that the designer faces are:

in the short term: the development of efficient components and

interconnections, working at a component level

in the medium term: the integration and optimization of the components, working

at a system level

in the long term: the automatic porting of legacy applications on parallel and

heterogeneous systems

For each of these challenges, the designer must explore throughtly the solution space,

and the design of these solutions must be automated through Electronic Computer Aided

Design tools.

Component Level Design

Nowadays HLS tools are able to approach complex software specification and

automatically generate corresponding hardware acceleratos.

"HLS is now push-button, but it has to be pushed the right way"

The challenge of the designer is to explore the various solutions and in particular,

to balance the amount of resource sharing; as we've seen, while resource sharing

decreases the number of functional units, it increases the complexity of the

interconnection: it increases the area of the design (i.e. by adding multiplexers),

increases propagation delays and power consuption (i.e. longer wires).

Design Space Exploration at Component Level

The designer explores the design space by placing constraints and looking at the

automatically-generated designs.

To explore the design space, starting from the specification, the designer can use a:

coarse-grain method: by simply limiting the number of some hardware resources

fine-grain method: by fine tuning the scheduling/binding, and automatically

evaluate the thousands of resulting solutions

The exploration of the design space always happens at an RTL level, since logic

synthesis would be to slow; the designer can also work on an estimate on the final

result, with an approzimation error that is less than 4% in small components without

aggressive optimization.

Even with coarse-grain methods, the design exploration can only be done a small

portion of the specification: that's why the source code must be partitioned by the

designer in components.

Correctness



In the design exploration, the compiler must always guarantee correctness of the

synthetization - i.e. the observable behaviour - save for a few exceptions (e.g.

differences in precision, associativity of the operators).

To do this, the compiler must act conservatively and can only apply transformation

when it can prove that the observable behaviour; this may lead to loss of parallelism.

ANALYSIS OF DEPENDENCIES

Sequential languages present a total order of the program statements. Correctness can

be mantained even with a partial order: operations that have no dependencies cam be

considered concurrent and parallelized.

Real dependencies exist when there are RaW data dependencies, control flow

dependencies.

It can also be particularly difficult to understand if system calls are indipendent,

as their implementation is not always know.

Removing all fake dependencies from the code may take too long; so approximate

analysis is used in general.

System Level Design

When designing an IP Block it's not usually possible to predict the best

implementation with regard to the other blocks - the designer may not even know the

target architecture, because the IP Block will be licensed or reursed.

Hardware design is a bottom-up process, based on compositional design: it starts from

the design of the single IP blocks.

System Level Analysis allows the design to determine a system that is the best

combination of the IP implementations.

Both the components and the system should offer some degree of decoupling: The system

should be flexible enough that if some components change, it will still function

properly: the most important tools for this purpose are latency-insensitive protocols

and standardization of the interfaces.

The components should be portable enough to be reused across different architectures,

although it's impossible to have fully portable components especially when they are

highly optimized; in general, a component should expose a standard interface, which is

highly portable, and have tightly optimized internal design, which hinder portability

across technolgies.

Design Space Exploration at System Level

The Design Space Exploration at System Level does not concern just the hardware, but

also explores the various SW/HW partitioning solutions.

Through mapping the designer must determine a mode of execution - i.e. software or

hardware - and the processing element - i.e. to which CPU assign a software task, and

what hardware implementation to use - for each task.

Through scheduling the designer must also determine the ordering of the tasks.

When targeting FPGA, a possible option is the dynamic reconfiguration: generating the

new "components" at runtime.

Dynamic reconfiguration is costly in terms of execution time.

An additional variable is given by the interconnection topology - i.e. a bus or a

network-on-chip design.



This process should be automated, as the design space may be huge.

SERIAL SCHEDULE GENERATION SCHEM (SERIAL SGS)

Serial Schedule Generation Scheme is a genetic algorithm using a constructive approach

used to produce possible mappings and scheduling: the algorithms picks a task at

random and tries to bind it to various resources, waiting if no resources are free.

ANT COLONY OPTIMIZATION (ACO)

Ant Colony Optimization is a meta-heuristic based on the behaviour of ants looking for

food: The ants explore the feasible territory with random walks, until they find food;

if they do, they release pheromones while the take it back to their ant-hill; other

ants than use the pheromones as guides.

When following the pheromones, if an ant finds more food, their path will be

streghtened.

If the trace for the food is too long then the pheromones will fade, and the path will

be weakened.

Starting from a feasible solution - usually a completely software serial solution that

we know is feasible- a number L of threads (ants) pick one candidate at a time and

schedules/binds it, until there are no more.

Then all threads evaluate the solution they have found, and save the best one.

How, at any decision steps, a thread chooses stochastically a candidate and a

mapping/binding; the probability is determined by global and local informations.

The local information depends on the delay needed to schedule the task; the global

information depends on the best solutions found on previous trips.

It's possible to vary the accuracy of the evaluation function, e.g. analytical

estimation vs cycle-accurate simulation.

OTHER ALGORITHMS

Other algorithms used in design space exploration at system level are:

Integer Linear Programming

Taboo Search, generates a set of solution around the current one, putting the

worst in a taboo list.

Genetic Algorithm, generates many designs and ricombines the best parts of each

solution

Compared to these algorithms, ACO is able to find the best solution often and in a

relative small number of iterations; additionally, it moslty avoids unfeasible

solutions.

Automatic Partitioning of the Implementation

Automatic Partitioning of the Implementation is an open problem: the initial, high

level description is incredibly important and if it has not been written with HLS in

mind (HLS-ready), it's extremely hard to perform component and system level design on

it.

Security

Companies that design hardware must protect: the physical chips and their designs -

i.e. hardware security - and the data elaborated on the chips - i.e. hardware-assisted

security. Nowadays, SoC architectures are made using components designed from many



different vendors and the supply chain (from design to end-of-life) for chips is

distributed worldwide, increasing the surface of attack.

Per example, foundries can overbuild, creating counterfeit chips identical in quality

to the legitimate ones - making them impossible to distinguish - without incurring in

fixed costs (design, testing, etc) and allowing them to resell at a lower price for

greater margins.

The known impact on the IC industry of these practices is around $4B, but might be

just the tip of the iceberg.

Additionally, entire companies are built around designing and licensing hardware IPs:

losing the secrecy would mean losing millions or billions in investments and that is

one of the reasons why hardware companies' security spending has increased

exponentially over the years.

These are two reasons why in recent years, Europe and the USA have committed to bring

foundries back in their territories.

Finally, the data of the final user of the chip must be protected from hardware

modifications and software based attacks; naturally, this must also happen at the

design level.

The threats are:

Overbuilding: foundries build more chips than request them, and then sell them

as originals; since the design and build quality is the same, these illegal

chips are impossible to distinguish

Reverse Engineering and IP Theft: extract the chip functionality from the

circuit design, stealing the technology

Hardware Trojans: malicious modifications to the chip that alters its

functionalities, to either steal data (introducing side channels) running in

the chip or harm the normal operations; it's particullary hard to identify a

malicious trojan from a fault

Data Injection: injection of spurious data to exploit hardware/software

vulnerabilities

Protecting the design against every attack is not feasible, as it would be too

expensive.

HLS and Security

HLS can be used to synthetize security functionalities:

Dynamic Information Flow Tracking (DIFT)

Algorithm-Level Obfuscation, an active security method

IP Watermarking, a passive security method

But represent another attack surface, as the tool provider itself may be malicious:

Planned Obsolescence

Key Recovery with Reduced-Round Attacks

Dynamic Information Flow Tracking (DIFT)

Dynamic Information Flow Tracking (DIFT) is a technique to mark data as trusted or

untrusted with tags, and track its flow through the accelerator; if untrusted data

reaches a point where it can impact a system's functionalities, trap it.

To implement Dynamic Information Flow Tracking, an alternative parallel data-path to

elaborate data tags is needed - i.e. shadow logic along with taint memories.



Synthetizing shadow logic and tainted memory is easy to do in HLS, and the level of

granularity can be customized.

As the logic works in parallel, propagating the tags at the same time of the data, the

perfomance cost are negligable; the resource costs go up to a 31% increase of area,

for bit-level granularity applied on every component - that said, applying DIFT

intelligently reduces the cost.

Logic Obfuscation & Algorithm-Level Obfuscation

Logic Obfuscation is a technique that protects against IP theft from foundries: the

designer sends an obfuscated netlist that is dependent on a k-bit key.

Without the key, the chip are useless.

In this way, if a foundry overproduces chips, it won't be able to activate them and

they will be useless.

There are many difficulties in implementing this solution: first, the designer must

protect the key; second, the designer must guarantee that the obfuscation truly

provides a k-bit protection.

Additionally, an attacker can analyze the circuit and strip away the blocks that

render the components unusable; obfuscation must happen at an high-abstraction level.

There are many obfuscation methods that can be used:

Constant Obfuscation is the encryption of constants by XORing them with the key; not

all constants should be encrypted: it is useful to encrypt data coefficients, mask

values, but other predictable constants like reset values, signal polarity shouldn't

be encrypted as it would allow key inference.

Control-Flow Obfuscation is achieved by XORing the result of control values with some

bit of the key and using that result as the control variable, swapping the branches if

needed.

Operation Obfuscation is achived by adding useless operation and multiplexing them

based on some bit of the key.

Dependence Obfuscation adds fake data-paths, and selects the correct one using a bit

on the key.

A way to evaluate the effectiveness of the obfuscation is output corruptability, the

Hamming Distance between output generated with the corrected key and an incorrect key.

Naturally the modified design must mantain the same external behaviour; one could

formally prove that the transformations applied generate an equivalent result, or use

simulation-based verification although an exaustive search of the input space is

clearly impossible.

Hardware Trojan && Watermarking

An Hardware Trojan is a malicious modification of a circuit, inserted to breach

hardware-assisted security - e.g. a side-channel used to leak data through a radio

transmission.

An hardware trojan is stealthy during normal execution; when the trigger is set, it is

execute its payload.

A company may use Benevolent Hardware Trojan to watermark a design: when a trigger is

activated, a component outputs a signature that is then propagated through the design;

through a watermark, a designer may prove in a court of law that their design was

stolen.



In a component, the functional controller commands the normal flow of the data-path;

when the trigger is activated, the payload controller takes command instead and

controls the final output.

To further obfuscate the payload controller and trigger, they can be swapped with a

small FPGA inside the functional controller.

Watermaking is effective only in legal disputes: it requires identifying the author of

the infringement and diving into a costy and lengthy legal battle.

Planned Obsolescense

Planned Obsolescence is the practice of degrading an IP performance after a certain

amount of time, either by the hands of competitor or by the design house itself;

detecting it is extremely hard, as it simulation catches only functional properties.

Degradation Attack

A Degradation Attack reduces the performance of an IP after a certain amount of time;

the easiest way is to add bubble states to FSM: the more the computation is executed,

the greater the effect - e.g. a loop, with trigger an execution counter.

Battery Exhaustion Attack

A Battery Exhaustion Attack reduces the duration of the battery after a certain amount

of time, motivating people to change their devices.

Draining the battery can be achieved by increasing power consuption, which can be done

by activating unused functional units (in particular, switching all the bits of the

inputs to maximize power consuption).

Key Recovery with Reduced-Round Attack

Cryptographic algorithms must be run a certain number of times on the input to be

effective, so the hardware that implements them also performs loops.

A Reduced-Round Attack is a technique where the counter used to performed encryption

is changed to a lower value, reducing the number of rounds that the encryption

algorithm will run and breaking it.


