Design of Hardware Accelerators 2024/2025

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

1 - Introduction to SoC

Slide 3

Increasing Number of Cores

16/18-cores Xeon Q3’14
2-cores Pentium D Q1'05 General Purpose Processors 16/18-cores Xeon
& coresCore S 06 24-cores Xeon series Q3’10

1=t 4-cors Core 2 Extreme Q406 i :

~8-cores Xeon Q1’10 L Fin

:

GPU Processors 3072/5760-CUDA cores

2x1536 CUDA cores. "‘

[Intel, NVIDIA]

w

POLITECNICO
MILANO 1863

General purpose processor: in this course we define as General Purpose Processor any device that can run
code. Technically this is not exactly correct because we should define the difference between a
microcontroller and a microprocessor, still we do give this general definition.

Slide 4

From Multicore to Heterogeneous Systems

NVIDIA System for Autonomous Driving

EyeQd-High
block diagram

XAVIER

=
B

=il

Manager (PTM) Sarvice

ge=at EeR
Peripheral Transport Quallty of

Mobileye
(US$15.3 billion takeover by Intel) Xilinx Zyng-7000 SoC
Heterogeneous System: system composed of
several types of components
. but why?
POLITECNICO 4

MILANO 1863

Heterogeneous system: system composed several types of components.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 5

Moore's Law + Dennard Scaling

Moore's Law: “The number of transistors on an affordable CPU would double
every two years” (G.E. Moore. 1976)
Energy Efficiency Wall

Dennard scaling: “If the transistor : et oo oo
density doubles, the circuit . e
becomes 40% faster*, and power & S e
consumption (with 2x the number ;| o= 1, e .
of transistors) stays the same” (R. porsum 400 133, o | Sedesno —omen
H. Dennard, 1974) ; el
® o1

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Yoar

[Marr et al. "Scaling Energy Per Operation via an Asynchronous Pipeline", TVLSI 2013]

Koomey’s Law: “at a fixed computing load, the amount of battery you need

will fall by a factor of two every year and a half” (ki delay s tadinad)

Slide 6
® L Ld
The Trend is not Infinite...
42 Years of Microprocessor Trend Data 20+)(egrslpf CPU |mpl;overr1]1e nts
. : : : - pipeline stages, branc
107 | o
G PV B Hietiond predictions, multicore, etc.), but we
T Y e | hit the efficiency wall!
o) SSPTUTTEY iy
ol - .:ﬂ’;u‘frﬁ." | (SpecINT x 10%
AR .
o0 b | R ;.ﬁﬁ'ﬁ"“:' e | e @ Current leakage causes the
B Typical P -
02| NS 4L B R/ chip to heat up!
..= & v 'v"v"]
1 ‘ - " ',"{ ¥ vy .:.’.'i Number of
L S B oo MDA B 7| Logical Cores
O—‘ .: : '-0:0-1.::“0”::‘“ = - - -
g e R . : “With each successive generation,
1970 1980 1990 2000 2010 2020 the percentage of a chip that can
Original data up 1o the year 2010 collected and plolledbr;aHZM\'mz. F. Labonte, O. Shacham, K. Oluketun, L. Hammand, and C. Batten aCtiVEIy SWitCh drops EXPonentia"y

MNew plot and data collected for 2010-2017 by K. Rupp

due to power constraints”
We entered the dark silicon era

POLITECNICO
MILANO 1863

Dark Silicon refers to portions of a silicon chip that must remain powered off or underclocked at any given
time due to power and thermal constraints. This phenomenon arises because the rate of power consumption
in modern processors is outpacing improvements in cooling and energy efficiency, preventing all transistors
from being active simultaneously.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 7

Heterogeneous SoCs on the Market

saal iPhone 6 features the A8 SoC

@Harvard

* 8.47 x 10.50 mm (20nm by TSMC)
Out-ofiCore * 13% smaller than A7 (28nm)
Accelerators * dual-core ARM CPU at 1.40 GHz
« 25% more CPU performance
« four-cluster PowerVR GPU
* 50% more graphics performance
« 2 billions of transistors
* twice the number of transistors compared to the A7
« almost 30 out-of-core accelerators

« 50% more out-of-core accelerators than A7 (~20 out-
of-core accelerators)

Quad-Core GPU

[Die photo from Chipworks - Accelerators annotated by Y.S. Shao @ Harvard]

:’ 2\ POLITECNICO 7
LS MILANO 1863

(just examples to better understand)

Slide 8

SoC is not Equal to Embedded System!

HARP (2015): Heterogeneous platform with Intel Xeon processor (2.2
GHz) and coherently attached Intel/Altera Stratix-V FPGA (200 MHz)

« 72 GB of DDR3 memory (possibility to store very large data sets)

 QPI interconnection link at 6.4 GT/s — low-latency from FPGA (~100 clock cycles per
cache line at 200 MH2z)

+ possibility of performing fast on-demand data accesses (off-chip)
« Software abstraction layer for application development and accelerator integration

System-on-Chip defines an
Intel Xeon Al architecture where the

Stratix-V
E5-2600 v2 FPGA components are connected at

the same physical level

%) POLITECNICO 8
ST MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 9

Today’s SoC Architectures

Figure 1-2. OMAP4430 Block Diagram

L PER
251

[P

_PRM < poter
1

S ; Integrated architecture
Fiwee- MW as a collection of
components

TI OMAP 4430 block diagram
(Samsung Galaxy Tab 2 10.1)

POLITECNICO

MILANO 1863 9
Slide 10
foday’s SoC Architectures
Figure 1-2. OMAP4430 Block Diagram
To L3 Core 55. PER WCre Lé_PER
From Debug subsystem i) kD B i - :zﬂ:;
1 : VO e T
R J mmmﬂ = e i X A
— isgoorye! | L3 =) g sen || T i 1
| sussors | 1
Multi CPUt mplete |5 &5y
gomes |13 ¥
ulti-core orun a complete | = &= e
Operating System ‘ L
perating Sy L
11} i 11 r 1} L W ﬂ ﬂ‘! ﬂt ﬂ ﬂ l
— P o P
’ E “Euisor ‘cﬁ i | Sl Bl (W
n £l 3 USE PHY. -
AT == 5 yn ou ToENULS 2 ﬂ. i ﬂ\ ﬂ
| DAMspimerandtien) | |2 | Il 0] PR s s mm—eey . netrumenaton 1 H 1 H
-——g-- | -amse - Lo i L=l) i
E hMDg:;;\\'m = N 1 H 11 1oon : Hos
[t —_— "= mconews) el 1 et |1i7sussl
29 |- du UART s e Farenazon 0 = I ! =
S L il (B
! e sunBLS V20011 | g I
e e i 4 B g
ESE S s f;:ei:-: F=d Toror raesavet: VT =y
Lueoocz oz | AL | e
D B SManRetex
4| -Deven corscoms mose
SFica o+ FROM
T N[EmEEm
Devied Waktup Contral meduie
“ -
POLITECNICO 10

MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 11

Today’s SoC Architectures

Figure 1-2. OMAP4430 Block Diagram

ToLIGH L
rormceien 32

]

From Debug subsysten
Lld

WPU susaystem il ABE suvsystiem

155 =epaze

Canex M3 sutoziom

adeorgss! [SGX540
Ve sutysien
== 5 . o
259 suosysierm o) HSMMC
S

To
E..r.-JC—ﬂ

Heiiviein LR N N 1 L
| ; iz} Memory controllers to interface |©

=iz with external DRAM memory |

it : 5 SR

POLITECNICO -
MILANO 1863

Slide 12

Today’'s SoC Architectures

Figure 1-2, OMAP4430 Block Diagram

L& PER
251

3Conm

From Debug subsystem

L
Gy suoswem

SGEXS40

coron
o5# subsysiom .30 s>u~ w n
e |

Specialized components for selected
functlons (e. g., audlo \ndeo USB)
UL ’

GPrC | jocw AL‘!RAJ!
| EMFa
EMIFO || EMT4D | | anoimons 11eme sran) 1
PERAM I
LPDOORZ | LPOORZ controier

2 EMULY
LN

3 PRM ¢ profie’

g 4| Do Corva maie
GRTIMER eFuse fam »

5, 1 = sozem IR tpot 1)
JKTMER Mocon ICR (pert 2]

Ao
WOTMER
Geners' Viskeup Cortrol mogul

SAR RAM (858 32.01 o

POLITECNICO
MILANO 1863

12

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 13

Today's SoC Architectures

Figure 1-2. OMAP4430 Block Diagram

PER
From Debug subsysie
& 3 oo S Il
WPU sazaystam T ik
[T =) L Tl
| |~ | moce | = S USE TG
| | i o ™
I | | Ea || . 7 S
e I i ar | a0 i i
| R = ﬂ‘ 1| et aan ! e | 22 :
=1 [_oaws] i —— [i 0
B ﬁ iL H T ﬂ B U J) ﬂé I[¥ ﬂ-l JL
n

Interconnection subsystem (bus or
NoC) for connecting all components

E——
o HS -

i e Hm), i o = (5 Lo

v) (R

e

) POLITECNICO 13

AL MILANO 1863

Slide 14

Increasing Number of Integrated IPs

« Coping with system complexity

* IP replication
i _ * IP reuse
) _# « Estimated 60% reused IP blocks
per SoC (21x more IPs in less
| = Percent of Rewss = vy, Nusnber of IP Blocks | th a n 2 0 ye a rS)
e ..+ Design for reusability
Mo : * Increased IP complexity
. =} e Increased IP cost
- c ~ « Estimated 20% increased IP cost
® 2006 2007 2008 2009 2010 2011 2012 2013* 2014° 2018* 2018° 2017+ . eVery year

[Royalties S Licensing B Visintenance Percent Growth —— |

[SEMICO Research Corporation, reports from 2013/2014)]

227\ POLITECNICO 14
G MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 15

Platform-Based Design

Predefined portion of the architecture (platform template)

General-purpose processor(s) on inf
(with Operating System) Interconnection infrastructure

Pre-defined IP blocks

Memory elements

Customization: adding hardware IP,
programming FPGA logic or writing
embedded software.

Xilinx Zyng-7000 SoC

Avoid redesigning each chip from scratch

() POLITECNICO
HATY MILANO 1863

Slide 16

Platform-Based Design

Predefined portion of the architecture (platform template)

General-purpose processor(s) | on inf
(with Operating System) nterconnection infrastructure

Pre-defined IP blocks

Memory elements

Customization: adding hardware IP,
programming FPGA logic or writing
embedded software.

Xilinx Zyng-7000 SoC

Avoid redesigning each chip from scratch

When we talk about accelerators we mean GPUs, dedicated CPUs. The concept is that we’re going to extend
the core of the processor. To include accelerators within the core, we can include in the platform dedicated

cores that are being developed starting from general purpose processors (ex. RISC-V for machine learning
accelerator starting from GPs).

The SoC may include a configurable area or a dedicated IP core, so that is dedicated to a single task.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Important: More efficiently doesn’t necessarily mean faster, this may mean less power consumption or less

Silicon area.

Observation: in heterogenous system the OS has a big impact on the system, so they have a dedicated OS. It
must know which are the hardware accelerators that are in the system, which are the functionalities that are
necessary in the SoC. The processing platforms are operated by the OS.

Observation: is the software going to be developed before or after the hardware? It depends on which software
we’re considering, if itis a user ended software (ex: Telegram, WhatsApp...) are built and implemented after
the hardware realization, but if we mean the firmware it is running between the HSoC and the OS, so the basic
functionalities are provided by the hardware designer.

firmware definition: firmware is the low-level software that controls the interaction and behavior of a piece of
hardware or IP-core. sources

Def. Driver: piece of software that teaches to the general-purpose OS how to communicate/work with the
specific system I’m using (ex: driver for a scanner).

Slide 17

Storage Elements

On-chip: temporary values stored for direct/fast access

Cache: component Scratchpad: local Private Local Memory:

between main memory memory programmed memory controlled by the

and component through software component (not visible to
(transparent to execution) directives to move data the system)

Off-chip: large memories accessed through memory controllers

Main Memo ry: external Register 10005 of bits 20 ps $$$$
memory that stores Iarger SRAM ~10 KB-10 MB 110 ns ~§1000
amounts of data DRAM ~10 GB 80 ns ~$10
Flash* ~100 GB 100 us Y
SRAM/DRAM are only Hard disk* ~ITB 10 ms ~$0.10

* non-volatile (retains contents when powered off)

types of technologies!

17

On chip memories: the memory on the SoC.
By a theorical standpoint we can define three approaches to the use of the memory:

e Cache memory: it’s the closest to the CPU and is managed or by proximity or by locality principle.
Remember: locality principle, the data that is stored loaded is the one accessed very frequently or the
last data that has been lately accessed

Remember: proximity principle, the data the is loaded in the memory is the one that is located near the

one that I’m using.
The cache memory is managed by the CPU and is accessible via software.
e Private local memory: it’s direct memory access (DMA) reserved for the accelerator.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

If some computation can be accelerated, the CPU wakes up the accelerator, the data on which the
computation has to be performed is loaded in the private local memory, the computation in executed
via hardware and then the results are moved back to the general-purpose memory. It is not accessible
by the software and is reserved for the accelerator. It’s inside the accelerator and is fully managed by it,
the core can’t see anything of the PLM. PLM is usually big but we need synchronization.

e Scratchpad: the scratchpad is an approach in the middle between the private local memory and the
cache. Itis a memory in the accelerator but can also be accessed by the processor by executing some
actions. When a functionality can be accelerated by the hardware, the processor offloads the
computation (by executing some functions) and moves the data into the scratchpad. The scratchpad
it’s inside the accelerator, is accessed by it to read/write data, but this data is also accessible by the
processor, that can read/write into the scratchpad. It’s an extension of the memory space of the
system. It’s very flexible because data can be moved from the central memory but the price to pay is
complexity of the system. In general, its dimension is thinner than the one of a PLM.

Off chip memory: “typical” memory

Register |000s of bits 20 ps $3%%
SRAM ~10 KB-10 MB [-10 ns ~$1000
DRAM ~10 GB 80 ns ~$10

Flash*
Hard disk*

~100 GB
~ITB

100 us
10 ms

~$0.10

* non-volatile (retains contents when powered off)

Static ram: volatile memory, much faster and takes only 6 transistors
Dynamic ram: volatile memory, basic RC network which has to be refreshed due to leakage.

Slide 18

Main Memory and PLM: A Huge Gap

Main Mem PLM Data Structures Main Mem PLM Data Structures
Bench. Data Size Bench. Data Size

(MB) (#) (MB) (MB) (#) (MmB)
Sort 4.000 6 0.024 | FFT1D 0.250 10 0.040
FFT2D 64.000 4 0.128 | Debayer 16.000 4 0.096
Lucas Kan. 32.000 11 0.020 | Change Det. 320.000 10 0.062
Interp. 1 32.040 6 0.048 | Interp. 2 64.010 7 0.640
Backproj. 256.040 8 0.099 | Diparity 15.820 11 0.146
| PCcA 20.190 3 0.117 | SRR 4.760 21 0.076

100%

Each accelerator is ~1mm?
« Comparable to Apple A8
accelerators

85.45% 86.68% g4 g0,

®
=1
®

T74.80% 73319,

PLM is from 75% to 98% of
accelerator area
« With a lot of data transfers

accelerator area occupied by the PLM
g
2

o © P e ES 4 S b e S| S
a R ® @ ’ o E
& @ o I A Al ¢

POLITECNICO .
MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

This slide shows the implementation of 12 different algorithms and for each one of them a dedicated
accelerator has been implemented. Then a constraint on the chip area was set. The process is optimized
with high level synthesis and the remaining area is filled with private locate memory.

Main Mem
Data Size
(MB)

10
0.250

4
16.000

320.000 10

64.010 7
15.820 11
4.760 21
data required by computation number of blocks what could be implemented
2009 98.61% 98.85% 97.65% 97.06%
E 85.45% 86.68% g4 430,
.E’ 80% — 74.80% 73.31%
g- o
g 40%
5
£
20%
|
0%

o \Y o & & & A N o el o
£ ‘E‘{(\ f‘;fb o S} v @;{m w%e‘i) = “@N = “@& %ﬁ)&o " o ¥ c}?

e

% of area on chip dedicated for private local memory. We do realize by looking at the results that even if
most of the silicon area was exclusively dedicated to the private local memory, the memory implemented

is negligible with respect to the memory necessary to perform the computation.

Main Mem PLM Data Structures

Bench. Data Size
(mB) (#) (MB)
FFT1D 0.250 10 0.040
Debayer 16.000 4 0.096
‘ Change Det. 320.000 10 0.062
Interp. 2 64.010 7 0.640
Diparity 15.820 11 0.146
SRR 4.760 21 0.076
necessary implemented
memory memory

this means even if we optimize as much as we can the accelerator we can’t avoid using off chip memory so
it’s crucial to optimize communication between the accelerator and the off chip memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 19

Memory Cost

Memory leakage is becoming more and more critical (<45nm)
« almost 70% of total power consumption

« SRAM leakage (caches and PLMs) contributes >75% to the
total leakage

DRAM and memory controllers, as we know them
today, are unlikely to satisfy all requirements m
« Some emerging non-volatile memory technologies (e.g., Phase-change

memory, Magneto resistive memory, in memory computing) enable new
opportunities: memory+storage merging

hierarchy with application-
centric approach
%7\ POLITECNICO 19

57
TEAEA MILANO 1863

Redesign of the memory ‘

Slide 20

Interconnection System

Bus: a central crossbar Network-on-chip: packet
responsible for arbitration switched network
between masters and concepts between
slaves Initiators and targets.

Design time
 Abstraction to simplify reuse and integration of components

Runtime

« Communication medium for energy-efficient exchange of massive data
among cores

+ Distributed mechanism to manage on-chip resources and control SoC
operations

Must reach every chip corner with
low latency and dissipation

[17) POLITECNICO

A0 miLaND 1863

We can have different approaches to interconnections

e Bus: busses are cheap, standard but slower and they do not scale with increasing dimension, this
means that as we introduce more devices we’ve slower busses because more parasitic
capacitances are introduced. It is a physical and logical bottleneck.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e NoC: NoC are dedicated routing memories, they’re much faster than busses but are more
complicated and less standardized.

(there will be a dedicated lesson to busses and NoC)
Slides 21-25

Examples about some commercial/research SoC platforms.

Relevant Research Projects

Architectures

2 . Embedded Scalable Platform (ESP)
. Columbia University

F B E hitps://github.com/sld-columbia/esp

‘ Parallel Ultra-Low-Power (PULP)
ETH Zurich & Univ. of Bologna
https://github.com/pulp-platform

«®

The NEORV32 RISC-V Processor

Stephan Nolting, M.Sc.
https.//github.com/stnolting/neorv32
https.//stnolting. github.io/neorv32/

NEO

@1 %=\ POLITECNICO
%Ciféét MILANO 1863 21

Embedded Scalable Platform (ESP)

Architecture and Design Methodoloqy

* Regularity
+ tile-based design
+ pre-designed on-chip infrastructure
for communication and resource
management
« Flexibility
+ each ESP design is the result of
a configurable mix of processor tiles
and accelerator tiles
» Scalability

+ atrun-time via fine-grain power
management

+ at design-time via ESP methodology

Heterogeneous Multi-Core
Architecture w/ Accelerators

3D-Stacked Switched-
Inductor Voltage Regulators

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

The ESP Design Methodology

Speed, Flexibility, Reuse
» HLS-Based Design
« Component- and Application-Level DSE

» Automatic SoC Generation
+ “Socket-based” IP integration
* Interconnect configuration
+ System memory mapping

+ Software Layer Templates
« ESP accelerator device driver

Application Application
Specification Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

HLS & Micro-Architectural Choices

Interconnect & P::::s:;;';
Tile Configuration w/ SW socket

Accelerator IP Instancing
w/ HW socket

Physical
Constraints

ESP-lib.

Drivers

Controller
ESP modules

System Integration
L)

Effective Latency {ms)

IP Block Development and Reuse

o
Component-level

Exploration

Design Space

caches Processor IP Socket

Interconnect Interface and Queues

%=\ POLITECNICO
2/ MILANO 1863

m controuer

Interconnect Interface and Queues

Parallel Ultra-Low-Power (PULP) Platform

Ultra-low power system based on RISC-V
« Efficiency with multi-core clusters or custom accelerators

« Silicon-proven architecture
* More than 20 certified chips

Complete platform integrating
several research projects

* Very productive community
* (Almost) everything is open-source

First complete
open hardware project

¥ POLITECNICO
4 MILANO 1863

Interconnect

Logarithmic interconnect
APB - Peripheral Bus
AXl4 — Interconnect

Platforms

§
8

> interconnect n

Single Core Multi-core
* PULPino * Fulmine E Multi-cluster
+ PULPissimo + Mr. Wolf « Hero

NOT S HPC

Accelerators
HWCE Neurostream HWCrypt PULPO
(convolution) (ML) (crypto) (1%t order opt)

25

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Slide 26-27

The NEORV32 RISC-V Processor

NEO CPU

alu_flags

rsi
§ alu_add

CONTROL SIGNALS

— curr_pc curr_pc A
| PC | —> link_pc rs1 [rs1)
rs2

alu_flags

Status & Control
Instruction 8 > immediate L..-d
Fetch [—»{ Prefetch # —> Execute . Register
Engine Buffer - Engine :i:i(r;: File
] car-rend g
[_compr. decoder |
TRAP

IRQs —» CTRL

CSRs | —» csr_read

Sign extend
and align

1mmediate:l] B

rator

alu_add

alu_res

ALU

Load/Store
Unit

l«— alu_add

t

| Physical Memory Protection and Alignment Check

CPU Co-Procepor Interface
cPe cP1
Base ISA M
Shifter Mul/Div
cpP2 cP3
Zbb Zfinx
Bit-Manip FPU
cPa CP6
Zxefu Zicond
CFU Cond.OPs

'

Instruction
Fetch Interface

POLITECNICO
MILANO 1863

|

Load/Store
Interface

|:] Combinatorial element
[synchronous element

The NEORV32 RISC-V Processor

Clock & Reset —p
WDT reset 4————-
OCD reset 4—

RISC-V Machine —P]

interrupts

are interrupt,

nal interrupt

interrupt)

Stream link —pi
(AXI4-Stream™) ¢—

I2C™ (host) ¢—

I2C™ (device) —p

l16x PWM €4+—

Smart LEDs

«
(NeoPixel™)

32x In
32x Out &———

POLITECNICO
)/ MILANO 1863

-1 & cro
3

NEO Processor

neorv32_top.vhd

NEORV32 CPU (single-core / SMp-dual-core) B FRISC-V/* RliC-V On-Chip

(rvaz) AE)QEOMU)X)(Zier) Zinx) DPebuseer (0€0)

(Zmmul)(Zicntr) Zihpm) Zifencei) Zicond) —

([sdext)(sdtrig J(_zknt J(__Smpmp](_zknh] [DebugModule |

(Czbkb (" zbke J(zbkx)(Zkn)(Zkne J("Zknd)

(Czpa J(“zbb J(“zbc)(Zks) (Zksh) (Zksed)

(“zkt][zaamo) Zalrsc)(Zxcfu (custom instr.)) SYSINFO

£ GPTMR BusSystem Clock & Reset L\ SPI —

L\ sLNK L bmA CRC L sl —

L ™w DMEM IMEM £\ UARTO le—»

L TwD D-CACHE I-CACHE [\ UARTL <« —»
PWM L CLNT BOOTLDROM L\ ONEWIRE >

£\ NEOLED wDT £\ Cust.Funct. Subsys. (CFS)

TRNG XBUS-CACHE XBUS —

Core feature CPU interrupt
Optional feature

Optional user-defined feature

JTAG

CD+gdb)

SPI (host)

SPI (device)

UART

UART

1-Wire™ bus

CFS in/out
conduits

External bus

26

27

This is the device that is going to be used in this course, we’ve several implementations and we can combine

them to quickly write a working S

oC.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

2 -SoC components

Dark Silicon and Specialization

» Dark silicon problems are progressively reducing the fraction of the
chip that can be active

Year 2008 2014
 Specialization allows designers to
identify components that can be turned
off when inactive Area 1 4
» Requires the definition of a fast and Posk freq 1 10
Power 1 1

efficient way to turn on and off components
» Requires the definition of a scalable
architecture and a communication
infrastructure
* Requires also an efficient power 25%
management system

(4 x 1) = 25%

(%) POLITECNICO 3
LT MILANO 1863

Remember: by “Dark Silicon” we mean a portion of the silicon device that must be underclocked/turned off
because it is not performing any significative action/computation but still would use a significative amount of
power if it wasn’t turned off.

Typical SoC Components

« General-Purpose Processors
« Memories (on- and off-chip)
« Co-processors (Accelerators)

« Communication Infrastructure

{15\ POLITECNICO
SR MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Why Do We Need Processors in SoCs?

Hardwired systems are inflexible General purpose hardware can
Lots of work to modify do different tasks

\ /

Many applications share the same (critical) kernels
Specialization is applied only to those kernels

General Purpose Processors (GPPs) executes the rest of the
code

}

GPP allows for the execution of different applications

(%) POLITECNICO HSoCs, not custom chips!
:/ MILANO 1863

A processor in a system on chip is necessary because we can’t afford all the computation to be hardwired in

Silicon, we need some architectural synchronization for scheduling, coordinating the operations,
communication and collecting the results. Such tasks are given to the processor.

What is a Processor?

Also called

Processing Memory

F 3

Control (sequencing) Program (Instructions)

ﬁ /0

Datapath Data

Instructions (sequence of control signals) in memory
sequential instruction processing

(%) POLITECNICO
:/ MILANO 1863

In this slide we have some basic concepts:

e Whatis the CPU- General Purpose Processor?
It’s a Silicon device that must perform five basic tasks:
1. Fetching instructions
2. Decoding instructions

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

3. Execute instructions
4. Wiriteback the results from the processor registers to the cache/main memory

From Hardware to Software

Software is a sequence of steps
* For each step, an arithmetic or logical operation is done

 For each operation, different control signals are needed —
l.e., an instruction
Problem

. . . . Algorith
Is the physical implementation of the .

. . Programming Language
processing |OgIC

Runtime System (OS)

* The _ i is (usually) a Architecture
proprletary deS|gn Microarchitecture
Logic
(Instruction Set) Architecture Circuits
Is used as an interface Electrons

POLITECNICO
MILAND 1863

The architecture is a bridge between the high-level part of the system, so the OS, and the low-level part of the
system, so the microarchitecture. When the compiler must convert a program, it has to know on which
architecture it will be run and that is defined by the ISA.

What is the instruction set?
The instruction set are all the instructions that are provided by the architecture.

Ex: Let’s suppose that we have a particular architecture that does not provide the store instruction, then all the
programs that are compiled for that architecture can’t run the store instruction.

Basically the instructions are the options that are available, but the ISA doesn’t set constraints on how the
instructions are implemented in hardware, that is part of the microarchitecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Instruction Set Architecture (ISA)

» Complete collection of instructions understood by a CPU
* Serves as an interface between software and hardware

* Provides a mechanism by which the software tells the hardware what
should be done

High level language code : C, C++, Java, Fortran,
| compiler
Assembly language code: architecture specific statements
| assembler
Machine language code: architecture specific bit patterns

software

hardware

) POLITECNICO
J MILANO 1863

ISA - Processor Microarchitecture

Instruction Set Architecture (ISA) specifies how the programmer sees
instructions to be executed (programmer visible instruction set)
« It defines how to specify the commands to the hardware logic

Often the ISA is identified with the
processor architecture

Processor Microarchitecture refers to the internal organization of the
processor
« How the underlying implementation executes instructions

* So, several specific processors with differing microarchitectures may share the
same architecture, i.e., the same ISA

Consistency models: programmers must see the order specified by ISA

 Microarchitecture can execute instructions in any order as long as it obeys the

semantics specified by the ISA when making the instruction visible to software

\-__:"_ -\ POLITECNICO
SA05) MILAMO 1863

When compiling a program for a specific family of processors the same instructions are always exploited
because the ISA is the same, what differs is the microarchitecture that implements in different ways the
instructions. Consistency has to be guaranteed by the microarchitecture, because if | use a store | expect the
store to have always the same effect. The architecture sets the constraints from which | build my

microarchitecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

A Bit of History in Computer Programming

Single Accumulator (EDSAC 1950, Maurice Wilkes)
1

Accumulator + Index Registers
(Manchester Mark |, IBM 700 series 1953)

Separatlon of Programming Model
from Implementation

/ \

High-level Language Based Concept of a Family
(B5000 1963) / (IBM 360 1964)
General Purpose Register Machines
/ \
Complex Instruction Sets Load/Store Architecture
(Vax, Intel 432 1977-80) (CDC 6600, Cray 1 1963-76)
| I
cISC RISC
Intel x86, Pentium (MIPS, Sparc,HP-PA,IBM RS6000, PowerPC . . .1987)

r:-,"‘v“f-".- POLITECNICO
3 / MILANO 1863

CISC: from a market point of view, CISCs dominated world market because AMD and Intel used this category
of ISAs and as of today it still is the factory standard for consumer microprocessors.

RISC: is the standard for embedded systems since the 80s, small/medium companies used RISC, then ARM
came and so the implementation of RISC.

CISC vs. RISC

(CISC) [e.g., Intel x86]
> 1000 instructions, 1 to 15 bytes each

operands in dedicated/general-purpose registers memory, on stack, ...
(canbe 1, 2, 4, 8 bytes, signed or unsigned)
tens of addressing modes (e.g. [memory + memory/offset + reg + immediate])

About 80% of the computations of a typical program required only
about 20% of the mstructlons in a processor S instruction set

[e g. IVIIPS]
=~ 200 instructions, 32 bits each, 3 formats
all operands in registers (almost all are 32 bits each)
= single addressing mode: [reg + immediate]

~\\ POLITECNICO
%)) MILANO 1863

CISC: thousands of instructions, single instruction for every single way we want to have operands etc. Lot of
instructions means that each instruction has its own circuit.

Complex instructions - complex circuits

So generally, CISC systems are faster but much power hungry and complex.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

RISC: hundreds of instructions, load/store instructions so all the operands are loaded/stored from the
memory. Much fewer instructions, single addressing mode, single addressing for operands, slightly slower but
much more optimized for embedded systems, much less power hungry.

Important point:

About 80% of the computations of a typical program required only
about 20% of the instructions in a processor's instruction set

Most of the computations are made by a little part of the ISA, so generally a small set of instructions are used.

What is Better?

(CISC)

[e.g.. Intel x86, AMD]
More operands and more complex (powerful?) instructions
More registers (Inter-register operations are quicker)
Fewer instructions per program (less memory)

[e.g., MIPS, SPARC, ARM, RISC-V]
Fewer operands and less complex (efficient?) instructions
Faster fetch/execution of instructions
More instructions per program

) POLITECNICO
MILANO 1863

CISC: thousands of instructions, many ways to access memory, but even with thousands of instructions we
use not so many instructions

RISC: hundreds of instructions, one way to access memory (both cache and central memory), much less
power hungry devices

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Instruction Set Architecture

ISA is a set of instruction models
 Each instruction defines a way to transform the machine state
* ISAis also a «contract» that an architect must follow when designing a machine

assembler compilers interpreters 0S : Software tools

..

non-pipelined pipelined 000 Microarchitectures

..

Is it possible to apply
CPU specialization? How?

POLITECNICO 14
MILANO 1863

The ISAis the interface between software and microarchitecture. On the top of the slide in green we have the
software ecosystem that has to be implemented to design and exploit a processor, we need all the tools for
such platform, as well as compilers/interpreters to traduce the high-level code to the ISA. On the bottom of

the slide, in red we do have the microarchitecture that is how the ISA is implemented, if we have
pipelines/caches/branch prediction features, is all conceptually below the ISA.

Instruction Set Extensions

« Used for implementing complex operations not defined by the basic
microarchitecture

« Coprocessors inside the CPU microarchitecture (e.g., tightly-coupled
accelerators)

 Require an extension of the compiler and a modification to the microarchitecture
to use them

Most ISAs (X86, ARM, Power, MIPS, SPARC) are fixed and proprietary
« Preventing practical efforts to reproduce the computer systems (patents)

 Impossible to add special instructions and apply specialization with tightly-
coupled accelerators

POLITECNICO 15
MILANO 1863

As we said, since AMD/Intel dominated the market, nobody tried to modify or change how the implementation
of the instructions of the ISA was done, there was no real possibility of implementing new processors unless
someone would introduce a new ISA. Obviously there is no way to optimize Intel/AMD implemented
processors from outside.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

RISC-V

* Popular open-source ISA supported by many vendors

Alibaba releases its first AWS Announces RISC-V GreenWaves Technologies
RISC-V CPU as open source Support in the Named 2019 Cool Vendor in Al
solution for 5G and Al FreeRTOS Kernel Semiconductors
[July 26, 2019] [February 26. 2019] [April 29, 2019]

» Microarchitecture must implement the given specification
* No patent that would be required to implement a RISC-V-compatible processor
 Low barrier to enter into (custom) processor design

* The RISC-V ISA was designed for research, and therefore includes
extra space for new instructions

« Possible (and encouraged) to provide extensions for specific functions

Enabling technology for
Custom SoC Design

-\ POLITECNICO 16
MILANO 1863

RISC-V changed the paradigm since it is an open source ISA and based on it we can implement and redesign
the whole processors, we have a standard ISA and we can use it to build freely our specific processors with the
features we want to enhance. This is a totally different approach from fixed and proprietary ISAs.

RISC-V Popularity

=
erkeles Berkeley \Y 4 o

© |5 DRAPER bospoc) S DOVER jmmprees @1 NUD Qimico G sspry Western Digial. 3
Ad\Vellznox B8 Microsoft NS ooy W Cortus Bluespec - ORION samsuns Go 9'€ Quacomw PP
HUAWE! N\ Microsemi 7 =P — R

Av?:cron SAMSUNG 5 siFive , Rambus™ “gweme . COrtUs oKy mxm & SiFive Rambus

: Pestem Go gle CM:cmsem: QUALCONW\ { 4 RISC Foundation: 100+ Members

e - 7 1S QuickLogic Al{nAEs galois imoeras \) s
/ R|SC Foundation: 65+ Members = @ e el (%mmﬂmo § o S . EII
AMDZ1 Anpes @IDT | BAE SYSTEMS | @Sﬂicon S INTRINSICID {7 '_°wl“s mINAMIC SEQLRE] "F(C B
e @Sil' n (HLATTICE '(:'U'n'u O runimeio Nantmco @hdosip S,IEMEN.S o fallieSal) M!“i“_“’ i o il 'm‘ GOWIN| Menhr 17 xsuuinG
Technologies 0 & Soeenons s @EC”M YEORTH ntRinsiX s, TERLA NONTIIROT SRR CEVA oo NINRES
GRIDOOG SHOC rnsix @ ETHzirich TRlNAMlC mg@eras g SeundAl S'{’kv"m- eAR lE‘AMg DBVER fofatafi @ TN (:/M?cadence
I~y i ROl Rumble) 2= “mm‘zmnn/\psa P

ooooooooo : UBILITE . S Sunecoe G WovectorBiox BITMAIN &
@ @Ecosm' - P lowRISC "%ﬁ ::m‘u ‘_) . [S“C aselsan T J — ncvww)cwos[
ultra@ = CSeM VRINCE] S) Blockstream Ryt VectorBlox Technalution Aot o) B A Mellanox logRISC g P=) N P

- UNIVERSITY ® n =
364 members
in 2024
POLITECNICO 17
MILANO 1863

In this slide we have a list of the supporting companies/institutions that produced their own processors using
RISC-V. As we can see, also silicon companies started to use RISCV, that is because it is interesting from a Si
and from a microarchitecture point of view, we can implement accelerators with their own processor, which is
a great potentiality.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Custom SoCs with RISC-V

» RISC-V is increasingly supported by many open-source compilers

RISC-V CPU RISC-V ISA RISC-V Compiler
Function
identification
. RISC-V ISA RISC-V Compiler
+ ext + ext
HL

RISC-V CPU ;’ ! S
+ accelerators | i SoC

o

{/—’, 2\ POLITECNICO
0% miano 1863

With RISC-V Instead of implementing a dedicated accelerator out of the core that must then communicate
with the core (loosely coupled accelerators), we can directly implement the accelerator inside the core (tightly
coupled accelerator) and add a new instruction for the accelerator with its own additional circuitry and | can

do this because it’s an open source code.

Ex: I have “add”, “mul” and add “MAC”, | introduce the new instruction in the ISA and then | need to inform the
compiler for that specific architecture that that instruction exist, otherwise it can’t be implemented in the
assembly code. When “there’s this pattern of code, this is a MAC, this is not anymore jumps and multiplication
butitis a single call to the MAC” and then | have to implement the MAC in the core, | modify the documentation
of the code but then | also need the high level syntesys/Verilog implementation into the core. So we do extend
not only the ISA but also the core itself, we will have additional circuitry that implements the instruction.

At the end we obtain a modified RISCV with modified core and modified documentation and modified
compiler that has been extended with our new specific functionality.

The idea is not to totally substitute the existing processors but it’s more of implementing dedicated very small
accelerators for specific instructions (ex: META/AWS are leaving the control to std processors that are very
optimized/very fast but then implementing clusters of RISC-V accelerators dedicated to deep learning
operations, instead of having power hungry and very complex systems).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

CPU and Memory Hierarchy

Zero access time (latency)
Infinite capacity
Zero cost
Infinite bandwidth (for parallel accesses)

Conflicting requirements!

Idea: Have multiple levels of storage
(progressively bigger and slower when far from the processor) and
ensure most of the processor data is kept in the fast(er) level(s)

\\ POLITECNICO
1) MILANO 1863

-

What is bandwidth? Is the number of parallel access that accelerators can do to the memory.

As exposed in the bottom part of the slide, since there are different technologies for memories, the general
idea is exploiting such different technologies to highlight the advantages of each of them and try to reduce the
limits given by the cons.

Specifically for the accelerators, the important thing is adapting the way of accessing and the dimension of the
memory for the single task that the accelerator has to perform.

Concept of Memory Hierarchy

move what you use here X ~|fast
small

With good locality of
reference, memory

appears as fast as 3
and as large as

backup
everything —/_|big but slow

here

{755 POLITECNICO
A / MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

An Example of Memory Hierarchy

a

Smaller,
faster,
' CPU registers hold words retrieved
and from L1 cache.
more L1:/ on-chip L1
expensive cache (SRAM) L1 cache holds cache lines retrieved

(per byte) . } from the L2 cache memory.
storage LZ/ off-chip L2 \

devices cache (SRAM) L2 cache holds cache lines
retrieved from main memory.
L3: main memory
(DRAM)
Larger' Main memory holds disk
blocks retrieved from local
slower, disks.
and

cheaper L4: local secondary storage
(per byte) (local disks)

P yt Local disks hold files

Storage retrieved from disks on
devices remote network servers.

L5: remote secondary storage
d (tapes, distributed file systems, Web servers)

11/ \ POLITECNICO
\E _/; MILANO 1863

Classical hierarchy of memory

Multi-CPU Architectures and Coherence

requires a good hardware knowledge

Programmability issues when there are multiple processing elements

Assume just single level caches and main memory
Processor (or coprocessor) writes to location in its cache
Other caches may hold shared copies - these will be out of date
Updating main memory alone is not enough

Cache coherence: consistency in the value of
data between the versions in the (local)
memories of several processing elements

When do we need cache coherence
in case of coprocessors?

POLITECNICO
MILANO 1863

An accelerator can be implemented in a dual core way, splitting the computation in parallel executions. The
problem with this approach is memory coherence and that is in any case that two entities are sharing the

memory and running in parallel.

Ex: two cores sharing the main memory but with dedicated caches, L1 caches for both. Both cores load a
piece of data, then one starts modifying the cache, but the other core does not see the modification, because
caches are not shared, therefore readback the memory to the central memory is not enough to keep
coherence, because the other cache is still not modified, it has to be updated.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Parallel programming/distributed programming is quite complex and introduces a series of problems that
might be very difficult to overcome.

Heterogeneous Processing Elements

Offloading Execution Parallel Execution
« Master CPU is on hold « All units are active (equally?)
 Mostly to improve performance * Mostly to exploit task-level parallelism
(acceleration) and/or energy « May introduce synchronization and
Consumptlon SpeCIallzatlon) coherence prob|ems

acceleration

communications A Accesses to shared memory
require to manage data
i coherence

Especially in case of computation to be done
on multiple independent data (massively parallel)

POLITECNICO o
~/ MILANO 1863

In this slide we have the representation of the two different approaches, parallelization or hardware
acceleration.

By offloading execution we mean that the execution is flooded out from the software to dedicated hardware, if
the system is well designed it will take less time or less power (or whatever constraint we want to improve).

In the slide we can see some “yellow” parts, these are the overheads, the wasted resources to wake up the
accelerator, load/unload the data etc. we might implement a very optimized accelerator, much faster than
software execution or much less power hungry, but if (for example) the communication is not implemented
well, it could make not worth the using the accelerator. There can be various bottlenecks as maybe the
amount of data is so large that we lose too much time/power to accelerate the functionality.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Accelerators with Private Local Memory

Accelerator Tile

* Private Local Memory Private Local Memory
* A specialized multi-bank
local storage for highly-
parallel data path T [computation 1 |
» Autonomous DMA DMAC| = {
» Without CPU intervention ¢ || Computationn | circular buffer
 Without system knowledge EEER
. $ Output _out
 Transaction-level S LaTiiieD
abstraction UL clock
» Decouple input and output T = =
: put (ENENENENEN"D) L _/
phases from computation =T owiE= | outiii=
. P|pe||n|ng Computation debayer debayer debayer
(in[1,51) (in[2,6]) (in[3,71)
80

POLITECNICO o
MILANO 1863

Example of a possible loosely coupled accelerator, we can identify

e inpurple:the DMA controller

e blue/green: input/output buffers

e grey: accelerator device and computation for acceleration
e yellow: private local memory implementation

The slide also introduces an important concept, the communication optimization: it is transaction level
design, I’'m not interested in what the acceleratorimplements but | want to synchronize the “blue boxes” with

“grey boxes”, so the data loading and the computation.

What Happens with Multiple Accelerators?

Balancing communication and computation is crucial for performance
optimization
 Optimizing microarchitecture reduces the computation latency
« Combination of HLS transformations and PLM customization
+ Input and output phases interact with the rest of the system
+ Backpressure due to congestion may increase the latency

o @B — Y Yeaa Y . Yoeeeous
) out[1] = kernel | out[2] = kernel | out[3]= kernel . RULIATS OUL2]IS out[3]s
kernel kernel kernel
Computation (in[1]) (in(2]) (in[3]) Computation (It:‘rm) li?-r[;:) (_Ienrlr;l
| & a2 a&n

Reduce the congestion or exploit the congestion
to optimize the execution at the system level

POLITECNICO 25
MILANO 1863

This slide is very important because it represents two possible situations in which communication and
computation were not balanced, thus reducing the performance of the accelerator. In detail

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e left graph: fast communication but slow computation. If implement a very fast communication but |
have a slow computation, probably | am wasting some resources somewhere, whether it being area,
power, silicon, because implementing fast communication can be very costly and power hungry, but if |
am limited by the computation, | am wasting all the resources | allocated to the communication.

e right graph: fast computation but slow communication. In this case probably we should implement
better communication, otherwise we spend silicon area and power to make a fast accelerator, but its
potential is wasted due to a bottleneck of communication.

I have to be as consistent as possible, since I’'m designing an accelerator, | have to keep everything in mind to
have a really optimized system, is not enough optimize computation or communication, both have to be
balanced and | have to know where the bottleneckiis.

The ideal situation would be

JUuyuyvuUyyUyvUuvUvyUyvvUUUUyUyyyuyuuuuy

out[1] =

kernel

(in[1])

Output) < 7)< >(>< >

Computation

SoC Communication

Communication is the most critical aspect affecting system performance
« Communication architecture consumes up to 50% of total on-chip power

 Ever increasing number of wires, repeaters, bus components (arbiters, bridges,
decoders etc.) increases system cost

+ Design flow must include communication design, customization, exploration,
verification and implementation

8000

- - - o
Communication Architectures Zzzz Pl
in today’s complex systems ET 5000 o
significantly affect performance, 53 2000 =
power, cost and time-to-market! £% 000 P
é °

1000 ——OM

Flexiblity vs. Efficiency

POLITECNICO 26
MILANO 1863

Communication is the biggestissue in SoC design, processors are coming from outside, the VHDL/Verilog for
the accelerator is more or less easy, the biggest issue is communication and synchronization among all the
components of the SoC. If we are shrinking the size of transistors and silicon components obviously the
communication/wiring part is increasing, so we must try to optimize it as much as possible.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Bus Terminology

« Master (or Initiator)
« IP component that initiates a read }H M M ecoder | | utter
or write data transfer | | | | |
- Slave (or Target)
* IP component that only responds
to incoming transfer requests 1

 Arbiter
» Controls access to the shared bus Decoder aitae Ma;mv;
+ Uses arbitration scheme to select MTH i
master to grant access to bus Brid otechip
] rl memory
« Decoder ge

* Connects two busses

» Acts as slave on one side and master
on the other

« Determines which component a
transfer is intended for

%) POLITECNICO
%] MILANO 1863

Bus Signal Lines

address lines

datalines—
' control lines |

* A bus typically consists of three types of signal lines

+ Address

+ Carry address of destination for which transfer is initiated
« Can be shared or separate for read, write data

» Data
« Carry information between source and destination components
» Can be shared or separate for read, write data
« Choice of data width critical for application performance

 Control
* Requests and acknowledgements
« Specify more information about type of data transfer

» Byte enable, burst size, cacheable/bufferable, write-back/through, ...

() POLITECNICO
FEGTA) MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Physical Limitations

* Bus wires are implemented as long metal lines on a silicon wafer
« Transmitting data using electromagnetic waves (finite speed limit)

» As application performance requirements increase, clock frequencies
are also increasing
» Greater bus clock frequency = shorter bus clock period
* 100 MHz =10 ns ; 500 MHz = 2 ns
» Time allowed for a signal on a bus to travel from source to destination in
a single bus clock cycle is decreasing

- Can take multiple cycles to send a signal across a chip
* 6-10 bus clock cycles @ 50 nm

+ unpredictability in signal propagation time has serious consequences for
performance and correct functioning of synchronous digital circuits

=
1357\ POLITECNICO
3“%‘' MILANO 1863 29

Bus pros (©) and cons (®)

© The silicon cost of a bus is small.

© Any bus is almost directly compatible with most available IPs, including
software running on CPUs.

© The concepts are simple and well understood.

@ Every unit attached adds parasitic capacitance, therefore electrical
performance degrades with growth.

@ Bus timing is difficult in a deep submicron process.

@ Bus arbiter delay grows with the number of masters. The arbiter is also
iInstance-specific.

@ Bandwidth is limited and shared by all units attached.

o,
() POLITECNICO "

(G074 MILANO 1863

The BUS advantages are that buses are cheap, have wide compatibility and are very simple. The limits are that
buses do not scale, so as we increase the dimension of the communication network, we significantly slow
down the device, the more components are connected the less time to propagate the signal we have.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Network-on-Chip (NoC)

Leveraging existing
computer networking

principles to improve = = "

inter-component intra-chip o L0 i

communications [= O

 Each on-chip component = e P
connected by an intelligent $ § §
switch to particular s R "Roe?
communication wire(s)

« Improvement over standard L i i
bus-based interconnections vl 1 1
for SoC architectures in terms] e Rode? o |
of throughput tl tl]

NoC (Network on Chip): all the components of the SoC are part of a network and the connections between
chips are the connections of a node of a traditional network. It can implement parallel communication (with
respect to the BUS that is a shared device), we have reconfigurability in fact we can modify the path for the
communication based on the network chart. The network can also be reconfigured due to failures.

The NoC router is the component that has to decide which path each master is going to communicate, for
NoCs a routing table is implemented within the router.

NoC pros (©) and cons (®)

© Parallel communication.
© Reconfigurability.
© Possible shorter paths (and thus delays).

@ More silicon.
@ More wires.
@ Possible longer delays if many routers have to b crossed.

@ NoC optimization may require an ad-hoc placement of the
accelerators.

) POLITECNICO =
)/ MILANO 1863

As designers, we have to ask ourselves if we need parallel communications, how often data transfer are
required, how fast do they have to be and make an appropriate choice.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Important point: NoC are not commercially available, so we have to implement our own interface and

standards.

Ex: let’s imagine we have the FFT accelerator and we have an AXl interface that allows us to connect it with an
AXl bus. If | want to use it in an NoC network | do not have a pre prepared NoC, so | must implement my router,
the interface to connect from AXI to my NoC router and network.

With NoC | have only point to point connection and it’s highly customizable network, each router/master can
be optimized and built in a different way.

3 - Design flow
When referring to digital circuits as of today we mean VLSI. What are VLSI?

VLSI: Very Large Scaled Integrated circuits, that implies “lots” of transistors on a single chip. Itis an acronym to
identify all the digital technologies since the 90s up to today, although today we are talking about subscale or
nanoscale devices and so we find the acronym ULSI, Ultra Largely Scaled Integrated circuits.

ASIC (Application Specific Integrated Circuit)

* An Integrated Circuit (IC) designed to perform a specific function for a
specific application

silicon

i35\ POLITECNICO
%) MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Types of ASIC

- Fixed-function ASICs
.+ Full-Custom ASICs
.+ Standard-Cell-Based ASICs

« Configurable Circuits

« Gate-Array—Based ASICs

» Channeled Gate Array

» Channel-less Gate Array

» Structured Gate Array

* Programmable Logic Devices

» Field-Programmable Gate Arrays

.

2%\ POLITECNICO
) MILANO 1863

When we talk about ICs in general, we may see two divisions:

1. Fixed function ASICs: both the types reported in the slide still are used
2. Configurable Circuits: FPGAs are the only ones that are used, all the others were the old approach

Focus on Two Technologies

* Fixed-function ASICs
« Very integrated, yet very expensive

* FPGA - Field-Programmable Gate Array
 Cheaper to implement, reconfigurable

POLITECNICO
MILANO 1863
Let’s suppose we want to implement some function in a SoC. How can | do it? One approach is full custom
ASICs

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Full-Custom ASICs

* Full-custom design offers the highest performance and lowest part

cost (smallest die size) for a given design
 All mask layers are customized

- Generally, the designer lays out all cells by hand Not scalable!

+ Some automatic placement and routing may be done

« Critical (timing) paths are usually laid out completely by hand

 The disadvantages of full-custom design include increased design time,
complexity, design expense, and highest risk

 Microprocessors (strategic silicon) were exclusively full-custom
+ Designers are increasingly turning to semicustom ASIC techniques

« Other examples of full-custom ICs or ASICs are requirements for high-voltage
(automobile), analog/digital (communications), sensors and actuators, and
memory (DRAM)

 Most of Analog/Digital interfaces are full-custom

2%\ POLITECNICO 6
)/ MILANO 1863

The first approach was full custom design, so we consider having an area budget based on the requirements
and we have to fill such area with transistors in order to implement the function fully from scratch, by choosing
the dimension of each single transistor. The digital designer is the one that places each componentin the
Silicon area, design the circuit, produce the netlist and shape the masks for lithography.

Standard-Cell-Based ASICs

» Based on a set of full-custom macros

« Standard cells, megacells , megafunctions, full-custom blocks, system-level
macros (SLMs), fixed blocks, cores, Functional Standard Blocks (FSBs), ...

. a0 o0000odooooooooooo b

- All mask layers are customized, (both) 0 i
. . standard-cell —a>=1 O
transistors and interconnect area i g
« Automated buffer sizing, placement and 0 12 3| B
routing ééﬁi —7 :

fixed ISl |

blocks | O

s nE

« Custom blocks can be embedded 0 =
O |4 5 O

O O

gDDDDDDDDDDDDDDDDDDDB

=\ POLITECNICO 7
MILANO 1863

Since the full custom was too long and too expensive to implement, a second way to produce ASICs and VLSI
was born by using standard cells, so basic pieces of circuits that can be exploited to build the device. Instead
of fully designing each gate etc. a company provides standard cells and with them we build our system. There’s
less control over the design, less optimization, more area, more power consumption, lower working frequency
but much faster, cheaper design.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

ASIC Cell Libraries

« Alibrary of cells is used by the designer to design the basic logic
functions for an ASIC (building blocks — equivalent to microinstructions)

« Options for cell library

* (1) Buy an ASIC-vendor library from a library vendor
« Library vendor is different from fabricator (foundry)
« Library may be approved by the foundry (qualified cell library)
« Allows the designer to own the masks (tooling) for the part when finished

* (2) You can build your own cell library (application-specific cell libraries)
« Difficult and costly

e
ASIC Library Development

« A complete ASIC library (suitable for commercial use) must include the
following for each cell and macro:
A behavioral model (VHDL or Verilog model)
* A detailed timing model
* A physical layout
* Atest strategy
» A circuit schematic
* A wire-load model
* A routing model

Example of standard-
cell implementation

|

POLITECNICO
MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Standard Cell ASIC Routing

« Standard cells are organized in "rows" (all cells have the same height)
» Alignment of pins for wiring (only horizontal and vertical lines)

» Metal2 may be used to cross over cell rows that use metal1 for wiring
« Other wiring cells: buffer/filler cells, row-end cells, and power cells

j| expanded view

of part of flexible . connection

blogk 1 connection metal2 y/
to power to power
pags metal it pads

|
7 WSS VDD - I WSS VDD

Placement defines the
position of the cells to
simplify routing

Complex routing can create
violations to be solved
manually or with iterations

metal2 metalt

metall rows of standard cells

POLITECNICO 10
“/ MILANO 1863

Design Flow

1. Design entry - Using a hardware description sart |
language (HDL) or schematic entry poanana prelayout design entry = el /
2. Logic synthesis - Produces a netlist - logic cells =< . O e - /
and their connections 1 AW
3. System partitioning - Divide a large system into <o '
ASIC-sized pieces L)
4. Prelayout simulation - Check to see if the design —
functions correctly parttonng @y Ly
5. Floorplanning - Arrange the blocks of the netlist ! / ;f
on the Chlp i postlayout floorplanning \T— f
))) —— simulation > e 2 /
6. Placement - Decide the locations of cells in a block = L \/ chip /
7. Routing - Make the connections between cells and m— * /
blocks (including clock and power distribution) 0 = (W
8. Extraction - Determine the resistance and _ 1 R |
capacitance of the interconnect (based on resulting W1 citcuit routing . ;l 1 :--| e
wirelength) il (7] d_‘J_ —
- - . back-annotated
9. Postlayout simulation - Check to see the design rntist ¥ finish

still works with the added loads of the interconnect

ADpe "
This is the standard design flow of an ASIC design. We start with the specification, then we describe the
behavior of the circuit, then simulations are done to verify that the function is implemented correctly. We still
don’t know if the circuit is working properly because since we haven’t implemented it in silicon, we don’t know
if the length of the wires etc. aren’t breaking timing constraints.

The next phase is “floorplanning”, here the circuit is divided in specific parts where each one has a specific

function and we do placing and routing, so we place the specific working area in a portion of the device and
then we connect them with real wires, in order to respect timing constraints. By knowing length and types of
wires we know the parasitic capacitances and we can run the simulation with real delays.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

So we have logical design and so behavioral description, structural description and logic netlist. Once we
floorplan, place and rout, we extract the capacitances and all the electrical characteristics of the physical
design. We can divide this operation in two parts: frontend design and backend design

e frontend is generally done by digital designers/computer engineers
e backend design is done by electronics engineers specialized in silicon physical design

Once we have the physical design, we know the electrical characteristics of the circuit and through post layout
simulation we know all the characteristics like power consumption, maximum frequency etc.

The missing part in this flow is the choice of the standard cells, but this implies that the logic design is
technology independent, we can achieve our objective without knowing the technology we are going to
implement the circuit in because we’re designing “just” from a logic point of view.

The opposite approach is configurable and reconfigurable circuits, we buy a chip with something already
implemented inside and then we configure the chip, that is the case of FPGAs.

Gate-Array-Based ASICs

* Transistors are predefined on the silicon wafer
 The predefined pattern of transistors is called the base array

« The smallest element that is replicated to make the base array is called the base
or primitive cell

 The top-level interconnect between the transistors is defined by the designer in
custom masks - Masked Gate Array (MGA)
* Design is performed by connecting predesigned and characterized logic
cells from a library (macros)

« After validation, automatic placement and routing are typically used to
convert the macro-based design into a layout on the ASIC using
primitive cells

(%) POLITECNICO "
{50AY MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

FPGA (Field Programmable Gate Array)

« An integrated circuit that can be configured by the user to emulate any
digital circuit as long as there are enough resources

» The core is a regular array of programmable basic logic cells that can implement
combinational as well as sequential logic (flip-flops)

- An FPGA is an array of Configurable Logic Blocks (CLBs) connected
through programmable interconnect (Switch Boxes)
» None of the mask layers are customized programmable

« A method for programming the basic logic cells "
and the interconnect

* A matrix of Erogrammable interconnect
surrounds the basic logic cells

» Programmable 1/O cells surround the core

0 00000o000oooonoooon

0DA0D

5;;;

I 0
I
0 o
I o
I |

Joo0000ooooooooooooogdo

I

%DDDDDDDDDUDD

programmable
interconnect

ag

OO0O00000000000000000

(%) POLITECNICO b
SHAT) MILANO 1863

What is an FPGA? It is a mesh of configurable routing blocks and Configurable Logic Blocks. ACLB is a LUT
plus a MUX plus a FF. The output of the CLB can be synchronous or asynchronous, the LUT implements our
functionality.

FPGA Structure

Very regular design allowing
for high-density chips

Can be complemented by specialized
blocks (e.g., RAM or DSP)

. Configurable Logic Blocks

. Interconnection Network
. 1/0 Signals (Pins)

POLITECNICO 1
MILANO 1863

Let’s consider the LUT as a piece of memory. The addresses of the LUT decide which is the row of the LUT that

we’re going to address, the content of the cell decides what is the output, it’s a small memory, 4 bit I/0
(depends on the specific FPGA characteristics).

If | consider the content of the memory as output of a logical function and the addresses associated with the
memory as the input of the logical function, I’'m implementing the logical function with a piece of memory. This
is the role of the look up table.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Simplified CLB Structure

Both combinational and

sequential logic
Look-Up MUX
—p| Table D " Q
(LUT) S
CLR 6

Configurable Logic Blocks

. Interconnection Network
. /O Signals (Pins)

#-) POLITECNICO T

)/ MILANO 1863

Here a 4 input AND gate is implemented with a LUT.

Example: 4-input AND gate

Ale]c|[p o
o [o [0 o o
o [o |0 [1 o N
o [o |1]o o —
o [o |1]1 o 3
0 1 0 0 0 A A _.. ’F 0 ~l
o [1 o [1]o B N\ B !' § D ™ Q
o |1 |1 o o . ;0 o
o [1 1]1 o = g C —»— > —
1 |0 o [o [o D —bf—— o @ 0
1 (o [0 [1]o \\ :5 /f
1 o [1 [0]o ~
1|0 |1 |1 |0 Configuration bits
1 (1 [0 [0 [0
1 [1 o [1]o
1 1 [1 o]o
'HEERERE
\ POLITECNICO 16

)/ MILANO 1863

If the LUT is the basic building block in the design, what do | need to do to configure it, to specify the
functionality?

I need to configure the content of the memory. Based on the content of the memory I’m changing the
functionality of the LUT. The content of the memory is called configuration bitstream, it specifies the
configuration for the LUTSs, so their functionality.

So we have a device with a standard layout and based on the configuration memory | modify the routing etc.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Of course the complexity of the circuit | can implement depends on the number of LUTs that | have in my
FPGA.

What is the advantage of an FPGA based design?

Speed in terms of time-to-market, | don’t have to care about the physical design, it is already there, from the
producer of the piece of silicon it is an easy design. From the producer’s point of view they’re implementing an
ASIC, from the system architecture the FPGA is a configurable device. So, it’'s much simpler to design a system
based on the FPGA, also much cheaper, because if | do something wrong, | can reconfigure the device, if | do
something wrong in the design we’re cooked.

The cons are that the FPGA design is NOT optimized in area, in pw consumption, itis much smaller.

ex: a microprocessor implemented in an FPGA goes to 5MHz-50MHz-200MHz at the most, we can’t push it
more and we have an extreme power consumption.

With modern FPGAs we can dynamically modify the configuration, that’s very interesting, we can modify the
configuration of the FPGA with a microprocessor and we might also have an hardware accelerator that can be
modified without switching off the circuit, so the microprocessor can modify the FPGA and the accelerator
while part of the system is running.

Interconnection Network

Configurable
interconnection matrix

Configuration
bits

OCK

. Configurable Logic B
. Interconnection Network
. /O Signals (Pins)

) POLITECNICO .
/' MILANO 1863

This is an example of a switching block, we have wires with pass transistors that are 1 or 0 based on the
configuration bits. We can see that every single crossing point requires a lot of pass transistors and lots of
configuration bits. Most of the configuration bits are occupied by routing and routing occupies most of the
silicon area.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Example

Determine the configuration bits for the following circuit implementation in a 2x2 FPGA,

with 1/O constraints as shown in the following figure. Assume 2-input LUTs in each CLB.

Input

Input2

Input1) 5o
Input2 > Output
Input3 = T

Input3
Output

Requires separation
into multiple CLBs

)\ POLITECNICO
!/ MILANO 1863

CLBs Required

| __cie1 || cCB2 |
i [S
c . Input2 L Output |
Creation of 2-input | |
clusters (logic synthesis) . ! I
Input3 /
N\ M\
0 > [o)
T ‘ MUX o) L
Input1—p-| | 0 | 1D~ QP O — | 1]
Input2—| ! 0 | P _ Input3—#=| | 1 “
— ar O D L
\ 1 ~ 0
S— / S
h Configuration bits Configuration bits
POLITECNICO

MILANO 1863

18

19

So the first CLB will implement the FF and the AND while the second will implement the XOR. We do have to

also implement the connections between the logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Placement: Select CLBs

Input1

Input2 Dependent on I/O
constraints

Input3
: Output

@) oo 2
Routing: Select Path

SB1

Configuration bits

SB4

Configuration bits
Output

POLITECNICO .
G945 MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Configuration Bitstream

» The configuration bitstream must include ALL CLBs and SBs, even
unused ones

- CLBO: 00011 e
« CLBT: XXXX
- CLB2: 01100
« CLB3: 01XX0
- SBO: 000000
« SB1: 000010
- SB2: 000000
- SB3: 000000
+ SB4: 000001

CLB3 must pass the
signal to the output pin
(routing cells)

Output

35\ POLITECNICO 22
'}/ MILANO 1863

The single CLB is a complex system on which we can build complex functionalities. The gap between the
custom implementation and the FPGA implementation in terms of performance can be huge, so we might ask
where’s the advantage of this approach?

Economics of ASICs

» Total product (or part) cost is a function of fixed cost, variable cost, and
the number of products (parts) sold:

total part cost = fixed part cost + variable cost per part X volume of parts

i | A

Crossover
point,
generation n+1

Total Cost

Crossover
point,
generation n

NRE

How many parts to
Number of Units get profit?

) POLITECNICO .
'/ MILANO 1863

In this graph we see non-recurrent expenses due to ASIC design, so when we want to implement an ASIC we
spend a lot in respective of how many parts we implement, because we pay for the engineers, for the tools, for
the std cells and a lot for the silicon foundry, but then we spend little to product the effective device.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

On the other hand, the non-recurrent cost for FPGA is 0, but the cost of the design scales with how many parts
we implement.

We can also see that there’s a cross point with ASICs.

When we need little parts we go with FPGAs, when we need to produce a lot of devices/ICs we go with ASICs, if
we plan to sell millions of parts we go with ASIC design while if we are designing a couple of satellites per year
a full custom design is unaffordable, we need a FPGA based design. The main driver for the choice between
ASIC and FPGA is always the market. FPGA prototyping will give me some insight by emulating the circuit on
the FPGA. After we know that the device works on the FPGA, | can produce my SoC.

System-on-Chip Architectures

. composed of several IP components
© Decreased power consumption
© Increased reliability g o o}
© Smaller board space o S .
© Cheaper with ready-to-go components] | |
Igl Ng% Bridge Ez

® Extremely high design cost for the chip U =
@ Large silicon space may be required wm R
® Component t_estlng may be Fhfflcult Fo e

(mainly post-integration testing) i —— — .,
® Prototyping may take longer P : :{F*
® Intellectual property (IP) and Security iSSUES < L i e bl J srmmseama) b

POLITECNICO
MILANO 1863

We can see some advantages and drawbacks of having such a complex system.

e Power consumption: we remove all the parts that are implemented in the FPGA but aren’t necessary in
the final product

e Increased reliability: silicon is much more reliable than the PCB board, board level faults are much
more common than silicon faults. When everything is integrated in a single piece of silicon itis more
reliable. The drawback is that testing is much more difficult with respect to the board. Here we must
test everything on a single piece of silicon, while board testing is much easier.

Oss: what do we mean by testing? We have our piece of silicon and before selling it | must verify that all the
implemented parts are working well in the silicon bulk. Post-production testing. Without having probes and
connections from the input to the rest of the component it is very hard, we must identify a functional
condition of the circuit where the specific part that | want to test is under stress. | must test my system by
driving its primary input outputs | have to try to identify whether all the internal components are working or
not.

e Reduced board space: much less area is used, the system is miniaturized
e The system is much more complex than a normal digital system

e Testing is much more difficult, prototyping takes longer

e Security issues from many points of view: intellectual property

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

From Specifications to Chips

for(i = 0; i < 18; i++) {
s = (mpfloat)0.0f;

k=20;

do {
s += X[k] * v[k]:
s += X[k+1l] * v[k+l];
s += X[k+2] * v[k+2];
s += X[k+3] * v[k+3];
s += X[k+4] * v[k+4];
s += X[k+5] * v[k+5];
k += 6;

} while(k < 18):;

v += 18;

ISCALE (s) ;

t[i] = s;
}
/* correct the transform into the 18x36 IMDCT we need */

/* 36 muls */

for(i = 0; i < 9; i++) {
x[i] = t[i+9] * Granule imdct win[gr->block type][i]:;
ISCALE (x[i]) ;
x[i+9] = t[17-i] * Granule_imdct win[gr->block type] [i+9];

ISCALE (x[i+9]) ;
x[i+18] = t[8-i] * Granule_ imdct win[gr->block type] [i+18];
ISCALE (x[1+18]) ;

x[i+27] = t[i] * Granule_imdct_win[gr->block_ type] [i+27];
ISCALE (x[i+27]) ;

POLITECNICO
MILANO 1863

Judouooogaooooogodd

I O O R R

OO0O0O000O0O00000]

Juuudoooduoduoogood

This slide represents the beginning and the end of the device description. We start with a very high-level

description and then we arrive to the layout.

Platform-based design

Design methodology to customize an existing platform template with

the support of EDA tools

Soft IP

|

High-level description to be
specialized (for example

w.r.t. technology)

\
O00000000§O0000000000

Pre-existing component) 1 0000000000000000008,
ready for the target || Haa | ~__[g| \ : : 0
technology %E o 0 o
| ml a O
| g— — [0 O
| 0 i} 0
: L : -
e.g., custom . : o 0
cogm onents |L20 . o i ; . o
P oooooodooooooooooog 000000000o0000o0ooooon

SoC Platform SoC Architecture

POLITECNICO

MILANG 1863

28

We want to exploit something that is regular and can be reused design by design, | just act by plugging in

additional functionality, we reduce the number of soft/hard IPs

e Hard IPs: comes as a netlist, is already implemented in specific technology and is implemented in the
cells, these are generally the IP cores I’m purchasing from third parties, so I’m not able to understand

how the functionality is implemented and optimized. These are structural, ready to be used.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e Soft IPs: they are behavioral, they’re described and then I’ll synthesize them using my standard cells,
which need to be adapted to be used in the system.

Some components might not be available from somewhere/other companies so these will be implemented
from scratch, for example NoCs are not commercially available, they must be implemented.

Hardware/Software Co-Design

Refinement of an application and an architecture template
based on the given constraints

. Platform-based
Application
. Estimation of
Mapping |+ performance,
area, and
power
] in HW and SW
Mapping
results

HW Interfaces

SW
synthesis synthesis synthesis
HW SW

When designing an accelerator, | have a very high-level description of the application, then maybe | have a
platform that comes from previous experience or maybe some IP cores, then | have constraints on power,
cost, area. As soon as possible | need an estimate as accurate as possible of the figures of merit the

POLITECNICO
MILANO 1863

constraints.

Mapping: with mapping we mean the process of choosing what’s going to be implemented in a CPU, in a GPU,
in a custom accelerator, what in software, which operative system is needed etc.

Once mapping has been performed, | know what’s going to be implemented in hardware and for that part I’ll
follow my hardware design flow, then for what’s going to be implemented in software I’ll follow the software

design flow.

At the end we have the firmware or the operating system and the hardware.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Hardware-Software Co-Design

Patallel Development of Patallel D evelopment of
ardware IP Blodks Sotware IP Modules
Generic Generic
Speotty
Hardnare . Software
1P Blocks ERlamarChE) IP Modules

I
Electranic Syﬂlm Leval Design

. P artition
'A';I:':fd”'e Hardware/
erm Selact Software Select
Architecture Software IP
Plztform T | Modules
Y ¢ Y ¥
Application- inte grate Application- — Application-
specific specific IP Blocks specific
Hadnare [] into Architachure (ooate €= Software
IP Blocks Platform e Mo dules
¥ + Operating
Hardnare/Software System
Hardwere Functional " Co-simulation N Low lewel Software
Design Flow Simulation Sofware Design Flow
Simulation
L J
[B]
Hardware and Lowslenel
Softwere Emulation on FPGA-based
Emulation Platform
J
o #pplication
Pphz'g‘:‘ Software
Development
Hardmare/Software
Prototspe Werification on . Sottware
IC Fabrication Application Prototype Test
or Development Board
J 1
Volume
\ IC Fabrication
POLITECNICO _ 20
MILANO 1863 ¥ Ship ICs and Sofbware to Clients

Hardware-Software Co-Design

Design Space Exploration The design space may not be
« Performance of customized HW units regular (conflicting requirements)
+ Programmability of low-cost SW components + Dedicated HW accelerators may

decrease computation time but

increase data transfer time
performance e .
 Big PLMs may decrease data
transfer time but also decrease
performance reliability
constraint ° Component
—— duplication/triplication increases
both reliability and silicon area
(and thus cost)
software
cost constraint cost DDESIgn space
Feasible desi Iso b
Apﬁ)ﬂ;fgguco - easible design space (may also be empty) 31

What is DSE (Design Space Exploration): the design space has a lot of solutions. There might be several
hardware software mappings for a single algorithm. Then there are constraints: while respecting them the
feasible area of the design space is as reduced as possible. The solution that falls in the feasible area is
identified.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

4 - Introduction to Hardware Description (Languages)

Slide 3

What is Verilog?

Hardware Description Language (HDL) to describe digital circuits at
many abstract levels (behavioral, structural)

 Developed in 1984 (Standard: IEEE 1364, Dec 1995)

» Used in almost all semiconductor companies and tools to specify components

« Why are we studying Verilog? To become familiar with the hardware
description language (HDL) approach for specifying designs
* Be able to read a simple Verilog HDL description

 Be able to write a simple Verilog HDL description using a limited set of syntax
and semantics
« Understanding the need for a “hardware view” when creating an accelerator

* You may write very bad or even non synthetizable Verilog!

[POLITECNICO
\; */ MILANO 1863

Hardware Description languages are the only way to implement and improve our code and design solutions.
High level description languages are useful to describe our function in SoC, but hardware optimization is done

with HDL. The conceptis that HDLs gives a very fast description, but not an optimized one.

Slide 4

Abstraction Levels in Verilog

Behavioral

RTL Our focus

Gate

Layout (VLSI)

L’é‘{}v POLITECNICO
JUAEY) MILANO 1863

Here we see the abstraction levels of HDLs. Verilog and VHDL are very similar, the main differences are related

to syntax implementation.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e Behavioral: it’s the description of the logic of the circuit, there’s no concept of clock nor sequentiality,
only the functionality of the system is described, without any reference to the technology.
Ex: I mustimplement an adder, 16 bits in I, 16 bits in O and just make the sum, very similarto a C or C++
description

e RTL: RTL stands for Register Transfer Level, it is specified the registers logic that combined give the
combinational logic.

RTL

ccA QI b Qe 5” CLZ b Qf—s/~ CC3

clc clc

e (Gate: netlist level description of the circuit, direct electronical implementation
The lower we go, the more we go “near” the technology level.

What we must keep in mind is that we can’t write not synthesizable code, there are parts of the behavioral
descriptions that can’t be synthesized. Every step of the description has its own characteristics, non-
idealities, constructs, statical details but in the end, before a gate level description | must have a
synthesizable circuit.

Where can we use Verilog HDL?
Not only HW description.

Verilog is designed for circuit verification and simulation, for timing

analysis, for test analysis (testability analysis and fault grading) and for
logic synthesis.

Every step of the design flow can (must!) be verified

For example, before you get to the structural level of
your design, you want to make sure the logical paths
of your design is faultless and meets the spec.

#) POLITECNICO 5
MILANO 1863

Slide 6

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Application Areas of Verilog

System Specification [Suitable for all levels
Behavioral level
L [1 Notsuitable
HW/SwW

Partition \

Hardware Software
Spec Spec

\

ASIC

FPGA of
Board oftware

PLD

Std Parts

e

POLITECNICO
MILANO 1863

Which are the parts of the design where we can use Verilog? When looking at the HW description, the purely
logic part of the circuit we can use any level of the circuit.

oss: one thing we did not mention when talking about FPGAs is that we need the specific characteristics of the
device, how many LUTs, how many I/O in the LUTs, how many FFs, which is the format of the bitstream to
configure the FPGA device etc. We need details coming from the vendor, we do not need the standard cells but
we need the developing environment etc.

These requirements are very similar to the ones that we have when going for an ASIC implementation, in fact
we need the libraries from the producer of the standard cells.

The tools to implement ASICs are different from the one for FPGAs etc.

Coming to Verilog, looking at the pure hardware stuff it can be used in any part, when looking at the hardware
we can use Verilog for behavioral description. Keep in mind that at the system level we can also have analog
parts of the circuit, most of the circuits are mixed signals. All the digital parts are covered by Verilog but are
implemented by digital designers. Analog parts can be simulated in Verilog in a functional way but can’t be
described and implemented with Verilog. For software specs, Verilog can’t be used.

H Ixed SIGNFL SYSFePL

MP + AcceELLATOR

EHWXATIOY

ANALOG) ——T>»| bpsP ::%ﬁi) of ANALOG

CI\RCu T H STAGE
A4

U
Grids | e
can B SINUATED

IV Veriuos HARDVVARLE RNESCRIPT

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Verilog fundamentals

User Identifiers and Notation

Formed from {[A-Z], [a-Z], [0-9]., _, $}. but ..
+ .. cannot start with $ or [0-9]

* .. IS case case sensitive
* myid # Myid

List element separator: ,

Statement terminator: ;

%% POLITECNICO
f&%{}%‘ MILANO 1863

Comments

* // The rest of the line is a comment

* /* Multiple line

comment */

e /* Nesting /* comments */ does NOT work */

{5 POLITECNICO
ST MILANO 1863

Slide 9

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Numbers in Verilog (i)

<size>'<radix> <value>

] T

N_O of Binary —borB Consecutive chars
bits Octal —oor0 0-f x. 7
Decimal —>dorD
ExampleS: Hexadecimal = h or H

* 8h ax = 1T010xxxx
¢ 12°0 3zx7 = 011zzzxxx111

« 0 represents low logic level or false condition

« 7 represents high logic level or true condition

* X represents unknown logic level — also X

- z represents high impedance logic level (open circuit) — also Z

(%) POLITECNICO 8
) MILANO 1863

Since we’re describing hardware, we must specify the dimensions of the bits.

Slide 10

Numbers in Verilog (ii)

1 n

* You can insert “_" for readability
* 12’ 000111010100
« 12’b 000 111 010 100 Represent the same number
. 12'0 07_24

{5 POLITECNICO 10
ST MILANO 1863

Slide 11

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Basic Syntax of a Module

module module_name (module_port, module_port, ...);
Declarations:

input, output, wire, reg, parameter.....

System Modeling:

(describe the system in gate-level, data-flow, or behavioral style...)

endmodule ends a module — not a statement => no “;”

Module: container of functionality, it’s a component being specified in a behavioral/RTL/gate level way.

The description of a module begins with

Example

module full adder (A, B, c_in, c _out, S);

// declarations \

Direction can be
omitted

// system description

endmodule

%\ POLITECNICO
iafﬁ MILANO 1863 B

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Input/Output Declarations

+ Input Declaration
= Scalar
* input /ist of input identifiers;
« Example: input A, B, c_in;
= \ector
* input[range] list of input identifiers;
+ Example: input [15:0] A, B, data;

 Output Declaration
= Scalar Example: output c_out, OV, MINUS;
= \ector Example: output [7:0] ACC, REG_IN, data_out;

POLITECNICO .
MILANO 1863

Oss: while the numbering of the sub-components in an array in C is fixed, in Verilog we can write whatever we

want

Input [15:0] Xx;
Input[17:2] y;
Input[1:16] k; MSB - numbered 1, LSB — numbered 16

Example

module full adder (A, B, c_in, c out, S);
// declarations
input [15:0] A, B;
input c¢_in;
output c_out;

output [15:0] S;
// system description

endmodule

() POLITECNICO 14

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Nets

 Can be thought as hardware wires driven by logic
 Equal z when unconnected

* wire

POLITECNICO T
MILANO 1863

e
e

Wire signals and variables are always assigned in parallel.

Registers

- Variables that store values
* Do not represent real hardware but ..
- .. real hardware can be implemented with registers

* Only one type: reg
reg A, C; // declaration
// assignments are always done inside a procedure

A =1;

C =A; // C gets the logical value 1
A=20; // Cis still 1

C=20; // Cis now O

(i3 POLITECNICO 1

Reg: are assignhed sequentially, are modified in procedures, we need to specify procedures within the modules
to modify the content of the register. Although they’re called registers, they are not FFs, it is not the description
of a flip flop. It’s a variable concept in C, it’s something that is storing data.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Vectors

* Represent buses

wire [3:0] bush;
reg [1:4] busB;
reg [1:0] busC;

» Left number is MSB (most significant bit)
+ Slice management

busC[1l] = bugA[2];
busC = busA[2:1]; = E

busC[0] = bupA[l];
« Vector assignment (by position!!)

busB[1] = busA[3];
busB = busA; o busB[2] = busA[2];
busB[3] = busA[l];
busB[4] = busA[0];

{7 POLITECNICO
SEATEY MILANO 1863

Integer & Real Data Types

» Declaration
integer i, k;
real r;

« Used as registers

i=1; // assignments occur inside procedure
r =2.9;
k = r; // k is rounded to 3

* Integers are not initialized!!
+ Reals are initialized to 0.0

« Used for behavioral description bur they cannot be synthesized

%) POLITECNICO
ST MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Verilog Operators

* Logical & Relational Operators

* Bitwise Operators

* Reduction Operators

« Shift Operators

» Concatenation: {identifier_1, identifier_2, ...}
* Replication Operators: {n{identifier}}

* Relational Operators

« Equality Operators

 Conditional Operator

* Arithmetic Operators

POLITECNICO -

f 3’;»/
(%] MILANO 1863

aaaaa

Logical Operators

s& — logical AND

* || — logical OR
- 1 —logical NOT
« Two input operands evaluated to ONE bit output value: 0, 7 or x
* Result is ONE bit value: 0, 7 or x but CREB-0
A= A& B —>148&& 0 —>0 As well as C| |A=1
B = 0; A |l 'B—>1 1] 1—>1
S ClIB—=>x1]10->x and|0|1|x|z or|0|1|x|z nand [0|1[x|z nor|0(1|x|z
o [o/ojofo] ofo]1]x|x 0 |1]1]1]1 0 |1]|0]x|x
1 (01|x|x 1(1(1(1|1 1 [1|]0|x]|x 1 |0|0|0|0
X [Ofx|x|[x X | x|1|x]|x X | 1|x|x|x X |x|0[x]|x
- z |0|x|x|x z |x|1|x|x zZ |1|x|x|x Z [x]|0|x|x
xor|0|1|x|z xnor |01 x|z buf not
S0l xlx 571 10lx|x \ln%utmtoput Ingutoutlput
1 |1]0]x|x 1 |0|1|x|x 1 1 1 0
() rosrecnico abhddd Debbdh]] =2 20

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

.5 — bitwise AND

. | — bitwise OR
S — bitwise NOT

.« A — bitwise XOR

« ~~0r ~~ — bitwise XNOR

 Two multi-bit inputs and one multi-bit output

Bitwise Operators (i)

« Operations on a bit-by-bit basis

() POLITECNICO
LY MILANO 1863

Bit padding?

(%) POLITECNICO
SEGTE) MILANO 1863

4'p1010;
b = 4"pb1100;

Bitwise Operators (ii)

—

Q
Il

<]+ [

C1<] « [©]

<] [

<]+ @

ERIEN

[<]

<] B » [E =

Cl<] B = [~

21

22

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Reduction Operators

& —> AND
. | — OR
* " — XOR
* ~& —> NAND
o~ — NOR

e~ 0r ~~ —> XNOR

» One multi-bit operand — One single-bit result

a = 4'bl001;
c = |la; // c =1]0|0]1 =1
POLITECNICO

MILANO 1863

Shift Operators

- >> — shift right
« << — shift left

* Result is same size as first operand, always zero filled

a = 4'’bl1010;

Q. -
1

a >> 2; //d

a << 1; // c

0010
0100

Q
Il

POLITECNICO
MILANO 1863

23

24

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Concatenation Operator

« {(op1, op2, ..} — concatenates op1, op2, .. to single number
« Operands must be sized !!

reg a;

reg [2:0] b, c;

a 1'b 1;

b 3'b 010;

c = 3"b 101;

catx = {a, b, c}; // catx = 1 010 101

caty {b, 2'bll, a}; // caty = 010 11 1

catz = {b, 1}; // WRONG !! 1 is not a 'b

* Replication ..
catr = {4{a}, b, 2{c}}; // catr = 1111 010 101101

(%) POLITECNICO °
JEGTA MILANO 1863

Relational Operators

- > — greater than

- < —lessthan

- >= — greater or equal than
- <= — less or equal than

Result is one bit value: 0, 7 or x

1 >0 - 1

"pblxl <= 0 - X

10 < =z —> X
“ +\ POLITECNICO

1/ MILANO 1863 26

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Equality Operators

« == — logical equality

. 1= — logical inequality
— case equality

— case inequality

} Return 0, 1 or x

} Return Oor 1

. 4'ph 1z0x == 4'b 1z0x —> X
. 4 1z0x '= 4'b 1z0x —> X
* 4'b 1z0x === 4’b 1z0x — T
* 4'b 1z0x !== 4'b 1z0x — 0
{222\ POLITECNICO 27

/) MILANO 1863
Logical equality: confronts the whole operator

Case equality: confronts each single bit

Conditional Operator

* cond expr ? true expr : false expr

e Like a 2-t0-1 mux ..

) POLITECNICO 28
!} MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Arithmetic Operators (i)
* +, -, *’ /' <
- If any operand is x, the result is x

* Negative registers:

* regs can be assigned negative but are treated as unsigned

reg [15:0] regh;

regh = -'dl12; // stored as 2'%-12 = 65524
reghA/3 evaluates to 21861
) POLITECNICO

~/ MILANO 1863

Behavioral operators, not synthesizable operators.

Arithmetic Operators (ii)

* Negative integers:
+ can be assigned negative values

- different treatment depending on base specification or not
reg [15:0] regA;

integer intA;

intA = -12/3; // evaluates to -4 (no base spec)

intA

-'dl2/3; // evaluates to 1431655761 (base spec)

-\ POLITECNICO

29

30

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Operator Precedence

+-l~unary highest precedence
7&‘_! %
+- (binary)
<< >

Use parentheses to
— enforce your
& ~& priority

& &

[
?: conditional [lowest precedence

Y

") POLITECNICO

!} MILANO 1863

Continuous Assighements (for wires)

* Syntax:
assign #delay <id> = <expr>;
optional net type !!

* Where to write them:
* inside a module
« outside procedures

* Properties:
* they all execute in parallel
- their order is independent
« they are continuously active

(@) POLITECNICO
“’/f MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

37\ POLITECNICO
S4TA) MILANO 1863

Example: 2 to 4 Decoder

module decoder 2 4 (A,B,EN, 72);

input
output [0:3]
wire

assign #1
assign #1
assign #2
assign #2
assign #2
assign #2

endmodule

(57 POLITECNICO
1R MILANO 1863

A —I>

B >

EN

Example

A,B,EN;
4;
Ab, BDb
Ab=
Bb=

[OJ= (Ab & Bb & EN);
Z[1l]=~(Ab & B & EN);
Z[2]=~(A & Bb & EN);
Z[3]=~(A & B & EN);

VU UL

Z[0]

Z[1]

Z[2]

Z[3]

33

34

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Behavioral Modeling

 The behavior of a design is described using procedural constructs

* initial statement: this statement executes only once.
« always statement: this statement always executes in a loop forever.....

+ Only register data type can be assigned in these statements

(%) POLITECNICO
U MILANO 1863

Initial: purely simulative/behavioral statement
Always: this statement always executes in a loop forever

Behavioral Model - Procedures (i)

* Procedures = sections of code that we know they execute sequentially

* Procedural statements = statements inside a procedure (they execute
sequentially)

- €.g. another 2-to-1 mux implem:

begin
. if (sel == 0)
Execution S
Fl B
ow L \ Procedural assignments:
Y = A / Y must be reg !
end

(T3 POLITECNICO
ST MILANO 1863

35

36

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Behavioral Model - Procedures (ii)

» Modules can contain any number of procedures
» Procedures execute in parallel (in respect to each other) and ..

* .. can be expressed in two types of blocks:

* initial — they execute only once
« always — they execute for ever (until simulation finishes)
%\ POLITECNICO

(1% MILANO 1863

“Initial” Blocks

« Start execution at the beginning of the execution (e.g., simulation) and
finish when their last statement executes

module nothing;

initial

Sdisplay (“I'm first”); — Will be displayed
at simtime 0

initial begin

#50;
Sdisplay (“Really?”); - Will be displayed
end at sim time 50
endmodule

lipt POLITECNICO
SEIHY MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

“Always” Blocks

« Start execution at the beginning of the execution and continues

indefinetely

- All always blocks execute in parallel

{5 POLITECNICO
A MILANO 1863

Different always procedures are executed in parallel, but a FF is always a FF so every piece of the

synchronized circuit is synchronized as an always (?7?7)

module

always
hegin

1
|
1
L 4
end

{

always
begin

[p——

end

{

|

alwvavys
begin.I

end

.‘___

Always Statement

- Syntax: always

#timing_control

e Procedural statement is one of :

« Blocking Procedural_assignment
always
@ (A or B or Cin)
begin
T1=A & B;
T2=B & Cin;
T3=A & Cin;
Cout=T1|T2|T3;
end

T1 assignment is occurs first, then T2, then T3....

POLITECNICO
J/ MILANO 1863

| have the sensitivity list for “always” statements

procedural_statement

39

40

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Events
. @

always @ (signall or signal2 or ..) begin

execution triggers every

end . .
time any signal changes

always @ (posedge clk) begin - -
execution triggers every

end time a signal changes
fromOto 1

always @ (negedge clk) begin

.. execution triggers every
end time a signal changes
from 1to 0

] MILANO 1863
/

Procedural Statements: if

E.g. 4-to-1 mux:
module mux4_ 1 (out, in, sel);
output out;

if(exprl) input [3:0] in;
true_stmtl; input [1:0] sel;
reg out;
else if (expr2) wire [3:0] in;

wire [1:0] sel;
true_stmt2;
always @(in or sel)
if (sel == 0)
else out = in[0];
def stmt; else if (sel == 1)
- out = in[17];
else if (sel == 2)
out = in([2];
else
out = in[3];
endmodule

\ POLITECNICO
j MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

\ POLITECNICO

92 miLano1ses

'\ POLITECNICO
J) MILANO 1863

Procedural Statements: case

case (expr)

item_1, .., item_n: stmtl;
item_n+1, .., item_m: stmt2;
default: def_stmt;

endcase

E.g. 4-to-1 mux:

module mux4 1(out, in, sel);
output out;

input [3:0] in;

input [1:0] sel;

reg out;
wire [3:0] in;
wire [1:0] sel;

always @(in or sel)
case (sel)

0: out = in([0];

1: out = in[1];

2: out = in([2];

3: out = in[3];

endcase
endmodule

Procedural Statements: for

for (init_assignment; cond;

step_assignment)

stmt;
E.g.

module count (Y, start):

output [3:0] Y;
input start;

reg [3:0] Y:
wire start;
integer i;

initial
Y = 0;

always @ (posedge start)
i< 3; 1i=1+1)
Y + 1;

for (1 = 0;

#10 Y

endmodule

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Procedural Statements: while

E.g.

module count (Y, start);
output [3:0] Y;

input start;

reg [3:0] Y;
wire start;
integer 1i;
while (expr) stmt;
initial
Y = 0;

always @ (posedge start) begin
i=0;
while (i < 3) begin
#10 Y = Y + 1;
i=1+1;
end
end
endmodule

(%) POLITECNICO
\} /r MILANO 1863

Procedural Statements: repeat

E.g.

module count (Y, start);
ocutput [3:0] Y;

input start;

repeat (times) stmt; reg [3:0] Y;
wire start;
initial

Can be either an Y = 0;

integer or a variable

always @ (posedge start)
repeat (4) #10 Y = Y + 1;
endmodule

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Procedural Statements: forever

Typical example:

clock generation in test modules
module test;

reg clk; Tox = 20 time units

forever stmt;

initial begin
clk = 0;
forever #10 clk = ~clk;

Executes until sim end

finishes

other_modulel ol(clk, ..};
other module2 o2(.., clk, ..);

endmodule

-\ POLITECNICO
MILANO 1863

Hierarchical Design

Top Level
Module E.g.
Full Adder
Sub-Module Sub-Module
1 2
\ Half Adder Half Adder
Basic Module Basic Module Basic Module
1 2 3

I can implement various modules and connect them

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Behavioral & Hierarchical Verilog

module add (X, Y, C in, S);
input [3:0] X, Y;
input C in;
output [3:0] S;
assign S = X + Y + {3'b0, C in};
endmodule
module Mlcomp (data in, data out, comp) ;
input[3:0] data in;
input comp;
output [3:0] data out;
assign data out = {4{comp}} "~ data in;
endmodule
() POLITECNICO

i\"'f'.r-f// MILANO 1863

N

Behavioral & Hierarchical Verilog

module addsub (A, B, R, sub) ;
input [3:0] A, B ;
output [3:0] R ;
input sub ;
wire [3:0] data out;
add Al (A, data out, sub, R);
Mlcomp Cl (B, data out, sub);
endmodule

() POLITECNICO
‘z\':‘v_'h /r MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Module

module my module (outl, .., inN);

inl my_module

in2

inN

outl output outl,

out2 input inl, ..,

endmodule

., outM;

inN;

// declarations
outM .. // description of f (maybe

// sequential)

Everything you write in Verilog must be inside a module
exception: compiler directives

£\ POLITECNICO
%) MILANO 1863

Example: Half Adder

D=

A S

| —
Half

B Adder C

>\ POLITECNICO
MILANO 1863

module half adder (S, C, A, B);

output S,

C;

input A, B;

wire S, C, A, B;

assign S
assign C

endmodule

= A ~ B;

A & B;

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Example: Full Adder

inl A Half S = 11 A J Half S = sum
: Adder 1 i i Add .
in2 B [o c,'2 8 | o c, 13

cin

module full adder (sum, cout, inl, in2, cin);
output sum, cout;
input inl, in2, cin;

wire sum, cout, inl, in2, cin;
Module wire I1, I2, I3; Instance
name i name
half adder hal(Il, I2, inl, in2);
half adder haZ(sum, I3, Il, cin);

assign cout = 12 || I3;

endmodule

2 POLITECNICO
MILANO 1863

Hierarchical Names

it A Sin RN sum

o Adder 1 2 Adder ;

% hal c =§ ;B » ha?2 C E 13 cout
__ l_i >

cin

Remember to use instance names,
not module names

>\ POLITECNICO
/ MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Example: Half Adder

output S, C;
input A, B;

C
wire S, C, A, B;

xor #2 (S, A, B);
and #1 (C, A, B):

____Fji:> S module half adder (S, C, A, B);

Assuming:
¢ XOR: 2 t.u. delay
e AND: 1 t.u. delay

endmodule

POLITECNICO .
MILANO 1863

Structural Model (Gate Level)

* Built-in gate primitives:

and, nand, nor, or, xor, xnor, buf, not, bufif0, bufifl, notif0, notifl

* Usage:
nand (out, inl, in2); 2-input NAND without delay
and #2 (out, inl, in2, in3); 3-input AND with 2 t.u. delay
not #1 NI (out, in); NOT with 1 t.u. delay and instance name
xor X1 (out, inl, in2); 2-input XOR with instance name

» Write them inside module, outside procedures

POLITECNICO =
MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

5-SoC Challenges

Abstraction of Heterogeneous SoCs

Specialized microarchitecture for both computation and storage

energy-efficient
high performance

CPU to prepare the

!

DRAM

=

system interconnect

data in DRAM and
control the <

—

accelerator (e.g.,
device driver) HW

DMA

Accelerator Logic

i

\ Multiple accelerators
on the same system
interconnect (bus or

X Conf. Regs

SoC

Billrw BE

L Hardware Accelerator

network-on-chip)

vy

POLITECNICO
MILANO 1863

Parallelism in memory access, parallelization in accelerators can be implemented.

Modern HSoC Challenges

System-Level Optimization

technology constraints and the synthesis
process

Understand how to generate and optimize
an efficient SoC architecture also given the

Programmability
Understand the interactions between
hardware and software, and how to optimally
control the components execution

Reliability/Fault Tolerance

Understand how to protect System
execution against random faults

Hardware Security
Understand how to protect the Intellectual
Property but also the data within the SoC

and the SoC itself

) POLITECNICO
MILANO 1863

These are the four families of issues that a designer has to take into account in the system architecture.

System level optimization: system architecture is the design of the system not at hardware level but at
system level. Optimization at hardware level is a challenge for digital electronics system designer (power

consumption, silicon area constraints...).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

System architecture takes into account both software and hardware.

We have to decide “when do we make the hardware exploitable by software?”, “how would the processor
control a specific hardware accelerator? By software? By firmware? By the ISA with a specific instruction?”.
Basically we’re talking about operating system implementation. Communication is also a significative issue,
because this means choosing standardization for the device.

Remember that when we work on the system architecture we want to write high level code, the higher the level
the simpler is the expression of the functionality of the system. Then, by exploiting high level synthesis, an
hardware description of the system is obtained.

Programmability: obviously the programming paradigms that are used in heterogeneous SoC are very
different from the ones that we are used to for desktop/server applications. For the high-level users, these are
negligible aspects because it’s the OS that gives the user the libraries to implement the specific application we
want. The complexity of OSs for HSoCs (Heterogeneous Systems on Chip) is totally different from the
complexity for a desktop system.

Reliability/fault tolerance:

Reliability definition: ability to produce the intended functions under normal operation and even under small
fluctuations in the computing environment for a specified time period [1]

we have different reliability issues depending on the specific application, they might be more important for
embedded systems (ex: automotive, railway, satellites systems). Which systems have to expose reliability
requirements? Is there a specific class of systems?

The answer is that every system has to expose reliability, then the specific requirements depend on the

specific type of system but from the designher point of view, the system must work at its specific conditions.

Examples:
Is the SoC going to work in a train braking system? — implies a very strict safety system.
Am | designing a smartphone? — then | have other safety requirements.

Remember that reliability expectations affect the reputation of the specific company, so they’re a very
important part of the design process that must carefully be taken into account.

Hardware security: security has become critical both with respect to data processed by the system and in the

sense of system intellectual property, so the how the processing of the information is implemented.

Oss: reliability and security are both properties that intersect.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

From Software to Hardware

Input language for system specification is an open question

N

High-Level Synthesis (HLS) is the
process of automatically generating
hardware from a software
description Performance

Area / Power

v

L
.--
< -:-:.--:.:. ey)
Coe® ® o ® eoe ® 4 \
. .. - S e ",‘ ‘~,‘

Hardware generation is very dependent
on how the code is written

RTL :\Ii

» C does not express concurrency Design Space I
» Arrays vs. pointers P
 Multi-port interfaces S T— -

D:;?:;L:::cle Code Transformation =)

POLITECNICO High-Level Synthesis ‘

When designing our hardware accelerator, we must consider the fact that the software aspect of the high-level
language can be conflicting with the hardware description.

here are some examples to better understand what is meant:

1. lcan’t have dynamic memory allocation in hardware, while in C | can
2. | can’t have multi-accessible rams because they’re very difficult to implement properly in hardware
3. Everything is concurrent in hardware while in programming often | don’t have concurrency

So often | have clusters of RTL description that fall in the same software description. Every single pattern of
high-level language is going to be interpreted in a specific way.

If I have in mind that my optimum solution is a specific one, but the hardware description has something that |
don’t like, we must change the high-level code.

~ What do we mean with “Fine tuning”?

. Fine tuning:

example: let’s suppose that | made an accelerator (in the image this
is represented by the ver.3 in the high level design space) and | made
a successful accelerator that implements a specific function (that is
represented by an orange dot in the RTL design space), but for some
reason the hardware description has something that doesn’t satisfy
us, for example let’s suppose that the functionality is implemented
correctly but I’d like to a little faster with frequency, so maybe |

@ should implement differently at high-level code a pipeline stage.

Design Space

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Programmer’s View

Combination of Computational Functions and Data Structures
« Different representations (and languages!) based on the model of computation

and the type of application

void Gsm LPC Analysis(word* in, word* out)
{
longword int mem[9];
Autocorrelation(in, int mem);
Reflect coeff (int mem, out);
To_Log_Area Rat (out);
Quant_and_coding (out) ;

Structural definition: pointer-based
operations (arithmetic, accesses to external
memory, ...)

POLITECNICO

MILANO 1863

Left: | have the high-level programming language,
we see a Private Local Memory (the array) and we
have four function calls.

SC_MODULE (debayer) {
sc_in<boeol> clk, rst;
private:
int AO[6] [2048];
int BO[2048], B1[2048];
public:
SC_CTOR (debayer) {
SC_CTHREAD (Load, clk.pos());
reset signal is(rst, false);
SC_CTHREAD (Compute, clk.pos());
reset signal is(rst, false);
SC_CTHREAD (Store, clk.pos());
reset signal is(rst, false);
#4000

Streaming definition: data transfers
fo exchange data blocks with main
memory

Right: we have the streaming definition that
describes the data transfer.

We have three threads, one for loading, one for the
computing process that is going to oversee
implementing the functionality and at the end we
have the store function. Note that we don’t have
any hardware detail, we have a sequential,
structural code.

Remember that this is the programmer approach to the design of the hardware accelerator

HLS

| = Behavioral description

RTL

\)
NETLIST
\)

Physical implementation

Between all these levels we must perform the equivalence check: we must verify at every step if the

functionalities are the same. Obviously the more low-level | go the more requirements | can verify, when | move

towards physical implementation | can check timing, power, area constraints.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Coprocessor Coupling in Heterogeneous SoCs

Two main models of

 Tightly-Coupled Accelerator (TCA) shares key resources with the CPU: register
file, MMU, and L1 cache

» Loosely-Coupled Accelerator (LCA) is outside the CPU and uses an integrated
DMA controller to transfer data between their memory and the system memory

Tightly-Coupled Accelerators (TCA) Loosely-Coupled Accelerators (LCA)

R F Accelerator Logic | Scratchpad
D$ CPU
11 CMD_REG

—] |ETATUSREG Accelerator = DMA
TODE_REG

|/D$ IFseree Interface | controller
|

LLC

| Accelerator Logic IRQ
bl 5 < On-Chip-Interconnect >

POLITECNICO 7
MILANO 1863

Tightly Coupled Accelerator: (this option is available only if the CPU is open source) since we’re modifying our
processor to implement the specific hardware function inside the processor, this would imply a new
instruction in the ISA. The resources are shared with the CPU, so generally | would need less memory access,
less communication with respect to loosely coupled accelerator, but often | still need more physical memory.
If the acceleratoris in the CPU, itis going to be using registers of the CPU.

Note that if we are implementing it in a single core scenario, if the accelerator takes a long time to perform the
acceleration, then I’m preventing the core from executing other applications and I’m basically stalling the
other computations.

Loosely Coupled Accelerator: (only option is available only ifthe CPU is not open source) With respect to a TCA, since
itis notimplemented inside the CPU, we need additional circuitry for synchronization and communication, the
good pointis that the accelerator might have his own DMA and his own PLM, moreover here the accelerator
can run for as long as we want because the CPU isn’t stalled.

For both cases the issue could be that the accelerator is too fast for the system, | do not need to implement
fast accelerators if the controller is slow.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Balancing Execution Phases

Each component with intense data accesses requires to
balance computation and communication

inefficient optimizations may create execution stalls
S LTI LR L glosk

e (ENE—EN—0—@

out[1]= out[2] = out[3]=
Computation kernel kernel kernel
(in[1]) (in[2]) (in[3])

a—=a

Output

ot QD CATED GENED T

out[1]= out[2] = out[3]=
Computation kernel kernel kernel
(in[11) (in[2]) (in[31)
POLITECNICO 1

MILANO 1863

As we already saw, we want to balance the two platforms.
| have different approaches to optimize and balance the applications:

e Dynamic Voltage and Frequency Scaling (DVFS): hardware level approach, we raise or lower the
voltage/frequency of the system in specific moments to synchronize/optimize the computation and
optimization

" VddAlwaysOn VddHigh
I VddLow

DVFS controller
volt_in supply

I
I

I

I

I

I

: switch

I circuit

| filter and load
| |{process workioa
|

I

I

I

I

[, e

e Latency Insensitive Design (LID): architectural and system level approach, it’s how | dynamically
balance the timing and execution phase without considering the specific timing constraints by
designing our system with specific functions and signals.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

DMA-Based Coprocessors

Loosely-coupled accelerators are more efficient in case of large data
sets to be elaborated

+ Allocation: How much data to store on-chip? Where to store the rest of the data?

« Computation and Communication: How to access the data efficiently? How to
transfer the data efficiently?

Accelerator Logic Private Local Memory

When designing a component
it is impossible to predict DMA

| Complljtation 1 ‘

- L T =
and optimize all situations £ v | .
. Ctrl g | : ‘ write
where it will be used C°mpi’t?“°") circular buffer
A | ENED
g | Output L OUt
| ping-pong buffer
POLITECNICO 8
MILANO 1863

Since we want reusability, | don’t can’t consider every possible case, | want the system to be general and
reusable. The drawback is that if I’'m not specific | lose performance in terms of optimization.

Memory Accesses and Spatial Parallelism

Memory subsystem must be predesigned

Distributed registers (e.g., flip-flops) 1024x32bit array in an
* Many ports at the cost of more area industrial CMOS 32nm

* Good for small to medium data structures
145,707.5 um?

Memory Intellectual Property (IP) blocks

 Area-efficient macro blocks provided by the
technology vendors
* SRAMSs for CMOS and BRAMSs for FPGA

» Good for medium to large arrays
* Limited number of ports (usually no more than two!)

]

35,106.6 um?

(4x area reduction)

Multi-bank architectures

Technology constraints limit the parallelism based on memory IPs

POLITECNICO 9
MILANO 1863

These are the two different approaches to the design of “on chip memory”: we would like to design our system
with many different parallel memories.

o Distributed registers: | fill my chip with registers every register can be accessed independently from

the other ones. In terms of performance or computation but requires a large area and the memory is not
centralized.

e |P block of memory: the slide shows that if | implement the same whole memory with dedicated IP

1 . .
blocks: | use " of the area butthe memory is accessible by less components and | have less concurrency.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Algorithm data footprint in

rapidly increasing

On-chip memory is
expensive and has limited
capacity

Data Footprint Gap

Algorithm data footprint is
much larger than on-chip
data footprint

Full HD image Largest available SRAM in our Only part of the data can stay close to
(1920x1080 pixels): ~33 Mb commercial 32nm CMOS technology is the processing elements
. 8192x16 (~131 Kb) _ _ : : 20400,
8K UHD image ; . i
(7680x4320 pixels): ~530 Mb 1,030 available 32Kb BRAMSs in the
Xilinx Virtex-7 VC707 FPGA Evaluation Aagregale S oaane . | =
Board (~33 Mb) . =
| 1024M ! 1024M <T
/ 5
256M | 256M " 7o86K %
IZZ_M'/_ E/szas»(248K
T m e e dpeex
5P0L|TECN|CO 3G 3GS 4 4.8 5 58 6 BS 10

MILANO 1863 iPhone generation

Data footprint: quantity of memory I’m going to use to perform the computation with respect to how much
memory | have on the SoC. The size of the memory that can be integrated on the chip is way smaller than the
size required by the standardized algorithms.

The most significative part of the slide is the right graph: in blue we see the required external memory, in
orange we see the quantity of memory that is implemented on the chip. We see that while the required
memory increases exponentially, the memory that is implemented increased much less, it’s almost linear. We
must pay attention to the order of magnitude of the two graphs, the blue curve is in megabits (10°%) while the
orange curve is in kilobits (10%) so we realize that external memory implementation and its communication
with the SoC is critical for performance since a lot of data goes through it.

Increasing Manufacturing Costs

and is expensive!

* New lithographic instruments with large error margins

$12

$10.0
$10

reduce design costs by
reusing pre-designed
components
(programmability issues)

«
®

Cost of to Build Leading Edge Semiconductor
Factory ($ Billions)
7S
a

reduce manufacturing costs
by outsourcing chip
fabrication
(security issues)

1997 1999 2001 2003 2005 2007 2009 2011 2013E

Source: Reports and press releases from Intel, TSMC and Global Foundries

Chip design cycle becomes
expensive with high variability

\ POLITECNICO 12
MILANO 1863

The cost of Silicon is increasing because also the process of Silicon production is increasing.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Programmability Issues

Platform-based design: ortogonalization of concerns

system integration

7
{

Key enabling properties
modularity
flexibility
scalability
reusability

%2\ POLITECNICO
@% MILANO 1863

Programmability Assets

Modularity: possibility of creating an SoC as a collection of componets
» Requires standardization of the interfaces

Flexibility: possibility of adapting one component to changes in the
behavior of the others
» Requires latency-insensitive protocols

Scalability: possibility of creating larger SoCs without (significant
performance degradations)
* Requires scalable methods and transparent interconnection components

Reusability: possibility of reusing pre-existing components
* Requires system-level methods for retargeting components

<%0\ POLITECNICO
17 MILANO 1863

13

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Reliability/Fault Tolerance

Functional Verification

* A lot of effort is devoted to make sure the implementation
* matches specifications
* fulfills requirements
* meets constraints
* optimizes selected parameters (performance, energy, ...)

* Nevertheless, even if all above aspects are satisfied ... things may go wrong

* P systems fail

systems fail ... because something broke

POLITECNICO 15
MILANO 1863

Reliability/Fault Tolerance

Defects, Process variation,
Degraded transistors Radiation, Noise

“Acceptable” Outputs
+ Performance

+ Integrity
Inputs
P ‘ System » + Availability

Design errors,
Software bugs
N OS bugs

() POLITECNICO "
‘i\ L) MILANO 1863

Fault: event that interacts with my system and changes the functionality of the system. Faults may be due to

e Design errors: errors introduced in design time.

e Statistical degradation of the performance due to wear out processes, it can degrade so much that the
functionality isn’t maintained anymore.

e Statistical degradation due to statistical fluctuations of Silicon processes.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Reliability/Fault Tolerance

* In the 2003 elections in Schaerbeek (Belgium), an anomalous recorded number of votes
triggered an investigation that concluded an SEU was responsible for giving a candidate
named Maria Vindevoghel 4,096 extra votes (212!11)

* In 1996 the ESA unmanned space launcher Ariane 5 auto-destroyed 39 seconds after
launch due to an unrecoverable error experienced by the autopilot. The 64bit mantissa of
the speed was saved in a 16bit integer value (SW reuse from the previous Ariane 4, which
was much slower!!!) causing an overflow.

POLITECNICO
) miLANO 1863

17

System Complexity and Hardware Security

Increasing system complexity demands design & reuse approaches
* I[P components are coming from many vendors and assembled to create the SoC
» Most of the design houses are fabless

100 = 150
P e P -
= 80 - .
%ﬂ /x"‘l*/ */*/ ," ¢ Q
§ 60 St s 100 7
° © —| Hardware Security is the next big 4
= : : S
8 issue for hardware design 50 =
8 20 "_ﬁ -
0 0
(=] o — [o =t [In] ©o [and o0 =] = — [o) =t
o — — — — — — — — — — o™ [} ™ ™ ™
S 2 2 5 3 3 3 5 3 3 5 & & & & g
™ ™ o™ ™ o o™ (=] [m\] (] (] (] ™ ™ [a] o] ™
—e— Cybersecurity spending in US - @- (projected)

—=— % of designs with pre-existing components

POLITECNICO
MILANO 1863

As shown by the graph, most SoCs are implemented using third party components.

In 2024 almost 100% of the SoC is composed by pre-existing components implemented efficiently in the SoC.
Purchasing third party components means that we don’t have control in any part of the system, we don’t have

the HLS code nor the design characteristics of the device. This is a different approach to what we were used to
in the past: the single company had full control on the production process of the chip, most of the companies
had their own silicon foundry and controlled the chip implementation from scratch to the finite product. Today
most of the companies are fabless: companies do not have their own foundry to implement their own chip,
they must go third parties (ex: TSMC, ST, Intel, Samsung...) and use their implants and production processes to
produce their chips.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Globalization of the Supply

Chain

Supply chain is more and more distributed to reduce costs

* Many security threats

» Cost of addressing them is exponentially increasing from level
. AN

Recycled, remarked,

Owe Qverproduction All counterfeit types,
3 Out-of-S
Out-of Qut-of-spec/Defective tampering, SCA, Tame
Tampering Reverse engineering ¥
Revers

%) POLITECNICO
) MILANO 1863

to level

IC/IP piracy and overbuilding

Steal and claim ownership of IC and/or illegal use
» Malicious SoC integration house

» Malicious foundry L S
Real-life impact SsESUF F0 34 BILLION ANNUAL LY
» $4,000,000,000 loss per year to IC industry ' ' '
» ARM detected IP piracy in 2000 [Makes 3 copies]
t
) =
EETimes Ep syl § |V’ N
ARM files patent infringement suit % ~ Q
against IP startup picoTurbo wn & == g N

Order: 100K ICs

POLITECNICO
)/ MILANO 1863

Overbuilds: 300K ICs

20

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

What to Protect?

How Sensitive Data is Elaborated by Intellectual Property in the Design of
the System-on-Chip Architectures Components and Architectures
Analysis of data elaboration to identify the hardware Analysis of the digital design (component or
modifications to improve the overall security (also to architecture) to apply security protection methods
prevent also software-based attacks) against IP theft and counterfeiting
Hardware-assisted Security Hardware Security

POLITECNICO 21

MILANO 1863

Hardware assisted security: the target is protecting the data processed by the system

Hardware security: the target is protecting intellectual property
ex: I make a very fast PCl-express and we don’t want the others to copy it

Hardware Trojan Horses (HTH)

Additional unexpected circuitry may be added to a system by:
* IP providers
* Malicious employees
» CAD tools
« Silicon foundries

POLITECNICO 55

MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Hardware Trojan Horses (HTH)

The Outside the Box Israeli Air Force operation:

 Eight fighter planes from IAF attacked and destroyed a nuclear plant
(under construction) in Deir ez-Zor, Syria, in 2007

* All Syrian radars and air defense missile systems switched-off
simultaneously

« Syrian defense equipments featured COTS components

* All these information have been confirmed by IAF in 2018

(&%) POLITECNICO 23
& 2/ MILANO 1863

Ex: parts of the defense equipment were from Intel Israel

Hardware Trojan Horses (HTH)

Moreover, the novel menace of Software-Exploitable HTHs raised

An “undocumented feature” that allows an unauthorized privilege
escalation through the execution of a particular sequence of instructions
has been found in the Via Technologies C3 processor

+ N.G. Tsoutsos et al., “Fabrication attacks: Zero-overhead malicious modifications enabling modern microprocessor privilege escalation,” IEEE Trans. Emerging Topics in Computing
+ C.Domas, Hardware backdoors in x86 cpus, 2018, https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
+ Project:rosenbridge, 2022, URL https://github.com/xoreaxeaxeax/rosenbridge

) POLITECNICO N
J MILANO 1863

e N. G. Tsoutsoset al., “Fabrication trs: Zero-overhead malicious modifications enabling modern
microprocessor privilege escalation,” IEEE Trans. Emerging Topics in Computing
e (C.Domas, Hardware backdoors in x86 cpus, 2018

e Project: rosenbridge, 2022

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://github.com/xoreaxeaxeax/rosenbridge

A novel menace raised from legal features

Modern CPUs exploit advance features to increase performance:
» performance counters
» cache hierarchies
» out-of-order execution
» speculative execution

...also expose the system to novel threats

POLITECNICO
MILANO 1863

Transient Execution Attacks

Like traditional Side-Channel Attacks, also TEAs steal information but...

...TEAs do not rely either on any SW bugs or on physical access to the attacked
system

POLITECNICO -
MILANO 1863

They do not exploit software or hardware bugs; they just exploit nominal features of the processor.

Transient Execution Attacks

Spectre poisons the branch prediction and the speculative execution to force the
processor to execute instruction sequences that should not be executed

Then, by exploiting timing measurements on the cache accesses, the attacker can
retrieve a secret from the cache of the attacked program without having physical
access to it

Kocher, Paul, et al. "Spectre attacks: Exploiting speculative execution.” Communications of the ACM 63.7 (2020): 93-101.

POLITECNICO 27
MILANO 1863

25

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Transient Execution Attacks

Meltdown exploits out-of-order execution to break the isolation between the
memory spaces of user applications and of the operating system

It allows the attacker program to access any memory space, thus, stealing secrets
from the operating system or other users applications

Lipp, Maritz, et al. "Meltdown: Reading kernel memory from user space." Communications of the ACM 63.6 (2020): 46-56.

POLITECNICO 28
MILANO 1863

Transient Execution Attacks

TEAs are already considered a serious threat

Several IT companies published official security advisories about TEAs*

SUSE
& RedHat

2" Microsoft nmir

F]
amazon cisco fedora g@

GO gle HUAWEI
AMDAQ # Ubuntu (O debian

_ ’ o
(D arm & & («) I3

*meltdownattack.com

POLITECNICO 20
~J MILANO 1863

Speculative Execution Attacks: Meltdown and Spectre are attacks that leverage speculative execution, out of
order execution, caching and other architectural performance enhancements to break isolation and other
security policies.

meltdown: enables unauthorized processes to read data from any address that is mapped to the current
process’s memory space. It exploits a race condition where unauthorized process attempts to access
privileged data. The attack then uses a cache side-channel attack to determine contents of the data.

spectre: vulnerability that tricks a victim process to leak its data. Many processors use speculative execution
by branch prediction. Spectre uses the fact that this speculative code leaves traces of its execution in the

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

cache, whose information can be extracted using side-channel attack. Spectre trains a branch predictor to
make a wrong decision and then wraps code that should not be executed in a condition. The code is
speculatively executed since the branch predictor is wrong. [source;

6 - Latency Insensitive Design
Circuit Timing

A system with multiple components works correctly as far as it is
running with a clock period that is the maximum of the clock periods
(the minimum of the clock frequencies) of the components (reg to req)

1

=
! o
1=

1

2
2
2
What happens if the wire
T2 delay is greater than the
component delay?
") POLITECNICO

=/ MILANO 1863 3

NS

T

Communication Issues

In a deep sub-micron process technology (<90nm), process
variability is a serious concern

Technology improvements are on the transistors but not on the wires
at the same level

* Inevitable dominance of wire delay

Long wire will play significant role in logic synthesis optimization
* Interconnect Topology Optimization
» Optimal Buffer Insertion
» Optimal Wire Sizing
» But .. not everything can be rectified during interconnection optimization

Need for a global «protocol» that is insensitive to delays due to wires

() POLITECNICO 4
e MILANO 1863

In current technologies, transistors are dramatically scaling while wires are not scaling as fast as transistors,
so while delays introduced by wires were negligible in older technologies, nhow they’re not anymore. Wiring in
modern complex circuits is huge with respect to the logic, so the delays related to wiring have to be

considered. This point is in conflict with the plug-and-play composition of chips that we would like to pursue.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

The target is a block-based design and dealing with the fine tuning of wires would be avoidable, which is a
physical aspect of the hardware layout.

It’s not acceptable to be uncertain of the timing of the circuit until the finite layout is ready, a way around this
problem must be found and it already exists, it’s Latency Insensitive Design.

System complexity

Guaranteeing syncronization (correct timing behavior) in a HSoC is an
extremely difficult task!

* Number of components

» Different “frequencies” among components

» Different “speeds” among the various interactions
« Different “protocols” among various interactions

Need for a global «protocol» that is insensitive to the components in the
HSoC and to the interactions among the components

(@) POLITECNICO ’
\: jymumomes

Modern HSoC have lot of different components, different clock domains and even different voltage domains,
different speeds (in the sense of the amount of data required by the interaction of components). This
complexity can’t be managed at layout level, it is too complex and would require too much time.

Latency-Insensitive Approach

Could I solve the problem by just introducing buffer between data
producer and consumer?

(&) POLITECNICO 6
\ w4 MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

We want to solve the problem with a systematic design approach and not hardware design approach, | want
something that is at architectural system level to solve the timing complexity.

One possible approach is introducing buffers between components, some FIFO in between them to store data
and letting the consumer have it when it’s ready. The problem is this solution isn’t a feasible solution, because
if the consumer is slower than the producer, an infinite FIFO would be required in order to make the system
able to run for (ideally) infinite time, while if the producer is slower than the consumer, after some time the
FIFO would be empty and it would be useless, so would be a waste of area and power.

Latency-Insensitive Approach

To design complex system in a correct way we need to:

* relax time constraints during early phases of the design
» when correct measures of the inter-module delay paths are not available

* simplify the composition of sequential modules in pipeline mode

- facilitate the insertion of extra pipeline stages between one module
and the next one with the purpose of buffering those signals which
propagate on long wires

{72 POLITECNICO 7
S 2/ MILANO 1863

This approach is very powerful because it permits us to have a “plug and play” system and introduces strong
standardization. At the early stages of the design, | want to be allowed to consider just the component
functional constraints.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Latency-Insensitive Approach

ldea of implementing a latency-insensitive communication protocol
Problem definition:

Given a system composed of communicating modules, how can we
create a synchronous design that tolerates arbitrary
communication latency

* Globally Asyncronous/Locally Syncronous (GALS) design

No need to think of the digital system in a completely different way
(e.g., as an asynchronous design)
 Possibility to reuse components designed for other systems

+/ MILANO 1863

Latency Insensitive Design: it is a methodology to design complex systems by assembling predesign
components. source] With latency insensitive design, global behavior will be asynchronous, in the most general
case every component will have its own clock signal. The point is that I’m not interested anymore in knowing
the clock frequency of every single component, there will be a dedicated structure that will interact with all the
components and will manage the data input/output based on events rather than synchronous clock. In this
way I’m not interested anymore in skew/delays/clocking issues.

LIDs are synchronous distributed systems and are built by composing functional modules that exchange data
on communication channels according to a latency-insensitive protocol. The goal of the protocolis to
guarantee that a system is composed of a functionally correct modules behaves correctly independently of
channel latencies. source This increases the robustness of design implementation because any delay variations
of a channel can be recovered by changing its latency while the overall system functionality remains
unaffected.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/7299248
https://ieeexplore.ieee.org/document/7299248

Latency Insensitive vs. Asynchronous

Asynchronous systems require designer to think digital systems

completely differently
* Remove the concept of global clock and create a complete event-based
architecture with (complex) hand-shaking

A latency-insensitive design is a specified synchronous system
» Components are still synchronous circuits
» [egacy components

Delay insensitive circuit operates correctly regardless of delays on gates

and wires
 Arbitrary delay is a multiple of the clock period

@) g e
Recall: Totally asynchronous systems: systems without clock, the problem is that they need lot of protocols
and handshakes to make communication possible and let’s say that history demonstrated that fully
asynchronous circuits are not viable. What we’re interested in with LID are events and interactions, all the
circuits are synchronized so the behavior of components is dominated by clock but at a higher level what we

do care about is an event every x clock cycles.

Latency-Insensitive Design

In a Latency-Insensitive Design (LID), a design is correct if and only if
the sequence of the events (and not their timing) is correct
» Timing is only a non-functional metric to evaluate the quality of the

implementation
» Not suitable for real-time systems (for which timing is a functional property!)

It introduces the following concepts:
+ Arelay station (RS) is a module that is inserted wherever it is necessary to

tolerate delays
» Each RS introduces one stalling event (non functional) and one void event

(non functional)
+ A module receiving a stalling event as input emits stalling events as outputs at
the next cycle

) POLITECNICO 10
J/ MILANO 1863

The single components will be verified under the timing point of view but the strong assessment with LID is
that the interaction between components will be guaranteed by the design even if we have delays or

interferences.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

We’re making our system tolerant to arbitrary delays. What we will introduce is the concept of relay station and
the void and stalling event, so functional informative data will be exchanged but also events about the
readiness of receiving and sending data.

Latency-Insensitive Design

» Simple communication protocol for coping with transmission delays

« Stalls the transmission if the data link is
not ready (stopln) dataln 0 ,
L \V4 mux |, main dataOut
aux 1 FF
« Consecutive connection of control FF

signals provides backpressure el -
mainen

» Avoids computational error | ‘
stopOut auxEn t%ﬂpln

\‘ = e
mainEn
Base element for .
_ _ voidIn
scalable interconnections 0 void | voidOut
mux—
0 FF
! VAN
POLITECNICO 1
MILANO 1863

The consumer sends the stop in and the stop out while the void in and void out will be implemented by the
producer.

With this station between consumer and producer with data we’re allowing them to work with completely
different clock periods, the consumer can be superfast and the consumer super slow and vice versa and the
system still works correctly. Furthermore, we’re achieving a plug and play platform, with respectto a
completely synchronous system.

backpressure: mechanism that lets a downlink shell to temporarily stop its production of valid tokens.

void bit: bit used to distinguish void from valid tokens and a stop bit to implement backpressure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Latency-Insensitive Design

Given a complete synchronous specification of system composed a
collection of modules, it aims at definiting communication channels with
relay stations

To manage exchanges of informative and stalling events between the
relay stations, it incapsulates each module with a shell

Traditional synchronous system:
» Layout obtained by standard Place&Route tools

It can operate also as a post-layout optimization
» Necessary number of relay stations inserted into each critical channel

{7 POLITECNICO 12
RGN MILANO 1863

With this approach of relay station, | want a plug and play approach, so we buy a component from one
producer, another one to the other and then what we need is a shell in order to make it

The usage of relay stations we can implement a “plug and play” system, we buy a component from one
producer, another component from another one and we can make them work together even if they require
different clocks and have different timing constraints.

Latency-Insensitive Design

Protocol that governs the exchange of information in a patient system

Oypassable guewe

(N\
dataln B | GataOut,
voidln, — TR G
20508t FIFO 0 =~ stopla
' s e stallable core module
| ' l dataln 5 \74
eng Jeq, 88| Jempey, Popass o— main| dataOut
= dataOut, Al | FF [~
\ 1
. = voudOut FF
dataln, . 1 ,i \ ~— stopln
voudin - l - muxi - gk J s
stopOut, ™ r T .7 Q uxEn
1 — B stopOut
ey | ony s,l v vosdln,, . [? N voidOut,,
Vg | contol
stopOut,,; stopln,, voidIn
"aus] Praes typasts s o void | voidOut

ALy vy 0 mux FF
—

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Latency-Insensitive Design

One-to-one communication

Producer Consumer

What if the consumer is slower than the producer?
What if the consumer is faster than the producer?

@% POLITECNICO 14

S0 MILANO 1863

If the consumer is slower than the producer?
The “stop signal” is risen, backpressure to the produced is applied and we slow down the producer without
fully halting it.

If the producer is slower than the consumer?
If the producer is faster than the consumer, the “void signal” is risen so it knows that the data that the
consumer is consuming is dummy data.

Oss: the relay station is asynchronous with respect to both the devices. It’s clocked but it’s totally
asynchronous with respect to the producer and the consumer. It is being implemented to decouple
synchronization, it would be dumb to synchronize it with the clock of the producer or the one of the consumer.

Latency-Insensitive Design

Two-to-one communication

Producer 1 Consumer

What if Producer 1 is faster than
Producer 2 Producer 2?

ng =\ POLITECNICO '
LS00 MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

What if Producer 1 is faster than Producer 2?
e consumer receives data from P1 and then waits for P2 data — this is an unoptimized way
e when P1is producing good data, P2 is giving void — the consumer will backpressure P1
The shell will trigger the consumer as soon as the data coming from both producers arrive. < example of logic
that can be implemented by the shell.
The only triggers to communications and interactions are stop and void.

What if Producer 1 and Producer 2 are faster than the consumer?
This would be an avoidable case, in fact if this is the situation, something in the design has to be changed to
slow down both the producers or to make the consumer faster.

In any case since we have independent of delays, the effect would be that we would backpressure both P1 and
P2, then make them go faster when the consumer is ready and then backpressure again.

System-Level LID

Propagating stalls through stop signals allows each module to start if and
only if the data are available

M1 ——— | M3

Mz////>m

Base concept to the creation of complex systems that can be optimized
independently
At design time, no need to know the latency of the others

» At run time, possibility to change the latency of one component without
affecting the correctness of the overall computation

POLITECNICO 16
MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

LID vs DVFS

The latency insensitive design paradigm deals with transactions among
components at the SoC level

* Irrespective of the asibstraction level

* Irrespective of the technology (ASIC, FPGA...)

* Irrespective of low-level details (working frequency, voltage level...)

Dynamic Voltage and Frequency Scaling deals with physical quantities
(voltage and frequency) at the single component level

POLITECNICO 17
MILANO 1863

LID and DVFS are approach for optimization, both can be used but they work at totally different levels: LID is at
architecture level while DVSF is at hardware level.

DVFS: it’s the dynamic control and scale of voltage and frequency. If | reduce the frequency I’'m imposing “less
switching” so less dynamic power consumption, static power consumption remains the same. The higher the
frequency, the higher the performance, the higher the power consumption.

For voltage, the higher the voltage the faster the circuit (I have and higher currents) but obviously | have more
power consumption.

Voltage and frequency are interconnected, if | lower the voltage, I’m slowing down the combinational path and
consequently at a certain point | have to also reduce the frequency.

Higher performance — Higher power consumption

DVFS is at single component level, at single component domain, while LID is at architecture level.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

LID vs DVFS

| can use information coming from LID to fine-tune DVFS

* If a data producer is stalling too frequently
* | can slow down it
» ...or | can accelerate the receiver

Similarly, if the data producer is sending void messages too frequently
* | can accelerate it

» _..or | can slow down the receiver

{4\ POLITECNICO
Ve MILANO 1863 18

|
RO

Implementation Concepts (i)

* Channels are point-to-point unidirectional links (irrespective of the
underlying communication infrastructure)
» Source/Sink Modules

» More channels to connect more components (each of them may have a different
latency)

* Packet Fields
» Payload
* Void

* True (Informative) Packets are the ones with void = 0
« Stalling Packets are the ones with void = 1

[\ POLITECNICO
f‘:" MILANO 1863 19

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Implementation Concepts (ii)

Data transmitted as packets

Source
* Puts true packets (void0) or stalling packets (void1) on the channel

Sink
» Decides to store/discard the packet based on the void value
« If stalling (not ready to consume the packet), sends a stop flag

» Stop flag tells source that packet cannot be received (source becomes
stalling)

() POLITECNICO
A mILANO 1863

Relay Station

In some systems, void (0/1) is replaced by valid (1/0)

dataln AV

0 A
iR n;:al;n dataOut
aux |

FF

Source sends

Sink consumes
true/stallable sel mainEn P
ackets only if sink o L. 1 packets only if it is
P . control |- >P'" ready to receive

is ready to receive

stopOut

— them
(Istop) . mainEn
voidln
0 void | voidOut
mux—
0— FF

If one component is not ready, backpressure is propagated
through the stop signals

, "\ POLITECNICO
%) miLANO 1863

20

21

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Shell

A shell is a wrapper that encapsulates module M and interfaces with
channels so that M becomes a patient process
» Gets incoming packets from input channels

. . dataln
* Filters void packets T ﬁm ‘}
« After all input values are received, passes | m—) N

them to M and activates the computation daaln _I—'
* Gets results from M when completed sopom— {70}
* If no stop flag is received, sends result

bypassable quewe

@ POLITECNICO 22
SEATE) MILANO 1863

Components become stallable with this design approach.

Shell

Guarantees input synchronization and data
propagation

* Internal computation fired only if all inputs ...

have arrived (otherwise it is stalling) e — ﬁm “’fr __—

TN

dataln, 1]
Allows to add components in a plug&play = {3 q.
fashion S e e

{7+ POLITECNICO
%ﬁ@' MILANO 1863 23

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

LID and FIFO Buffers

A First-in First-out (FIFO) buffer can part of an advanced latency-
insensitive system

» Enables the accumulation of more data tokens on a channel

« Empty/Full signals can be connected to the Void/Stop signals of the components

In particular:

* When a FIFO is empty, no data can be consumed by the sink module (stallable
events)

« When the FIFO has at least one element, the sink module can consume a data
token (informative event)

» When the FIFO is full, the source module sees the equivalent of a stop signal
and cannot proceed

() POLITECNICO ”
MILANO 1863

P > FlFO N CONSLJ‘(QQ
oy
P2l [FEe)

We can stall the producer after the FIFO is full, we have a sort of feedback.

Basically we’re introducing a lot of pipeline stages.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Abstraction Levels for LID

Latency-insensitive design is more a paradigm rather than an actual
implementation
« |t can be applied at different abstraction levels with the same concepts

During logic and physical design

* Wire segmentation to pipeline long wires

During system-level design
» System-level LID to match modules with unpredictable behavior

() POLITECNICO
S MILANO 1863

Latency-Insensitive Physical Design

Similar to the procedure (and architecture) discussed before

Sequence of steps start from a collection of synchronous modules
« Synthesize layout and compute wirelenght
» Extract parasitic capacitance to determine actual wire latency

» Segment every wire with latency greater than the clock period, and add relay
stations

* Build shell around each module to obtain patient processes

It only requires the modules to be stallable (i.e., it can be interrupted and
resumed in any moment with no side effects)

(%) POLITECNICO
& MILANO 1863

25

26

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Compositional System Level Design

Complex SoCs (or even single modules) can be designed to be globally
asynchronous but reactive to events (e.g., data availability)

Design styles offer synthesizable communication primitives for data
exchanges

The tools implement these primitives with latency-insensitive logic (area
overhead is generally less than 3% in both ASIC and FPGA technologies)

1) POLITECNICO 27
G 2/ MILANO 1863

AXl uses LID.

Obviously, LID is not fully optimized, we must go to much lower hardware level to go as optimized as possible,
obviously full custom SoC we would have a much-optimized circuit.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

7 - HW/SW Codesign

Designing Heterogeneous Systems

* Application: the designer has to:

« Partition: split the behavior in chunks of operations (tasks) to be potentially
executed in parallel

« Map: assign the tasks to the hardware components
« Schedule: resolve contention on shared resources

* Architecture: usually the designer starts from a template and performs
some customization
« Before fabrication (definition of the physical architecture) &
« After fabrication (configuration of hardware logic)
» During execution (partial reconfiguration)

{2\ POLITECNICO 3
LR MILANO 1863

Roadmap for Next-Generation Systems

» Bottom-up approach for compositional design

» Short term: Development of efficient components (e.g., accelerators) and
interconnections

* Medium term: System-level HW/SW optimizations

» Long term: Automatic porting of legacy applications on parallel and
heterogeneous systems

» Support of CAD tools is required

» Techniques and methods for specific aspects (HLS, memory generation, ...) on
the top of existing tools

17| POLITECNICO 4
1/ MILANO 1863
Today SoC design is still a custom process. Reuse of IP cores/FPGAs, components that are used are
standardized, their production is still a custom design.

When we go to the verification part of the SoC, still is a full custom design. We’ll focus on HLS, it is not used in
industry, but we still need the medium-term part, the optimization is stillin custom. | have my platform which
is the best choice, how can | automatically map the parts of the circuit. CAD tools are methodologies,
algorithms and GUIs to accelerate and enable the electronics design.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Hardware Accelerators and HLS

* Roadmap for next-generation computing systems
« Short term: Development of efficient accelerators

* HLS tools are now (almost) able to approach complex specifications
and generate corresponding accelerators

» LegUp (Univ. of Toronto supported by Altera), Vivado HLS (UCLA, now part of
Xilinx suite), Synphony C Compiler (Synopsys), Stratus (former C-to-Silicon -
Cadence), ...

cadence

celerating Innovation

SYNoPsys $7 XILINX JALTERAY

The problem is now about efficiency

(%)) POLITECNICO
el MILANO 1863 5

BeIAL

Cadence and Synopsys produce tools for circuit design, while Xilinx (AMD) and Altera (Intel) are the leaders for
FPGAs design.

Efficient RTL Architectures

* HLS can now synthesize complex applications

* Resource requirements can become a limitation: you do not have enough
space/resources for all components

* Resource sharing (e.g., FPGA-based design) is a well-known and
adopted technique to control the area occupation

» Achieving the minimum number of functional units or registers is not
always the best solution...

* Interconnection plays an increasingly major role also in RTL
architectures
» Area occupation (out of resources)
» Propagation delay (clock period violation)
» Power consumption (power budget violation)

[POLITECNICO
{4 MILANO 1863 5

Research is trying to further explore also for optimization automation

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Effects of Resource Sharing

* HLS performed with Xilinx Vivado HLS 2013.1

» Target: AVNET ZedBoard (XC7Z2020-1CLG484 SoC)

* Dual Arm Cortex-A9
* Xilinx Artix-7 (85K Logic Cells)

» Simple case study:

» Auto-regressive lattice filter (an all-pass phase equalizer)
* 11 additions and 17 multiplications

* Alternative solutions manually generated through synthesis directives in
Xilinx Vivado HLS scripts
« Minimum target frequency: 100MHz (10ns)

| Multipliers |4 s | &
Com — [
B 254 200 232

813 633 763
P 421 421 421
m 39 12 12 12

117 36 36 36 36
4.534ns 7.055ns 7.665ns 7.906ns 7.871ns

26 26 26 \ % 26

 Difficult to be identified in advance!

HLS is now push-button, but...
you have to push it in the right way, but...

HLS is not always explainable!

{5 POLITECNICO .
FEATAY MILANO 1863

Columns

1. Infinite number of multipliers and adders — we want to fulfill the requirement but we want to achieve
the same computation with the same constraints, but we limit the resources!

2. Sothe number of multipliers has been set to 4 to force the HLS to reuse the multipliers. = we have a
small critical path increase (but we’re still in the 10ns constraint) but we reduced the size (we use same
clock cycles, we use more LUTs but much less FFs and shift reg)

3. We also constrained the number of adders — we still haven’t modified the code, we’re just constraining
the number of components that the HLS can use

4. If we tweak the numbers of adders and we obtain better results

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

We’re not internals, there’s no logical reasoning with which we can understand a priori how the HLS engine is
working and how to set the correct constraints to obtain our solution, we must use a “trial and error”
approach.

Design Space Exploration for HLS

* Different approaches to explore alternative RTL architectures by
constraining

* number of resources or compiler transformations
* easily applicable on the top of commercial tools

» scheduling priorities or operation bindings
* more powerful, but requires tight integration with synthesis tools

* Interfacing with compilers is usually required to extract and manipulate
the intermediate representation

» Code rewriting can also support existing HLS tools by exposing relevant
features (later translated into knobs)

POLITECNICO

2/ MILANO 1863

Design Space Exploration: explore the many solutions obtained because there’s no global optimum or if
there is, it is unknown how to get there, so a trial-and-error approach must be adopted.

Fine-grain DSE for HLS

— =
Intermediate
Representation

Integrated with an
open-source HLS tool

rapping GIMPLE Analysis

L]
Initialize
Population
Frontend l
Analysis and Optimization
, - Solution
Frontend Step Frontend Step .
pases opt1) (0ptN) Evaluation ()Gene:lc
M=t eriiion ol perators
i i { s z
‘ - i Complete |
| Memory Allocation I HLS F
+ : .
) : Ranking and
— i Metrics i Selecti
i Extraction | REEEHON
Design Space Exploration HDL
(NSGA-IT) Design Space Exploration Generation
s
RTL arch RTL arch (NSGA-II) T
(solution 1) (solution N)
[[

HDL
description

Genetic Hardware Space Design Exploration: machine learning methodology that tries to emulate the
biology of a set of individuals, so like in the process among generation, the quality of the genies is increasing or
increasing is coding solutions into individuals and then implement crossover and mutation operations to

POLITECNICO

MILANO 1863 10

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

obtain children from parents, where presents are old solutions, children are new solutions with the idea that
by the idea that exploring mutation and crossing we have an improvement of the solution, generation by
generation.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

W

HAVE WS MARARGTER-S P, P2, P3

¢ P~4x F,uﬁ P-rz

(WE RTAIN THE SowTiory 4

cmpleemanbed. (o £he
volue of evevy :.cm%la
povemeber

| o F: 7FiTress maoetion

mecdeel bo evoluzbe oo
%oodu s emy so@ultilom
L_<V|F\Blé So-eu}bocm

Nov virgle sofutiom
& a.i.vos E] mnurmbet

. C : cROSS OVer oPeRATIONW

—Cv.nmcbq:m thet towes
two wofubtioms amd
tres Lo combime the
‘bwo %OODL /F«nc:&'amns Ofc
theom

o ¢ Soe 2 "auwn
trot s bebber Hhom
the .('uu_vbu-'us
sofubeom

. M : HuTaTion ORERETION

EXPLORATION |HPLEMENTATLON

it ernoSs over. ¢ am oW
bowondus o mimermaen

uz ton & Konouy o ks o
GLORAL oz (RCAL CMUNLONN LAY

Hutevioy HAkses ws Hove

e we Sbop whhew. dne F
/F.mobtlom doesn’t maeve-
overe o ercbowm \Joﬂu}?—

| /};:(/
™
,‘\En_be:u.«.

So-euvbucx*n n

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

The complex part is the computation and choice of the fitness function, and we want to produce a design
space where we can implement different solutions, that’s why also the synthesis needs to be optimized
otherwise we wait for a very long time because for every solution with every tweak, every single point of the
graph needs the synthetization, the computation of the constraints, the verification and the tweaking of the
parameter!

We’re going to drive the HLS to implement our design space exploration. We’re automating the design space
exploration but the problem is that the design space exploration is going to take long.

What we will do is apply and exploit models of the solutions in the DSE. We’re not evaluating the DSE solution
on the model and not on the finite device.

Applied to Simple Case Studies

* Traditional benchmarks for HLS (datapath synthesis)
« ARF, EWF, DCT, DIST
« comparison with a manual HLS with constraints on the resources

« Target: Xilinx Virtex [I-PRO XC2VP30 FPGA
* Final logic synthesis with Xilinx ISE ver. 8.1i

» Genetic parameters: N = 1000, Pc = 70%, Pm = 30%

» ~60,000 designs evaluated per exploration (in average)

» Area optimization (binding), scheduling optimization (priority), manual
optimization (SPARK)

POLITECNICO 12
MILANO 1863

e SPARK: ambient for manual optimization
The parameters that have been analyzed are

e Area optimization (LUTs, FFs...)

e Timing optimization, number of clock steps

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

20 T 26
| | | = PO 'f ' Binding —
P N . b i 24 @& o T Priority ®—
18 ; s ; A 4
! : 22 e A
82 [PSS O ii 8§ 20 proee : ; ES—
c g | 2@ 18 -
g N i @D I 1\ :
50 100 s] §§ 16 o ® J- B e boesmerres .
TE TET 14 b - ; H]
[V Ne) o5
oo 12 - - o
= : ‘ S 2 f .
0b i . i L R i s s S 4
8 i i i g g 6 | i i e
1000 1500 2000 2500 3000 3500 4000 4500 2000 3000 4000 5000 6000 7000 8000
Area (LUT + FF) Area (LUT + FF)
arf dct_wang
© | Bindng —m 5 ' . Binding ™
i Priority @ Priority L §

~ SPARK SPARK 4

Performance
(Control Steps)
i
Performance
(Control Steps)

R I S e SN

6 A 5
1500 2000 2500 3000 3500 4000 4500 5000 5500 2000 4000 6000 8000 10000 12000 14000 16000
Area (LUT + FF) Area (LUT + FF)
ewf dist

For all the solution we can’t find a point where | both have AREA and TIMING implementations. What we’re
seeing is that manual optimization is not obtaining the best results.

What we cannot say is if the points are a local minimum or the global minimum of the constraints we are
evaluating, we do not have a precise criterion to stop the evaluation.

Lesson Learned...

» Fine-grain methods systematically outperform methods based on
manual resource constraints
* Fine tuning of the RTL architectures, with a better use of resources

» The approach is efficient but not scalable with respect to the size of
the specifications
» Actual logic synthesis is time-consuming
* New model for each device, synthesis options, ...
 Accuracy is decreasing when increasing the size

Design space exploration can be efficiently
applied only to small portions of the design

&%) POLITECNICO :
%/ MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Task Partitioning

» Definition: The partitioning problem is to assign

» n objects O={o1, ..., on} to
» m blocks (also called partitions) P={p1, ..., pm}
» such that

*plup2..Uupm=0
* pi N pj= @ for all i#, and
* cost ¢(P) is minimized.
» Cost function (Estimated) quality of design, may include
» System price
» Latency
* Power consumption

POLITECNICO 29
MILANO 1863

Given all the possible solutions using HLS, HLS optimization, automatic optimization of the HLS process and
choice of parameters, the first short-term point of the roadmap can be fulfilled, it is possible to automatically
optimize the single component into an architecture. How to compose my architecture, how to decide which
are the best components and which is the best partitioning and mapping of the tasks of the high-level
functionality into the underlying component (FPGA, ASIC...).

The question at which the designer must answer is: given a particular platform, with a CPU, a GPU, a FPGA,
which is the best way to partition the applications and to schedule and map them onto the architecture?

Motivational Example

+ Application task graph with multiple implementations for each task
* No restrictions on the model of computation

* Embedded architectural template composed of
» General purpose processors
» Area dedicated to custom hardware accelerators
» System bus with shared memory or DMA

/\ /”‘\ I FPGA
1 RR2 PO
\A) A B i RR1
RRO
/< CPUO | | CPU1 =3
200 150
- TNTERCONNEGTTON CHANNEL
C SHARED 110
N MEMORY INTERFACE
(E57) POLITECNICO 37
N2 MILANO 1863

We have three high-level tasks, A and B are producing tokens, whatever tokens mean, and C requires 200
chunks of data and 150 chunks of data from B in order to be running and upwards we see the architecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

We’re looking at how to map and schedule tasks on top of an existing architecture. The architecture
constrains, two CPUs, an FPGA and a shared memory.

A first solution might be run task A in CPUO, task B in CPU1, task C is CPU1 but before running task C the data
produced by task A must be moved through the BUS to CPU1, we’re not taking into account memory access
etc. so task C can start as soon as task B finishes and the data is transferred to CPU1. This would be a full
software approach, figure on the top left.

Another approach is accelerating task B and task A into the FPGA, so let’s say that the duration of task A and B
are shorter than the blue versione because we have an hardware accelerator but the data transfer takes longer
because we are moving data from an FGPA to an external circuit, so we need external arbitration between the
components. It’s faster than full software. We’re executing everything fine and fast.

0ss: the top dashed line is the maximum load that can be applied to the single component

FPGA

CPUO CPUO

CPU1 | cPU1

4\ POLITECNICO

MILANO 1863 33

In the solution on the bottom left we see that the computation is very fast and the data transfer also, because
everything is in the FPGA, but the problem is that we go over the maximum resources of the FPGA, so it’s not a
feasible solution.

On the bottom right we slow down the computation of C but still is faster than the previous ones.

So when we’re mapping and scheduling a task on an existing platform, we need to know a lot of details, not
only on the underlying platform (how many resources does the FPGA has? Which is the working frequency of
the processor? Which is the speed of communication?) but also on the high-level functionality that can be run
on hardware on in software. What we need is an even more complex software environment which is able to

implement an optimal model or architecture, profile the requirements of our application (like how much data
is required or how much data does it produce, which are the interconnections among the applications) and
based on this profiling we obtain software and hardware implementations, several solutions for our hardware
platform and several solutions for our software implementation and then we need some environment that is
still not there (this is a research field) where we can profile and study the quality of our mapping in scheduling
over the platform that we have. We try to identify a local optimum.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Proposed Co-Design Flow

Mapping concerns the assignment of a task to:
* An implementation (mode of execution, resource trade-off)
« A processing element (hardware resource for execution)

Task Graph
__/"‘\
¥ ¥
Task Analysis Application Analysis
4 — . Software
: . System=Level Design Code
Profiling or Code Software - SIS
. . > \ > Space Fxploration . . __—
Estimations Implementations {
— , Solution i
* i Refinement
e ' { ;
Design Space . ; i
N p Hardware Run=time Platform
Exp_l()ratl()n . g Implementations " Optimizations Specification
for HLS (NSGA-II) S
. - ., y __/“\

Scheduling concerns the order of
executing tasks whenever there is
contention on the resources

Design space exploration can also be applied to scheduling and mapping.

Future Work: Automatic Partitioning

* Roadmap for next-generation computing systems
« Short term: Development of efficient accelerators
* Medium term: System-level HW/SW optimizations

» Long term: Automatic porting of legacy applications on parallel and
heterogeneous systems

* Automatic partitioning of the specification, fully combined and
integrated with

» Exploration of alternative implementations
+ interfacing with existing HLS tools
» Co-exploration of computation, communication and storage (e.g. how to
specialize the entire memory hierarchy?)

« System-level analysis and run-time optimizations

-\ POLITECNICO
) MILANO 1863

50

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

8 — Dependability

The added information is taken from this paper

What dependability is?

The ability of a system to perform its functionality while exposing:

* Reliability

* Availability

* Maintainability
« Safety

* Security

Dependability: system property that integrates such attributes as reliability, availability, safety, security,
survivability, maintainability. It’s the ability of a computing system to deliver service that can justifiably be
trusted.

The basic attributes of dependability are

e availability: readiness for correct service

e reliability: continuity of correct service

o safety: absence of catastrophic consequences on the user(s) and on the environment

e confidentiality: absence of unauthorized disclosure of information

e integrity: absence of improper system state alterations

e maintainability: ability to undergo repairs and modifications and easy maintenance
- confidentiality, integrity and availability together are security

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://studylib.net/doc/18193164/fundamental-concepts-of-dependability

Why dependability?

Functional Verification

A lot of effort is devoted to make sure the implementation
— matches specifications
— fulfills requirements
— meets constraints
— optimizes selected parameters (performance, energy, ...)

Nevertheless, even if all above aspects are satisfied ... things may go
wrong

» systems fail
systems fail ... because something broke

Why dependability?

Defects, Process variation,
Degraded transistors Radiation, Noise

\) “Acceptable” Outputs

+ Performance
+ Integrity
Inputs System
Y + Availability

+ Security

Design errors, / \

Software bugs Malicious attacks,

OS bugs Human errors

It’s important to remember that a single system failure might affect a large number of people

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Why dependability?

Industrial standards require it:

ISO 26262 for automotive
CENELEC 50128 (SW) and 50129 (HW) for railways
RTCA DO-178C (SW) and DO-254 (HW) for airborne

ESA ECSS-E-ST-40C (SW) and ECSS-Q-ST-60-02C (HW) for
space

Design standards: every single step has requirements for implementation and specific constraints to respect.

Ex:in the ISO 26262 has specific requirements for power dissipation, how to refine requirements, how to
implement behavioral and RTL description, in order for it to be certified. If the system is not certified it can’t be

implemented for user ended user.

Ex: when compiling a software we have to use certified compilers.

Companies are forced to use standards and at the same time any company is trying to push the standard in
their own way of implementation. Standards are time consuming but standards are very detailed and is
interesting read them and understand how to implement them into your own solution.

When to think about dependability?

Both at|design-time|and at runtime

* Analyse the system under design
* Measure dependability properties
* Modify the design if required

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

When to think about dependability?

Both at design-time and at|runtime

* Detect malfunctions
* Understand causes
* React

Ex: we mustimplement a processor that has to be implemented into a satellite, then we have to respect ex
the radiation requirements and we test our hardware in such conditions and we verify how many faults,
incorrect results we obtain in such conditions.

So we analyze and then modify our system based on the results of the previous test. Often also fault
simulators are used to understand how weak and where our system has problems. We perform ex radiation
test and then we emulate the faults. Then we understand where we have fault, which component has faulted
and how we can handle the event.

Where do we apply dependability

Safety-critical systems: a failure during operation can present a
direct threat to human life

* aircraft control systems
* medical instrumentation
* railway signaling

* nuclear reactor control systems

Safety critical systems are systems whose failure is going to harm or damage human lives or the environment
ex trains, nuclear power plants, automotive related applications...

Mission-critical and safety-critical systems

Mission-critical systems: a failure during operation can have
serious or irreversible effects on property and finance

e Satellites
* Surveillance drones
 Unmanned vehicles

Mission critical systems are systems whose failure is not going to harm human lives but the critical part is the
mission himself.

ex consider the drone that is going to lend on mars and going to send pictures, then it’s mission is the objective
himself. If a fault halts the systems or makes it uncontrollable for one minute I’'m going to loose the control and
the mission is going to fail.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Not critical systems that are systems that are not critical nor for environment nor for human life but still needs
to be reliable.

Every single aspect of this stack has to be reliable, so

Anatomy of the scenarios

the nodes
— computing systems
— sensors and actuators

the communication Everything has to work

— network properly for the overall system
to be working

the cloud
— data storage
— data manipulation

Fault, Error, Failure chain:

Fault A event within the system

Error A deviation from the required
operation of the system or subsystem

Failure The system fails to perform its

required function

fault error

Cj detection

repair recovelry

fault latency outage l fault

free free

e Fault: occurs in the system due an internal/external condition in the system.

e FError: event that occurs because a fault happened and has propagated within the system. Part of the
system state that may cause a subsequent failure.

e failure: the system fails because it couldn’t handle the fault. A failure is an event that occurs when the
delivered service deviates from correct service, so the system stops delivering the system function. A
failure occurs when an error reaches the service interface and the alters the service.

An example: a flying drone with an automatic radar-guided landing system

Fault: electromagnetic disturbances interfere with a radar measurement

Error: the radar-guided landing system calculates a wrong trajectory

Failure: the drone crashes to the ground

Oss: the user that applies a certain action is not to be considered in this evaluation, otherwise we’re
considering the user as part of the system.

Not all the faults become errors and not all the errors become a failure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Reliability terminology
Not always the fault — error — failure chain closes

example: a tele-surgery system

Fault: radioactive ions make some memory cells change value (bitflip) but the
corrupted memory does not involve the video stream

Error: no frames are corrupted
Failure: the surgeon carries out the procedure

Not always the fault — error — failure chain closes

example: a flying drone with automatic radar-guided landing
Fault: electromagnetic disturbances interfere with a radar measurement

Error: the radar-guided landing system calculates a wrong trajectory, but then,

based on subsequent correct radar measurements it is able to recover the right
trajectory

Failure: the drone safely lands

So the erroris non propagated (or is absorbed)

Failure avoidance paradigm So we can work at two levels

1. I can work with failure avoidance, so we put in place several
Conservative design cases that allow the system to avoid, by design, fault, errors and
failures

Design validation Infant mortality: accelerated stress test, burn out test... | expose the

system to more radiation/heat/voltage with respect to the one with

Detailed test which is going to work and we stress test it to see how it performs at
— Hardware its boundaries.
— Software

Infant mortality screen

Error avoidance
Error detection / error masking during system operation])]
We have to think and implement such systems like
online monitoring, diagnostics and self-recovery and
self-repair.

On-line monitoring

Diagnostics

Self-recovery & self-repair

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Where to work

Technological/components level

— design and manufacture by employing reliable/robust
components

* Highest dependability

* High cost
* Bad performance (generally devices from old generation)
| can work at single component or technology level, to avoid faults up to a certain probability, maybe | might

use older but more resistant standard cells, the larger and slower the cell is the more reliable it is or maybe |
could use special purpose packaging, by spending more | could have more resistant wires etc.

Hardening of the functional units (ALU, fetch unit, ...)
— Space redundancy is mainly used (DWC,TMR)

— Arithmetic codes is a viable approach for specific functional units
(E.g.: residual codes for ALU)

Hardening of register files and memories
— Information redundancy (E.g.: EDC, ECC)

An example of application of such approach is the Leon2-FT produced by
Gaisler for ESA: a SEU tolerant microprocessor where FFs are protected by
Triple Modular Redundancy and all internal and external memories are
protected by error correction codes or parity bits.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

architectural level

— integrate normal components using solutions that allow to
manage the occurrence of failures

==

* High dependability

 Depending on the
* High cost adopted solution

* Reduced performance

So to implement dependability components that work normally must be integrated with systems to manage
the occurrence of failures.

Architecture-level hardening

The whole processor is replicated and its outputs are
checked/voted
Some approaches:
— Fault detection
* Lock-Step Dual Processor
* Loosely-Synchronized Dual Processor
* Watchdog processor

— Fault tolerance
* TMR — Triple Modular Redundancy
* Dual Lock-Step Architecture

Here we can see listed the main dependability implementations appliable via architecture-level hardening
through space redundancy. The idea is

replicating the entire processor and checking or voting on outputs to ensure reliability
Fault detection approaches

Fault detection techniques aim to identify errors during the process but not necessarily correct them. The goal
is to detect inconsistencies so that corrective action can be taken.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Fault tolerance approaches

Fault tolerance techniques aim to not only identify errors during the process but handle and mask faults,
allowing the system to continue functioning even in the presence of errors.

Architecture-level hardening | 2

Lock-Step Dual Processor

— Two processors execute the same code being strictly
synchronized

— Bus and memories are protected with codes

— The interrupt controller is
specifically designed with fault
detection mechanisms

The solution is called fail-silent "1 H
architecture (corrupted data are not H | e

Master D'
emlttEd) CPU Qi‘ Address H

Checker - D’B_‘TA
— Used as basic element for fault- =] monir
tolerant distributed systems

FLASH

.

RAM

Lock-Step dual processor: two processors execute the same instructions in perfect synchronization, cycle by
cycle. Both processors receive the same inputs at the same time and their outputs are continuously
compared. Any mismatch in the outputs flags a fault.

v" High accuracy in fault detection

x High resource and power overhead

% No fault tolerance, so once a mismatch is found the system must halt or switch, it cannot handle the
fault

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Architecture-level hardening | 3

Example of Lock-Step Dual Processor: Xilinx Dual Lock-

Step Processor [
P
Iso\at‘;?us:éion AX|Full Baz
(MBO Top) AX] Outputs Peripherals Isolated Function
(Peripherals Top)
D/l LMB RAMs Primary
— ";:;:’:s‘:sf DDA3- 128 MB
L AXH4 |==| SDR
Data Isolated Function SDL.FAM S%Erﬁiﬁ
(MBO Top)
Comparator Erors
— a
MicroBlaze MicroBlaze iy -» Board LEDs
Processor MED Comparator == LED
Outputs | MicroBiaze F
| INermupt |==| use/
Controller .| Rs2a RS232
IF I Converter
MB Intermupts System
Resat Resat Board
AXl4-Lite Full Bus Push- 2
AXl¢-Lite Outputs ™| buttons Push-
VE buttons
w
5
- = Board 8
% oiP
MicroBlaze MicroBlaze ™| switches il
Processor v Comparator VE Switches
Outputs
Linear 32MB
Daa Secondary (==1 Flash Parallel
st MicroBlaze v Flash
Comparator
Isolated Function - -T'[mer
DITLMB RAMs (MBO Comparaior
Secondary Top)
MicroBlaze
Processor
Isolated Function
(MB1 Top)
Spartan-6 FPGA XC6SLX150T-FGGE76-3
e

Architecture-level hardening | 4

Sp\

cla
e RedUnda Ne
VY

Loosely-synchronized dual processor

— Two processors run
independently RAM || FLASH

INT C‘TLE
CPU A

— The operating system is
devoted to inter-process
communication,
synchronization and error
detection

K—>

Vv

/‘\l:> Interchannel Comms <:'>
€=mmccmccncaap

—>

|| CPUB
INT CTL

RAM FLASH

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Architecture-level hardening | 5

Loosely-synchronized dual processor (cont.)
— Synchronization mechanisms must be protected with specific
hardware/software mechanisms
— After an error detection, self-testing and sanity-check can be
performed to identify the faulty component

— Two operational modes:

* Critical applications: loosely-synchronized architecture
featuring fault detection checks on synchronization

* Non critical tasks: dual-core architecture

Loosely synchronized dual processor: two processors execute the same code but are not tightly
synchronized, so they may be offset in execution by a few cycles and periodic comparisons are made.
Differences in the results or state between the two processors indicate a fault.

v" Lower overhead than lockstep

v" More flexible timing and reduced complexity

% Increased detection latency

x Harder to pinpoint the exact cause of divergence

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Architecture-level hardening | 6

Watchdog/Checker Processor

— The watchdog observes the behavior of the processor and
performs a high-level anomaly detection

* Execution statistics different from profiled ones (branch
misses, branch prediction, ...)

* Data values or memory addresses out of expected ranges

* Timeout expiration

Processor Memory
/0 Watchdog/Checker
processor

Watchdog/Checker processor: the idea is implementing a secondary, simpler processor that monitors the
main processor’s activity. It checks timing and controls the flow of the main processor. It may also use
software-based checksums or timeouts. If for some reason the main processor behaves abnormally (crashes,

freezes or has wrong timing) it detects it and stops the execution.

v it’s simple and cost effective

can detect control flow or timing faults
it doesn’t verify actual data or results
has limited detection coverage

X X <

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Architecture-level hardening | 7

TMR architecture

— It is a lock-step solutions with three processors

CPU-A

Majority
Voter

CPU-B

Dehuilg%nit
i ﬁu
T

CPU-C E[>

FLASH

/\
—— >

T4

INT CTL]

V

RAM

Triple Modular Redundancy: three processors execute the same task in parallel, a majority voter chooses the
correct output. They all run in parallel, the outputs are compared at each step and if only one differs the
majority output is taken as correct. It can obviously tolerate a single faulty processor.

v

v
x
x

Seamless fault masking, if a fault happens it is automatically resolved via the majority

No disruption of outputs during faults

High hardware and power cost, the overhead is at least tripled

The voter circuitry must be fault-free and protected

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Architecture-level hardening | 8

Dual lock-step architecture

— Two dual lock-step nodes are

INT CTL|
connected _
. . . | CPUA
— Each node is fail-silent Cjé Master I A =
- 2 Y. E
— Two operational modes: HEan <}J Address 2
. & (‘I1ec]£er AT S |
* Fault detection for not- || ! ouitor S
critical tasks (each dual lock- B ddress £
, : || crun = AT =
step executing a different 2 | Checker e £
d : moniton E :
code) Cﬁ% CPUB il \
S| Master >
* Fault tolerance for]| M
critical tasks (both dual lock- INT CTI

step executing the same code) RAM || FLASH

— This is a simple distributed system

Dual lock-step architecture: it combines the lock-step fault detection with redundancy for failover. So the
two processors in lock-step detect the faults and if a fault is detected the system switches to a backup lock-
step pair or continues with the healthy unit. So the action is detecting faults in the primary unit and switching
to the secondary.

v both detection and recovery
suitable for high-reliability systems (like safety-critical systems)
requires multiple processor pairs

x X <

more complex control and synchronization logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Where to work

software/application level

— develop solutions in the algorithms or in the operating
systems that mask and recover from the occurrence of
failures

=

* High dependability

' Depending on the
* High cost adopted solution

* Reduced performance

Mixed-level hardening

Approaches:
— Process replication/diversification
— Process re-execution
— Checkpointing
— Instruction-level hardening
— Codes

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Where to work

What do all solutions have in common?
e (Cost

* Reduced performance

You have to pay for dependability

Challenges

Find the best tradeoff between dependability and costs
depending on:
* Application field

* Isthere a specific design standard?

* Which degree of dependability is actually required?

* Will failures cause human losses?

* Which would be the monetary cost of a failure?

* Would a failure have a “reputation cost”?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Challenges

Find the best tradeoff between dependability and costs
depending on:

* Working scenario

* Are there sources of faults (radiation, ageing, heat,
vibration...)?

* Which are the nominal working conditions (and the
extreme ones) for the system?

* Are there systems connected to my system?

Find the best tradeoff between dependability and costs
depending on:

* Employed technologies

* Are the cpu, memory, interfaces free from sources
of failures?

* Are the cpu, memory, interfaces tolerant to failures?

* Which are the components most susceptible to
failures?

Find the best tradeoff between dependability and costs
depending on:

* Algorithms and applications
* Are the input of the application free of inexactness?

* |sthe algorithm tolerant to a certain degree of
inexactness?

* Can the application tolerate a certain “down-time”?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

9 - Advanced Dependability

IMAGE PROCESSING AND DEEP LEARNING

Image processing applications: a number of filters executed in a sequence

input
image

IMAGE PROCESSING AND DEEP LEARNING

0 -1] o
-1 5(-1
0 -1 0

sharpening

/

-

~

thresholding

v

reshape &)

-

convolution
i\ J

An example: building identification in aerial pictures

o

aggregation

output
matrix

Input image

Thresh. output

Pipeline output

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

An example: digit classification

Convolutional Layer 2

Fully-Connected

Filter-Weights Layer Output
" (5x5 pixels) = Layer Class
Convolutional Layer 1 : g A
3 EMLGSSES —
input image Filter-Weights »EEEENN
(20x28 pixels) (5x5 pixels) (14x14 puelsbv : g g g g 5 (7x7 pixels) -
SENE 7777 pdagrE 7Z725% O
—"a " F‘ E 2 (2 7: 7 - 1601.";6;0 ', / 7- ? 7 / .
‘ﬂﬂﬂ'ﬂ 1777 mmpags e aEEs |
1 =]] / 3N e = = = -
u n “-‘ g o 7 7 7 = IR 20282 [
2 . (16 channels) APEDET (36 channels)
FEEDED 1
A3 _—
L . (128 features) (10 features)

Working scenario

Increasing interest in employing IP and
DL for perception and decision tasks in
mission/-safety-critical systems

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Layers of a CNN or stages of
an image processing pipeline

%

q\fz £ b | f downstream
e application
L~ 7

camera input_image output

Working scenario

| —

hardware platform

CPU, GPU, FPGA

IMAGE PROCESSING AND DEEP LEARNING

An example: car detection in highway videos

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

IMAGE PROCESSING AND DEEP LEARNING

A Deep Learning model generally employed to carry out a high-end task, such as item
classification, object detection and image segmentation

<17

— TRUCK
— VAN
=0 T
’ < > =] [] — BicYcLe

INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FOLLY SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

- corrupted
‘usable

1§ corrupted
! unusable

Example application
Car tracking in highway videos

Global input image

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Example application
Car tracking in highway videos (usable corrupted image)

#*

»

CNN input image (correct) CNN input image (corrupted)

Example application
Car tracking in highway videos (usable corrupted image)

Golden CNN output Faulty CNN output

Example application
Car tracking in highway videos (usable corrupted image)

Golden CNN output Faulty CNN output

The idea is classifying results based on the application we have to perform

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Paradigm shift:

Discard only faulty not usable images

. Leave faulty but usable images
faulty/not faulty images

usable/not usable images Avoid useless re-executions

Several hardening schemes may be adopted

processing i
exact replica

correct/
corrupted

> Traditional redundancy

processing Ay
input
approx

replica

usable/
unusable

> Usability-based flexible checking

+
Approximate redundancy

TRC: two ray check, it’s a classical pixelwise operation

Let’s see one of the applications

processing

output
input

exact replica usable/

unusable

> Usability-based flexible checking

rocessing

input
selective

replica —

unusable

> Usability-based flexible checking
+

Selective redundancy

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

USABILITY-AWARE FAULT DETECTION - THE ARCHITECTURE

Borrow duplication from DWC...

&% ok/ko

| SC %ﬁ ok/ka
— SC 1 Ok/kQ
—> thresholding 1 | 57
\) >C Tork
] OK/KO
e Y 0 s ™y
sharpening —+ [thresholding — -‘ aggregation
\ r \—j _-}\. S
) | » |
sharpening reshape & | 7 J aggregation >
\ convolution J
inase output
= = 00 = .
| reshape & P
convolution

4 stages pipeline for model identification, the idea is doubling the layers and substituting with a smart checker,
when smart checker rises an alarm then we have to solve the fault, only under single fault situation.

USABILITY-AWARE FAULT DETECTION - THE CHECKER

...but with a smart checker

SC [S = S e = s ¥ no fault: the smart checker
> resizing ¥ behaves as a TRC

L7
input
image

»

1
1
1
1
1
I
1
I
. I
replica 1 |
1
I
1
1
1
I
I
1
1
1
1
I

" fault: the CNN is invoked

— resizing !

output

»

replica 2
output

if “all @s” then
return ok

5| exec

—_—s
if pass then ok/ko
return ok 1

return ko !

If the two replicas are exactly the same no fault occurred, so the CNN isn’t activated, while if the two outputs
are different, CNN is activated and executed. It’s like a two-rail checker but uses a CNN.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

C++ for the considered pipeline

C++ for the proposed Smart Checker (with TensorFlow)

Train and test sets both count 10K 1,080x720 images from MS Bing

Images from the two sets are taken from non overlapping groups of cities

We assumed that filters are scheduled in a time triggered fashion:

Sharpening — Thresholding — Reshape&Conv.— Aggregation

We analyzed the Smart Checker when dealing with randomly
corrupted images

Four possible behaviors:
— Discarded Not Usable (D /U) images
— Not Discarded Usable (/D U) images

— Discarded Usable (D U) images Inefficient response

Correct response

— Not Discarded Not Usable (/D /U) images ——— Incorrect response

We compared the proposed Smart Checker against:
— The classical Two Rail Checker (TRC)

— Three checkers that discard images when the replicas’ outputs
differ for more than:

- 1% pixels (naive 1%)
- 5% pixels (naive 5%)
- 10% pixels (naive 10%)

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

I .] L Y

Proposed Checker 47.10% 47.53% 4.80% 0.58%
TRC 47.68% = 52.32%

naive 1% 47.68% 32.58% 19.75% 0.00%
naive 5% 47.68% 37.50% 14.83% 0.00%
naive 10% 47.68% 39.95% 12.38% 1.20%

Is it possible to further reduce the fault detection-related cost?

Remove the redundant pipeline copy...

...and substitute it with control blocks.

The architecture

(b-/D); (D-/D); (D - /D),
t t t
cb, cb, cb,

A A A A T

in_img, out_img; in_img, |out_img; in_img,

e f Mo, 1£ f : I
I S |

input_image image processing application output_image

fn tis afilter
cb,,: control block

in our case itis a small replication of the filter plus a smart checker

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

APPROX. USABILITY-AWARE FAULT DETECTION

__

The control block M £ ctrl_img; > E
L~ :
In_img; ! A > .
| fi ctrl_ o TRE ok/fail :
: img_2; :
i » SC. [+
i | 1 (D-/D)
Out_imgi : :
7)
iNput_image | o :
The smart checker ctrl_img, i resize L
E Ly resize —'% CNN, i l
Y L
out_img; 1 L
I 3 resize & ! :
' 1 |_normalize E
T N S o
input_image ! u*- /Ut |

we are losing detail in the replica because it is used just in the checking

Fault detection accuracy almost unaltered (w.r.t. the non approx. usability-aware fault detection)

Time saving w.r.t. DWC: 36%

* itwas 15% and 5% with the non approx. usability-aware fault detection, depending on
the configuration)

Approach Avg. Time D0

Our approach 414.40 ms 0.90%
DWC 652.80 ms 0.00%

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Is it possible to provide a CNN with sufficient fault detection capability without full
duplication?

The idea is to duplicate only a sub-set of the CNN layers...

...but, which ones?

By exploiting error simulation we can identify the most critical CNN layers

Based on this information and on the layers execution time we can identify the most suitable
partial duplication in terms of CNN execution time and fault detection capability

We considered four case study CNNs:

« Comma’s Al . . -
Steering angle detection for autonomous driving cars

* PiloteNet
* CIFAR-10 } Image classification
* VGG11

We compared the execution time and the fault detection w.r.t.
* CNN-level DWC

« Layer-level DWC

» The selective duplication approach proposed in [8]

 The non hardened CNN

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

1,00+ Selective hardening solution space -
+ Selective hardening Pareto front
0.981 . piain NN
- 0.96 - # Layerlevel DWC solution .
-E ’ = Application-'evel DWC solution
5 0944 - Solutions defined as in [8] o
)
v 0.92 1
é -
> 0,901 .
=]
2 0.88 - *
0.86 1
0.844 * i . . _
250 300 350 400 450
Execution time (ms)
(a) Comma
1.00 -
-
0.99 1 >
~®
-
= 0,984 L
g
~ 0.97 4 e -*
g f
_E 0.96 o~ -
-
8 0.951 &
0.94- :ﬂf
0934 , e
600 700 800 900 1000 1100 1200

Execution time (ms)

600 700 800 900

Execution time (ms)

500

(b) PilotNet

1.001
0.95 -
5 0.90 1
g
2085 -
@
£0.80-
i
3 0.75
0.70 -
0.65 -

8 10 12 14
Execution Time (ms)

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

10 - Introduction to High-Level-Synthesis

Need for High-Level Design

Working at higher level of abstraction allows designer to:

» Model complex designs

* Reduce the development time

» Simplify the code review (more experts at higher abstraction levels)
» Operate at technology independent level

» Simplify (and explore) HW/SW partitioning

) POLITECNICO

! MILANO 1863 ©Christian Pilato, 2024 2

The basic idea behind HLS is to design a component in the simplest way from the hardware and functional
point of view. The design is very complex because hardware design skills and knowledge is required. This
constraint significantly limits the number of people that are able to design an HW accelerator. By raising the

abstraction level needed to desigh a component, it is possible to have more people able to design and
implement a hardware accelerator.

If we could have a method to pass from a high-level software description to implement it in hardware it would
be a great advantage. By raising the abstraction level we can think about the functionality at software level, so
that modelling and executing the system more easily. This reduces the development time and simplifies code
review.

Another advantage is that specifications can be decoupled by the synthesis, because specifications are
technology dependent while the function synthesis is independent from the technology, the component can
be designed with a specific functionality and can be implemented with different performances based on the
technology used to implement it.

ex: | have to design a cryptographic accelerator and | want to implement it in FPGA because | want to integrate
it into my system for video processing that uses an FPGA or | want to create and ASIC for a smartphone.
Conceptually the design is the same, what changes is the implementation. If we design it in hardware maybe
we must design it twice, once for the FPGA once for the ASIC, while if we have something that does it
automatically, we can just describe the functionality once and then it’s done automatically for the two different
technologies.

Based on what we want to implement in hardware and what in software, if we have something that can allow
us to do this exploration at high-level it would allow to evaluate more solutions. If we don’t have something
that does so automatically, we must do the hardware design, then implementation, then see which results are
obtained. If the performance isn’t as good as we want, the component must be redesigned, it must be
optimized and implemented again. If the bottleneck was somewhere else, the entire process must be

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

repeated. If there was a toolchain that does it automatically then testing can be much quicker, it would still

take time but would be much faster than re-doing everything “by hand”.

Levels of Abstraction in FPGA Design

A C/C++/SystemC
High Level rroystem
design entry

Behavioural \

RTL > HDL design entry

level of abstraction

I
9]
°©
2
2
2
>
S
S
]
S
S
£
@

v Structural /
Source: The Zynq Book

©Christian Pilato, 2024

+) POLITECNICO
MILANO 1863

Here we see the abstraction levels for FPGA design.
The horizontal line indicates a change of language domain: in the upper part we have a software description
while below there are Hardware Description Languages.

If we go from the bottom to the top we’re raising the abstraction level.
At the structural level we have a lot of details, we have both the complete description of the circuit, of the nets,

of the timing and of the power consumption of the circuit.

Algorithm and Interface Synthesis

Interface Synthesis
(or Manual Specification)

Interface Synthesis .
M | Specificati
(or Manual Specification) @}pﬂthm Synthesis

...Functionality...

control

Source: The Zynq Book

©Christian Pilato, 2024

POLITECNICO
MILANO 1863

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

In general, what we want to do is something that first we spend a lot of time to verify that the synthesisis a
component in system, that must communicate with something else, so we have to correctly implement the
interface synthesis in parallel with the algorithm, so we have to separate the interfaces that we may need from
the algorithm. The more we know at the beginning of the synthesis, the more we can optimize it. The interfaces
might take more power and more time than the algorithm, so it makes no sense to write a very optimized very

fast algorithm if then the bottleneck is on the interface.

High-Level Synthesis: HLS

High-Level Synthesis

 Creates an RTL implementation from C, C++, System C, OpenCL API C
kernel code

« Extracts control and dataflow from the source code

» Implements the design based on defaults and user applied directives

Many implementation are possible from the same source description

« Smaller designs, faster designs, optimal designs — Enables design
exploration

‘\\:\; ﬁﬁk&lﬁa‘i?'“ ©Christian Pilato, 2024

oss: the code that is generated is the RTL one, so it has specific timing behaviors and logic nodes.

oss: the RTL that we generate is technology dependent because timing and power are technology related.
To implement via HLS we have to first understand which function to synthesize, how can we implement it,
what is the specific functionality of the accelerator and what is the evolution of the data.

Remember: for the same code we might generate different implementations.

High-Level Synthesis vs. Logic Synthesis

High Level

Behavioural +—— high level synthesis

HDL description

Structural — logic synthesis

e

Netlist

Source: The Zyng Book

(7 POLITECNICO — .
_f.'// MILANO 1863 e S

as we see, HLS and logic synthesis are at different level, but this doesn’t mean they don’t exchange
information, they can exchange if through the same parameters or through protocols and information etc.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Advantages of HLS

Productivity

» Easy to model higher level of complexities

« Smaller in size source compared to RTL code

» Generates RTL much faster than manual method
Quality of Results

» Automatic parallelism extraction

» Multi-cycle functionality

» Loop Optimization

» Optimization of Memory Access

HLS is something automatic that must implement the intuitions that a hardware designer knows. Since it’s
automatic, it’s obvious that an expert HW designer will implement probably a better RTL design but still it
would take a lot of time and very advanced knowledge.

oss: HLS tools use methods of optimizations but since they’re standardized probably there would be a more
optimized way to implement it, so that’s why the role of the hardware designer is still important, because it
implements the sort of necessary optimizations.

Alternatives from HLS - Avg. of 10 numbers

time R
e T T (O T N T G O T o O O
() ENCECIESEIEIEIESES EEN
iatency = 11
2 CHCICD e
»
g » latency = 5
a (=)
8 =]
x ac Key:
Lac
Q) [+ Adder (fabric)
;l Multiplier (fabric)
2T Adder (DSP48x)
EX X1 Multiplier (DSP48x)
S
— latency = 1
~) POLITECNICO GHistian il B34 Source: The Zynq Book

MILANO 1863
here we can see three approaches:

1. the operations executed sequentially
2. implementation with some parallelization
3. complete parallelization

it’s intuitive that a tradeoff between time and resources exists.

8

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Trade-offs Explored Using HLS

Pareto dominance: one point dominates another if it is equal or better for
all objectives 4
high cost, high throughput @

5
=
= ()
3 o
= O
. high cost,
. low throughput

. low cost, low throughput (poor solutions!)

resource cost

POLITECNICO :
MILANO 1863 ©Christian Pilato, 2024 9

by using HLS we obtain multiple design runs, we have to choose the one that fits our solution more and avoid

the ones that don’t.

ex if we have the last upper green dot (that is one implementation) why would we need the red ones? we won’t

use them since we have an equivalent implementation that is better

Short History of High-Level Synthesis

» Generation 1 (1980s-early 1990s): research period

* Generation 2 (mid 1990s-early 2000s):
» Commercial tools from Synopsys, Cadence, Mentor Graphics, etc.
* Input languages: behavioral HDLs
» Target: ASIC
» Outcome: Commercial failure

* Generation 3 (from early 2000s):
* Domain oriented commercial tools: in particular for DSP
* Input languages: C, C++, C-like languages (Impulse C, Handel C, etc.),
Matlab + Simulink, Bluespec
» Target: FPGA, ASIC, or both
* Outcome: First success stories

(%) POLITECNICO eten Pt 2004 "
\\/ MILANO 1863 Christial ato, 20

Why did Generation 2 fail?
o Itstarget was ASIC design, but ASIC designers have very specific and very highly requesting constraints,

they needed extreme efficiency. Implementing a tool that could perform under such constraints was

hard.
e [tstarted from a behavioral description, thus VHDL or VERILOG code was needed and so all the designs

were complex and slow.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Vivado HLS: Cinderella Story

AutoESL Design Technologies, Inc. (25 employees)

Flagship product:
AutoPilot, translating C/C++/System C to VHDL or Verilog

*Acquired by the biggest FPGA company, Xilinx Inc., in 2011
*AutoPilot integrated into the primary Xilinx toolset, Vivado, as
Vivado HLS, released in 2012

“High-Level Synthesis for the Masses”

PN
(i35 POLITECNICO Christian Pilato, 2024 1

LegUp - Academic Tool for HLS

+ Open-source HLS Tool
* Developed at the University of Toronto
* Faculty supervisors: Jason H. Anderson and Stephen Brown
* FPL Community Award 2014
« High-Level Synthesis from C to Verilog
Targets Altera FPGAs (extension to Xilinx relatively simple)

Two flows
* Pure Hardware
+ Hardware/Software Hybrid

= Tiger MIPS + hardware accelerator(s) + Avalon bus +
shared on-chip and off-chip memory

f POLITECNICO ©Christian Pilato, 2024

Bambu - Academic Tool for HLS

* Open-source HLS Tool
* Under development at Politecnico di Milano
* Faculty supervisor: Fabrizio Ferrandi
* High-Level Synthesis from C/C++ to Verilog/VHDL
* Targets both ASIC and FPGA
« Automatic generation of testbenches
* Support for the implementation of custom “passes”
+ Special algorithms for synthesis steps
* Hardware security
»+ Debugging

(i) POLITECNICO et Bt 2004
‘\-1/ MILANO 1863 >hristian Pilato, 202

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Vivado HLS Synthesis Process

C, C++ or SystemC C testbench
(input files for synthesis)

optional
sub-
functions

Constraints

Directives

Vivado HLS
Synthesis

Eyshms Packaged IP

RIL ‘modet VHDL / (Vivado / XPS /
Verilog System Generator)
Source: The Zynq Book
synthesisable outputs
POLITECNICO ©Christian Pilato, 2024 14

MILANO 1863

we can have in our synthesis tool input descriptions, additional functions (synthesizable functions) so
functions that can be implemented in hardware and implement an optimized RTL code.

itis a complete system to replace the steps of the hardware design.

Functional Verification and Cosimulation

Functional Verification C/RTL Cosimulation
Original Testbench Cosimulation Testbench
(automatically generated)

C test lnputs) Vivado HLS (C test Inputs)

C/RTL Cosimulation
Process
Golden Golden
Ref Ref.

check outputs) [check outputs]

Source: The Zyng Book

POLITECNICO - p
MILANO 1863 ©Christian Pilato, 2024 15

So let’s say that we want to test the logic that we implemented with the high-level code, Vivado gives us the
possibility of just using C test benches, we do not have to write a Verilog test bench that would be very long to
write. So we have our high-level description, then with a C testbench | verify if the functionality is working well,
then we generate the RTL and by using the same C inputs and testbench | verify if | obtain the same correct
result that | obtained before in the functional verification. If we have co-simulation errors, then the functional
implementation we made is incorrect.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Vivado HLS Design Flow

————— -b(C code design J (C testbench desimj

Golden Reference

C code

C Functional Verification

design revision (optional)

Directives

Bonsrans
\ design
l \ iteration

|
b= C/RTL Cosimulation Evaluate Implementation ‘

hardware implementation
accepted

High Level Synthesis

RTL code

©Christian Pilato, 2024 16

Development and Benchmarking Flow

| Reference Implementation in C |

!

Manual Modifications

‘ HLS-ready C code ‘

i Functional
| HDLCode
3

Post Physical Implementation

Place & Route FPGA Tools
Results Timi
| Netlist — oot

Test Vectors

#\ POLITECNICO _ .
Q) MILANO 1863 ©Christian Pilato, 2024 17

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Vivado HLS

Functional
Specification
€ C |
B Starts at C Design J Testbench
=@ ¥
=Gt Synthesis }
- SystemC
Y
RTL
m Produces RTL Design
- Verilog
- VHDL Verification]
- SystemC . v &
G Architectural
m Automates Flow Wrapper Verification
- Verification -
— Implementation Packaging]
) i ¢ IP Integrator
! Vivado IP Packager « System Generator
Vivado IP Packer) il

POLITECNICO
MILANO 1863

©Christian Pilato, 2024

18

Introduction to High-Level Synthesis

How is hardware extracted from C code?
» Control and datapath can be extracted from C code for each function
» At some point in the top-level control flow, control is passed to a sub-

function

» Sub-function may be implemented to execute concurrently with the top-
level and or other sub-functions (e.g., Load/Compute/Store)

How is this control and dataflow turned into a hardware design?
* Vivado HLS maps this to hardware through scheduling and binding

processes

How is my design created?
» How functions, loops, arrays and IO ports are mapped?

#) POLITECNICO

©Christian Pilato, 2024

19

The HLS flow must be imaged as operating per functions. A function in the original C code is a hardware

module after HLS, a function containing another function is a module with a submodule. The important part is
taking a function, the control and the dataflow are taken from that function as it is. If we enter a subfunction,
the way in which HLS behaves is the same.

example: in software the code is executed. When a function is reached a CALL happens and the control goes
to the execution of the subfunction. After the end of the subfunction, the control turns back to the main
function. In HLS conceptually it is the same, the hardware execution is started, a point where the submodule
Starts is reached, the control goes to the submodule, the submodule evolves and then it comes back. There is
no parallelism in HLS, even though there are cases where execution can be partially parallelized and can be

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

overlapped. Usually that is what happens in the analysis of the accelerator, where (maybe) load, compute and
store are decomposed to parallelize execution.

When we are working on a function, in any case we must understand how control and dataflow are translated
in the architecture. In HLS, this is done through two steps: scheduling and binding. Scheduling is about how
timing is managed while binding is about how to allocate the available resources.

How the design is created must be created, so what is the correspondence of a function, of an array, of a loop,
to hardware, how these elements are translated in a way that is coherent with what we want.

HLS: Control & Datapath Extraction

Code Operations Control Behavior Control & Datapath Behavior
void fir (Finite State Machine (FSM) Control Dataflow
data_t*y, states
coef_t c[4], RDx

data_tx

) '__.—..——-) RDc |——l:|

static data_t shift_reg[4]; =]

acc_t acc; r—'—"__)

inti; / — c
acc=0; — 5

loop: for (i=3;i>=0;i--) {
if (i==0) {

accH+=x*c[0]; > +
shift_reg[0]=x; *
}else { _—

shift_reg[i]=shift_reg[i-1];
acc+=shift_reg[i]*c[i];

A
?
8

v
n

R
EER

|

;) *

*y=acc;

v
E

} WRy
From any C code example .. J Operations are The control is A unified control dataflow behavior is
extracted... known created.
POLITECNICO ©Christian Pilato, 2024 20

MILANO 1863

Scheduling and Binding: Heart of HLS

Scheduling determines in which clock

cycle an operation will occur R
- User 0 s 7
« Takes into account control, dataflow, ’@ B

and directives \ \/ /
* Resource allocation can be constrained
Binding determines which functional unit
is used for each operation \/

 Takes into account component delays,
directives [
(

* Includes functional units, registers, etc.

RTL Files
Verilog / VHDL / SystemC)

POLITECNICO)
MILANO 1863 ©Christian Pilato, 2024 21

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scheduling

Operations in the control flow graph are mapped into clock cycles
The technology and user constraints impact the schedule

« A faster technology (or slower clock) may allow more (or less)
operations to occur in the same clock cycle

wveid foo (a

fiearn L

2=c+t1; c
g ——mm
e

t3=d*t2;
out=t3-g;

}

The code also impacts the schedule
» Code implications and data dependencies must be obeyed

%4\ POLITECNICO

&gﬁ;f:\ MILANO 1863 ©Christian Pilato, 2024

Binding

22

Binding is where operations are mapped onto physical library units

Binding Decision: to share or not to share

Iy T o,
» Given this schedule: st

 Binding must use 2 multipliers, since both are in the same cycle
* |t can decide to use an adder and subtractor or share one addsub

| 1 i | 1 | L i | L
 Given this schedule: st

» Binding may decide to share the multipliers (each is used in a different cycle)

 Or it may decide the cost of sharing (muxing) would impact timing and it may
decide not to share them

* It may make this same decision in the first example above too

POLITECNICO

‘i&l: Bi4l) MILANO 1863 ©Christian Pilato, 2024

here it is decided how the resources of the FPGA/of the accelerator that we have are given for the specific
function.

23

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

High-Level Concepts

* Functions: All code is made up of functions which
represent the design hierarchy: the same in hardware

* Top Level 10 : The arguments of the top-level function d-ata_l"y,
determine the hardware RTL interface ports L
* Types: All variables are of a defined type (even custom). i
The type can influence the area and performance :':;iiggt:_l shift_reg[4];
* Loops: Functions typically contain loops. How these are
handled can have a major impact on area and acc=

performance Io;;:;

* Arrays: Arrays are used often in C code. They can
influence the device 10 and become performance }else

shift_reg[i]=shift_reg[i-1]:

bOtﬂeneCkS acc—i:shiﬂ_reg[i] L
» Operators: Operators in the C code may require sharing }}
to control area or specific hardware implementations to }'V=a°°;

meet performance

%\ POLITECNICO it i
2/ MILANO 1863 ©Christian Pilato, 2024 24

Remember that high level synthesis is a static generation of hardware, so we can synthesize what we know at

compilation time.

What is Scheduling?

Scheduling is the assignment of operations to time (control steps),
possibly within given limits on hardware resources and latency

What does scheduling do?
« Uses data dependencies to identify parallelism

» Exploits mutual exclusion

» Code that is never executed at the same time can be scheduled in the same clock cycles (and
share the units)

» Optimizes loops

Generally, one the first steps in the HLS core engine

(7)) POLITECNICO ©Christian Pilato, 2024

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Comprehensive C/C++ Support

A Complete C Validation & Verification Environment
 Vivado HLS supports complete bit-accurate validation of the C model

* Vivado HLS provides a productive C-RTL co-simulation verification
solution

Modeling with bit-accuracy
» Supports arbitrary precision types for all input languages
« Allowing the exact bit-widths to be modeled and synthesized

Floating point support
» Support for the use of float and double in the code

%47 POLITECNICO : i
i) MILANO 1963 ©Christian Pilato, 2024 26

First, we need to identify the operations that can be executed in the same clock cycle and we can also
determine which parts of the code are never executed at the same time, this is very important for

if,true false statements. Then we may want to optimize loops, in fact we optimize across the single operation
but also for loop operations. In general, scheduling is the first step. When we are satisfied by performance and
latency we optimize the resources used, eventually coming back to the possibility of changing the scheduling
if the specific requirements aren’t met.

11 - High-level functionality description

HLS Problem Definition

Input

* An intermediate representation

A set of functional resources (with area/time characterization)
» A set of constraints

* One or more objectives

Output
» Hardware description of the data-path + controller

Tasks
» Place operations in time (scheduling) and space (binding)
* Determine detailed interconnection and control

POLITECNICO _r .
7/ MILANO 1863 ©Christian Pilato, 2024 2

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

So the HLS problem starts from an intermediate representation of the functionality that must be synthesized,
so we need to generate something in a representation that is hardware oriented that removes some details of
software and that is as independent as possible from the input language. We do not care about the details of
the single input language, but | want to extract the semantics, the dataflow and the control flow. Then,
understanding

e what are the units
e which are the delays

e which constraints for area and performance optimization

is necessary.

Data-path and Controller

external external Data path :
control data . .
inputs inputs * Functional resources: Perform operations on data
ll datapath ll (arithmetic and logic blocks)
control

controlier | nputs [datapath * Memory resources: Store data (internal memories
i and registers)

- * Interconnection resources: Connect all resouces
datapath

. (muxes, busses and ports)
ll outputs ll
external external C (0] ntrOI I er:
53?,::2 m:‘:;,‘:ts * Finite state machine (FSM)

POLITECNICO
MILANO 1863

©Christian Pilato, 2024 3

To define more formally we can consider the organization like this:

e Datapath: part that takes the input data, performs the operation on it and considers both memory and
interconnections between submodules.

e Controller: companion module that determines the control signals like “when we accelerator starts?”,
“how does it acts? When?”. This is typically implemented with a finite state machine.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Constraints and Objectives

Area: number of modules/resources available or size of your silicon die
» Constraint: Maximum area

» Objective: Minimize area

Same for other cost metrics (e.g., power)

Latency: number of cycles for input data to result in a solution or result.

Throughput: amount of data that can be processed in a given amount of
time (usually involves dataflow/pipelining)

 Constraint: Maximum latency/minimum throughput

 Objective: Minimize latency/maximize throughput

[POLITECNICO itiar pi
\;;(T ©Christian Pilato, 2024

Intermediate Representations

An intermediate representation (IR) is the internal format used to
represent a functionality to be synthesized

* |deally language-agnostic (possibility to use the same IR for multiple input
languages)

« Conducive for further processing, such as optimization and translation (every
optimization step is usually an IR-to-IR transformation)

Examples of intermediate representations for HLS
« Abstract syntax tree (AST)

» 3-address code

« Basic block and Control flow graph (CFG)

« Static single assignment form (SSA)

 Directed acyclic graph (DAG)

7542\ POLITECNICO

“;' ARG Taes ©Christian Pilato, 2024

An intermediate representation is an internal format that is extracted from the code used to represent a
functionality to be synthesized.

Ideally what we want is

represent the functionality of an algorithm
generate the accelerator for that specific algorithm
but the way in which that algorithm is written has no impact

This is really a strong assumption and achieving it is very hard for a couple of reasons:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

1. when we abstract the details, obtaining a representation independent of the code that is written means
finding a canonical form that representation.

2. we must map all the physical resources, that add some constraints ex: an addition is an operation
between two operands

Abstract Syntax Tree (AST)

In computer science, an abstract syntax tree is a representation of the
abstract syntactic structure of text written in a formal language

« Each node of the tree denotes a construct occurring in the text

» Still language dependent (based on the constructs in the language)

» Usually associated with a backend to reproduce the code

Easy to be extracted and manipulated
« Source-to-source transformations

 Extraction of the language constructs for
transformation into low-level IR
if (x > vy)

max = X;
else [x] [y] [max][x] [max]|[y]
max = y;
POLITECNICO ©Christian Pilato, 2024 6

/ MILANO 1863

3-address code

Each statement is converted into the form: x = yv op =z
 single operator and at most three names

t=x-y+2z — tmp=x-y;
t=tmp + z;

Simple and easy-to-read format
» Explicit names of the intermediate values (signals)
« Standard format for the operators (possibility to design a library of components)

POLITECNICO _— .
MILANO 1863 ©Christian Pilato, 2024 7

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Basic Block

A basic block is a maximal sequence of instructions with:
* no labels (except at the first instruction), and
* no jumps (except in the last instruction)

So:
* You can enter into the basic block only at the beginning
* You can exit from the basic block only at end

All operations inside the basic block must be executed before
moving to the next one

)\ POLITECNICO . .
MILANO 1863 ©Christian Pilato, 2024 8

A basic block is a piece of code that has a single entry-point and a single exit-code, without any jump in the
middle. Every time a basic block starts it must be completed before passing the control to the successive one.
Since all the operations of the basic block must be executed before moving to the next one it means that | can
imagine my accelerator as a component executing consecutive basic blocks, it makes no sense to extract
parallelism between different basic blocks since when executing one, the others will be unknown.

If the problem is the other way around parallelism can be implemented and we would like to extract is inside
the single basic block.

We might think that expanding as much as possible basic blocks could be an idea forimplementing
optimization. The drawback is that the problem is much more complicated because a basic block might have
thousands of operations inside it.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Examples of Basic Blocks

w = 0; w = 0y
X=X + V; X=X +Y;
1ifl x>z)} if(x>z){
y = Xy —
b i - y = Xy
} else { —> X++;
- 4 Z++;
}
W =X+ z; W=xX+ 2
Code Basic Blocks
i) POLITECNICO ©Christian Pilato, 2024 9

How to Identify a Basic Block?

» Input: sequence of instructions instr(i)

» Any while/for/switch can be converted into a sequence of operations combined
with i £/goto

« Identify leaders. Leaders are:
» The entry point of the function
» Any instruction that is a target of a branch
+ Any instruction following a (conditional or unconditional) branch

« lterate by adding subsequent instructions to the basic block until we
reach another leader

{257\ POLITECNICO ; ;
MILANO 1863 ©Christian Pilato, 2024 10

The first transformation that can be done is thinking a way to find a canonical form for the control constructs.
we might do so by

Any while/for/switch can be converted into a sequence of operations combined
with if/goto

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Control Flow Graph (CFG)

Graph representation of the control flow.
* Nodes are the basic blocks
* Directed Edges are the potential control flow paths

You have a directed edge between B1 and B2 if:
« BRANCH from last statement of B1 to first statement of B2 (B2 is a leader), or

« B2 immediately follows B1 in program order and B1 does NOT end with
unconditional branch (goto)

Analysis of the (backward) edges allow the identification of loops

POLITECNICO))
MILANO 1863 ©Christian Pilato, 2024 1

Example of CFG

w=0; w= 0;

X X ¥y X=X +Y;

if(x > z){ IE(CX > 2) w = -

y = X; " .

X++; V=X X=X +Yy;

} else { —> Xt lf(X > Z){

y = e

etk Z++

} T F

w=x 4z

Code Basic Blocks y = X; Y = Zy4

X4+ ; Z4++;

lw=x+2z; |

{7 POLITECNICO AT
'J; MitANG {43 ©Christian Pilato, 2024 12

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Single Static Assingment (SSA)

A program is in Single Static Assingment (SSA) form if every variable is
only assigned once
» Every new assignment to the same variable creates a new temporary value

Original SSA

'i!."' EEHILE&;?ICO ©Christian Pilato, 2024 13

SSAis a representation that transforms a single piece of code into one where every variable is created only
once, every time | have a new assignment | have a new variable. The advantage of this representation is
immediately identify which is the defining statement of each variable. Each variable will have a definition set
and the uses. If | have a variable that is created but never used, | can eliminate it.

This is another implementation of the canonical form.

SSA and ¢-Functions

If the variable value can come from different path (e.g., different branches
of an IF statement), it is necessary to determine the correct source
» Use of the ¢-functions

Original

POLITECNICO L .
@@ MILANO 1863 ©Christian Pilato, 2024 14

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

CFG and ¢-Functions

¢-functions are always at the beginning of a basic block
Select between values depending on control-flow

a:= ¢ (a4...a)): the block has k preceding blocks, the ¢-function defines
a new variable

¢-functions are all evaluated simultaneously
+ generally implemented as multiplexers or register transfers
- often they are automatically "absorbed" by (register) binding algorithms

%27\ POLITECNICO isti i
(i) MiLaNG 1863 ©Christian Pilato, 2024

Dataflow Graphs (i)

Behavioral views of architectural models
Useful to represent data-paths
Each basic block have a data flow graph associated with it

Graph:
* Vertices = operations
» Edges = dependencies

The dataflow graph describes how the data flows from the input to the output.

Dependence: if the target is using a value that comes from the result of the previous operation, we have a
dependence.

15

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Data Flow Graphs (ii)

Used to model data dependencies in the code

Four types of data dependencies
» Flow or read-after-write

« Anti or write-after-read

* Output or write-after-write

* Input or read-after-read

Notes:

* Input dependencies does not affect scheduling so they can be executed in parallel

« Anti and Output dependencies can be removed by register renaming technique or
SSA

» So, DFG is used to model only RAW dependencies (target operation must be
executed only after the source operation has written the data)

{77 POLITECNICO ©Christian Pilato, 2024 17

Data Flow Graph Example

Easy to identify operations that can run in parallel

single-assignment form: a b ¢ d

x1 € a+b; M

y €< a*c;
Z &% +d;
X2 € y-d;
x1 y
Z x2

X3 & X2 #* C;

X3

§2) RoLTECNIco ©Christian Pilato, 2024 18

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Compiler Frontend

Usually based on mature compilers (GCC and LLVM)
« Many transformations are purely on the functionality

 Leveraging years of research in compilers <
* Support for many input languages
I [cwgirtamen] |
Front-end : : Open
: a0 s : Source
. . | Al |
FPGA/HLS specific optimizations are L_______ _______ !
baseq on the (esultlng IR e
° blthdth anaIyS|S Optimization / Lowering
e . Back-end -
* memory part|t|0n|ng ScheduBI;'ca:'n-:rl:gyond...
« creation of custom resources p:A
77 POLITECNICO ©Christian Pilato, 2024 19

/ MILANO 1863

Compiler Transformations

In Vivado/Vitis HLS, they can be selected with pragma annotations or
TCL directives
« Pragmas are easier to read (directly into the code)

« Directives are easier to be “changed” (e.g., for DSE — same code but different files).
They require identifiers into the code

* Always, give a label to every loop. It helps debugging

Usually applied to:

* Functions: inline

* Loops: unroll, pipeline

« Memories: partition
 Operations and dependencies

(o) o
(7)) ROLITECNICO ©Christian Pilato, 2024 20

every time the code is written for HLS we have to add a label to the loop so that it is easier for HLS debugging. If
we don’t specify labels, the tool will internally assign labels and at a certain point.

Loop unrolling: we explicit each iteration

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Example

void block fir(int input[256], int output[256], int taps[NUM TAPS],
int delay_line[NUM TAPS]) {
int i, j;
for (j = 0; j < 256; j++) {
int result = 0;
for (i = NUM TAPS - 1; i > 0; i—) {
#pragma HLS unroll
delay line[i] = delay line[i - 1];
}
delay line[0] = input[j];
for (i = 0; i < NUM TAPS; i++) {
#pragma HLS pipeline
result += delay line[i] * taps[i];
}
output[j] = result;

}

POLITECNICO ot -
%) sLaNG 1863 ©Christian Pilato, 2024 21

h%

Standard and Custom Data Types

For each data type, HLS assumes the same bitwidth of the
corresponding CPU versions

* int: 32 bits / char: 8 bits

« float: 32 bits / double: 64 bits

* pointers: 32/75 bits (depending on the CPU memory addressing)

Simplify hardware/software interfaces: data can be simply copied as
they are

In some cases, there are too many bits for the real range of the values
* E.g.: values between 0 and 1,000,000 only requires 20 bits

©Christian Pilato, 2024 22

Since the memory allocation and variable allocation comes from the compiler, the HLS automatically
assumes the same bit width for each datatype as defined in the CPU version. In hardware it is better
constraining the dimension of each type, to reduce weight in the hardware implementation. It is convenient
consider for a firstimplementation the same precision in hardware as in software, then customize the specific
datatype and signal to a lighter version with reduced width. In HLS there are specific libraries to define
variables where we can specify the bit width.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Custom Data Types

In HLS, it is common to customize the ranges by using synthesizable
libraries for declaring the variables with custom data types

unsigned int wvariable; //32 bits
ap_uint<20> variable; //20 bits

The variable can be later used as it is
variable = variable + 1; // operation with 20 bits
The HLS engine performs data-range propagation to minimize the logic

“%\ POLITECNICO N
") MILANO 1863 ©Christian Pilato, 2024 23

Accelerator Interfaces (i)

Top-level ports must be connected to the rest of the system:
« preserving the semantics of the function
- enabling data exchanges

Given a functionality, HLS always generate ports for each of the
parameters as follows:

» Parameters passed by copy are converted into input ports (connected to registers
written by the CPU)

» Parameters passed by reference are converted into memory interfaces (access to a
memory external to the component)

HLS also adds control ports to manage start, done, and reset

{27\ POLITECNICO g .
S00) MILANO 1863 ©Christian Pilato, 2024 24

recall

e parameters passed by copy: passing a parameter by copy in C means that when an argument is passed
to a function, a copy of the argument value is made and used inside the function, so a new variable in

created in the function and is initialized with the value of the argument and the original variable in the
caller is not changed. — converted into input ports connected to the registers of the CPU

e parameters passed by reference: passing a parameter by reference in C means that the address (so a
pointer) of a variable is passed to a function, so that the function can modify the value of the original

variable. — converted into memory interfaces that access an external memory from the component

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Preserving the semantic of the functions means that when we start a function we might pass some values to it

and we expect to get a certain result.

(chiedere esempio della funzione che restituisce due puntatori)

Accelerator Interfaces (ii)

HLS can also automatically generate standardized interfaces on top of
the basic ones

» AXI-Lite for parameters (memory-mapped IO operations)

» AXI-Master/AXI-Stream for memory accesses

When dealing with external memories, the scheduling phase must have
assumptions on the latency of the operations
 Local data (PLM or scratchpad) have fixed-latency access
« Simple interface with CE, R/W, ADDR, DIN, DOUT
« Address bitwidth is customized with respect to the memory to be accessed
- Remote data (cache or off-chip memory) have variable-latency access
» More complex interfaces with protocols to exchange data

7\ POLITECNICO ot .
./ MILANO 1863 ©Christian Pilato, 2024 25

During the scheduling phases we need to make assumptions on the duration of the operations, for
arithmetical operations that’s easy because the duration is specified from the library that implements, while
for memory operations that’s much harder because if the data is local (inside a PLM) the assumption is that
the memory can be accessed in a fixed number of clock cycles, while if the data is remote we don’t know if and
when the data is ready or not (in the sense of number of clock cycles obviously).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

12 - Scheduling and Binding

What is Scheduling?

Scheduling is the assignment of operations to time (control steps),
possibly within given limits on hardware resources and latency

What does scheduling do?
« Uses data dependencies to identify parallelism
» Exploits mutual exclusion

» Code that is never executed at the same time can be scheduled in the same clock cycles (and
share the units)

* Optimizes loops

Generally, one the first steps in the HLS core engine

{2} POLITECNICO

S]] MILANO 1863 @Christian Pilato, 2024 2

What is Binding?

Binding is the assignment of operations to hardware resources
(functional units) such that there are no conflicts in using them and the
total number is minimized

Naive approach: Assign each operation to a different functional unit

What does binding do?

« Uses scheduling information to identify sharing opportunities

+ Exploits mutual exclusion

* Operations in different basic blocks are never executed at the same time and can share hardware
resources

+ Can be defined before scheduling
» Imposes constraints on the operation scheduling (e.g., operation serialization)

:o) POLITECNICO ©Christian Pilato, 2024

Binding: association of the single operation to the real functional unit.
Temporary values that have to cross multiple clock boundaries have to be stored and assigned to registers etc.

There always is a naive solution: if we do not care about parallelism, | could assign each operationto a
different clock cycle, obtain a feasible but not optimized solution.

Also for binding we can assign each operation to each functional unit and each temporary value to each
register, so we do not implement resource sharing, and we avoid conflicts. Obviously, this is not the target of

binding, since the goal of binding is trying, wherever it is possible, to reduce the hardware resources by

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

exploiting sharing resources. Usually it is implemented after scheduling, we decide which operation is
executed at each clock cycle and then we can decide and determine if they can share resources. If operations
are assigned to the same resources but they’re executed in mutual exclusion for sure there won’t be conflicts.

It can also be executed before scheduling: we can preassign the operations to the units that we want and then
determine the order of the operations that respect that assignment, this means that if two operations are
assigned to two different resources, between those two operations there’s no conflict and so we can execute
them in the same clock cycle, but otherwise if for any reason they are assigned to the same resource it is still
possible to execute them but simply they can’t be executed in the same clock cycle, they have to be serialized
and the problem is choosing which one to execute before and after.

It’s a general problem in operational research, we have a job, and we have to determine the resources and the
order of the jobs to respect the constraints that we have.

What is Resource Sharing?

Resource sharing is the possibility of using the same functional unit to
implement two (or more) operations without any conflicts

Sharing opportunities can be defined before or after scheduling

Before:

* Pre-defined binding. Two operations that share the same resource cannot be
executed in the same clock cycle and must be serialized

» Additional scheduling constraints

After:

 Binding algorithms on scheduled graph. Two operations that are not executed in the
same clock cycle can share the same functional unit

EE;I\-JJ-CI;ESC&S"CO ©Christian Pilato, 2024 4

Resource sharing is the possibility to exploit or use resources when they’re not used by other operations. They
can be extracted before or after scheduling based on the scheduling.

If | preassign the binding, the operations that share the same resources cannot be executed in the same clock
cycle and must be serialized, so we have a constraint on the scheduling

If | execute the binding after the scheduling, we execute it on the schedule graph, that is a graph that contains
information about the scheduling. At that point, if two operations are not executed in the same clock cycle
they can share resources, not that is mandatory but that can be implemented.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scheduling Problem Definition

Input

 Intermediate representation (DFG, CDFG, etc.)

» Clock period (or target frequency)

* Functional unit latencies expressed (in nanoseconds)

Output
» Determine the start time for each operation
- Satisfy all the data dependencies and resource constraints

Goal

» Primary: Optimize the circuit latency
« Secondary: Achieve areallatency trade-off

) POLITECNICO

\ 1) iawossss ©Christian Pilato, 2024 5

We cannot find an optimal solution in polynomial time, the input is an intermediate representation that comes
after the compiler transformation, it describes operations to be executed in the functionalities and the
dependencies that must be respected. The other information that is important is time dependencies and
target technology.

First, we need to generate the hardware so that we know what is going to execute the operation, we need to
know the hardware latency for each operation in that technology. Remember that we are talking about
allocation in time, so during scheduling | am still not interested in the cost of the operation.

This is independent of the clock period, because clock period and frequency is instead a property of the
design. This is connected to the technology, because the maximum constraint is set by it, but we can also have
with the same technology different target frequencies.

Once we define the target frequency, we can determine the time budget for each clock and combined with the
latency of the functional unit we can determine the real time latency for the scheduling problem of each
operation assigned to it.

ex: my unit will take 7 ns to execute, and we know that if the clock period is 10 ns we need just one clock cycle
to execute that operation, but if the clock period is 5ns we need at least two clock cycles to execute it, at the

end of the clock cycle I still do not have the stable result.

Another important consideration is that the clock cycle is x time, but the delay of the unitis not the only delay
that we must consider. The clock period is the time from the output of the register to the input of the target
register, but in the middle (apart from hold and setup time that can be considered small) we do have
interconnections, multiplexers and if we go to ASIC where also the wires have delays, we might also have line
propagation delay. So we might have a certain clock period but usually we must keep a margin for our unit,
otherwise we might have timing violations.

ex: ifthe unitis 6.9 ns is very risky to have a clk period of 7 ns, it’s better to add margin after each unit or we
take into account during the binding so we avoid sharing (because mux introduce sharing) so we have to take
into account that for the scheduling of the device.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

The output of the scheduling is determining the starting time of each operation, then we have the starttime

of the operation, the latency of the unit, the clock cycle duration and we can determine at which clock cycle
the operation terminates, note that it’s just a consequence of the start time, so the only information we really
need is the start time, and we can do so by choosing the appropriate dependencies and start time.

The start time of the previous operations are important because it sets the timing dependencies, based on
combination of clock period and latencies.

If an operation starts before the end time of another operation it violates the timing constraint and it’s a bug of
the design.

So the scheduling is time oriented but can also control area and latency exactly with this idea of playing with
the constraint of the resources.

Scheduling Effects

Performance: Scheduling determines the timing evolution of the circuit,
so it has a direct impact on the latency (or throughput) of the
implementation

* |dentification of dependencies to exploit spatial parallelism

Area: Scheduling has an indirect effect on area. Operations in the same
clock cycle require to be assigned to different physical units

» So, the maximum number of concurrent operations of the same type is a lower
bound on the required number of hardware resources

\ SEA-JEEEC“’!;”CO ©Christian Pilato, 2024 6

Scheduling has a directed dependence on the performance of the circuit, because it determines the timing
evolution of the circuit, so | describe cycle by cycle what operations are executed and so | have a direct impact
on the latency, because | determine when the last operation completes, and also on the throughput, because
if a partis pipelined we can determine after how many cycles can | start that operation (initialization interval).

The indirect effect is on the area, because if | put operations in the same clock cycle I’m forcing them to be
executed in different units, so | must introduce a mux and add additional resources.

If | determine a certain number of operations to be executed in the same clock cycle for all the cycles, at a
certain point, for each operation type | will understand which is the maximum number of parallel operations in
the same clock cycle, | need at least n adders to execute y operations in parallel. The maximum number of
operations in the cycle determines the minimum number of units needed for that cycle.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scheduling Approaches

Scheduling without constraints
« Assumption: infinite resources
» Applications: obtain lower bound on clock cycles

Scheduling under resource constraints

* |dea: schedule operations (possibly serializing them) such that the overall number of
used resources is with a given budget

 Applications: limit the use of resources

Scheduling under timing constraints

* |dea: schedule operations such that the end time of the last ones are within a given
time budget

» Applications: real-time scheduling

POLITECNICO - .
MILANO 1863 ©Christian Pilato, 2024 7

There are three possible approaches

lower bound of clock cycles: | parallelize everything so | can’t get nothing better than this, obviously this
would take an “infinite” amount of resources, the only constraint that forces us to serialize is the data
dependencies

resource constraints: in each clock cycle do not use more than x adders, so | will assign n to that cycle and y
to the others, i’'m implementing serialization. | have under control the number of functional units, this is
specially important for expensive hardware resources, like floating point units or multipliers.

timing constraints: | want real-time scheduling so in a certain deadline | want to have the best use of
hardware resources out of this

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scheduling Algorithms

Exact formulations: variables to represent the assignement to units and
clock cycles, constraints to represent dependencies and variables

* Linear Programming

* Integer Linear Programming

However, scheduling is an NP-hard problem: heuristics
« ASAP (As Soon As Possible) and ALAP (As Late As Possible)
List-based scheduling
Force-directed scheduling
Path-based scheduling
 Percolation scheduling

» Meta-heuristics: (simulated annealing, tabu search, etc.)

Borrowing concepts from compilers

POLITECNICO - .
MILANO 1863 ©Christian Pilato, 2024 8

Linear programming and Integer linear programming: | can determine the variables, that are the assignment of
operations in the clock cycle and the constraints are the one related to the dependencies. The start time must
be

start time of the previous operation + latency of the performed operation

The problem with NPR problems and exact formulations is that they are good but they do not scale well,
because the number of variables and constraints is growing exponentially with the number of operations and
with the number of units, it is feasible for a limited number of operations, then | have to approximate with an
euristic approach, so practically using some sort of approximation.

meta-heuristics: this category includes all the methods that use design-space-exploration to determine
variants of the implementation.

The major difference between the first categories with respect to the last:

e heuristic: based on the algorithm it generates one and only one solution
e meta-heuristic: they explore many solutions and select the better one

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

ASAP: Definition

Each operation is scheduled in the first clock cycle is which is available

An operation is available when all its predecessors have been scheduled
and have completed their execution

All operations have bounded delays

« Expressed in numbers of cycles (multiples of the clock period)
No constraints on resources or area

* Unconstrained Scheduling Problem

Goal: minimize latency
» Lower bound: Circuit cannot go faster (use less clock cycles) than ASAP scheduling

i POLITECNICO)
SEET) MILANO 1863 ©Christian Pilato, 2024 9

simplest solution because the principle is nhot considering constraints and as soon as the operations can start
because the predecessors have been completed, the operation can start, we never postpone.

Since | assume that all the operations have bounded latency, once | determine the start time of all the
predecessors, | can immediately compute the starting time of the depending operation.

The asap scheduling has a linear complexity, | need as many iterations as much are the number of operations,
in each step | can assign an operation in time. We are not considering constraints on area and latency, but this
gives us the lower bound of the timing constraint, we know that the circuit can’t go faster than the ASAP result.

ASAP: Algorithm

1. Initialize the set of ready vertices with the source
node

2. Pick one node from the set of ready vertices and
schedule it with the following equation

start_time(op;) = maxyepreqend_time(op,)

3. Define the end time of the current node
end_time(op;) = start_time(op;) + delay(op;)

4. Add all successors of the current node to the set of
ready vertices

5. Repeat from step 2 until the set is empty

1@\ POLITECNICO ;
) MILANO 1863 ©Christian Pilato, 2024 10

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

All the operations without input dependencies can start immediately and then | build the graph based on the
dependencies. Once | have a node, maybe the source node, | can order the nodes in a way for which given a
node, all the predecessors are before it in the list. We can create levels, so | execute the nop, then | can
execute all of the multiplications/adders...

How can | compute the start time of an operation? The start time is the maximum end time of the predecessor.
How can | compute the end time of an operation? It’s the start time plus the delay.

We have all the information now |

ASAP: Example

Assumptions:
* latency of multipliers: 2 cycles
* latency of adders: 1 cycle

0

* latency of comparators: 1 cycle
1
1

- Start time
2

* End time

start_time(op;) = maxpepreqend_time(op,)
S ECHICO ©Christian Pilato, 2024 1

The ASAP determines the maximum latency.

ALAP: Definition

Dual problem of ASAP: It solves a latency-constrained problem
 Latency bound is set to latency computed by ASAP algorithm

Each operation is scheduled in last clock cycle where it can be scheduled
without causing an extra delay

All operations have bounded delays
» Expressed in numbers of cycles (multiples of the clock period)

No constraints on resources or area
* Unconstrained Scheduling Problem

©Christian Pilato, 2024 12

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

| assume a certain end time and then | assign the operation as late as possible, basically you have a deadline
and you can’t postpone more than a certain time. | have constraints on delays.

ALAP: Algorithm

1. Initialize the set of ready vertices with the sink node

2. Pick one node from the set of ready vertices and schedule it with the
following equation

end_time(op;) = MingegyccStart_time(op,)
3. Define the start time of the current node
start_time(op;) = end time(op;) — delay(op;)

4. Add all predecessors of the current node to the set of ready vertices
5. Repeat from step 2 until the set is empty

i@\ POLITECNICO o .
"/ MILANO 1863 ©Ckhristian Pilato, 2024 13

| start from the back and | go upwards

ALAP: Example

Assumptions:

* latency of multipliers: 2 cycles

* latency of adders: 1 cycle 4

* latency of comparators: 1 cycle
5
5

« Start time :

* End time

end_time(op;) = minsegyccStart_time(op,)
POLITECNICO @©Christian Pilato, 2024 14

“/ MILANO 1863

6 in the image means: lower bound given by the ASAP and then | go backward. Obviously, operations are
scheduled at zero.

In the ASAP approach I’m pushing to the top the operation, in the ALAP I’m pushing it to the end.

now | can compute the mobility

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Definition of Mobility

Mobility is a metric associated with each operation and is defined as the
difference between its ALAP and ASAP schedules

Zero mobility implies that an operation can start only at a given time step
without introducing any delay on the overall schedule

Mobility greater than zero measures the slack on the start time
* Time interval in which an operation may start

POLITECNICO

MILANO 1863 ©Christian Pilato, 2024 15

mobility: difference between the start time in the ALAP and the start time in the ASAP. Once | have these two
values | can obtain the mobility, that is a number equal to 0 when ALAP = ASAP otherwise if | obtain a value
greater than zero then | can postpone a specific activity and still hit the deadline.

Mobility: Example

CNOPY
a"l‘r"h‘\
o” 2 108 TN
s »7 4 1 ~
\s ’I‘ 0 (4 : 1 LY 3 \‘
0 3 ~, 4 0 <l e
1 5 5
1 5 5 3
L4
2 : 2 6 ; ;
@ ’ At
’ 4 #
Fs ! ’
l‘ 4
1 J’
i
¥ (4
F] L4
Operations with zero s o '/
mobility also identify 0“' g
the critical path 5 NOP ™
Q-__p’
©Christian Pilato, 2024 16

MILANO 1863

combined results: where | have 3 | can delay that specific operation of three cycles and still respect the
deadline.

These information are useful because | have to concentrate more on the operations with 0 mobility and then |
can work/delay on the others.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

ex: by the results we obtained, we know that if we want the ASAP result we need to have at least four
multipliers, while if we want to reduce the number of multipliers we can concentrate the resources on the
operations with 0 mobility and delay and serialize the one with mobility greater than zero and maybe use less
multipliers without changing the number of clock cycles

Resource Constrained Scheduling

Scheduling with infinite resources is often inadmissible

« Why should | use more resources if | can have the same scheduling (or a slightly
slower one) with much less hardware logic?

Different variants in the formulation
* Minimize latency given constraints on area or the resources (ML-RCS)
* Minimize resources subject to bound on latency (MR-LCS)

Exact solution methods
* ILP: Integer Linear Programming
Heuristics

* List scheduling
* Force-directed scheduling

7\ POLITECNICO : ;
) MILANO 1863 ©Christian Pilato, 2024 17

We want to try to find a tradeoff between reducing the latency and using a constrained amount of resources.
Maybe we want to minimize the resources without considering the latency so we find the minimum with
resources, or we may minimize the latency with bounded latency, we ask if by scheduling differently we can
obtain a feasible solution.

List-Based Scheduling: Definition

List-based Scheduling (or simply List Scheduling) is a simple greedy
algorithm to consider limited resources (constrained scheduling) and
 Heuristic methods for ML-RCS and MR-LCS

Operation selection decided by criticality (low mobility)

Greedy strategy
» Does NOT guarantee optimum solution
* O(n) time complexity (linear)

More general input (any type of dependencies)
» Works on general graphs
» Resource constraints on different resource types

POLITECNICO - .
MILANO 1863 ©Christian Pilato, 2024 18

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

When we have the possibility to choose an operation, we select the operation to schedule based on the
mobility and on the criticality, criticality that is the inverse of the mobility, because if an operation has lower
mobility that means that it is more critical. It doesn’t guarantee the optimal solution but is linear and in general
works well.

How can we take into account the constraints? We create a priority list for each of the operations, we create a
list for each of the resources then we order the list by their priority, we can have operations with higher priority
first, so with the lower mobility first, then we assign the operation to the current clock cycle if the unit is ready,
and if it is we take it from the list and we assign it to the resource and remove it from the list, so we schedule
the operation and we know that we can compute start/end time of that operation, and | repeat this process
until | complete the list.

The general problem of this method is that we compute the mobility, we assign operations, but if | take the
mobility as a static value | can have the problem of stallation, so the intuition is that if we go to the next clock
cycle we need to update all the mobilities, because if an operation hasn’t been scheduled it has one less clock
cycle to be postponed. For “our” activities is clear, if | have 7 days to complete a 6 day activity | have 1 day of
slack, but if after one day | don’t update my mobility | still believe that | have one day of slack but that’s not
true, after one day of stall | have 0 mobility.

If an operation has negative mobility | already know during the schedule that it introduces a delay to my circuit,
because it has already passed.

List-Based Scheduling: Algorithm

1. Construct a priority list based on some metrics (operation mobility,
numbers of successors, etc)

2. While not all operations scheduled

1. For each available resource, select an operation in the ready list following the
descending priority. \

.) It creates and
Assign the operation to the current clock cycle maintains a list for

Update the ready list each resource
Continue until there are no more ready operations or available resources
Increment the clock cycle

S

QoR depends on the circuit but also on the particular metric

|\ POLITECNICO - .
MILANO 1863 ©Ckhristian Pilato, 2024 19

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Static vs. Dynamic Mobility

An operation with high mobility (and static mobility) is generally
postponed to the next clock cycle
 Risk of starvation

A possible solution is to “update” the mobility after each iteration
(dynamic mobility)

« If the operation is not selected, its mobility is decreased

It enforces the definition of mobility

« If an operation is not selected in one clock cycle, its “slack” is decreased (less time
before the deadline)

(%5 POLITECNICO
TETAY MILANO 1863

©Christian Pilato, 2024 20

ASAP and ALAP are not changed after cycles, what | change and update is the mobility.

Scheduling Challenges

Remember that the delay of an operation is given by the functional units

All algorithms assumed functional units that complete in one (single-
cycle) or more cycles (multi-cycle)

All functional units execute at most one operation

Functional units can execute more than one operation (multi-function) or
start anoter operation before the previous is completed (pipelined)

If two operations are serial and the total execution time is less than the
clock period, they can be executed one after the other (chaining)

Operations may have unbounded latency, e.g., accesses to external
memory (synchronization protocols)

42\ POLITECNICO

A e e ©Christian Pilato, 2024 21

What are the possible challenges for scheduling?

First we have to remember that delays are given by the functionality, this means that an operation can
complete in one or more clock cycles depending on the clock period, they cannot take less than one clock
cycle but if | have two operations that are depending on each other (like expensive operations plus a not
expensive one ex multiplication and shift) technically, with the definition that we’ve seen before, the shift will
start in the cycle after the multiplication has completed, but this is a special case where if the combined delay
is less than the two clock cycles, what happens is that the multiplier+shift will be able to complete before the
end of the clock cycle, but to do so | have to connect one unit to the other.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

This optimization of not connecting unit-register-unit-register but unit-register-unit-unit-register is called
chaining

Pipelining gives the possibility of having another approach because | can start the new operation even if the
previous hasn’t completed.

Another case is when | need external resources, so like informations that are in an external memory, so | need
some synchronization signals.

Unbounded operations: operations for which we can’t know the exact number of clock cycles/delays needed
because maybe they depend from an external source, so here we implement synchronization protocols and
we keep the FSM in the state of waiting for the needed resources.

Resource Binding

It is defined as the spatial mapping between operations and resources

It tries to search for sharing opportunities
» Assignment of a resource to more than one operation
» What is the best alternative?

Constrained resource binding
» Resource-dominated circuits
» Fixed number and type of available resources

This is again an NP-complete problem — heuristics

POLITECNICO

MILANO 1863 ©Christian Pilato, 2024 22

Resource binding is the assigning in space of the operations and resources, we want to decide what physical
resources will be used in the design, how many and then the specific assignment

The idea of resource binding is that it will be better than the naive solution of assigning each operation to one
unit, at that point we don’t need any binding, we don’t need any special attention for the binding, these are
independent units and just have to be connected, but most of the time this is a waste of resources. So the
basic idea is to assign one unit to more than one operation, we have a decision to make.

Everything is more complicated than what it looks like because we have to assign resources to each operation,
but we have to assign also temporary values to registers, once we do this we might search for a more
convenient binding. If we do a better assignment and a successive cycle another assignment is performed to
another register | don’t need the multiplexer because that resource is always connected to the same register,
while otherwise | need a multiplexer. In general this is a resource constraint problem, especially in the case of
circuit dominated by resources where | have many operations, correct binding becomes critical.

So we decide a certain type of resources based on the binding, then we decide the number of resources. We
already know how to compute the absolute minimum number of resources needed, then we evaluate if more
are needed or not.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

So the input of the problem is the graph that is coming out of the scheduling, so the concurrency of the

operations is already defined.

Resource Compatibility Graph G.(V,E)

» Vertices V represent operations
» Edges E represent compatible operation pairs

Two operations (v;, v;) are compatible if they are not concurrent and can
be implemented by resources of the same type

Note: concurrency depends on schedule

54\ POLITECNICO = i Bt D004
-.‘.-R%_,‘.’,:.,_:) o NGTa ©Christian Pilato, 2024 24

one approach to try to reduce the complexity of the problem is dividing in subproblems and considering for
each operation the possible binding. Obviously, it makes no sense to try to bind operations that are concurrent
and operations that need different resource types.

We analyze each kind of operation, and we establish if the operations are
e compatible or in conflict: these two properties are mutually exclusive
to be compatible

e two operations are of the same type if they use the same resource and so they can be analyzed in the
same subproblem
e they must not be concurrent

if we try to negate the condition, to obtain non-compatible operations, since it was an and it becomes an or, so
to be in conflictitis enough that they are concurrent or if they are of a different type.

So once we performed this analysis we can start building two graphs, one of which is the compatibility graph,
graph where all the nodes and all the vertices represent the operations of that type and the edges represent
compatible operation pairs

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Clique Covering Problem

The binding problem can be formulated as a partitioning of the
compatibility graph

Each patrtition is a clique (fully connected subgraph) of operations that are
all compatible with each other. So, they can share the same resource

The clique covering is thus a partitioning of graph G, into the minimum
number of cliques

» Each clique represents a functional unit

It is possible to solve the partitioning imposing a minimum number of
cliques (more units, less interconnections)

It is possible to assign weights to the edges to prioritize the connections
(weighted clique covering problem)

A POLITECNICO - iy ’ .
S]] MLANO 1863 ©Christian Pilato, 2024 25

finding the best solutions requires to minimize the number of cliques but also having less cliques means many
more operations in the single clique

Conflict Graph G_(V,E)

» Vertices V represent operations
» Edges E represent operation pairs in conflict

Two operations (v, v) are in conflict if they are not compatible

The conflict graph is complementary to the compatibility graph
* |t identifies operations that cannot share resources

[POLITECNICO S .
SOl MILANO 1863 ©Christian Pilato, 2024 26

once | have the compatibility graph | can always make the dual graph, that is the conflict graph, that is the dual
graph in the sense that the nodes are the same and the edges are complementary. If there’s an edge in the
compatibility graph there’s no edge in the conflict graph, if we don’t have an edge in the compatibility graph |
need to represent an edge in the conflict graph.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Coloring Problem

The binding problem can be formulated as a coloring problem of the
conflit graph

Each node will be assigned to a color and two adjacent nodes cannot
have the same color

The color will represent the identifier of the functional unit

The goal is to minimize the overall number of colors
« Each node with a different color is an admissible but trivial solution
» Equivalent to cligues composed of only one node

“22) POLITECNICO P .
A MILANO 1863 ©@Christian Pilato, 2024 27

12 - Microarchitecture Creation

Microarchitecture Creation

After defining the operation scheduling and binding, HLS proceeds with
the generation of the RTL microarchitecture

external external
. . L:ontrol data
We need to create the (micro-)architecture of the inpuss inputs
following elements: l l datapath 1 l
1
« Controller controller iﬁ:::s datapath
» Datapath g
* Interfaces with local and/or external memories ‘_datapath
l l control l l
outputs
external external
control data
outputs outputs
() POLITECNICO ©Christian Pilato, 2024 2

(47 MILANO 1863

Controller: determines the evolution over time of the FSM
Datapath: connection of resources with the outside world, in detail memories and other devices

Since scheduling has been performed, for each operation it is defined in which clock cycle it will be computed.
So the controller is implemented with a Finite State Machine:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Controller Creation

The controller is described as a Finite State Machine:
+ States: collection of operations to be executed in the given clock cycle

* Transitions: evolution over time of the behavior

+ Inside the basic block: sequential list of states to be executed from the beginning to the end of the
basic block

« Among the basic blocks: transitions between the last operation of one basic block to the first
operation of the next one

Output function defines the control signal for the datapath resources
» Selectors of multiplexers, write enables of the registers, etc.

The FSM is derived by combining the CFG of the basic blocks and the
scheduling of the operations inside each basic block

» The output function depends also on the module/register binding

) POLITECNICO ©Christian Pilato, 2024 3

States in the FSM are serial. The number of states is equal to the number of cycles that are necessary to
perform that operation. For each basic block that has been identified each state is connected to the state that
corresponds to the next operation.

ex: ifthere’s an if statement there will be a block for the true statement and for the false statement. So the
last block of the if statement will be connected to the first block of another basic block

The FSM is implemented with a next_state function and a output_logic function. The output_logic represents
the outputs assigned by each state, which are dependent on the operation that is being conducted.

Datapath Creation

The datapath is a collection of hardware resources for computation
and storage

* Functional units: to perform the operations

» Registers: to store intermediate values

» Wires and multiplexers: to interconnect all these resources
« Each port that has multiple sources requires one or more multiplexers to drive the signal values

Varying the module/register binding can vary the number of sources and destinations
and, in turn, the number of multiplexers

The cost of multiplexers, especially on FPGA, is significant

POLITECNICO .
17 MILANO 1863 ©Christian Pilato, 2024

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Datapath: is the portion of the microarchitecture dedicated to the connection of all the units. Functional units
that execute the operations must be instantiated, then registers are added to save the intermediate values and

wires and multiplexers to connect all the blocks.
Since the output of a specific unit is the input of another unit, but the port of a unit might have more than one

source, a corresponding number of multiplexers is needed to drive the signal. An equivalent input computation
is performed to estimate the total number of multiplexers: if n sources must be connected,upton — 1

multiplexers might be needed.

Memories and Memory Operations

C language allows us to easily specify, design, and optimize
accelerators for irregular applications

* Massive use of (arithmetic, dynamic resolutions,
accesses to external memory, ...)

void Gsm_L PC_Analysis (word* so ; word* LARc) - Autocorrelation Reflect_coeff ||To_Log_Area_Rat||Quant_and_coding |.<.|3
{ 2!l 2 ; y <
- = ‘fg = = =

longword L _ACF[9]; = g E g g 2 =
Autocorrelation(so, L_ACF); g sl a8 3 8 3 =
Reflect coeff (L_ACF, LARc); o o
To_Log_Area Rat (LARc); Datapath v
Quant and coding (LARc) ; _—

1 Conf. registers .

Mem. Interface GSM_LPC_A"aIySls
) POLITECNICO oChristian Pilato, 2024

MILANO 1863

Memory usage in software is for storing bits, once we have data we have a lot of pointers.

Why and when use pointers?
e computing offsets
e dynamic resolution of addresses, because maybe | don’t know in advance what the target array is
e accessto an external memory or external resource

In this slide a complex accelerator from the memory point of view is shown: a top function at which

parameters are passed as pointers, then there are local variables and then there are four submodules that
exchange data and results through the external memory. A memory interface and configuration registers are

shown.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Memories and Memory Operations

SystemC language allows us to easily specify, design, and optimize
data-intensive accelerators

« Massive use of arrays with predefined size
« DMA transfers with main memory to exchange data blocks

SC_MODULE (debayer) { | Configuration Registers ‘
sc_in<bool> clk, rst; |

private:]
:!.nt AO[6] [2048]; - Load
int B0[2048], B1[2048];
i — r PLM Unit (AQ)
public: % = lowao] " oeacsa)
SC_CTOR (debayer) { £
SC_CTHREAD (Load, clk.pos()); -8 Compute PLM Unit (B0)
=] i ctrl BO
reset_signal is(rst, false); < = sl
SC_CTHREAD (Compute, clk.pos()); e Guipr] PLMUnit 1)
. . . 048x32)
reset_signal is(rst, false); i Store e
SC_CTHREAD (Store, clk.pos()): Private Local
reset signal is(rst, false); o Accelerator Logic Memory
£f-
& NS ©Christian Pilato, 2024 6

Through system c it is easier to define dimensions of memory locations and signals. We’re writing software but
at the same time we are doing hardware design and we’re defining logic

Pointer Synthesis (Software)

In software, a C program targets a virtual architecture consisting of a
single (unified) memory in which all data are stored

The semantics of pointers is the address of an element in memory

« Even though register declarations may allow programmers to specify the variables
to be placed in registers, the assignment of variables to registers is generally done
by the compiler

» The notions of caches and memory pages are transparent to programmers

e

{57 POLITECNICO ©Christian Pilato, 2024

VL M ANM 1842

The pointer is the address of an element in this unified space, any operation on the pointer is an operation in
the relative memory location. We don’t use pointers or addresses for architechtural elements

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Pointer Encoding

The includes the following steps
« Partitioning of the memory into /ocations (or partitions)
« Mapping of the partitions onto hardware resources
* To a variable (wire or register)
» To an array (akin to memory or register file)
« Generation of the proper hardware logic to access the data

Virtual addresses must be translated into operations to the proper
hardware resources

It is important to understand whether the physical memory resource that
is targeted by a memory operation can be statically identified

POLITECNICO g ‘<tian Pilato. 2072
21) MIANG 1863 ©Christian Pilato, 2024 9

Pointer encoding in hardware is very complicated, let’s understand why. Let’s consider a pointer that

e interacts with a single memory location — it can directly be connected to the memory location
e interacts with multiple memory locations — all the memory locations that are pointed by the pointer
must be connected

the problem is creating an efficient logic to evaluate and route and connect all the cases. In hardware,
everything must be defined at compilation time and the designer must control where the data is stored. Once
the memory space needed by the accelerator is determined, the required memory space must be partitioned
in physical resources. These resources might be inside or outside the accelerator. During synthesis the
memory units are connected to correctly store the data. The problem with pointers is that pointers must be
able to access any variable, no matter where their information is available, pointers could refer to anything in

the memory space. In software pointers dynamically change the object at which they point, in hardware it

would require the implementation of logic to read the whole memory.

Arrays can be translated by allocating memory resources or register files, then the logic to read the data must
be generated. Virtual addresses in software must be translated into specific memory resources operations.

An approach to solve this design issue is the daisy-chain architecture for pointer arithmetic:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Daisy-Chain Architecture for Pointer Arithmetic

Internal memory bus where the pointer is dynamically resolved
» Daisy-chain architecture with possibility to access the external memory

Hetero C
P geneous Sol A\
P o Ty Hardware Module =
rw +
size m— - — Controller + Datapath o
data_j em— - -_— E
Il iIN Hardware Module <
) () E
a_i CPU
.\ ¥) POLITECNICO ©Christian Pilato, 2024 10

The basic part of this structure is an internal bus that connects all the memories, starting from the inner ones
to the outermost ones in a chain.

The outermost part that is connected to the system interconnect is the Memory interface, then deeper with
respect to the memory interface the submodules are connected with their own PLMs.

This architecture allows us to put a request on the bus while an operation is being performed, the state
machine of the controller will execute one operation per clock cycle, so it is guaranteed that only one unit is

writing on the bus. Successive requests can be chained.

Partitioning is then performed: each address pointed by the pointer will correspond to one and only one
memory location, it can’t be determined statically but it can be put on the bus and there will be one and only
memory location that will correspond to that request.

On the side of the memory identification is simple because it can be checked if the address on the busis in the
range of the assignment:

o Ifitis, that specific portion of memory is selected to reply to the request and the output value is put on
the bus. Since a daisy chain of memory has been implemented, the requestis performed, the answer is
received and all the pointers can be resolved dynamically.

e If none of the addresses responses, the data is notinside the accelerator, so the requestis
forwarded to the external memory controller.

An approach to the implementation of the connection between memories has been explained, the question
now is how to create the local memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

How to Design Private Local Memory?

Specialized multi-bank local memories for storing part of the data

* memory design transparent to accelerator logic
« alternative implementations with block/cyclic partitioning

| Configuration Registers |

Controller for fixed-latency
memory accesses

for the same PLM unit

‘ Configuration Registers |

Alternative implementations I

- Load Load
5 = PLM Unit (A0) 5 = PLM Unit (CO)
5 €Y [12288x32] 8 § H [owico| [8192x64]

- 8 Compute PLM Unit (80) B - g Compute
< CHBO| " pagxar) < PLM Unit (DO)
z oy | z) | |ctripo |
o -] [8192x64]
Cirl B1 PLM Unit (B'I] one 2048x32 two 1024x32 four 512x32
- Store [2048x32] SRAM SRAMs SRAMSs Store
Private Local Private Local
— Accelerator Logic Memory Accelerator Logic Memory
debayer fited
(i7]) LOLITECNICO ©Christian Pilato, 2024 11

k_;/‘ MILANO 1863

Lz

Ctrl AO

N

PLM Unit (AO)
[12288x32]

-

PLM Unit (BO)

Let’s suppose that the PLM Unit (B0) must be
implemented. A library of modules to implement SRAM
memories is implemented and offers these options

1-2048x32 element
2-1024 x 32 elements
4512 x 32 elements

|CUBO | opa8x32]

~ What changes from the memory point of view?

-
Ctrl B1 PLM Unlt (81) There’s no significative difference since the memory
- [2048}(32] space is the same. What significantly changes is that

with a single element there’s a single port so the SRAM
can’t be accessed in parallel, while with 2 or 4
elements the port can be accessed. This is why

Private Local
Memory

4 partitioning of arrays might be used.

The problem is, how do | assign the elements of the initial array to the new array? An access pattern must be

chosen.

Before choosing how to assign the data to the “new” module, it must be understood how data is assighed to

the first module by means of data Unrouing. (let’s consider as an example a two SRAM module implementation)

1. pattern 1 (no optimization): if the first 1024 bits are assigned to the first memory and the other 1024
bits to the second one no significative advantage is obtained because two consecutive memory
operations will be insisting on the same block and the other one is inactive

2. pattern 2 - cyclic partitioning (optimization): the even bits could be assigned to the first memory
block and the odd ones to the second block, so that while one operation insists on the first block, the
successive insist on the second block and could be parallelized. This is called cyclic partitioning
because all the blocks are being used with a round-robin approach.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Obviously, this is a simplified case because the assumption is that operations are performed on the array in a
sequential fashion. The more regular the loop is, the easier it is to determine an optimized access pattern.

If the loop is irregular the access pattern becomes irregular and determining how to parallelize the access
becomes quite more complicated. One approach to irregular loops could be duplicating the data, so that one
access can be executed on the first block and the next on the second block independently of the position of
the data being accessed. The drawback is that to parallelize access, the memory dimension is doubled. This is
also the only available option when the access pattern of the loop is completely unknown.

Array Partitioning

Array transformations to create independent data structures that can be
accessed in parallel

« Each new substructure is managed as a new array

» The problem is how to distribute the data contained into the original
array to guarantee that parallel operations operate on distinct array

It is necessary to determine the , 1.e., the distribution of
the memory operations on the array over time
* When the access pattern is irregular or unknown, we need to duplicate the data

—
(%) POLITECNICO R
\‘:/j MILANO 1863 ©Christian Pilato, 2024 12

Idea of Array partitioning: transformation of the array to create independent data structures that can be
accessed in parallel, exploiting more memory resources, so each substructure becomes a possible new array
that is mapped into a memory resource and the data is distributed in the way that follows the change of
indexes of the array.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

PLM Customization for Heterogeneous SoCs

High-Level Synthesis (HLS) to create the accelerator logic
« Definition of memory-related parameters

(e.g. number of process interfaces) HighLove [_]Data
(CIC++/SystemC) Structures
Generation of specialized PLMs [?3:&552‘} [Geﬂm] veror iy
 Technology-related optimizations
* Possibility of system-level optimizations —
aCrOSS accelerators Accelerator Logic m
read
Pi pcrts 1 2
DMA \;‘1:—:; Compute 1 ::;
ctrl E ::: ertec\rcular buffer
v 4 .)
Store :OI.IH:,
©Christian Pilato, 2024 13

The architecture must be specialized as much as possible. Through HLS the logic for the computational partis
created, but the creation of PLMs is still “handmade” because it’s a critical part that must be as optimized as
possible, even technology related optimizations must be considered and implemented.

PLM Customization

System-level methodology for PLM customization

Automatic Generation

Data structures, access) ; Data
RYElC Designer ! Structures
patterns, ... =l
| T 3 —ﬂ—‘
=

H ss)
2 | | <> EE Requirements PLM Generation Library
HLS optimizations, number of HH
SystemC + RTL E— HLS
memory interfaces, ...

tool ¥ Optimizations to reduce memory cost
. Flexible memory controller to coordinate
memory accesses

| | S H PLM architecture
. , RTL)
Memory IPs, multi-bank *, {

) PLM Generation K *
architectures, ...

RTL

Performance optimization: HLS defines how the accelerator logic accesses the
data structures (e.g. number of parallel accesses)

Cost optimization: PLM Customization defines the best PLM microarchitecture
to achieve the desired performance (e.g. number of banks, data allocation)

POLITECNICO - ;
MILANO 1863 ©Christian Pilato, 2024 14

In this slide are represented the two approaches to PLM customization:

e Performance optimization: the performance is optimized by assuming that the memory architecture
can always be generated in that optimized way. The HLS defines the accelerator logic and the possible
parallel accesses.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e Costoptimization: the assumption is that it will be possible to generate a memory architecture, always
able to sustain the accelerator performance. Is it always possible? Yes, by using buffers.

Reuse What is not Used

Generally, we can use one PLM unit (eventually composed of many
banks) for each data structure

Reuse the same memory IPs
for several data structures

“Two data structures are compatible if they can be
allocated to the same PLM unit (memory IPs)”

A common case: accelerators never executed at the same time
» Possible only at system-level, when integrating the components
+ Optimizations of accelerator logic and memory subsystem are independent

() POLITECNICO

y MILANO 1863 ©Christian Pilato, 2024 15

One PLM for each array, the index that is used to access the array becomes the position inside the memory.
The idea is that if two arrays that are never alive at the same time, they can reuse the same memory space.

Optimization only at the System-Level

Accelerator(s) memory subsystem is defined during SoC integration
» Possibility for more optimizations

Algorithm
Design (C/C++)

—T1

Algorithm
Design (C/C++)

—T1

Accelerator

Design (SystemC)

—T

Accelerator

Design (SystemC)

—T

Algorithm
Design (C/C++)

—T

Algorithm
Design (C/C++)

—T

Accelerator
Design (SystemC)

—T

Accelerator
Design (SystemC)

—T

IP DESIGN IP DESIGN IEBESICH EgDESIGN
e v
A A A A
l' l | Memory Subsystem Design |

SOC INTEGRATION SoC INTEGRATION

Component-based Approach System-Level Approach

(@) POLITECNICO

\if/} ARG oS ©Christian Pilato, 2024 16

The difference between the two approaches is that the memory is created to satisfy all the requirements and
then a single memory architecture is created for the entire system, in order to reuse all the elements and to
reduce as much as possible the area occupied by the memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

PLM Optimization for Multiple Accelerators

Accelerator Design, Nemory Compatibility Accelerator Design,
(SystemC) IPs Information (SystemC)
Memory
Requirements,

1
HLS and DSE Requirements, HLS and DSE
! @
Technology-unaware MNEMOSYNE Technology-unaware
Transformations. Transformations,
Local Tech-aware O Local Tech-aware
Transformations. Transformations,

Global Technology-aware Transformations

©

©

—0—0©

Generation of RTL Architecture

Accelerator Logic, Wi Accelerator Logie,
% § Subsystem P i
(Verilog) (Ve;ilog) (Verilog)

=\ POLITECNICO et -
MILANO 1863 ©Christian Pilato, 2024 17

Design chain:

1. Designthe HW accelerator, perform the HLS and Design Space Exploration to create the accelerator logic
with the specific requirements.

2. Apply transformations that are not technology aware like splitting and merging of data.

3. Local memory transformations, aware of the technology, to hit the required performance target.

Address-Space Compatibility

Let us assume to have the two following data structures that are never
alive at the same time

« A[1024] with data duplication over 4 parallel banks

« B[4096] with data distribution (cyclic partitioning) over 2 parallel banks

Memory footprint: 4x1024x32
Bo By |[* Ao Ay Ay A + 2x2048x32 = 254,485.68 um?

Reused to store B by
Ao Ay
putting banks in “series” to

vn’tually increase capacity
Ao
Memory footprlnt 4x1024x32 A A,

= 140,426.46 um? (-44.8%)

POLITECNICO) .
MILANO 1863 ©Christian Pilato, 2024 18

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Memory-Interface Compatibility

A classical example is the ping-pong buffer (two 2048x16 arrays — AO/A1)

* When process P writes AO (A1), it never writes A1 (AO)
» When process C reads from AQ (A1), it never reads from A1 (AO)

if (ping) if (ping)

oo J Lo HmeED J Memory footprint: 2x2048x32 = 114,059.2 um?
AIi) = . - = fa1li]) Area reduced by 18% without any

performance overhead!

valid
t P valid C b P i ready C

ready Aol lm AO“T TTAT
A0 A1 A0% A1 [memory controller |

11

A0 A0
(even) (odd)

[memory control] Merged in the same IP, butin
« 211 | a different memory space

D
=

A0 A0 Al Al
dd dd

(even) (odd) (even) (odd) e K

(even) (odd)

Memory footprint: 4x1024x32 = 140,426 um?

7\ POLITECNICO ©Christian Pilato, 2024 19

/ MILANO 1863

In this case it is not used the same memory space: data are alive at the same time but ports are never used in

the same moment in the same way. A ping-pong buffer is implemented:
e when Cis reading one memory location, P is writing in another one and vice versa

they can be put in the same memory space to reuse the same ports and reduce the area.

Memory Compatibility Graph (MCQG)

Graph to represent the possibilities for optimizing the data structures

« Each node represents a data structure to be allocated, annotated with its data
footprint (after data allocation)

» Each edge represents compatibility between the two data structures

a a) Address-space compatibility: the
- o0 data structures are compatible and
2x1024x32 1x2048x32
can use the same memory IPs

b) Memory-interface compatibility:

b a the ports are never accessed at the
same time and the data structures
can stay in the same memory IP
) POLITECNICO ©Christian Pilato, 2024 20

MILANO 1863

Three arrays must be implemented with compatibility:

e A0 B0 are address base compatible — can be placed in the same memory space (same for A1 B0)
e A0 A1l are memory-interface compatible - same data footprint after data allocation

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Clique Definition

“A clique is a subset of the vertices of the memory
compatibility graph such that every two vertices are
connected by an edge”

A clique represents a set of
data structures that can
share the same memory IPs a
2x1024x32 2048x32
AO a BO a
2x1024x32 2048x32

b a
We need two distinct configurations!
{A0,BO} and {A1} or {A1,B0} and {AQO}?
(@) POLITECNICO ©Christian Pilato, 2024

‘\\ .‘»..’-/‘; MILANO 1863

How to Determine the Memory Subsystem

21

Clique Enumeration

To define the list of admissible cliques in the MCG

~

Clique Characterization

To determine the memory architecture of all cliques and their memory cost

A4

Memory Cost Minimization

To determine how to partition the MCG such that the total memory cost is minimized

(R
’::/ O @©Christian Pilato, 2024

How can we solve a graph like this? We can do basically clique partitioning?

22

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

PLM Controller Generation

A lightweight PLM controller is created for each compatibility set
(cligue) based on the bank configuration

» Accelerator logic is not aware of the actual memory organization
* Array offsets need to be translated into proper memory addresses

] 1111

xt
xe
x03

100101

1.]0010] 1

S

EEEE

%/// 27/71///7 $§<=:mg§<:o
[0x1]

01
T
Y ¥
1!

Custom logic with negligible overhead, especially when
the number of banks and their size is a power of two

)\ POLITECNICO S
721 MILANO 1863 ©Christian Pilato, 2024

Impact of Optimizations

‘ Compatibility) Coloring @ Final |

Industrial 32nm CMOS
technology

Normalized area of the PLM

" Qqﬁ\o (‘{ﬂo O"“ﬁe‘ ‘(3‘@& &é\o“ \?S‘o‘\\ \&‘o“l 6\“"\\0“ .s‘?“ﬁ «" ‘3&‘:\ &
o Sy & 59° 5 v
AR A

3V

Compatibility [} Coloring @ Final

Clique Configuration [oxo]

* Memory library with 18 SRAMs

08 —

Xilinx Virtex-7 FPGA

* Memory library with 6 BRAM
configurations

06 —

04 —

Normalized area of the PLM

02 —

0

o® Y 2 o
S g o 0

& o W S
& \‘\\aﬂf . @(&‘0\ o

g Y o o
5! AN ¢) o
« ?6 oF o @

AW o A

<
o B &
{7 POLITECNICO ©Christian Pilato, 2024

with optimization we can also reduce area by 50%

‘?(\d e YS;I\ &%

23

24

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Off-Chip Memory: The Large Data Set Problem

Application data footprint grows more than available on-chip storage
« Cache-based memory hierarchy and virtual memory solve the problem in CPU

Accelerators need fast memory access to 20a8e
fetch long data bursts

* Private local memories (PLMs) are too large to
maintain an inclusive directory and avoid recalls 10288

- Long data transfers exploit little locality and wum N
frequently incur eviction penalty 16x

» Address translation with typical page sizes =

512MB.

) 8x
256MB 256MB

requires extremely large page tables (equally- e I Il
. . . a; A 4
sized pages) or slow translation logic S < s Wiosen 1068
;) . 3218 | 326" W/ 32018 Y » 51288 5128k 5128kB 5128KkB
(scatterlists) with CPU control o

IPHONE IPHONE3G IPHONE3GS IPHONE4 IPHONE4S IPHONES IPHONESS IPHONEG6 IPHONEG FORECAST*
PLUS

Cache ®Memory

POLITECNICO _ .
MILANO 1863 ©Ckhristian Pilato, 2024 25

Until now on-chip memory has been treated, now the off-chip memory problem, for large datasets, will be

assessed. As shown on in the slide, on chip memory could even be %than the required off-chip memory.

Scatter-Gather DMA for Accelerators

Allocate equally-sized large chunks and create a small page table
 Similar to huge pages, but with configurable page-size and not allocated at system
boot

 Similar to scatterlist, but chunks length doesn’t need to be stored and page lookup
only requires bit selection logic

« Built-in load balancing across DRAM controllers > 1 oram |
Dedicated DMA Controller with TLB per tile m e o 18
» Fetch entire page table with one DMA transaction g T :
 Hide look-up latency during accelerator e
Computation Lo o e Accelerator Tile

» Break long bursts into equally sized DMA transactions to
balance links access across accelerators

POLITECNICO - .
MILANO 1863 ©Christian Pilato, 2024 2626

This slide refers to a method of accessing memory where data chunks can be scattered across different
locations in memory but can be gathered efficiently when needed by the accelerator.

The idea is using equally-sized large chunks of data instead of using small memory pages, this mean that the
memory is divided into larger, fixed-size blocks. This makes memory access simpler and more efficient. Then a
small page table is implemented, because since the chunks are large and equally sized, the page table (that
is used to map virtual to physical addresses) can be small and simple. This kind of design reduces memory

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

management overhead, speeds up translation and data access and enhances scalability and performance in

multi-accelerator systems.

What Happens with Multiple Accelerators?

Balancing communication and computation is crucial for performance
optimization
» Optimizing microarchitecture reduces the computation latency
* Combination of HLS transformations and PLM customization
 Input and output phases interact with the rest of the system
» Backpressure due to congestion may increase the latency

LU UL glock LU L ok
mput Q) 2 | & & npt DT DT
= 2]= out[3] =
. out[1] = kernel | out[2] =kernel || out[3]=kernel) °:‘|1|| °k“‘[| e
R (inf1]) (inf2]) (inf3)) Computation el e ferne
Output E} { \) Output A —{

Reduce the congestion or exploit the congestion
to optimize the execution at the system level

&2\ POLITECNICO)
VA MILANO 1863 ©Christian Pilato, 2024 27

Both computation and communication problems must be balanced. It makes no sense to have a very fast
computation and not being able to transfer the elaborated data without bottlenecking the device. It’s a waste

of computational or communication resources.

How to Dynamically Control the Banks

A scenario is a given configuration of the accelerator to execute a specific
problem instance
» E.g.: processing images of different size

PLM units must be sized for the worst-case scenario, but they may not be
entirely used in all scenarios
» Possibility of fine-grained power savings

Let us assume an accelerator that can be executed
in two scenarios (S1 and S2) with a 50% probability

({7 ROLITECNICO ©Christian Pilato, 2024 28

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scenario-based Optimization

Each accelerator can turn off the banks that are not entirely used in the
current scenario

Design-time partitioning of the banks to maximize the ones that are
power gated

SRAM ba|_1ks are ! SRAM bank can be
always ac_tlve even : power gated when
when partially used g [1 unused

S 4 |
|
]

i

s2

1-04
W\
\ H

2,048x32 SRAMs " ,024x32 SRAMs

POLITECNICO - .
|/ MILANO 1863 ©Christian Pilato, 2024 29

Workload-based Optimization

System conditions can alter the execution dynamics
» E.g.: System congestion when communicating with the external memory

Dynamic control of the logic/cell power gating based on the execution
phases
» Three operating modes: active, idle, deep-sleep

dnsstee,
Compute | A0 — BO ” A1 — B1 H A0 — BO | P °
Store
/.
b

System congestion can delay the data transfers

B0o ® (©) (O] NORNO) ©)

B1 ® @ (OO

{4\ POLITECNICO o
GO MILANO 1863 ©Christian Pilato, 2024 30

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

DarkMem Architecture

Each PLM unit can be extended with power-control logic
« SMC identifies the current execution scenario (based on the register values)
« OMC manages the SRAM operating modes (based on signals from the accelerator

logic)
| Configuration Registers ‘
|
sync |_| |
P ctrl 1 . 5 DarkMem Unit (a0) (ve)
OWBeE] ’ I hale] [e }E c% Compute
I N
@ P P ! Store
— T -E'"u E Accelerator Logic Private Local Memory
PGL P
Sl (bO)PGM ot i i
Data Ctrl v e . .
BO L .. = Fine-grained control of each SRAM bank
SRAM (b“pGM=-----------: through its power pins (PGL and PGM)
Ctrl (BO) DarkMem Unit (B0)
() PourTECNICO ©Christian Pilato, 2024 31

\) MILANO 1863

In this slide the “DarkMem? architecture is presented, this is an extension of a PLM design with fine-grained
power-control logic to optimize power usage in memory intensive hardware accelerators.

Two significative components are added:

e SMC (Scenario Management Control): identifies the current execution scenario based on the values
of the configuration registers and determines which part of the memory needs to be active.

e OMC (Operating Mode Controller): manages the SRARM operating nodes based on the signals form
the accelerator logic, it controls power-gating and mode-gating for memory banks.

This design enables dynamic, power-aware memory management by adapting SRAM power states to the
current processing needs, using two control modules (SMC, OMC), this results in energy-efficient memory
usage in accelerator-based systems.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Scenario Memory Controller

Analyzes the configuration registers (provided by the user with memory-
mapped operations)

 In each scenario, only the used banks are kept active, while the others are power
gated

Configuration

Registers |Status Reg. | | Img Size | | Mem Addr |
Mask is one input of the p \
OR gate for each power pin it (moSize <= 1024) '
Semeis Scenario = $1; Scenario
else Identification
Scenario = S2;
S i0)
Mask cassf miiﬂi”é"bm; b0 bi
Generation| S2:mask=2'b00; 0| 1 [mask
default: mask = 2’b11; T
endcase L
[}
| SMC Module (B0) H
HH
[}

"\ POLITECNICO L)
i/ MILANO 1863 ©Christian Pilato, 2024

Operating Mode Controller

* FSM to manage the transitions among operating modes

» Latency-insensitive protocol with the accelerator logic so that no operations are
performed during the transitions

» The supply voltage can be

~
J

also reduced to DRV f:.:;?:s@(p.,sedge clock) |
- Additional power savings " oot —.
in deep-sleep mode (moce) ACTIVE
@ eisgl(r:falid = 1’b1 &% mode = DS) begin
. po—— next_ista'te = WAIT_DEEPSLEEP;
» Resulting values are the (e g

i end PGL PGM

other input of the OR gate - .y py
end . :
| OMC Module (B0)]

{#5\ POLITECNICO . ;
G37) MILANO 1863 ©Christian Pilato, 2024

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

DarkMem Methodology

» HLS-based methodology to generate:

» Accelerator Logic: DarkMem API to specify operating modes of the data
structures directly in SystemC

» DarkMem units: Extension to PLM CusTOMIZATION for multi-bank configuration
and power-control logic for each PLM unit

» Additional information on the —
execution scenario e Svstemq '?I.’,Z"j S‘fn’E"li
 Estimated by the designer - iLM GtJ
o Always possi.ble tO. generate a s Determine Bank Configuration
feasible configuration |

(R
L‘»;{}'?’

55 POLITECNICO

MILANO 1863 ©Christian Pilato, 2024

Determining the Bank Configuration

* ILP formulation to determine the number and type of banks for each
PLM unit, based on:
- List of scenarios and frequency of execution
 Data to be stored (bitwidth and number of words) in each scenario

« List of available memory IPs and corresponding active/gated static power
configurations

PLMgigtic = Z(PLMSStatic ’ freq (S))

SES

» Used to determine the banks and accordingly configure the SMC
modules to generate the proper masks

() POLITECNICO ©Christian Pilato, 2024

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Evaluation Methodology

* Logic synthesis and gate-level simulation to generate performance results
and accurate SAIF backannotations

Constraints | | SystemC Al;"z" S"fn'}:'i" . .)
Different transition latencies to
N, | evaluate performance overhead
Tech DarkMem /
Library }" Methodology —%ﬁ Accurate power
Lib .
v rary | analysis when
Accelerator — i
Logic synthesis to Werlog Tiz.:::;n varylng_the memory
evaluate controllers Evaluation Methodology library
R T v
] Y
i | Logic Synthesis Acce@ratl% Simulation T Power Analysis
'l Synocp:;i;jﬁsgn] gi(l\::rli?fgl) ™| MentorModeisin | | annotations Syﬂ;gz;jﬁt:wer
) T]
Area Performance Power
Results Results Results
i7) POLITECNICO @Christian Pilato, 2024

G4 MILANO 1863

Effects on Accelerators

» 32nm CMOS technology with pre-defined SRAM banks
* Reference designs are the ones with no power-related optimizations

@ Scenario-based [STD Library () LP Library () ULP Library @ SRAM static power () Total power
0% Reference 1.0 Refi
s . | eference =T
0.8) l
-59%
0.6 B
0.4
0.2

R\ e ™ S

S A i Oeoﬁ“g(

0 et o - &
A2 o e oo @
& o \»cﬁ'f’ G‘\.bo@a o

w? ova“qe ot

SRAM static power can be reduced up to 60%

Performance overhead is minimal (less than 1%) (on avg., total power Is reduced by about 18%)

£57]) FOLITECNICO @Christian Pilato, 2024

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

13 - Hardware security

System Complexity and Hardware Security

Increasing system complexity demands design & reuse approaches
* |IP components are coming from many vendors and assembled to create the SoC
» Most of the design houses are fabless

100 = 1150
)
= 80 _ e
;‘3 = a
ﬁ 60 e -{ 100 %
5 - . . @
= | | Hardware Security is the next big g
15 =
8 . . 150 =
E L issue for hardware design E
0 0
[=2] (= —] [3r < n el [[eo] [=2] == — [[} <t
o — — — — — — — — — — N [N N [
S 2 2 2 2 3 2 2 2 o & & & 5 &g &
™ ™ ™ o™ ™ ™ N ™ o™ o™ o™ @™ ™ ™ ™ o™
—e— Cybersecurity spending in US - - (projected)
—— % of designs with pre-existing components
IR ECIeS ©Christian Pilato, 2024 2

MILANO 1863

Designing components is complex and often it is not necessary to redesign every component from scratch,
this is particularly important for steady devices that must be updated generation by generation.

ex: new generation of Iphone, we do not redesign every component, we extend only with new features, | do not
want to redesign an antenna device or usb-c handler. Most importantly | want to integrate components
designed by other companies, this is due the hyper specialization of components. There are few industries that
design the whole SoC while most of the other companies design a specific component with highest quality
because they’re specialized in it and then sell the IP. As an integrator we must trust all these parties, because
there are many cases of tampered devices that then have been exploited to perform attacks. There’s an
increasing concern about security of devices in general, this is coming together with the reuse of devices. We
save money on the design but we move the investment to the integration of components, on top of this we
integrate it in an SoC and then we must fabricate it. Obviously small companies cannot have their own fab, so
they must go to a third party, give them their design and ask them to produce their chip.

So we need guarantees that the design is secure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Globalization of the Supply Chain

Supply chain is more and more distributed to reduce costs
* Many security threats
» Cost of addressing them is exponentially increasing from level to level

>
- 5 - : ;. -

FABRICATION } @ ASSEMBLY ’ [msmmunou“’) LIFETIME » @ END OF LIFE .

Let’s focus on the early stages of
the design process...

POLITECNICO I
MILANO 1863 ©Christian Pilato, 2024 3

The direct effect of third party components and fabless companies lead to the globalization of the supply

chain of semiconductors.

Globalization: globalization is the idea that a specific process is spread across the world. This is a way to

reduce cost but also introduces lot of security concerns.

In the slide is shown the entire supply chain of an electronic device:

Green dots represent the design phase, where the product is originated, the design is made and we see some

distribution of the design (US, Europe, India...) why so?

1.

Itis convenient because in some countries the labor is cheaper. That is possible because the
developing environment is decentralized. The core of the design center might be in Poland, then people
can be distributed across Europe because they work from home. Cost is the driving factor.

Even if the entire process is distributed, companies can still claim that the design is made in specific
country because maybe it starts/finishes in one country, so for a marketing approach the consumer can
maybe read “designed in California”, then in reality the production is more very distributed.

Fabrication of semiconductor devices is concentrated in the east, because it is the region where they
invested the most to have very advanced production processes.

Assembly of the devices is also distributed. Some legislation allows that if the last part of the
production is made in one country, then you can say the whole process is in that country.

Distribution and lifetime are by definition distributed, they are in all the markets in the world and
consequently also the lifetime.

End of life: this is an issue for hardware security, ex in military related applications, if you lose a specific
device on the war field, others can access it. Many of ICs are still working even after the death of a
device, so people can still access it and recycling of IPs is a way to steal intellectual reason,
components that are at EOF are used to reuse or to reverse engineer the device.

There can be lots of malicious actors in the semiconductor process, also tools and integration can be

untrusted, during fabrication overproduction can be used maliciously.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

The idea is to try to focus on embedding and protecting during the design phase, so that the approach is more

effective.
Reverse Engineering and IP Theft Hardware Trojans
Methods to extract chip functionality from circuit Malicious modifications of an existing chip
designs in order to create illegal copies design to introduce an additional functionality

+ Steal data (e.g., through side channels)

* Harm the normal operations of the chips (e.g.,
DoS attacks)

+ Altern the chip functionality (e.qg., errors)

« Steal the technology
* Cut design costs
* Enter into a market

Data Injection Side Channel
Injection of spurious data to exploit software or Methods to create additional communication
hardware/software vulnerabilities channels to steal sensitive data
» Buffer overflow attacks « Differential power analysis for key extraction
* Memory corruption » Timing channels for reverse enginnering

POLITECNICO _ '
MILANO 1863 ©Christian Pilato, 2024 4

reverse engineering and IP theft: an attacker can extract the functionality of the chip in order to create illegal
copies

ex: | design an Iphone and then we find and equivalent product because someone copied the design.

By stealing and coping the function the design cost can be cut and the company can have a better position in
the market by having to spend less to reach the same results.

Note that these are not independent threats, they are strictly interconnected, one violation can support the
others.

ex: by means of reverse engineering, a trojan might be introduced

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

High-Level Synthesis

High-Level Synthesis (HLS) is used to automatically generate RTL
designs starting from a high-level specification

* |t leverages state-of-the-art compilers (e.g., GCC or LLVM)

* It implements several hardware-oriented and technology-aware optimizations

Compiler Frontend HLS

A

HLL
Spec

Wrapping

Y

Analysis

Scheduling

>
L

Resource Binding

Tech
Library

Constraints |

| Controller Synthesis |<

‘ Transformations |
Accelerator
(HDL)

©Christian Pilato, 2024 5

Testbench \
(HLL/HDL) |

7} POLITECNICO
4] MILANO 1863

Bambu HLS Framework

C/C++ parsing

ER Modular Passes
Mem. Synthesis W
4
Testbench Gen. (Verilog
IR analysis L Generation

Open-source: https://igithub.com/ferrandi/PandA-bambu

-\ POLITECNICO
{/ MILANO 1863

©Christian Pilato, 2024

Bambu is based on modular passes, every step is a pass, these steps can be extended to introduce new

functionalities.

ex: complex memory synthesis, with a daisy chain etc. and then the testbench generation to verify the module

can be implemented as other steps

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Bambu: HLS Microarchitecture

Hierarchical synthesis of the C functions (based on call graph)
* Internal “memory bus” to dynamically resolve the mem address

Heterogeneous SoC

m_op ’m_(;p\

Hardware Module

dﬂj}]z. Controller + Datapath
’ * Hardware Module

addr

/W
I H L

ata_o

POLITECNICO - .
MILANO 1863 ©Christian Pilato, 2024 7

This approach had previously been analyzed to implement the same approach as in software. Itis interesting
analyzing it from a security point of view.

If, for some reason, there’s a security threat in software and the same exact implementation is keptin
hardware, the security threat is “translated” in hardware.

How is Using HLS for Hardware Security?

Good: automatic generation of protection mechanisms
* Fine-grained Dynamic Information Flow Tracking

« Algorithm-Level Obfuscation

* |IP Watermarking

Bad: potential attack vector
* Planned Obsolescence
» Key Recovery with Reduced-Round Attacks

Ugly: Dream vs. Reality
* What is Missing?

POLITECNICO
MILANO 1863 ©Christian Pilato, 2024 8

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Dynamic Information Flow Tracking

Marking Data coming for untrusted sources with tags (taints)

» Trap to OS if tainted data are used in critical operations
» Pointer dereference, jump address, modified code or data, ...

APPLE KERNEL CODE
VULNERABILITY AFFECTED ALL

woid preprocess (int v) { by: Jonathan Bennett @ 80 Comments
struct results ret; a GELEI0 oy N ber 1. 2018
s b lovember 1,
23 (e) struct results
ret.x = 1; (
else ShTa =
ret.x = 4; E
ret.y = 10; ln: y reprocess
ret.z = 5; .ln zi prep
return ret; bi e 2
} get_10(v); DIFT can protect from several
ret = preprocess (v); e SOftwal’e-baSEd attaCks
elaborate (ret) ; *

“
Nasd

zﬂ'.igfe%?'co ©Christian Pilato, 2024 10

Dynamic Information Flow Tracking: it’s the marking of data coming from untrusted sources with tags called
taints. If tainted information is used in critical operations the OS is trapped.

Every piece of information coming from the user is tagged and marked as untrusted, because the behavior of
the user can’t be trusted. Then the information is propagated to understand if the input from the user is able in

any case to reach sensitive operations, like memory or communication operation. If this is the case, there’s a
security concern, because it is possible to reach critical operations from the outside.

ex: y,z are not tainted, x is tainted because its value depends from the

void preprocess (int v){

struct results ret; action of the user. If the user introduces a v greater than zero or lower than
if (v > 0)
ret.x = 1; Tt’-’“c‘* CLELELE zero, x depends on its choice, so it’s tainted.
else .
ret.x = 4 %n: Xi
ret.y = 10; %nt yi
ret.z = 5; int zj

}:

return ret;

get_IO(&v);

ret = preprocess (v);

elaborate (ret) ;

Speaking of accelerators, they won’t work alone but will have to interact with lot of different systems and might
work with information that depends by the user, so that’s why this approach is taken. The conceptis not
complex, but how can we apply so?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

DIFT in Heterogeneous Architectures

Applications interleaves tasks in both hardware and software
« What happens when accelerators are executed before the potential attack point?

void preprocess (int v){ >
struct results ret; get_I0
H H H if (v > 0) struct results i I I
Optimistic ek [v Pessimistic
- o int x; v
ret.y = 10; ::: z’ preprocess
ﬁ get_ IO ret.z = 5; 3 ’
return ret; bi « . é get_IO
\r ! get IO (&v); |
T preprocess (v) ; elaborate |«
000 < v
LA DL elaborate (ret) ; -
« . AITACK preprocess
4 X
elaborate (
<
ATTACK elaborate |«
pe DoS
\\ %) T @©Christian Pilato, 2024 I

e optimistic assumption: the accelerator filters all the information and vulnerabilities that | have
e pessimistic assumption: the accelerator doesn’t filter any information and nothing that comes from
the accelerator can be trusted. Safe data might be provided but the choice is not trusting anything

coming from it, so the OS will stop the execution because of security protections. This would stop the
execution in any case.

Nor the optimistic assumption nor the pessimistic assumption are correct and can be applied, the correct
solution is implement DIFT inside the accelerator, to correctly propagate the correct good information.

DIFT in Heterogeneous Architectures

Applications interleaves tasks in both hardware and software
» What happens when accelerators are executed before the potential attack point?

T atruct ressits et | —>| get10
if (v > 0)
struct results
e];zt.x =1; (Y e get_IO
ret.x = 4; ii: *
S
return ret; bi x 2
) .
get IO (&v); ‘I v
ret = preprocess (v); elaborate [«
e < preprocess
elaborate (ret) ; s
ATTACK
X J Z
Accelerators require elaborate |<€——
fine-grained support for DIFT ,,EA\H <
Attack' =2~
prevented
POLITECNICO

) mitano 83 ©Christian Pilato, 2024 12

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

TaintHLS: DIFT Support within HLS

Data path extended with shadow logic and memory architecture with
taint memories

* HLS-based methodology for automatic generation based on HLS results

DRAM

Controller

}4

Hardware Module
data,

Controller + Datapath
data,
Hardware Module
--------------- § -y

%
1 %
local |[taint 2 £
local taint local taint
memory || memory memory || memory

: I t: Almost no performance overhead with
optimizations to limit area overhead

=]
&}
=
<
o2
&)

Memory Interface

taint,

taint,

1

{ POLITECNICO ©Christian Pilato, 2024 13
%) miLano 1863

TaintHLS is a tool methodology that applies taint analysis to HLS designs. Taint analysis is a technique used in
hardware security to track the flow of sensitive or untrusted data through a program. It’s useful to find
vulnerabilities such as information leaks, injection points, insecure data handling.

Data Flow Consistency

Microarchitectural solutions to propagate data and tags in paraliel

address
Controller Datapath P memory
o tags interface
WE
B I reg-0 reg_0
resources shadow logic local taint
memaory memaory
Datapath Controllerl Datapath
G
B o
= D =4
POLITECNICO _— .
MILANO 1863 ©Christian Pilato, 2024 15

in every moment that we analyze our system, we can screenshot the execution and have the correct tags for
that specific data.

ex: when | send a write enable to that register | am writing data in the register, so | activate the tag and sample
the tag value, then for the memory | have the address in common and then | have an extra bus carrying the
tags, so that the operations can be done in parallel. when | have the operations in the datapath | share the path
for the propagation modules. in this case, we will send the same the control signals to both MUXs of the logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

and the corresponding MUXs of the shadow logic, so that if | activate a path from input to an unit, | will activate
the corresponding path from the starting register to the connected register module.

This is easy to be implemented in HLS

Bambu for DIFT-enabled IPs

Option to configure the
taint granularity (how
many bits per variable)

C/C++ parsing

(i

4 Taint Regs
Taint Modules 1 Verilog
IR analysis Taint Mems Generation
_ _ Interconnect
Propagation module library
can be customized
7)) POLITECNICO ©Christian Pilato, 2024 16
Area overhead
Area overhead of each granularity wrt the baseline version
» Xilinx Virtex-7 FPGA @ 100 MHz
N HR Ly
. 1.2 l
=98 N Security depends on the "quality” of
fg 0.6 the propagation modules
0.2
0
ICRC AES BFS Viterbi
©Christian Pilato, 2024 17

The redline is without any information flow tracking, then we have different levels of tracking and we can see
the area occupation.

if we can guarantee the same result of DIFT in software and in hardware we can guarantee higher security

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

IC/IP piracy and overbuilding

» Steal and claim ownership of IC and/or illegal use
» Malicious SoC integration house

« Malicious foundry
. > semi
* Real-life Impact ':A“S’SEMICONDUCTOR EQUIPMENT #

» $4,000,000,000 loss per year to IC industry S EE T 1O At B IO ANMUALLY
» ARM detected IP piracy in 2000

[Makes 3 copies

t
= <2
. (o) 3PIP <>
EETimes 2| vendor [E,|SFoundy
ARM files patent infringement suit L2 8 ®+§) 3 ~ @ - @
against IP startup picoTurbo 2 - o
38 3 N

L

7) POLITECNICO @©Christian Pilato, 2024 18
; /’ MILANO 1863

Logic obfuscation

Obfuscated
Netlist

2k netlists

Designer applies
correct key

A &

2k key values

7) POLITECNICO ©Christian Pilato, 2024 19
/1 MILANO 1863

Logic obfuscation means locking the circuit in a way that makes it dependent on a k bit key. Then the design is
sent to the foundry without giving them the key, so that the design can have 2 netlists, then by applying the
correct key it can be used.

Itis hard to implement because it must be implemented in the design by having wrong outputs when the
correct key is not applied and good outputs only when the key is applied.

The reasons for which it is hard to implement are:

e it mustbe guaranteed that exists one and only one key that produces the correct results
e it must be guaranteed that all the wrong keys introduce at least one error

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

e what does wrong result mean? Maybe some results are “wrong” but are still acceptable (ex a single
pixelin a frame of a video wrong is a negligible defect)

e all the keys must be equiprobable

e the key must be very long to avoid brute-forcing

Raising the abstraction level

» Key ldea: obfuscate a design at the algorithm-level so that the
obfuscation is semantically meaningful

Semantic Information

High-Level Logic
C/C++—
Synthesis Synthesis

for (i=0; i<N; i++) always @ posedge clk
c[i] = a[i]+bl[il; a[i] <= b[i] + c[i;
(%) POLITECNICO ©Christian Pilato, 2024 20

LG5 MILANO 1863

Algorithm-level obfuscation

» An algorithm is characterized by several elements to be protected

if (cond < N) { Constants
c[i] = a[i] + b[i];

d[i] = c[i] * CONST 1;

} I | Operations
Dependences

TAO: Techniques for algorithm-level obfuscation

[\ POLITECNICO e
!;‘A:‘A;,i;] MILANOG 1863 ©Christian Pilato, 2024 21

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Technique #1: Constant obfuscation

» Constants represent hard-coded values used by the algorithm
(coefficients, thresholds, ...)

C/C++ RTL

d[i] = c[i] * CONST 1; U RS, B2
Heavily
optimized by
— _ logic
Information is still present at RT Level synthesis!

d[i]

’f’%’ L ©Christian Pilato, 2024

Constant obfuscation

* A m-bit constant is extracted and encoded using m working key bits

ENC (CONST 1)

c[i]

Correct values are obtained
only with the correct key!

d[i]

{[77) POLITECNICO ©Christian Pilato, 2024

L34 MILANO 1863

2222

23

The constant is encoded and it can be obtained only with a XOR applied between the encrypted constant and

the key.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Analysis of the Technique

Obfuscated

Non-obfuscated

No differences
concerning security,

Data Foeffncnents used by the Reset valLies less key bits
algorithm

Signal extension Signal polarity No semantic
Mask values changes

Exact information is removed from the circuit
Less information for the attacker
Less logic optimizations (area overhead)

POLITECNICO :
MILANO 1863 ©Christian Pilato, 2024 24

Control-flow obfuscation

» Masking of the control condition with key bit

cond N test

Correct branch is
taken only with
the correct key!

Focus on Branch reordering to ensure semantic
the test equivalence and confuse the attacker

"\ POLITECNICO
T MILANO 1863 ©Christian P\\ato, 2024 26

Another technique of hardware security is the obfuscation of a control branch that describes the flow of the
device. It can be protected with a XOR with a key. Without knowing the key, the correct branch can’t be taken.

ex: Ifthe keyis 0, have a 0 xor 0 so | have 0 and | maintain the branch, while if the key is 1, have 0 xor 1 so
I’'m inverting the branch. If the key bit is 0 | preserve the same value, if the key value is 1 | swap true and false.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Operation obfuscation

 Operator variants to camouflage the correct operation

afi] b[i] ' “Fake” operations with
|] _ same inputs/output

Input port assigned
based on key value

Correct operation result
is propagated only with
o the correct key

cli]

oy
(r55) POLITECNICO Christian Bilato 9004
VLY Mitano 1863 Christian Pilato, 2024 30

Another way to confuse a potential attacker is adding additional and fake operations, then propagate and
select the outputs of the operations based only on the key.

ex: Let’s suppose that the addition is the operation that must be performed, a subtraction in parallel is added
and the result is selected via a multiplexer that selects the correct result only based on the key. If the key isn’t
known, it is not possible to understand which is the correct operation.

Based on how we pair the operations, the attacker can even be more confused. If the attacker has some
intuitions about our algorithm works and understands that a subtraction can’t be performed for any reason,
the attacker understands that it is a fake operation. So as the attacker has information about our algorithm,
many of these operations become more complicated to implement. So obviously the correct value is
propagated only when the key is correct. Every time an operation is implemented, another operation is added
but the correct result is obtained only if the key is correct.

Analysis of the Technique

+ Easy to apply
— Reasonable area overhead (due to additional fake operations plus
multiplexer)

+ Each operation type has a pre-defined set of alternatives to
choose from

How to select operation
variants is still an open issue

(%) POLITECNICO Christian Pilato, 2024 i
'\ il '._/,' MILANO 1863 o e

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Area overhead is reasonable in the sense that it is similar to the original design but obviously becomes more
significant, because additional functional units and a multiplexer are added, so the area of the
implementation doubles.

In general how to select these possible variants is still an open question.

Technique #4: Dependence obfuscation

* Operation dependences describe how the data values are used

if (cond < N) { I I
c[i] = a[i] + b[1i];
d[i] = c[i] * CONST 1;

S ; CONST 1
} else { ... } = =

|

Very hard to compute in
gate-level netlists

d[i]

e
r’i 5%}25&2«1.:0 ©Christian Pilato, 2024 32

In the context of hardware design, dependencies become something very hard to follow. Here it is shown how
it becomes very complex very quickly, lots of memory operations are added for each addition. Some HLS tools
introduce optimizations for making this complication less heavy. At gate level these connections become very
difficulty and becomes hard to understand which values they do carry.

Dependence obfuscation

* K key bits are used to select among 2% variants (including original)

Original Variant 2

a[i] bI[i]
af[i] Dbl[1i] | ‘ | a[i] CONST 1
; a[i] CONST 1 H
c[i] CONST 1 ‘ ‘ c[i] Db[i]
i d[i] i

d[i] Variant 1 dfi]
<’ POLITECNICO

) JiLaNG 1865 ©Christian Pilato, 2024 33

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

One of the possibilities to confuse the dependencies is to create variants for our circuit by changing the
connections, but this becomes very tricky: let’s consider the variant 1 we connected the output of a unit to the
input of the same unit, we created a combinational circuit with a sort of feedback, so it can be put as a variant
but still is revealing information to the attacker but it’s clearly wrong, so the attacker understands thatitis
wrong, while in the variant 2 we have a restructure of the design, this means that | have the operations that are
the same but now instead of a plus | have connected the first input to ¢ that is then connected to the output of
the multiplexer, so | changed the order of the operations, | changed the inputs by changing the connections
between signals. Given k bits of key | can introduce 2¥ variants and then merge them all together.

Merge and Selection of DFG Variants

* Creation and merge of DFG variants

!/ a[i] b[i] CONST 1
l | |

¥

. o

~ Additional “fake”
connections

P
-

Correct paths are
activated only with the
correct key

d[i]

.:" iﬂ}:;ﬁi?lco Christian Pilato, 2024 34

here we see that we did not add more functional units but just multiplexers.

Analysis of the Technique

« Very powerful technique
— It creates several semantically-different but feasible code variants
— It may affect component latency (different schedules)

— Significant area overhead (many additional operators and
connections/multiplexers)

It can be applied only during
component generation (HLS toolflow)

1) POLITECNICO Christian Pilato, 2024 25

U aan Ay 1aa3

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

It can change the operations and semantically different variants, because how and which values are combined
changes. This can change the latency of the component so it can take more time in the path and can add or
reduce the number of cycles. Furthermore, a significant area overhead is added, because every time a key bit
is used, an exponential number of bits is added. This is very hard to implement from the RTL, so the only way to
create it is just using the HLS, not while tweaking the RTL. Easy to implement in HLS tools, so the key is
provided and how to manage the key at runtime is implemented.

TAO in Bambu

Key ’/
lfm— .
management '

C/C++ parsing Designer key
L 4 -\'

Obfuscated

ER RTL
4 Constant Obf. f

Branch ODbf. W Code)

IR analysis Operation Obf. W Generation
Depend’s Obf. g

MILANG 1863

Let’s see some results for these specific benchmarks

Obfuscation overhead

* We generated obfuscated designs for five HLS benchmarks
« 256-bit locking key in all experiments

* How to read results

Const. Obf. Branch Obf. DFG Variants | Total key bits

aﬁj 240
Desien narme | Obfuscated constants,f | Obfuscated = | Number of ‘ Total number of
8 ~ Number of used key bits ~~ branches Basic Blocks / used key bits
h S } key bits
Operation and Dependence obfuscation techniques are
combined into generation of DFG variants
177 POLITECNICO ©Christian Pilato, 2024 37

MILANG 18563

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Obfuscation key bits

"~ Each constantis [4 bits are used for

converted into a each BE (16
32-bit SIgnaI . vanants] R
4/128 88 /352
ADPCM 5/160 5 100 / 400 565
SOBEL 2/64 2 11/44 110
BACKPROPAGATION 12 /384 11 123 /492 887
VITERBI 117 / 3,744 9 98 / 392 4,145
(:) POLITECNICO Christian Pilato, 2024 -

_/J MILANO 1863

We can see that the design has a big number of total key bits even if the number of obfuscated branches is
pretty low, generally we don’t have many branches that can be obfuscated, we have just a XOR function in
some specific branches of the design then based on the number of basic blocks and variants for each of those
we might have a significant number of key bits, in this case we have four key bits for each basic block, so we
have 2% variants, given the number of basic blocks we have a certain number of key bits. in half of the cases,
the number of key bits related to the constants is dominating the design, so we can already understand that
the constant and operation obfuscation is dominanting the overhead

1. cannotdo optimizations
2. we introduce fake operations and multiplexers

When we have constant obfuscations we always obfuscate the whole constant, so if we have a 32 bit constant
we may even decide to obfuscate only half of that, because we might obfuscate the LSBs or we might
obfuscate the MSBs.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Area overhead

» Area overhead of each technique wrt the baseline version
» Synopsys SAED 32nm @ 500 MHz

14 — i —

normalized area overhead

[] baseline () constants

[] control i DFG variants

0 : II I -II 1

gsm adpem sobel backprop viterbi

benchmark

() POLITECNICO
RS miLano 18e3

Algorithm-Level Obfuscation Conclusions

« Comprehensive solution for algorithm-level obfuscation during HLS
» Four techniques for constants, control flow, operations and dependences
« Two solutions for key management (key folding and AES-based architecture)

Christian Pilato, 2024 39

» Obfuscation results validated with “output corruptability”

« Hamming distance between output values generated with correct and incorrect
keys

How to select the parts to protect to minimize the overhead?
How to "measure” the level of obfuscation/security?

) POLITECNICO @Christian Pilats 20"
! MILANO 1863 @Christian Pilato, 2024 40

The conclusion is that the obfuscation is a powerful technique, but we must always consider how the defense
can be attacked, we cannot say “the attacker won’t be able to find it”.

There are two ways to manage the key:

1. folding the key, so reuse it many times, we fold the key on the bits that we have
2. encryption

note: how can we validate the results?

One powerful metric is the output corruptability: (def. in the slide). Given the hamming distance we can
determine how many bits are flipped in the output for each of the one of the key. It gives information about the

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

distribution of the differences and the ideal case is that the probability distribution of the probability of flipping
each bit when given a wrong key is exactly 0.5. By changing the key | can obtain the correct or the incorrect
value. | can only flip the coin to decide what the correct key is, | have to guess the entire key. It would be very
difficult to achieve 50%, but the closer we are the stronger the defender is.

Obviously in very large designs | can’t obfuscate the whole circuit, because as we can see from the results, by
obfuscating some operations | have almost a 30% overhead. So | can select parts, but which parts do | select?
The ones that affect outputs? The ones that affect the inputs, so that the values coming in are not credible, but
we would need to be sure that the parts that we obfuscate we see the result on the outputs. Another way could
be arandom choice, but that still must be done in a way that is effective, in the sense that the measure of the
level of obfuscation so also the level of security. Corruptibility is a metric giving information about the effects
on the outputs, but we can have a very obfuscated design, very hard to understand but with minimal effects on
the outputs, and vice versa.

Simulation-Based Verification

Scheduling |!
. Compiler e Code
@_.-{ Passes }-‘ Binding | Generation }-
Controller :
h___s_{l:l_t_]_l_ejfi_“ Testbench
Compiler HLS Backend
phase phase phase
High-Level Synthesis

Y

Input Simulation-Based Verification
values

If modified design can escape simulation-based verification,

it becomes the golden model

| POLITECNICO
\/ MILANO 1863

©Christian Pilato, 2024 41

The next problem is a consequence of this point, so once we have HLS we have a semantic difference between
input (that is a software) and an output (that is hardware). So the way to verify the correctness of the design is
simulation, so we test a certain set of inputs, we verify the outputs and we verify that are matching the golden
value. The problem in this case is that simulation based verification is not a “real” verification in the sense that
a design passing the simulation based verification doesn’t mean that it does not have errors for the values that
we provided, unless we provided an exhaustive set of inputs but that would mean that our design is very small.

If we find an error we know that the design is wrong, but we can’t know that the whole design is correct.

This can be used for several effects, one is positive that is implement watermarking. The difference between
locking and watermarking is that locking is an active method, this means that basically we are actively creating
an obstacle to slow or block the attacker, while watermarking is a passive method, we don’t create an obstacle
to the attacker but we are providing a way to certify if the design is the original one or a copy, this is usually
used in lawsuits when we find an infringement and we verify if the chip used is from our design, so a unique
signature is created and created inside the design and when we have the chip we have a way to easily extract
the signature and we verify if it is coming from us. Obviously this should be hard to remove, if itis a simple
signature it can be removed and is unuseful.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

To make this signature there are many solutions, like embedding special keys to use the concept of hardware
trojan in a good way.

Benevolent Hardware Trojans

The structure of a Hardware Trojans can be used for watermarking
« Stealthy during normal execution
|npﬁt_b Ii

Datapath

I input_a
Controller i

« Activated during rare condition =
(similar to a trigger) L

H

o||,e1||re$2
local
memory

©Christian Pilato, 2024 42

« Small and power function
intertwined with the
functionality (payload)

Let’s imagine it in the benevolent way: in this case the secret that we want to be revealed is the signature that
we want to be verified. The fact that | have conditions means that during normal operation the trigger isn’t

active and isn’t giving information, while during the litigation it is activated and the behavior demonstrates
during the litigation that the chip is coming from my design.

Architecture Modification with Watermarks

Only one function contains the watermarks but the others must propagate
the values

—— input_a input_b
P Module A F
(with IP watermark) triigger

. —il
input_c input_d
Module B (with IP Module C (without IP
watermark)

watermark)

return return

=

return —

=\ POLITECNICO St B o
MILANO 1863 ©Christian Pilato, 2024 43

so we create an extra functionality, reusing the unit by creating extra connections with extra wires and extra
multiplexers to recombine the different outputs.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

One solution is to decide a function to obfuscate and then we decide a list of operations that we want to use to
create the signature and the ones that we want to remove. This is tricky because if my probability of removing
the operation is low, the list of operation for the watermark would be similar to the original functionality, so this
means that the key is weak, because is similar to a value that | can always obtain, while if | have a very high
probability of removing operations, my list of operation that | keep for the watermark is very small. The result is
that the signature is weak again because the functionality is very simple, so the signature is very simple. We
have to find a good balance of probability of keeping of removing.

Benevolent Hardware Trojans

The structure of a Hardware Trojans can be used for watermarking
« Stealthy during normal execution
! input_a |.| inpit_b I—
L

Controller Datapath

« Activated during rare condition
(similar to a trigger) |

req 2

« Small and power function
intertwined with the
functionality (payload)

| return I
| I |

(@) POLITECNICO
\;) MILANO 1863

©Christian Pilato, 2024 42

Then we put everything together, we have the datapath, the functional controller because is the controller of
the functionality and what we can do, by putting in the middle a payload controller, so once | have my inputs |
verify if | am in the normal operation or if | activate the trigger. Since these have the same structure they can
also be merged and an unique FSM can be implemented for functional and payload controller.

If the work for the malevolent hardware trojan is hard, here it is much easier. For a malevolent trojan | have to
find which rare conditions | should use to activate my hardware trojan without being detected. Here since | am
designing the functionality | know the distribution of the inputs and which inputs are never used or what
combination | can use to activate the trigger, so also the combination to activate the trigger is an information.
This can be implemented in many ways, so the payload controller can be added into the FPGA orin a chip orin
another way.

FPGAs are reconfigurable, why are they interesting for hardware security? The idea in hardware security is that
when designing a component we do not want to reveal the functionality and the FPGA are perfect for that,
because when you fabricate them we don’t know the functionality that will be implemented, so we can
implement any functionality, so the idea of implementing a functionality only by loading the bitstream. All the
information can be added into the flow, a trojan can be added in the code and we can try in test mode if it
works. The overhead can be high, especially in small designs, even 20%-25%, but for complex desigh maybe
we have 2%-3% that is acceptable, this only for the functionality, then we have the connections etc. usually we
do not add many FFs, what we do when we add an extra controller we may need more states in the state
machine we might need more bits to encode the state machine and so more FFs. In this case, the idea of

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

hardware trojans can be reused in a good way to create watermarks and we can have different ways to activate
it, test mode or explicit trigger based on the values etc.

We saw few solutions for each part, now we have to try to see if it is possible to analyze and use HLSs as an

attacker, to create attacks in the design.

How is Using HLS for Hardware Security?

Bad: potential attack vector
» Planned Obsolescence
» Key Recovery with Reduced-Round Attacks

©Christian Pilato, 2024 50

Planned Obsolescense

Design houses (or competitors) may have interest to degradate IPs after
a certain amount of time
« Pushing customers to change device

Design Flow Verification Flow
Italy Fines Apple, Samsung A Few Sotwre
Descriptions
: 1 1
Mil For 'Planned Obsolescence CICr oy
High-[.e!fel ’ Sinlul'r}t‘iun—lhased
In Phones (Forbes, Oct 28, 2018) Synthesis Verification
Very difficult to check Df:;;};‘gﬁ;
non-functional properties (Verilog/VHDL) ‘ Logic Synthesis Fauivalence
Design
POLITECNICO ©Christian Pilato, 2024 51

MILANO 1863

Planned obsolescence is a way in which | want to degrade a component after a certain amount of time, is a
bad practice that the major players in the industry have been applying, especially in software but also in the
hardware. Our company might want to force people to buy a new one after a certain amount of time or we can
do that to a competitor, to undermine the reputation of the other products. This is problematic because all of
the reasons to change one device after a certain amount of time are not functionally related, they’re base on

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

performance or in terms of battery consumption, this means that if | still apply simulation based verification
the chip is correct, but if | introduce something like planned obsolescence, in HLS, with simulation based
verification it is not able to catch it, then I’ll have an RTL design that embeds these modifications and will pass
also all the equivalent checking, so since this is my reference design also the other copies will have it.

CAD Tools are Designed by Humans...

Can you always trust a programmer?
 Circuit CAD tools are known to be a potential attack vector

Extended Abstract: Circuit CAD Tools
as a Security Threat

Jarrod A. Royf, Farinaz Koushanfarf and Igor L. Markov{
iThe University of Michigan, Department of EECS, 2260 Hayward Ave., Ann Arbor, MI 48109
fRice University, ECE and CS Departments, 6100 South Main, Houston, TX 77005

"Black-hat HLS" is possible!

) POLITECHICO ©Christian Pilato, 2024 52

Soin general the problem is that we cannot trust tools, also the behavior must be verified against bugs and
malicious intents, there’s an interesting direction towards open source tools, so that anyone can contribute
with new functionalities atc, so when designing we have to trust all the tools that are used.

Black-hat HLS: HLS that can act maliciously and also all the steps can be compromised. Looking at the HLS,
let’s start with degradation attacks.

Attack #1: Degradation Attack

It aims at degrading the performance of the IP core after a pre-defined
amount of time (number of executions)
* Bubble states inserted in specific points of the FSM to maximize impact

Original FSM Compromised FSM
¥ v ¥

tmp3 = tmpl * tmp2
i++

tmp3 = tmpl * tmp2 ™
i++

sum += temp3
test = i =< ntaps

This attack can easily
escape sequential
equivalence checking

sum += temp3
test = i < ntaps

Trigger is a simple
execution counter

POLITECNICO I L
MILANO 1863 ©Christian Pilato, 2024 53

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Idea that we want to undermine the performance of the design after a certain amount of time, this is pretty
easy to be done because after a certain amount of time, like a counter, then we move and we change the
controller in where we have bubble states, empty states. The effect is slowing down the computations, and
there are specific points where if we add a bubble, the effect is multiplied by the number of operations. The
other problem is that even if we have the original FSM is hard to detect it by sequential equivalence checking,
because it is checking the results and the evolution of the values over time, to do so one of the key ideas of
SEC is to remove the concept of time from the analysis, so we’re intrinsically removing the bubbles and we are
always producing the correct result.

Degradation Attack in Bambu

We added a malicious pass after the scheduling to insert a configurable
number of bubbles

[] 1 bubble [] 4 bubbles () 8 bubbles @ 16 bubbles

Tis

=

]

L

£

L]

g 10

3

=

o

g

£S5

(5]

(=9

0 - !_EI ! = I‘ I —mill
E jol) E =) j=11] @ = =
2 2 & & F £ 5
K é g S
£
) Bl alide ©Christian Pilato, 2024 54

If we are very careful, we can add up to 16 bubbles, with no overhead in area the performance degradation is
20%.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Attack #2: Battery Exhaustion Attack

Accelerated battery discarging can motivate people to change device
* HLS knows which functional units are used in each clock cycle
* Unused units can be used to drain extra current

FSM
activation
in used states

Extra logic to increase switching
activity (more dynamic power)

S8E9 o

When unused, the FU computes
FU fake operations with bit-flipped

inputs
Results of faked operations
are never stored into registers

Selected functional units are
extended with extra logic active
only in specific states

This is no golden model
before HLS for power analysis

Al ﬂﬁ’l‘dgfﬁy'co ©Christian Pilato, 2024 55

One of the most important reasons to change a mobile device is the battery exhaustion. So if we can
accelerate battery discharge we can implement battery degradation. The HLS tool knows which units are we
using at any cycle and which we are not using at any cycle. So we can imagine a way to drain extra current.
Here we have a multiplier and a modified multiplexer with malicious modification, then some logic is created
to basically say that if the unit is not used for some consecutive cycles you keep the value thatis inside the
register and every cycle we flip every bit, so the MUX sees the inputs changing and the different values are
propagated, so the switching activity increases and so the power consumption. Then what happens is that the

value is put in the input of the register but it is not changed, so I’m using a lot of current without modifying the
functionality.

Battery Exhaustion Attack in Bambu

We added a malicious pass after binding to add extra logic
 Tech library provides information about power consumption

25

15
20—
g5 210
5 =
g 10 %
g .) I
g g & & B E F & & 3
¥ 3 ; E 3 £ g e g :
<] L
Select only the 5 most unused functional Minimize area overhead with a 30% power
units to minimize area overhead overhead budget
-\ POLITECNICO

S]] FAILANG 1863 ©Christian Pilato, 2024 56

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Another malicious way is Key Recovery, so creating a side channel during HLS

Key Recovery with Reduced-Round AES

Many cryptographic algorithms execute
multiple «rounds»

« AES-128 with 10 rounds datapath
« SHA-256 with 64 rounds o =
Reducing the number of rounds can ease . -
key recovery datapat <

« AES-128 can be broken with 7 rounds

« SHA-256 generates collisions with 18
rounds

Rounds

. B

15 ©Christian Pilato, 2024 57
@) roumaeo

Requires collusion between HLS
developer and IP developer

Most of encryption algorithms are based on rounds, so they repeat the operation a certain number of rounds,
for encryption and for decryption. This is a classic way that is implemented in HLS, with the FSM, then logic
and the loop. The problem is that the key can easily be recovered if the number of rounds is reduced so, if we
encrypt a certain information with 7 rounds, we still obtain a text that looks encrypted, but it is not strong
enough because by operating on this we can find it. We see that to insert this modifications in the circuit, to
execture sometimes 7 rounds or 18 rounds, we can change the value of the counter, we can change the start
value or we can change the end value. In this case there’s a collision between tool developer and the ip, in this
case we are adding modifications internally at the design so that it can be extracted later.

How is Using HLS for Hardware Security?

Ugly: Dream vs. Reality
* What is Missing?

ﬁ?}:g%&?lco ©Christian Pilato, 2024 58

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

For hardware security, every time we have a clear metric we can do any optimization that we want.

What is the Dream?

Clear metric to certify that a component (or a system) is secure

\ 4

Push-button solution to create a complete and secure architecture

$

Your data is secure, and no one
can use your intellectual property

Easy to prevent attacks and/or
identify attackers

iy - .
%ﬁj’@/\ Ef?ﬂgf;:ﬁsmco ©Christian Pilato, 2024 59

If our design is smaller than the previous one, it is a better design.

What is the Reality?

Hardware security is critical since «hardware patches» are not possible

Security certification is impossible

* You can be effective only against what
you know

« Security is a cat-and-mouse game and
attackers are always one step ahead

Hard to make a long-term contribution

The goal is to make the life
(exponentially) harder for attackers

... but at which level?
and at which cost?

Vfl'*&“,_ . .
‘fﬁ; 5?},:35;363“'50 ©Christian Pilato, 2024 60

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

What is Still Missing?

Security must be address at ALL levels

» Provably-secure algorithms —
Application

- m

Complete and integrated solutions are missing at all levels!
« Separation of (security) concerns are required for scalable solutions

* Robust OS and protected communications

» Secure components, secure architectures,
secure component integrations, etc...

Communication

Creating awareness of the
problems is as much important as
_ proposing countermeasures
@ﬁ%@ e ©Christian Pilato, 2024

If we had clear metrics we could introduce automatic tools to evaluate and implement security
implementations, but to certify that the data is secure and no one can access the design, we would have a
security certified design, but this is impossible, it is difficult to prevent attacks.

Itis already difficult to prevent attacks that we know, imagine what for the one that we don’t know.

The objective is usually not to make it completely impossible to make the attack but sometimes is enough
making so hard that it is not possible for the attacker to complete the attack.

The vertical and the orizontal integration is important.

61

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

	1 - Introduction to SoC
	2 - SoC components
	3 – Design flow
	4 - Introduction to Hardware Description (Languages)
	5 - SoC Challenges
	6 - Latency Insensitive Design
	7 – HW/SW Codesign
	8 – Dependability
	9 – Advanced Dependability
	10 - Introduction to High-Level-Synthesis
	11 - High-level functionality description
	12 - Microarchitecture Creation
	13 - Hardware security

