
Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design of Hardware Accelerators 2024/2025

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

1 - Introduction to SoC

Slide 3

General purpose processor: in this course we define as General Purpose Processor any device that can run
code. Technically this is not exactly correct because we should define the difference between a
microcontroller and a microprocessor, still we do give this general definition.

Slide 4

Heterogeneous system: system composed several types of components.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 5

Slide 6

Dark Silicon refers to portions of a silicon chip that must remain powered off or underclocked at any given
time due to power and thermal constraints. This phenomenon arises because the rate of power consumption
in modern processors is outpacing improvements in cooling and energy efficiency, preventing all transistors
from being active simultaneously.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 7

(just examples to better understand)

Slide 8

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 9

Slide 10

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 11

Slide 12

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 13

Slide 14

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 15

Slide 16

When we talk about accelerators we mean GPUs, dedicated CPUs. The concept is that we’re going to extend
the core of the processor. To include accelerators within the core, we can include in the platform dedicated
cores that are being developed starting from general purpose processors (ex. RISC-V for machine learning
accelerator starting from GPs).

The SoC may include a configurable area or a dedicated IP core, so that is dedicated to a single task.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Important: More efficiently doesn’t necessarily mean faster, this may mean less power consumption or less
Silicon area.

Observation: in heterogenous system the OS has a big impact on the system, so they have a dedicated OS. It
must know which are the hardware accelerators that are in the system, which are the functionalities that are
necessary in the SoC. The processing platforms are operated by the OS.

Observation: is the software going to be developed before or after the hardware? It depends on which software
we’re considering, if it is a user ended software (ex: Telegram, WhatsApp…) are built and implemented after
the hardware realization, but if we mean the firmware it is running between the HSoC and the OS, so the basic
functionalities are provided by the hardware designer.

firmware definition: firmware is the low-level software that controls the interaction and behavior of a piece of
hardware or IP-core. [source]

Def. Driver: piece of software that teaches to the general-purpose OS how to communicate/work with the
specific system I’m using (ex: driver for a scanner).

Slide 17

On chip memories: the memory on the SoC.

By a theorical standpoint we can define three approaches to the use of the memory:

• Cache memory: it’s the closest to the CPU and is managed or by proximity or by locality principle.
Remember: locality principle, the data that is stored loaded is the one accessed very frequently or the
last data that has been lately accessed
Remember: proximity principle, the data the is loaded in the memory is the one that is located near the
one that I’m using.
The cache memory is managed by the CPU and is accessible via software.

• Private local memory: it’s direct memory access (DMA) reserved for the accelerator.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

If some computation can be accelerated, the CPU wakes up the accelerator, the data on which the
computation has to be performed is loaded in the private local memory, the computation in executed
via hardware and then the results are moved back to the general-purpose memory. It is not accessible
by the software and is reserved for the accelerator. It’s inside the accelerator and is fully managed by it,
the core can’t see anything of the PLM. PLM is usually big but we need synchronization.

• Scratchpad: the scratchpad is an approach in the middle between the private local memory and the
cache. It is a memory in the accelerator but can also be accessed by the processor by executing some
actions. When a functionality can be accelerated by the hardware, the processor offloads the
computation (by executing some functions) and moves the data into the scratchpad. The scratchpad
it’s inside the accelerator, is accessed by it to read/write data, but this data is also accessible by the
processor, that can read/write into the scratchpad. It’s an extension of the memory space of the
system. It’s very flexible because data can be moved from the central memory but the price to pay is
complexity of the system. In general, its dimension is thinner than the one of a PLM.

Off chip memory: “typical” memory

Static ram: volatile memory, much faster and takes only 6 transistors

Dynamic ram: volatile memory, basic RC network which has to be refreshed due to leakage.

Slide 18

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

This slide shows the implementation of 12 different algorithms and for each one of them a dedicated
accelerator has been implemented. Then a constraint on the chip area was set. The process is optimized
with high level synthesis and the remaining area is filled with private locate memory.

data required by computation number of blocks what could be implemented

% of area on chip dedicated for private local memory. We do realize by looking at the results that even if
most of the silicon area was exclusively dedicated to the private local memory, the memory implemented
is negligible with respect to the memory necessary to perform the computation.

this means even if we optimize as much as we can the accelerator we can’t avoid using off chip memory so
it’s crucial to optimize communication between the accelerator and the off chip memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 19

Slide 20

We can have different approaches to interconnections

• Bus: busses are cheap, standard but slower and they do not scale with increasing dimension, this
means that as we introduce more devices we’ve slower busses because more parasitic
capacitances are introduced. It is a physical and logical bottleneck.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• NoC: NoC are dedicated routing memories, they’re much faster than busses but are more
complicated and less standardized.

(there will be a dedicated lesson to busses and NoC)

Slides 21-25

Examples about some commercial/research SoC platforms.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Slide 26-27

This is the device that is going to be used in this course, we’ve several implementations and we can combine
them to quickly write a working SoC.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

2 - SoC components

Remember: by “Dark Silicon” we mean a portion of the silicon device that must be underclocked/turned off
because it is not performing any significative action/computation but still would use a significative amount of
power if it wasn’t turned off.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

A processor in a system on chip is necessary because we can’t afford all the computation to be hardwired in
Silicon, we need some architectural synchronization for scheduling, coordinating the operations,
communication and collecting the results. Such tasks are given to the processor.

In this slide we have some basic concepts:

• What is the CPU – General Purpose Processor?
It’s a Silicon device that must perform five basic tasks:

1. Fetching instructions
2. Decoding instructions

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

3. Execute instructions
4. Writeback the results from the processor registers to the cache/main memory

The architecture is a bridge between the high-level part of the system, so the OS, and the low-level part of the
system, so the microarchitecture. When the compiler must convert a program, it has to know on which
architecture it will be run and that is defined by the ISA.

What is the instruction set?

The instruction set are all the instructions that are provided by the architecture.

Ex: Let’s suppose that we have a particular architecture that does not provide the store instruction, then all the
programs that are compiled for that architecture can’t run the store instruction.

Basically the instructions are the options that are available, but the ISA doesn’t set constraints on how the
instructions are implemented in hardware, that is part of the microarchitecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

When compiling a program for a specific family of processors the same instructions are always exploited
because the ISA is the same, what differs is the microarchitecture that implements in different ways the
instructions. Consistency has to be guaranteed by the microarchitecture, because if I use a store I expect the
store to have always the same effect. The architecture sets the constraints from which I build my
microarchitecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

CISC: from a market point of view, CISCs dominated world market because AMD and Intel used this category
of ISAs and as of today it still is the factory standard for consumer microprocessors.

RISC: is the standard for embedded systems since the 80s, small/medium companies used RISC, then ARM
came and so the implementation of RISC.

CISC: thousands of instructions, single instruction for every single way we want to have operands etc. Lot of
instructions means that each instruction has its own circuit.

Complex instructions → complex circuits

So generally, CISC systems are faster but much power hungry and complex.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

RISC: hundreds of instructions, load/store instructions so all the operands are loaded/stored from the
memory. Much fewer instructions, single addressing mode, single addressing for operands, slightly slower but
much more optimized for embedded systems, much less power hungry.

Important point:

Most of the computations are made by a little part of the ISA, so generally a small set of instructions are used.

CISC: thousands of instructions, many ways to access memory, but even with thousands of instructions we
use not so many instructions

RISC: hundreds of instructions, one way to access memory (both cache and central memory), much less
power hungry devices

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The ISA is the interface between software and microarchitecture. On the top of the slide in green we have the
software ecosystem that has to be implemented to design and exploit a processor, we need all the tools for
such platform, as well as compilers/interpreters to traduce the high-level code to the ISA. On the bottom of
the slide, in red we do have the microarchitecture that is how the ISA is implemented, if we have
pipelines/caches/branch prediction features, is all conceptually below the ISA.

As we said, since AMD/Intel dominated the market, nobody tried to modify or change how the implementation
of the instructions of the ISA was done, there was no real possibility of implementing new processors unless
someone would introduce a new ISA. Obviously there is no way to optimize Intel/AMD implemented
processors from outside.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

RISC-V changed the paradigm since it is an open source ISA and based on it we can implement and redesign
the whole processors, we have a standard ISA and we can use it to build freely our specific processors with the
features we want to enhance. This is a totally different approach from fixed and proprietary ISAs.

In this slide we have a list of the supporting companies/institutions that produced their own processors using
RISC-V. As we can see, also silicon companies started to use RISCV, that is because it is interesting from a Si
and from a microarchitecture point of view, we can implement accelerators with their own processor, which is
a great potentiality.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

With RISC-V Instead of implementing a dedicated accelerator out of the core that must then communicate
with the core (loosely coupled accelerators), we can directly implement the accelerator inside the core (tightly
coupled accelerator) and add a new instruction for the accelerator with its own additional circuitry and I can
do this because it’s an open source code.

Ex: I have “add”, “mul” and add “MAC”, I introduce the new instruction in the ISA and then I need to inform the
compiler for that specific architecture that that instruction exist, otherwise it can’t be implemented in the
assembly code. When “there’s this pattern of code, this is a MAC, this is not anymore jumps and multiplication
but it is a single call to the MAC” and then I have to implement the MAC in the core, I modify the documentation
of the code but then I also need the high level syntesys/Verilog implementation into the core. So we do extend
not only the ISA but also the core itself, we will have additional circuitry that implements the instruction.

At the end we obtain a modified RISCV with modified core and modified documentation and modified
compiler that has been extended with our new specific functionality.

The idea is not to totally substitute the existing processors but it’s more of implementing dedicated very small
accelerators for specific instructions (ex: META/AWS are leaving the control to std processors that are very
optimized/very fast but then implementing clusters of RISC-V accelerators dedicated to deep learning
operations, instead of having power hungry and very complex systems).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

What is bandwidth? Is the number of parallel access that accelerators can do to the memory.

As exposed in the bottom part of the slide, since there are different technologies for memories, the general
idea is exploiting such different technologies to highlight the advantages of each of them and try to reduce the
limits given by the cons.

Specifically for the accelerators, the important thing is adapting the way of accessing and the dimension of the
memory for the single task that the accelerator has to perform.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Classical hierarchy of memory

An accelerator can be implemented in a dual core way, splitting the computation in parallel executions. The
problem with this approach is memory coherence and that is in any case that two entities are sharing the
memory and running in parallel.

Ex: two cores sharing the main memory but with dedicated caches, L1 caches for both. Both cores load a
piece of data, then one starts modifying the cache, but the other core does not see the modification, because
caches are not shared, therefore readback the memory to the central memory is not enough to keep
coherence, because the other cache is still not modified, it has to be updated.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Parallel programming/distributed programming is quite complex and introduces a series of problems that
might be very difficult to overcome.

In this slide we have the representation of the two different approaches, parallelization or hardware
acceleration.

By offloading execution we mean that the execution is flooded out from the software to dedicated hardware, if
the system is well designed it will take less time or less power (or whatever constraint we want to improve).

In the slide we can see some “yellow” parts, these are the overheads, the wasted resources to wake up the
accelerator, load/unload the data etc. we might implement a very optimized accelerator, much faster than
software execution or much less power hungry, but if (for example) the communication is not implemented
well, it could make not worth the using the accelerator. There can be various bottlenecks as maybe the
amount of data is so large that we lose too much time/power to accelerate the functionality.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Example of a possible loosely coupled accelerator, we can identify

• in purple: the DMA controller
• blue/green: input/output buffers
• grey: accelerator device and computation for acceleration
• yellow: private local memory implementation

The slide also introduces an important concept, the communication optimization: it is transaction level
design, I’m not interested in what the accelerator implements but I want to synchronize the “blue boxes” with
“grey boxes”, so the data loading and the computation.

This slide is very important because it represents two possible situations in which communication and
computation were not balanced, thus reducing the performance of the accelerator. In detail

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• left graph: fast communication but slow computation. If implement a very fast communication but I
have a slow computation, probably I am wasting some resources somewhere, whether it being area,
power, silicon, because implementing fast communication can be very costly and power hungry, but if I
am limited by the computation, I am wasting all the resources I allocated to the communication.

• right graph: fast computation but slow communication. In this case probably we should implement
better communication, otherwise we spend silicon area and power to make a fast accelerator, but its
potential is wasted due to a bottleneck of communication.

I have to be as consistent as possible, since I’m designing an accelerator, I have to keep everything in mind to
have a really optimized system, is not enough optimize computation or communication, both have to be
balanced and I have to know where the bottleneck is.

The ideal situation would be

Communication is the biggest issue in SoC design, processors are coming from outside, the VHDL/Verilog for
the accelerator is more or less easy, the biggest issue is communication and synchronization among all the
components of the SoC. If we are shrinking the size of transistors and silicon components obviously the
communication/wiring part is increasing, so we must try to optimize it as much as possible.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The BUS advantages are that buses are cheap, have wide compatibility and are very simple. The limits are that
buses do not scale, so as we increase the dimension of the communication network, we significantly slow
down the device, the more components are connected the less time to propagate the signal we have.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

NoC (Network on Chip): all the components of the SoC are part of a network and the connections between
chips are the connections of a node of a traditional network. It can implement parallel communication (with
respect to the BUS that is a shared device), we have reconfigurability in fact we can modify the path for the
communication based on the network chart. The network can also be reconfigured due to failures.

The NoC router is the component that has to decide which path each master is going to communicate, for
NoCs a routing table is implemented within the router.

As designers, we have to ask ourselves if we need parallel communications, how often data transfer are
required, how fast do they have to be and make an appropriate choice.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Important point: NoC are not commercially available, so we have to implement our own interface and
standards.

Ex: let’s imagine we have the FFT accelerator and we have an AXI interface that allows us to connect it with an
AXI bus. If I want to use it in an NoC network I do not have a pre prepared NoC, so I must implement my router,
the interface to connect from AXI to my NoC router and network.

With NoC I have only point to point connection and it’s highly customizable network, each router/master can
be optimized and built in a different way.

3 – Design flow

When referring to digital circuits as of today we mean VLSI. What are VLSI?

VLSI: Very Large Scaled Integrated circuits, that implies “lots” of transistors on a single chip. It is an acronym to
identify all the digital technologies since the 90s up to today, although today we are talking about subscale or
nanoscale devices and so we find the acronym ULSI, Ultra Largely Scaled Integrated circuits.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

When we talk about ICs in general, we may see two divisions:

1. Fixed function ASICs: both the types reported in the slide still are used
2. Configurable Circuits: FPGAs are the only ones that are used, all the others were the old approach

Let’s suppose we want to implement some function in a SoC. How can I do it? One approach is full custom
ASICs

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The first approach was full custom design, so we consider having an area budget based on the requirements
and we have to fill such area with transistors in order to implement the function fully from scratch, by choosing
the dimension of each single transistor. The digital designer is the one that places each component in the
Silicon area, design the circuit, produce the netlist and shape the masks for lithography.

Since the full custom was too long and too expensive to implement, a second way to produce ASICs and VLSI
was born by using standard cells, so basic pieces of circuits that can be exploited to build the device. Instead
of fully designing each gate etc. a company provides standard cells and with them we build our system. There’s
less control over the design, less optimization, more area, more power consumption, lower working frequency
but much faster, cheaper design.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

This is the standard design flow of an ASIC design. We start with the specification, then we describe the
behavior of the circuit, then simulations are done to verify that the function is implemented correctly. We still
don’t know if the circuit is working properly because since we haven’t implemented it in silicon, we don’t know
if the length of the wires etc. aren’t breaking timing constraints.

The next phase is “floorplanning”, here the circuit is divided in specific parts where each one has a specific
function and we do placing and routing, so we place the specific working area in a portion of the device and
then we connect them with real wires, in order to respect timing constraints. By knowing length and types of
wires we know the parasitic capacitances and we can run the simulation with real delays.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So we have logical design and so behavioral description, structural description and logic netlist. Once we
floorplan, place and rout, we extract the capacitances and all the electrical characteristics of the physical
design. We can divide this operation in two parts: frontend design and backend design

• frontend is generally done by digital designers/computer engineers
• backend design is done by electronics engineers specialized in silicon physical design

Once we have the physical design, we know the electrical characteristics of the circuit and through post layout
simulation we know all the characteristics like power consumption, maximum frequency etc.

The missing part in this flow is the choice of the standard cells, but this implies that the logic design is
technology independent, we can achieve our objective without knowing the technology we are going to
implement the circuit in because we’re designing “just” from a logic point of view.

The opposite approach is configurable and reconfigurable circuits, we buy a chip with something already
implemented inside and then we configure the chip, that is the case of FPGAs.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

What is an FPGA? It is a mesh of configurable routing blocks and Configurable Logic Blocks. A CLB is a LUT
plus a MUX plus a FF. The output of the CLB can be synchronous or asynchronous, the LUT implements our
functionality.

Let’s consider the LUT as a piece of memory. The addresses of the LUT decide which is the row of the LUT that
we’re going to address, the content of the cell decides what is the output, it’s a small memory, 4 bit I/O
(depends on the specific FPGA characteristics).

If I consider the content of the memory as output of a logical function and the addresses associated with the
memory as the input of the logical function, I’m implementing the logical function with a piece of memory. This
is the role of the look up table.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Here a 4 input AND gate is implemented with a LUT.

If the LUT is the basic building block in the design, what do I need to do to configure it, to specify the
functionality?

I need to configure the content of the memory. Based on the content of the memory I’m changing the
functionality of the LUT. The content of the memory is called configuration bitstream, it specifies the
configuration for the LUTs, so their functionality.

So we have a device with a standard layout and based on the configuration memory I modify the routing etc.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Of course the complexity of the circuit I can implement depends on the number of LUTs that I have in my
FPGA.

What is the advantage of an FPGA based design?

Speed in terms of time-to-market, I don’t have to care about the physical design, it is already there, from the
producer of the piece of silicon it is an easy design. From the producer’s point of view they’re implementing an
ASIC, from the system architecture the FPGA is a configurable device. So, it’s much simpler to design a system
based on the FPGA, also much cheaper, because if I do something wrong, I can reconfigure the device, if I do
something wrong in the design we’re cooked.

The cons are that the FPGA design is NOT optimized in area, in pw consumption, it is much smaller.

ex: a microprocessor implemented in an FPGA goes to 5MHz-50MHz-200MHz at the most, we can’t push it
more and we have an extreme power consumption.

With modern FPGAs we can dynamically modify the configuration, that’s very interesting, we can modify the
configuration of the FPGA with a microprocessor and we might also have an hardware accelerator that can be
modified without switching off the circuit, so the microprocessor can modify the FPGA and the accelerator
while part of the system is running.

This is an example of a switching block, we have wires with pass transistors that are 1 or 0 based on the
configuration bits. We can see that every single crossing point requires a lot of pass transistors and lots of
configuration bits. Most of the configuration bits are occupied by routing and routing occupies most of the
silicon area.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So the first CLB will implement the FF and the AND while the second will implement the XOR. We do have to
also implement the connections between the logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The single CLB is a complex system on which we can build complex functionalities. The gap between the
custom implementation and the FPGA implementation in terms of performance can be huge, so we might ask
where’s the advantage of this approach?

In this graph we see non-recurrent expenses due to ASIC design, so when we want to implement an ASIC we
spend a lot in respective of how many parts we implement, because we pay for the engineers, for the tools, for
the std cells and a lot for the silicon foundry, but then we spend little to product the effective device.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

On the other hand, the non-recurrent cost for FPGA is 0, but the cost of the design scales with how many parts
we implement.

We can also see that there’s a cross point with ASICs.

When we need little parts we go with FPGAs, when we need to produce a lot of devices/ICs we go with ASICs, if
we plan to sell millions of parts we go with ASIC design while if we are designing a couple of satellites per year
a full custom design is unaffordable, we need a FPGA based design. The main driver for the choice between
ASIC and FPGA is always the market. FPGA prototyping will give me some insight by emulating the circuit on
the FPGA. After we know that the device works on the FPGA, I can produce my SoC.

We can see some advantages and drawbacks of having such a complex system.

• Power consumption: we remove all the parts that are implemented in the FPGA but aren’t necessary in
the final product

• Increased reliability: silicon is much more reliable than the PCB board, board level faults are much
more common than silicon faults. When everything is integrated in a single piece of silicon it is more
reliable. The drawback is that testing is much more difficult with respect to the board. Here we must
test everything on a single piece of silicon, while board testing is much easier.

Oss: what do we mean by testing? We have our piece of silicon and before selling it I must verify that all the
implemented parts are working well in the silicon bulk. Post-production testing. Without having probes and
connections from the input to the rest of the component it is very hard, we must identify a functional
condition of the circuit where the specific part that I want to test is under stress. I must test my system by
driving its primary input outputs I have to try to identify whether all the internal components are working or
not.

• Reduced board space: much less area is used, the system is miniaturized
• The system is much more complex than a normal digital system
• Testing is much more difficult, prototyping takes longer
• Security issues from many points of view: intellectual property

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

This slide represents the beginning and the end of the device description. We start with a very high-level
description and then we arrive to the layout.

We want to exploit something that is regular and can be reused design by design, I just act by plugging in
additional functionality, we reduce the number of soft/hard IPs

• Hard IPs: comes as a netlist, is already implemented in specific technology and is implemented in the
cells, these are generally the IP cores I’m purchasing from third parties, so I’m not able to understand
how the functionality is implemented and optimized. These are structural, ready to be used.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• Soft IPs: they are behavioral, they’re described and then I’ll synthesize them using my standard cells,
which need to be adapted to be used in the system.

Some components might not be available from somewhere/other companies so these will be implemented
from scratch, for example NoCs are not commercially available, they must be implemented.

When designing an accelerator, I have a very high-level description of the application, then maybe I have a
platform that comes from previous experience or maybe some IP cores, then I have constraints on power,
cost, area. As soon as possible I need an estimate as accurate as possible of the figures of merit the
constraints.

Mapping: with mapping we mean the process of choosing what’s going to be implemented in a CPU, in a GPU,
in a custom accelerator, what in software, which operative system is needed etc.

Once mapping has been performed, I know what’s going to be implemented in hardware and for that part I’ll
follow my hardware design flow, then for what’s going to be implemented in software I’ll follow the software
design flow.

At the end we have the firmware or the operating system and the hardware.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

What is DSE (Design Space Exploration): the design space has a lot of solutions. There might be several
hardware software mappings for a single algorithm. Then there are constraints: while respecting them the
feasible area of the design space is as reduced as possible. The solution that falls in the feasible area is
identified.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

4 - Introduction to Hardware Description (Languages)

Slide 3

Hardware Description languages are the only way to implement and improve our code and design solutions.
High level description languages are useful to describe our function in SoC, but hardware optimization is done
with HDL. The concept is that HDLs gives a very fast description, but not an optimized one.

Slide 4

Here we see the abstraction levels of HDLs. Verilog and VHDL are very similar, the main differences are related
to syntax implementation.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• Behavioral: it’s the description of the logic of the circuit, there’s no concept of clock nor sequentiality,
only the functionality of the system is described, without any reference to the technology.
Ex: I must implement an adder, 16 bits in I, 16 bits in O and just make the sum, very similar to a C or C++
description

• RTL: RTL stands for Register Transfer Level, it is specified the registers logic that combined give the
combinational logic.

• Gate: netlist level description of the circuit, direct electronical implementation

The lower we go, the more we go “near” the technology level.

What we must keep in mind is that we can’t write not synthesizable code, there are parts of the behavioral
descriptions that can’t be synthesized. Every step of the description has its own characteristics, non-
idealities, constructs, statical details but in the end, before a gate level description I must have a
synthesizable circuit.

Slide 6

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Which are the parts of the design where we can use Verilog? When looking at the HW description, the purely
logic part of the circuit we can use any level of the circuit.

oss: one thing we did not mention when talking about FPGAs is that we need the specific characteristics of the
device, how many LUTs, how many I/O in the LUTs, how many FFs, which is the format of the bitstream to
configure the FPGA device etc. We need details coming from the vendor, we do not need the standard cells but
we need the developing environment etc.

These requirements are very similar to the ones that we have when going for an ASIC implementation, in fact
we need the libraries from the producer of the standard cells.

The tools to implement ASICs are different from the one for FPGAs etc.

Coming to Verilog, looking at the pure hardware stuff it can be used in any part, when looking at the hardware
we can use Verilog for behavioral description. Keep in mind that at the system level we can also have analog
parts of the circuit, most of the circuits are mixed signals. All the digital parts are covered by Verilog but are
implemented by digital designers. Analog parts can be simulated in Verilog in a functional way but can’t be
described and implemented with Verilog. For software specs, Verilog can’t be used.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Verilog fundamentals

Slide 9

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Since we’re describing hardware, we must specify the dimensions of the bits.

Slide 10

Slide 11

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Module: container of functionality, it’s a component being specified in a behavioral/RTL/gate level way.

The description of a module begins with

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Oss: while the numbering of the sub-components in an array in C is fixed, in Verilog we can write whatever we
want

Input [15:0] x;
Input[17:2] y;
Input[1:16] k; MSB – numbered 1, LSB – numbered 16

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Wire signals and variables are always assigned in parallel.

Reg: are assigned sequentially, are modified in procedures, we need to specify procedures within the modules
to modify the content of the register. Although they’re called registers, they are not FFs, it is not the description
of a flip flop. It’s a variable concept in C, it’s something that is storing data.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Bit padding?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Logical equality: confronts the whole operator

Case equality: confronts each single bit

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Behavioral operators, not synthesizable operators.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Initial: purely simulative/behavioral statement
Always: this statement always executes in a loop forever

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Different always procedures are executed in parallel, but a FF is always a FF so every piece of the
synchronized circuit is synchronized as an always (???)

I have the sensitivity list for “always” statements

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

I can implement various modules and connect them

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

5 - SoC Challenges

Parallelism in memory access, parallelization in accelerators can be implemented.

These are the four families of issues that a designer has to take into account in the system architecture.

System level optimization: system architecture is the design of the system not at hardware level but at
system level. Optimization at hardware level is a challenge for digital electronics system designer (power
consumption, silicon area constraints…).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

System architecture takes into account both software and hardware.

We have to decide “when do we make the hardware exploitable by software?”, “how would the processor
control a specific hardware accelerator? By software? By firmware? By the ISA with a specific instruction?”.
Basically we’re talking about operating system implementation. Communication is also a significative issue,
because this means choosing standardization for the device.

Remember that when we work on the system architecture we want to write high level code, the higher the level
the simpler is the expression of the functionality of the system. Then, by exploiting high level synthesis, an
hardware description of the system is obtained.

Programmability: obviously the programming paradigms that are used in heterogeneous SoC are very
different from the ones that we are used to for desktop/server applications. For the high-level users, these are
negligible aspects because it’s the OS that gives the user the libraries to implement the specific application we
want. The complexity of OSs for HSoCs (Heterogeneous Systems on Chip) is totally different from the
complexity for a desktop system.

Reliability/fault tolerance:

Reliability definition: ability to produce the intended functions under normal operation and even under small
fluctuations in the computing environment for a specified time period [1]

we have different reliability issues depending on the specific application, they might be more important for
embedded systems (ex: automotive, railway, satellites systems). Which systems have to expose reliability
requirements? Is there a specific class of systems?

The answer is that every system has to expose reliability, then the specific requirements depend on the
specific type of system but from the designer point of view, the system must work at its specific conditions.

Examples:
Is the SoC going to work in a train braking system? → implies a very strict safety system.
Am I designing a smartphone? → then I have other safety requirements.

Remember that reliability expectations affect the reputation of the specific company, so they’re a very
important part of the design process that must carefully be taken into account.

Hardware security: security has become critical both with respect to data processed by the system and in the
sense of system intellectual property, so the how the processing of the information is implemented.

Oss: reliability and security are both properties that intersect.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

When designing our hardware accelerator, we must consider the fact that the software aspect of the high-level
language can be conflicting with the hardware description.

here are some examples to better understand what is meant:

1. I can’t have dynamic memory allocation in hardware, while in C I can
2. I can’t have multi-accessible rams because they’re very difficult to implement properly in hardware
3. Everything is concurrent in hardware while in programming often I don’t have concurrency

So often I have clusters of RTL description that fall in the same software description. Every single pattern of
high-level language is going to be interpreted in a specific way.

If I have in mind that my optimum solution is a specific one, but the hardware description has something that I
don’t like, we must change the high-level code.

What do we mean with “Fine tuning”?

Fine tuning:
example: let’s suppose that I made an accelerator (in the image this
is represented by the ver.3 in the high level design space) and I made
a successful accelerator that implements a specific function (that is
represented by an orange dot in the RTL design space), but for some
reason the hardware description has something that doesn’t satisfy
us, for example let’s suppose that the functionality is implemented
correctly but I’d like to a little faster with frequency, so maybe I
should implement differently at high-level code a pipeline stage.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Left: I have the high-level programming language,
we see a Private Local Memory (the array) and we
have four function calls.

Right: we have the streaming definition that
describes the data transfer.

We have three threads, one for loading, one for the
computing process that is going to oversee
implementing the functionality and at the end we
have the store function. Note that we don’t have
any hardware detail, we have a sequential,
structural code.

Remember that this is the programmer approach to the design of the hardware accelerator

𝑯𝑳𝑺

↓ → 𝑩𝒆𝒉𝒂𝒗𝒊𝒐𝒓𝒂𝒍 𝒅𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏

𝑹𝑻𝑳

↓

𝑵𝑬𝑻𝑳𝑰𝑺𝑻

↓

𝑷𝒉𝒚𝒔𝒊𝒄𝒂𝒍 𝒊𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏

Between all these levels we must perform the equivalence check: we must verify at every step if the
functionalities are the same. Obviously the more low-level I go the more requirements I can verify, when I move
towards physical implementation I can check timing, power, area constraints.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Tightly Coupled Accelerator: (this option is available only if the CPU is open source) since we’re modifying our
processor to implement the specific hardware function inside the processor, this would imply a new
instruction in the ISA. The resources are shared with the CPU, so generally I would need less memory access,
less communication with respect to loosely coupled accelerator, but often I still need more physical memory.
If the accelerator is in the CPU, it is going to be using registers of the CPU.

Note that if we are implementing it in a single core scenario, if the accelerator takes a long time to perform the
acceleration, then I’m preventing the core from executing other applications and I’m basically stalling the
other computations.

Loosely Coupled Accelerator: (only option is available only if the CPU is not open source) with respect to a TCA, since
it is not implemented inside the CPU, we need additional circuitry for synchronization and communication, the
good point is that the accelerator might have his own DMA and his own PLM, moreover here the accelerator
can run for as long as we want because the CPU isn’t stalled.

For both cases the issue could be that the accelerator is too fast for the system, I do not need to implement
fast accelerators if the controller is slow.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

As we already saw, we want to balance the two platforms.

I have different approaches to optimize and balance the applications:

• Dynamic Voltage and Frequency Scaling (DVFS): hardware level approach, we raise or lower the
voltage/frequency of the system in specific moments to synchronize/optimize the computation and
optimization

• Latency Insensitive Design (LID): architectural and system level approach, it’s how I dynamically

balance the timing and execution phase without considering the specific timing constraints by
designing our system with specific functions and signals.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Since we want reusability, I don’t can’t consider every possible case, I want the system to be general and
reusable. The drawback is that if I’m not specific I lose performance in terms of optimization.

These are the two different approaches to the design of “on chip memory”: we would like to design our system
with many different parallel memories.

• Distributed registers: I fill my chip with registers every register can be accessed independently from
the other ones. In terms of performance or computation but requires a large area and the memory is not
centralized.

• IP block of memory: the slide shows that if I implement the same whole memory with dedicated IP

blocks: I use 1
4

 of the area but the memory is accessible by less components and I have less concurrency.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Data footprint: quantity of memory I’m going to use to perform the computation with respect to how much
memory I have on the SoC. The size of the memory that can be integrated on the chip is way smaller than the
size required by the standardized algorithms.

The most significative part of the slide is the right graph: in blue we see the required external memory, in
orange we see the quantity of memory that is implemented on the chip. We see that while the required
memory increases exponentially, the memory that is implemented increased much less, it’s almost linear. We
must pay attention to the order of magnitude of the two graphs, the blue curve is in megabits (106) while the
orange curve is in kilobits (103) so we realize that external memory implementation and its communication
with the SoC is critical for performance since a lot of data goes through it.

The cost of Silicon is increasing because also the process of Silicon production is increasing.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Fault: event that interacts with my system and changes the functionality of the system. Faults may be due to

• Design errors: errors introduced in design time.
• Statistical degradation of the performance due to wear out processes, it can degrade so much that the

functionality isn’t maintained anymore.
• Statistical degradation due to statistical fluctuations of Silicon processes.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

As shown by the graph, most SoCs are implemented using third party components.

In 2024 almost 100% of the SoC is composed by pre-existing components implemented efficiently in the SoC.
Purchasing third party components means that we don’t have control in any part of the system, we don’t have
the HLS code nor the design characteristics of the device. This is a different approach to what we were used to
in the past: the single company had full control on the production process of the chip, most of the companies
had their own silicon foundry and controlled the chip implementation from scratch to the finite product. Today
most of the companies are fabless: companies do not have their own foundry to implement their own chip,
they must go third parties (ex: TSMC, ST, Intel, Samsung…) and use their implants and production processes to
produce their chips.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Hardware assisted security: the target is protecting the data processed by the system

Hardware security: the target is protecting intellectual property
ex: I make a very fast PCI-express and we don’t want the others to copy it

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Ex: parts of the defense equipment were from Intel Israel

• N. G. Tsoutsoset al., “Fabrication trs: Zero-overhead malicious modifications enabling modern
microprocessor privilege escalation,” IEEE Trans. Emerging Topics in Computing

• C. Domas, Hardware backdoors in x86 cpus, 2018
• Project: rosenbridge, 2022

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://i.blackhat.com/us-18/Thu-August-9/us-18-Domas-God-Mode-Unlocked-Hardware-Backdoors-In-x86-CPUs-wp.pdf
https://github.com/xoreaxeaxeax/rosenbridge

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

They do not exploit software or hardware bugs; they just exploit nominal features of the processor.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Speculative Execution Attacks: Meltdown and Spectre are attacks that leverage speculative execution, out of
order execution, caching and other architectural performance enhancements to break isolation and other
security policies.

meltdown: enables unauthorized processes to read data from any address that is mapped to the current
process’s memory space. It exploits a race condition where unauthorized process attempts to access
privileged data. The attack then uses a cache side-channel attack to determine contents of the data.

spectre: vulnerability that tricks a victim process to leak its data. Many processors use speculative execution
by branch prediction. Spectre uses the fact that this speculative code leaves traces of its execution in the

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

cache, whose information can be extracted using side-channel attack. Spectre trains a branch predictor to
make a wrong decision and then wraps code that should not be executed in a condition. The code is
speculatively executed since the branch predictor is wrong. [source]

6 - Latency Insensitive Design

In current technologies, transistors are dramatically scaling while wires are not scaling as fast as transistors,
so while delays introduced by wires were negligible in older technologies, now they’re not anymore. Wiring in
modern complex circuits is huge with respect to the logic, so the delays related to wiring have to be
considered. This point is in conflict with the plug-and-play composition of chips that we would like to pursue.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/9310331

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The target is a block-based design and dealing with the fine tuning of wires would be avoidable, which is a
physical aspect of the hardware layout.

It’s not acceptable to be uncertain of the timing of the circuit until the finite layout is ready, a way around this
problem must be found and it already exists, it’s Latency Insensitive Design.

Modern HSoC have lot of different components, different clock domains and even different voltage domains,
different speeds (in the sense of the amount of data required by the interaction of components). This
complexity can’t be managed at layout level, it is too complex and would require too much time.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We want to solve the problem with a systematic design approach and not hardware design approach, I want
something that is at architectural system level to solve the timing complexity.

One possible approach is introducing buffers between components, some FIFO in between them to store data
and letting the consumer have it when it’s ready. The problem is this solution isn’t a feasible solution, because
if the consumer is slower than the producer, an infinite FIFO would be required in order to make the system
able to run for (ideally) infinite time, while if the producer is slower than the consumer, after some time the
FIFO would be empty and it would be useless, so would be a waste of area and power.

This approach is very powerful because it permits us to have a “plug and play” system and introduces strong
standardization. At the early stages of the design, I want to be allowed to consider just the component
functional constraints.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Latency Insensitive Design: it is a methodology to design complex systems by assembling predesign
components. [source] With latency insensitive design, global behavior will be asynchronous, in the most general
case every component will have its own clock signal. The point is that I’m not interested anymore in knowing
the clock frequency of every single component, there will be a dedicated structure that will interact with all the
components and will manage the data input/output based on events rather than synchronous clock. In this
way I’m not interested anymore in skew/delays/clocking issues.

LIDs are synchronous distributed systems and are built by composing functional modules that exchange data
on communication channels according to a latency-insensitive protocol. The goal of the protocol is to
guarantee that a system is composed of a functionally correct modules behaves correctly independently of
channel latencies. [source] This increases the robustness of design implementation because any delay variations
of a channel can be recovered by changing its latency while the overall system functionality remains
unaffected.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://ieeexplore.ieee.org/document/7299248
https://ieeexplore.ieee.org/document/7299248

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Recall: Totally asynchronous systems: systems without clock, the problem is that they need lot of protocols
and handshakes to make communication possible and let’s say that history demonstrated that fully
asynchronous circuits are not viable. What we’re interested in with LID are events and interactions, all the
circuits are synchronized so the behavior of components is dominated by clock but at a higher level what we
do care about is an event every 𝑥 clock cycles.

The single components will be verified under the timing point of view but the strong assessment with LID is
that the interaction between components will be guaranteed by the design even if we have delays or
interferences.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We’re making our system tolerant to arbitrary delays. What we will introduce is the concept of relay station and
the void and stalling event, so functional informative data will be exchanged but also events about the
readiness of receiving and sending data.

The consumer sends the stop in and the stop out while the void in and void out will be implemented by the
producer.

With this station between consumer and producer with data we’re allowing them to work with completely
different clock periods, the consumer can be superfast and the consumer super slow and vice versa and the
system still works correctly. Furthermore, we’re achieving a plug and play platform, with respect to a
completely synchronous system.

backpressure: mechanism that lets a downlink shell to temporarily stop its production of valid tokens.

void bit: bit used to distinguish void from valid tokens and a stop bit to implement backpressure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

With this approach of relay station, I want a plug and play approach, so we buy a component from one
producer, another one to the other and then what we need is a shell in order to make it

The usage of relay stations we can implement a “plug and play” system, we buy a component from one
producer, another component from another one and we can make them work together even if they require
different clocks and have different timing constraints.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

If the consumer is slower than the producer?
The “stop signal” is risen, backpressure to the produced is applied and we slow down the producer without
fully halting it.

If the producer is slower than the consumer?
If the producer is faster than the consumer, the “void signal” is risen so it knows that the data that the
consumer is consuming is dummy data.

Oss: the relay station is asynchronous with respect to both the devices. It’s clocked but it’s totally
asynchronous with respect to the producer and the consumer. It is being implemented to decouple
synchronization, it would be dumb to synchronize it with the clock of the producer or the one of the consumer.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

What if Producer 1 is faster than Producer 2?
• consumer receives data from P1 and then waits for P2 data → this is an unoptimized way
• when P1 is producing good data, P2 is giving void → the consumer will backpressure P1

The shell will trigger the consumer as soon as the data coming from both producers arrive. ← example of logic
that can be implemented by the shell.

The only triggers to communications and interactions are stop and void.

What if Producer 1 and Producer 2 are faster than the consumer?
This would be an avoidable case, in fact if this is the situation, something in the design has to be changed to
slow down both the producers or to make the consumer faster.

In any case since we have independent of delays, the effect would be that we would backpressure both P1 and
P2, then make them go faster when the consumer is ready and then backpressure again.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

LID and DVFS are approach for optimization, both can be used but they work at totally different levels: LID is at
architecture level while DVSF is at hardware level.

DVFS: it’s the dynamic control and scale of voltage and frequency. If I reduce the frequency I’m imposing “less
switching” so less dynamic power consumption, static power consumption remains the same. The higher the
frequency, the higher the performance, the higher the power consumption.

For voltage, the higher the voltage the faster the circuit (I have and higher currents) but obviously I have more
power consumption.

Voltage and frequency are interconnected, if I lower the voltage, I’m slowing down the combinational path and
consequently at a certain point I have to also reduce the frequency.

Higher performance → Higher power consumption

DVFS is at single component level, at single component domain, while LID is at architecture level.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Components become stallable with this design approach.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We can stall the producer after the FIFO is full, we have a sort of feedback.

Basically we’re introducing a lot of pipeline stages.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

AXI uses LID.

Obviously, LID is not fully optimized, we must go to much lower hardware level to go as optimized as possible,
obviously full custom SoC we would have a much-optimized circuit.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

7 – HW/SW Codesign

Today SoC design is still a custom process. Reuse of IP cores/FPGAs, components that are used are
standardized, their production is still a custom design.

When we go to the verification part of the SoC, still is a full custom design. We’ll focus on HLS, it is not used in
industry, but we still need the medium-term part, the optimization is still in custom. I have my platform which
is the best choice, how can I automatically map the parts of the circuit. CAD tools are methodologies,
algorithms and GUIs to accelerate and enable the electronics design.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Cadence and Synopsys produce tools for circuit design, while Xilinx (AMD) and Altera (Intel) are the leaders for
FPGAs design.

Research is trying to further explore also for optimization automation

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Columns

1. Infinite number of multipliers and adders → we want to fulfill the requirement but we want to achieve
the same computation with the same constraints, but we limit the resources!

2. So the number of multipliers has been set to 4 to force the HLS to reuse the multipliers. → we have a
small critical path increase (but we’re still in the 10𝑛𝑠 constraint) but we reduced the size (we use same
clock cycles, we use more LUTs but much less FFs and shift reg)

3. We also constrained the number of adders → we still haven’t modified the code, we’re just constraining
the number of components that the HLS can use

4. If we tweak the numbers of adders and we obtain better results

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We’re not internals, there’s no logical reasoning with which we can understand a priori how the HLS engine is
working and how to set the correct constraints to obtain our solution, we must use a “trial and error”
approach.

Design Space Exploration: explore the many solutions obtained because there’s no global optimum or if
there is, it is unknown how to get there, so a trial-and-error approach must be adopted.

Genetic Hardware Space Design Exploration: machine learning methodology that tries to emulate the
biology of a set of individuals, so like in the process among generation, the quality of the genies is increasing or
increasing is coding solutions into individuals and then implement crossover and mutation operations to

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

obtain children from parents, where presents are old solutions, children are new solutions with the idea that
by the idea that exploring mutation and crossing we have an improvement of the solution, generation by
generation.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The complex part is the computation and choice of the fitness function, and we want to produce a design
space where we can implement different solutions, that’s why also the synthesis needs to be optimized
otherwise we wait for a very long time because for every solution with every tweak, every single point of the
graph needs the synthetization, the computation of the constraints, the verification and the tweaking of the
parameter!

We’re going to drive the HLS to implement our design space exploration. We’re automating the design space
exploration but the problem is that the design space exploration is going to take long.

What we will do is apply and exploit models of the solutions in the DSE. We’re not evaluating the DSE solution
on the model and not on the finite device.

• SPARK: ambient for manual optimization

The parameters that have been analyzed are

• Area optimization (LUTs, FFs…)
• Timing optimization, number of clock steps

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

For all the solution we can’t find a point where I both have AREA and TIMING implementations. What we’re
seeing is that manual optimization is not obtaining the best results.

What we cannot say is if the points are a local minimum or the global minimum of the constraints we are
evaluating, we do not have a precise criterion to stop the evaluation.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Given all the possible solutions using HLS, HLS optimization, automatic optimization of the HLS process and
choice of parameters, the first short-term point of the roadmap can be fulfilled, it is possible to automatically
optimize the single component into an architecture. How to compose my architecture, how to decide which
are the best components and which is the best partitioning and mapping of the tasks of the high-level
functionality into the underlying component (FPGA, ASIC…).

The question at which the designer must answer is: given a particular platform, with a CPU, a GPU, a FPGA,
which is the best way to partition the applications and to schedule and map them onto the architecture?

We have three high-level tasks, A and B are producing tokens, whatever tokens mean, and C requires 200
chunks of data and 150 chunks of data from B in order to be running and upwards we see the architecture.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We’re looking at how to map and schedule tasks on top of an existing architecture. The architecture
constrains, two CPUs, an FPGA and a shared memory.

A first solution might be run task A in CPU0, task B in CPU1, task C is CPU1 but before running task C the data
produced by task A must be moved through the BUS to CPU1, we’re not taking into account memory access
etc. so task C can start as soon as task B finishes and the data is transferred to CPU1. This would be a full
software approach, figure on the top left.

Another approach is accelerating task B and task A into the FPGA, so let’s say that the duration of task A and B
are shorter than the blue versione because we have an hardware accelerator but the data transfer takes longer
because we are moving data from an FGPA to an external circuit, so we need external arbitration between the
components. It’s faster than full software. We’re executing everything fine and fast.

oss: the top dashed line is the maximum load that can be applied to the single component

In the solution on the bottom left we see that the computation is very fast and the data transfer also, because
everything is in the FPGA, but the problem is that we go over the maximum resources of the FPGA, so it’s not a
feasible solution.

On the bottom right we slow down the computation of C but still is faster than the previous ones.

So when we’re mapping and scheduling a task on an existing platform, we need to know a lot of details, not
only on the underlying platform (how many resources does the FPGA has? Which is the working frequency of
the processor? Which is the speed of communication?) but also on the high-level functionality that can be run
on hardware on in software. What we need is an even more complex software environment which is able to
implement an optimal model or architecture, profile the requirements of our application (like how much data
is required or how much data does it produce, which are the interconnections among the applications) and
based on this profiling we obtain software and hardware implementations, several solutions for our hardware
platform and several solutions for our software implementation and then we need some environment that is
still not there (this is a research field) where we can profile and study the quality of our mapping in scheduling
over the platform that we have. We try to identify a local optimum.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design space exploration can also be applied to scheduling and mapping.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

8 – Dependability

The added information is taken from this paper

Dependability: system property that integrates such attributes as reliability, availability, safety, security,
survivability, maintainability. It’s the ability of a computing system to deliver service that can justifiably be
trusted.

The basic attributes of dependability are

• availability: readiness for correct service
• reliability: continuity of correct service
• safety: absence of catastrophic consequences on the user(s) and on the environment
• confidentiality: absence of unauthorized disclosure of information
• integrity: absence of improper system state alterations
• maintainability: ability to undergo repairs and modifications and easy maintenance

→ confidentiality, integrity and availability together are security

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
https://studylib.net/doc/18193164/fundamental-concepts-of-dependability

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

It’s important to remember that a single system failure might affect a large number of people

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design standards: every single step has requirements for implementation and specific constraints to respect.

Ex: in the ISO 26262 has specific requirements for power dissipation, how to refine requirements, how to
implement behavioral and RTL description, in order for it to be certified. If the system is not certified it can’t be
implemented for user ended user.

Ex: when compiling a software we have to use certified compilers.

Companies are forced to use standards and at the same time any company is trying to push the standard in
their own way of implementation. Standards are time consuming but standards are very detailed and is
interesting read them and understand how to implement them into your own solution.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Ex: we must implement a processor that has to be implemented into a satellite, then we have to respect 𝑒𝑥
the radiation requirements and we test our hardware in such conditions and we verify how many faults,
incorrect results we obtain in such conditions.

So we analyze and then modify our system based on the results of the previous test. Often also fault
simulators are used to understand how weak and where our system has problems. We perform 𝑒𝑥 radiation
test and then we emulate the faults. Then we understand where we have fault, which component has faulted
and how we can handle the event.

Where do we apply dependability

Safety critical systems are systems whose failure is going to harm or damage human lives or the environment
𝑒𝑥 trains, nuclear power plants, automotive related applications…

Mission critical systems are systems whose failure is not going to harm human lives but the critical part is the
mission himself.

𝑒𝑥 consider the drone that is going to lend on mars and going to send pictures, then it’s mission is the objective
himself. If a fault halts the systems or makes it uncontrollable for one minute I’m going to loose the control and
the mission is going to fail.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Not critical systems that are systems that are not critical nor for environment nor for human life but still needs
to be reliable.

Every single aspect of this stack has to be reliable, so

Fault, Error, Failure chain:

• Fault: occurs in the system due an internal/external condition in the system.
• Error: event that occurs because a fault happened and has propagated within the system. Part of the

system state that may cause a subsequent failure.
• Failure: the system fails because it couldn’t handle the fault. A failure is an event that occurs when the

delivered service deviates from correct service, so the system stops delivering the system function. A
failure occurs when an error reaches the service interface and the alters the service.

Oss: the user that applies a certain action is not to be considered in this evaluation, otherwise we’re
considering the user as part of the system.

Not all the faults become errors and not all the errors become a failure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So the error is non propagated (or is absorbed)

So we can work at two levels

1. I can work with failure avoidance, so we put in place several
cases that allow the system to avoid, by design, fault, errors and
failures

Infant mortality: accelerated stress test, burn out test… I expose the
system to more radiation/heat/voltage with respect to the one with
which is going to work and we stress test it to see how it performs at
its boundaries.

We have to think and implement such systems like
online monitoring, diagnostics and self-recovery and
self-repair.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

I can work at single component or technology level, to avoid faults up to a certain probability, maybe I might
use older but more resistant standard cells, the larger and slower the cell is the more reliable it is or maybe I
could use special purpose packaging, by spending more I could have more resistant wires etc.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So to implement dependability components that work normally must be integrated with systems to manage
the occurrence of failures.

Here we can see listed the main dependability implementations appliable via architecture-level hardening
through space redundancy. The idea is

replicating the entire processor and checking or voting on outputs to ensure reliability

Fault detection approaches

Fault detection techniques aim to identify errors during the process but not necessarily correct them. The goal
is to detect inconsistencies so that corrective action can be taken.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Fault tolerance approaches

Fault tolerance techniques aim to not only identify errors during the process but handle and mask faults,
allowing the system to continue functioning even in the presence of errors.

Lock-Step dual processor: two processors execute the same instructions in perfect synchronization, cycle by
cycle. Both processors receive the same inputs at the same time and their outputs are continuously
compared. Any mismatch in the outputs flags a fault.

✓ High accuracy in fault detection
 High resource and power overhead
 No fault tolerance, so once a mismatch is found the system must halt or switch, it cannot handle the

fault

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Loosely synchronized dual processor: two processors execute the same code but are not tightly
synchronized, so they may be offset in execution by a few cycles and periodic comparisons are made.
Differences in the results or state between the two processors indicate a fault.

✓ Lower overhead than lockstep
✓ More flexible timing and reduced complexity
 Increased detection latency
 Harder to pinpoint the exact cause of divergence

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Watchdog/Checker processor: the idea is implementing a secondary, simpler processor that monitors the
main processor’s activity. It checks timing and controls the flow of the main processor. It may also use
software-based checksums or timeouts. If for some reason the main processor behaves abnormally (crashes,
freezes or has wrong timing) it detects it and stops the execution.

✓ it’s simple and cost effective
✓ can detect control flow or timing faults
 it doesn’t verify actual data or results
 has limited detection coverage

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Triple Modular Redundancy: three processors execute the same task in parallel, a majority voter chooses the
correct output. They all run in parallel, the outputs are compared at each step and if only one differs the
majority output is taken as correct. It can obviously tolerate a single faulty processor.

✓ Seamless fault masking, if a fault happens it is automatically resolved via the majority
✓ No disruption of outputs during faults
 High hardware and power cost, the overhead is at least tripled
 The voter circuitry must be fault-free and protected

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Dual lock-step architecture: it combines the lock-step fault detection with redundancy for failover. So the
two processors in lock-step detect the faults and if a fault is detected the system switches to a backup lock-
step pair or continues with the healthy unit. So the action is detecting faults in the primary unit and switching
to the secondary.

✓ both detection and recovery
✓ suitable for high-reliability systems (like safety-critical systems)
 requires multiple processor pairs
 more complex control and synchronization logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

9 – Advanced Dependability

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The idea is classifying results based on the application we have to perform

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

TRC: two ray check, it’s a classical pixelwise operation

Let’s see one of the applications

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

4 stages pipeline for model identification, the idea is doubling the layers and substituting with a smart checker,
when smart checker rises an alarm then we have to solve the fault, only under single fault situation.

If the two replicas are exactly the same no fault occurred, so the CNN isn’t activated, while if the two outputs
are different, CNN is activated and executed. It’s like a two-rail checker but uses a CNN.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

𝑓𝑛 : is a filter

𝑐𝑏𝑛: control block

in our case it is a small replication of the filter plus a smart checker

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

we are losing detail in the replica because it is used just in the checking

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

10 - Introduction to High-Level-Synthesis

The basic idea behind HLS is to design a component in the simplest way from the hardware and functional
point of view. The design is very complex because hardware design skills and knowledge is required. This
constraint significantly limits the number of people that are able to design an HW accelerator. By raising the
abstraction level needed to design a component, it is possible to have more people able to design and
implement a hardware accelerator.

If we could have a method to pass from a high-level software description to implement it in hardware it would
be a great advantage. By raising the abstraction level we can think about the functionality at software level, so
that modelling and executing the system more easily. This reduces the development time and simplifies code
review.

Another advantage is that specifications can be decoupled by the synthesis, because specifications are
technology dependent while the function synthesis is independent from the technology, the component can
be designed with a specific functionality and can be implemented with different performances based on the
technology used to implement it.

ex: I have to design a cryptographic accelerator and I want to implement it in FPGA because I want to integrate
it into my system for video processing that uses an FPGA or I want to create and ASIC for a smartphone.
Conceptually the design is the same, what changes is the implementation. If we design it in hardware maybe
we must design it twice, once for the FPGA once for the ASIC, while if we have something that does it
automatically, we can just describe the functionality once and then it’s done automatically for the two different
technologies.

Based on what we want to implement in hardware and what in software, if we have something that can allow
us to do this exploration at high-level it would allow to evaluate more solutions. If we don’t have something
that does so automatically, we must do the hardware design, then implementation, then see which results are
obtained. If the performance isn’t as good as we want, the component must be redesigned, it must be
optimized and implemented again. If the bottleneck was somewhere else, the entire process must be

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

repeated. If there was a toolchain that does it automatically then testing can be much quicker, it would still
take time but would be much faster than re-doing everything “by hand”.

Here we see the abstraction levels for FPGA design.

The horizontal line indicates a change of language domain: in the upper part we have a software description
while below there are Hardware Description Languages.

If we go from the bottom to the top we’re raising the abstraction level.

At the structural level we have a lot of details, we have both the complete description of the circuit, of the nets,
of the timing and of the power consumption of the circuit.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

In general, what we want to do is something that first we spend a lot of time to verify that the synthesis is a
component in system, that must communicate with something else, so we have to correctly implement the
interface synthesis in parallel with the algorithm, so we have to separate the interfaces that we may need from
the algorithm. The more we know at the beginning of the synthesis, the more we can optimize it. The interfaces
might take more power and more time than the algorithm, so it makes no sense to write a very optimized very
fast algorithm if then the bottleneck is on the interface.

oss: the code that is generated is the RTL one, so it has specific timing behaviors and logic nodes.
oss: the RTL that we generate is technology dependent because timing and power are technology related.
To implement via HLS we have to first understand which function to synthesize, how can we implement it,
what is the specific functionality of the accelerator and what is the evolution of the data.
Remember: for the same code we might generate different implementations.

as we see, HLS and logic synthesis are at different level, but this doesn’t mean they don’t exchange
information, they can exchange if through the same parameters or through protocols and information etc.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

HLS is something automatic that must implement the intuitions that a hardware designer knows. Since it’s
automatic, it’s obvious that an expert HW designer will implement probably a better RTL design but still it
would take a lot of time and very advanced knowledge.

oss: HLS tools use methods of optimizations but since they’re standardized probably there would be a more
optimized way to implement it, so that’s why the role of the hardware designer is still important, because it
implements the sort of necessary optimizations.

here we can see three approaches:

1. the operations executed sequentially
2. implementation with some parallelization
3. complete parallelization

it’s intuitive that a tradeoff between time and resources exists.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

by using HLS we obtain multiple design runs, we have to choose the one that fits our solution more and avoid
the ones that don’t.

ex if we have the last upper green dot (that is one implementation) why would we need the red ones? we won’t
use them since we have an equivalent implementation that is better

Why did Generation 2 fail?

• Its target was ASIC design, but ASIC designers have very specific and very highly requesting constraints,
they needed extreme efficiency. Implementing a tool that could perform under such constraints was
hard.

• It started from a behavioral description, thus VHDL or VERILOG code was needed and so all the designs
were complex and slow.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

we can have in our synthesis tool input descriptions, additional functions (synthesizable functions) so
functions that can be implemented in hardware and implement an optimized RTL code.

it is a complete system to replace the steps of the hardware design.

So let’s say that we want to test the logic that we implemented with the high-level code, Vivado gives us the
possibility of just using C test benches, we do not have to write a Verilog test bench that would be very long to
write. So we have our high-level description, then with a C testbench I verify if the functionality is working well,
then we generate the RTL and by using the same C inputs and testbench I verify if I obtain the same correct
result that I obtained before in the functional verification. If we have co-simulation errors, then the functional
implementation we made is incorrect.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The HLS flow must be imaged as operating per functions. A function in the original C code is a hardware
module after HLS, a function containing another function is a module with a submodule. The important part is
taking a function, the control and the dataflow are taken from that function as it is. If we enter a subfunction,
the way in which HLS behaves is the same.

example: in software the code is executed. When a function is reached a CALL happens and the control goes
to the execution of the subfunction. After the end of the subfunction, the control turns back to the main

function. In HLS conceptually it is the same, the hardware execution is started, a point where the submodule
starts is reached, the control goes to the submodule, the submodule evolves and then it comes back. There is

no parallelism in HLS, even though there are cases where execution can be partially parallelized and can be

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

overlapped. Usually that is what happens in the analysis of the accelerator, where (maybe) load, compute and
store are decomposed to parallelize execution.

When we are working on a function, in any case we must understand how control and dataflow are translated
in the architecture. In HLS, this is done through two steps: scheduling and binding. Scheduling is about how
timing is managed while binding is about how to allocate the available resources.

How the design is created must be created, so what is the correspondence of a function, of an array, of a loop,
to hardware, how these elements are translated in a way that is coherent with what we want.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

here it is decided how the resources of the FPGA/of the accelerator that we have are given for the specific
function.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Remember that high level synthesis is a static generation of hardware, so we can synthesize what we know at
compilation time.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

First, we need to identify the operations that can be executed in the same clock cycle and we can also
determine which parts of the code are never executed at the same time, this is very important for
𝑖𝑓, 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 statements. Then we may want to optimize loops, in fact we optimize across the single operation
but also for loop operations. In general, scheduling is the first step. When we are satisfied by performance and
latency we optimize the resources used, eventually coming back to the possibility of changing the scheduling
if the specific requirements aren’t met.

11 - High-level functionality description

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So the HLS problem starts from an intermediate representation of the functionality that must be synthesized,
so we need to generate something in a representation that is hardware oriented that removes some details of
software and that is as independent as possible from the input language. We do not care about the details of
the single input language, but I want to extract the semantics, the dataflow and the control flow. Then,
understanding

• what are the units
• which are the delays
• which constraints for area and performance optimization

is necessary.

To define more formally we can consider the organization like this:

• Datapath: part that takes the input data, performs the operation on it and considers both memory and
interconnections between submodules.

• Controller: companion module that determines the control signals like “when we accelerator starts?”,
“how does it acts? When?”. This is typically implemented with a finite state machine.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

An intermediate representation is an internal format that is extracted from the code used to represent a
functionality to be synthesized.

Ideally what we want is

represent the functionality of an algorithm

generate the accelerator for that specific algorithm

but the way in which that algorithm is written has no impact

 This is really a strong assumption and achieving it is very hard for a couple of reasons:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

1. when we abstract the details, obtaining a representation independent of the code that is written means
finding a canonical form that representation.

2. we must map all the physical resources, that add some constraints ex: an addition is an operation
between two operands

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

A basic block is a piece of code that has a single entry-point and a single exit-code, without any jump in the
middle. Every time a basic block starts it must be completed before passing the control to the successive one.
Since all the operations of the basic block must be executed before moving to the next one it means that I can
imagine my accelerator as a component executing consecutive basic blocks, it makes no sense to extract
parallelism between different basic blocks since when executing one, the others will be unknown.

If the problem is the other way around parallelism can be implemented and we would like to extract is inside
the single basic block.

We might think that expanding as much as possible basic blocks could be an idea for implementing
optimization. The drawback is that the problem is much more complicated because a basic block might have
thousands of operations inside it.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The first transformation that can be done is thinking a way to find a canonical form for the control constructs.
we might do so by

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

SSA is a representation that transforms a single piece of code into one where every variable is created only
once, every time I have a new assignment I have a new variable. The advantage of this representation is
immediately identify which is the defining statement of each variable. Each variable will have a definition set
and the uses. If I have a variable that is created but never used, I can eliminate it.

This is another implementation of the canonical form.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The dataflow graph describes how the data flows from the input to the output.

Dependence: if the target is using a value that comes from the result of the previous operation, we have a
dependence.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

every time the code is written for HLS we have to add a label to the loop so that it is easier for HLS debugging. If
we don’t specify labels, the tool will internally assign labels and at a certain point.

Loop unrolling: we explicit each iteration

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Since the memory allocation and variable allocation comes from the compiler, the HLS automatically
assumes the same bit width for each datatype as defined in the CPU version. In hardware it is better
constraining the dimension of each type, to reduce weight in the hardware implementation. It is convenient
consider for a first implementation the same precision in hardware as in software, then customize the specific
datatype and signal to a lighter version with reduced width. In HLS there are specific libraries to define
variables where we can specify the bit width.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

recall

• parameters passed by copy: passing a parameter by copy in C means that when an argument is passed
to a function, a copy of the argument value is made and used inside the function, so a new variable in
created in the function and is initialized with the value of the argument and the original variable in the
caller is not changed. → converted into input ports connected to the registers of the CPU

• parameters passed by reference: passing a parameter by reference in C means that the address (so a
pointer) of a variable is passed to a function, so that the function can modify the value of the original
variable. → converted into memory interfaces that access an external memory from the component

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Preserving the semantic of the functions means that when we start a function we might pass some values to it
and we expect to get a certain result.

(chiedere esempio della funzione che restituisce due puntatori)

During the scheduling phases we need to make assumptions on the duration of the operations, for
arithmetical operations that’s easy because the duration is specified from the library that implements, while
for memory operations that’s much harder because if the data is local (inside a PLM) the assumption is that
the memory can be accessed in a fixed number of clock cycles, while if the data is remote we don’t know if and
when the data is ready or not (in the sense of number of clock cycles obviously).

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

12 - Scheduling and Binding

Binding: association of the single operation to the real functional unit.

Temporary values that have to cross multiple clock boundaries have to be stored and assigned to registers etc.

There always is a naïve solution: if we do not care about parallelism, I could assign each operation to a
different clock cycle, obtain a feasible but not optimized solution.

Also for binding we can assign each operation to each functional unit and each temporary value to each
register, so we do not implement resource sharing, and we avoid conflicts. Obviously, this is not the target of
binding, since the goal of binding is trying, wherever it is possible, to reduce the hardware resources by

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

exploiting sharing resources. Usually it is implemented after scheduling, we decide which operation is
executed at each clock cycle and then we can decide and determine if they can share resources. If operations
are assigned to the same resources but they’re executed in mutual exclusion for sure there won’t be conflicts.

It can also be executed before scheduling: we can preassign the operations to the units that we want and then
determine the order of the operations that respect that assignment, this means that if two operations are
assigned to two different resources, between those two operations there’s no conflict and so we can execute
them in the same clock cycle, but otherwise if for any reason they are assigned to the same resource it is still
possible to execute them but simply they can’t be executed in the same clock cycle, they have to be serialized
and the problem is choosing which one to execute before and after.

It’s a general problem in operational research, we have a job, and we have to determine the resources and the
order of the jobs to respect the constraints that we have.

Resource sharing is the possibility to exploit or use resources when they’re not used by other operations. They
can be extracted before or after scheduling based on the scheduling.

If I preassign the binding, the operations that share the same resources cannot be executed in the same clock
cycle and must be serialized, so we have a constraint on the scheduling

If I execute the binding after the scheduling, we execute it on the schedule graph, that is a graph that contains
information about the scheduling. At that point, if two operations are not executed in the same clock cycle
they can share resources, not that is mandatory but that can be implemented.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We cannot find an optimal solution in polynomial time, the input is an intermediate representation that comes
after the compiler transformation, it describes operations to be executed in the functionalities and the
dependencies that must be respected. The other information that is important is time dependencies and
target technology.

First, we need to generate the hardware so that we know what is going to execute the operation, we need to
know the hardware latency for each operation in that technology. Remember that we are talking about
allocation in time, so during scheduling I am still not interested in the cost of the operation.

This is independent of the clock period, because clock period and frequency is instead a property of the
design. This is connected to the technology, because the maximum constraint is set by it, but we can also have
with the same technology different target frequencies.

Once we define the target frequency, we can determine the time budget for each clock and combined with the
latency of the functional unit we can determine the real time latency for the scheduling problem of each
operation assigned to it.

ex: my unit will take 7 𝑛𝑠 to execute, and we know that if the clock period is 10 𝑛𝑠 we need just one clock cycle
to execute that operation, but if the clock period is 5𝑛𝑠 we need at least two clock cycles to execute it, at the
end of the clock cycle I still do not have the stable result.

Another important consideration is that the clock cycle is 𝑥 time, but the delay of the unit is not the only delay
that we must consider. The clock period is the time from the output of the register to the input of the target
register, but in the middle (apart from hold and setup time that can be considered small) we do have
interconnections, multiplexers and if we go to ASIC where also the wires have delays, we might also have line
propagation delay. So we might have a certain clock period but usually we must keep a margin for our unit,
otherwise we might have timing violations.

ex: if the unit is 6.9 𝑛𝑠 is very risky to have a clk period of 7 𝑛𝑠, it’s better to add margin after each unit or we
take into account during the binding so we avoid sharing (because mux introduce sharing) so we have to take
into account that for the scheduling of the device.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The output of the scheduling is determining the starting time of each operation, then we have the start time
of the operation, the latency of the unit, the clock cycle duration and we can determine at which clock cycle
the operation terminates, note that it’s just a consequence of the start time, so the only information we really
need is the start time, and we can do so by choosing the appropriate dependencies and start time.

The start time of the previous operations are important because it sets the timing dependencies, based on
combination of clock period and latencies.

If an operation starts before the end time of another operation it violates the timing constraint and it’s a bug of
the design.

So the scheduling is time oriented but can also control area and latency exactly with this idea of playing with
the constraint of the resources.

Scheduling has a directed dependence on the performance of the circuit, because it determines the timing
evolution of the circuit, so I describe cycle by cycle what operations are executed and so I have a direct impact
on the latency, because I determine when the last operation completes, and also on the throughput, because
if a part is pipelined we can determine after how many cycles can I start that operation (initialization interval).

The indirect effect is on the area, because if I put operations in the same clock cycle I’m forcing them to be
executed in different units, so I must introduce a mux and add additional resources.

If I determine a certain number of operations to be executed in the same clock cycle for all the cycles, at a
certain point, for each operation type I will understand which is the maximum number of parallel operations in
the same clock cycle, I need at least 𝑛 adders to execute 𝛾 operations in parallel. The maximum number of
operations in the cycle determines the minimum number of units needed for that cycle.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

There are three possible approaches

lower bound of clock cycles: I parallelize everything so I can’t get nothing better than this, obviously this
would take an “infinite” amount of resources, the only constraint that forces us to serialize is the data
dependencies

resource constraints: in each clock cycle do not use more than 𝑥 adders, so I will assign 𝑛 to that cycle and 𝛾
to the others, i’m implementing serialization. I have under control the number of functional units, this is
specially important for expensive hardware resources, like floating point units or multipliers.

timing constraints: I want real-time scheduling so in a certain deadline I want to have the best use of
hardware resources out of this

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Linear programming and Integer linear programming: I can determine the variables, that are the assignment of
operations in the clock cycle and the constraints are the one related to the dependencies. The start time must
be

𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛

The problem with NPR problems and exact formulations is that they are good but they do not scale well,
because the number of variables and constraints is growing exponentially with the number of operations and
with the number of units, it is feasible for a limited number of operations, then I have to approximate with an
euristic approach, so practically using some sort of approximation.

meta-heuristics: this category includes all the methods that use design-space-exploration to determine
variants of the implementation.

The major difference between the first categories with respect to the last:

• heuristic: based on the algorithm it generates one and only one solution
• meta-heuristic: they explore many solutions and select the better one

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

simplest solution because the principle is not considering constraints and as soon as the operations can start
because the predecessors have been completed, the operation can start, we never postpone.

Since I assume that all the operations have bounded latency, once I determine the start time of all the
predecessors, I can immediately compute the starting time of the depending operation.

The asap scheduling has a linear complexity, I need as many iterations as much are the number of operations,
in each step I can assign an operation in time. We are not considering constraints on area and latency, but this
gives us the lower bound of the timing constraint, we know that the circuit can’t go faster than the ASAP result.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

All the operations without input dependencies can start immediately and then I build the graph based on the
dependencies. Once I have a node, maybe the source node, I can order the nodes in a way for which given a
node, all the predecessors are before it in the list. We can create levels, so I execute the nop, then I can
execute all of the multiplications/adders…

How can I compute the start time of an operation? The start time is the maximum end time of the predecessor.

How can I compute the end time of an operation? It’s the start time plus the delay.

We have all the information now ↓

The ASAP determines the maximum latency.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

I assume a certain end time and then I assign the operation as late as possible, basically you have a deadline
and you can’t postpone more than a certain time. I have constraints on delays.

I start from the back and I go upwards

6 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑚𝑒𝑎𝑛𝑠: lower bound given by the ASAP and then I go backward. Obviously, operations are
scheduled at zero.

In the ASAP approach I’m pushing to the top the operation, in the ALAP I’m pushing it to the end.

now I can compute the 𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mobility: difference between the start time in the ALAP and the start time in the ASAP. Once I have these two
values I can obtain the mobility, that is a number equal to 0 when 𝐴𝐿𝐴𝑃 = 𝐴𝑆𝐴𝑃 otherwise if I obtain a value
greater than zero then I can postpone a specific activity and still hit the deadline.

combined results: where I have 3 I can delay that specific operation of three cycles and still respect the
deadline.

These information are useful because I have to concentrate more on the operations with 0 mobility and then I
can work/delay on the others.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

ex: by the results we obtained, we know that if we want the ASAP result we need to have at least four
multipliers, while if we want to reduce the number of multipliers we can concentrate the resources on the
operations with 0 mobility and delay and serialize the one with mobility greater than zero and maybe use less
multipliers without changing the number of clock cycles

We want to try to find a tradeoff between reducing the latency and using a constrained amount of resources.
Maybe we want to minimize the resources without considering the latency so we find the minimum with
resources, or we may minimize the latency with bounded latency, we ask if by scheduling differently we can
obtain a feasible solution.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

When we have the possibility to choose an operation, we select the operation to schedule based on the
mobility and on the criticality, criticality that is the inverse of the mobility, because if an operation has lower
mobility that means that it is more critical. It doesn’t guarantee the optimal solution but is linear and in general
works well.

How can we take into account the constraints? We create a priority list for each of the operations, we create a
list for each of the resources then we order the list by their priority, we can have operations with higher priority
first, so with the lower mobility first, then we assign the operation to the current clock cycle if the unit is ready,
and if it is we take it from the list and we assign it to the resource and remove it from the list, so we schedule
the operation and we know that we can compute start/end time of that operation, and I repeat this process
until I complete the list.

The general problem of this method is that we compute the mobility, we assign operations, but if I take the
mobility as a static value I can have the problem of stallation, so the intuition is that if we go to the next clock
cycle we need to update all the mobilities, because if an operation hasn’t been scheduled it has one less clock
cycle to be postponed. For “our” activities is clear, if I have 7 days to complete a 6 day activity I have 1 day of
slack, but if after one day I don’t update my mobility I still believe that I have one day of slack but that’s not
true, after one day of stall I have 0 mobility.

If an operation has negative mobility I already know during the schedule that it introduces a delay to my circuit,
because it has already passed.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

ASAP and ALAP are not changed after cycles, what I change and update is the mobility.

What are the possible challenges for scheduling?

First we have to remember that delays are given by the functionality, this means that an operation can
complete in one or more clock cycles depending on the clock period, they cannot take less than one clock
cycle but if I have two operations that are depending on each other (like expensive operations plus a not
expensive one ex multiplication and shift) technically, with the definition that we’ve seen before, the shift will
start in the cycle after the multiplication has completed, but this is a special case where if the combined delay
is less than the two clock cycles, what happens is that the multiplier+shift will be able to complete before the
end of the clock cycle, but to do so I have to connect one unit to the other.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

This optimization of not connecting unit-register-unit-register but unit-register-unit-unit-register is called
chaining

Pipelining gives the possibility of having another approach because I can start the new operation even if the
previous hasn’t completed.

Another case is when I need external resources, so like informations that are in an external memory, so I need
some synchronization signals.

Unbounded operations: operations for which we can’t know the exact number of clock cycles/delays needed
because maybe they depend from an external source, so here we implement synchronization protocols and
we keep the FSM in the state of waiting for the needed resources.

Resource binding is the assigning in space of the operations and resources, we want to decide what physical
resources will be used in the design, how many and then the specific assignment

The idea of resource binding is that it will be better than the naïve solution of assigning each operation to one
unit, at that point we don’t need any binding, we don’t need any special attention for the binding, these are
independent units and just have to be connected, but most of the time this is a waste of resources. So the
basic idea is to assign one unit to more than one operation, we have a decision to make.

Everything is more complicated than what it looks like because we have to assign resources to each operation,
but we have to assign also temporary values to registers, once we do this we might search for a more
convenient binding. If we do a better assignment and a successive cycle another assignment is performed to
another register I don’t need the multiplexer because that resource is always connected to the same register,
while otherwise I need a multiplexer. In general this is a resource constraint problem, especially in the case of
circuit dominated by resources where I have many operations, correct binding becomes critical.

So we decide a certain type of resources based on the binding, then we decide the number of resources. We
already know how to compute the absolute minimum number of resources needed, then we evaluate if more
are needed or not.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

So the input of the problem is the graph that is coming out of the scheduling, so the concurrency of the
operations is already defined.

one approach to try to reduce the complexity of the problem is dividing in subproblems and considering for
each operation the possible binding. Obviously, it makes no sense to try to bind operations that are concurrent
and operations that need different resource types.

We analyze each kind of operation, and we establish if the operations are

• compatible or in conflict: these two properties are mutually exclusive

to be compatible

• two operations are of the same type if they use the same resource and so they can be analyzed in the
same subproblem

• they must not be concurrent

if we try to negate the condition, to obtain non-compatible operations, since it was an and it becomes an or, so
to be in conflict it is enough that they are concurrent or if they are of a different type.

So once we performed this analysis we can start building two graphs, one of which is the compatibility graph,
graph where all the nodes and all the vertices represent the operations of that type and the edges represent
compatible operation pairs

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

finding the best solutions requires to minimize the number of cliques but also having less cliques means many
more operations in the single clique

once I have the compatibility graph I can always make the dual graph, that is the conflict graph, that is the dual
graph in the sense that the nodes are the same and the edges are complementary. If there’s an edge in the
compatibility graph there’s no edge in the conflict graph, if we don’t have an edge in the compatibility graph I
need to represent an edge in the conflict graph.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

12 - Microarchitecture Creation

Controller: determines the evolution over time of the FSM

Datapath: connection of resources with the outside world, in detail memories and other devices

Since scheduling has been performed, for each operation it is defined in which clock cycle it will be computed.
So the controller is implemented with a Finite State Machine:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

States in the FSM are serial. The number of states is equal to the number of cycles that are necessary to
perform that operation. For each basic block that has been identified each state is connected to the state that
corresponds to the next operation.

ex: if there’s an 𝑖𝑓 statement there will be a block for the 𝑡𝑟𝑢𝑒 statement and for the 𝑓𝑎𝑙𝑠𝑒 statement. So the
last block of the 𝑖𝑓 statement will be connected to the first block of another basic block

The FSM is implemented with a 𝑛𝑒𝑥𝑡_𝑠𝑡𝑎𝑡𝑒 function and a 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑐 function. The 𝑜𝑢𝑡𝑝𝑢𝑡_𝑙𝑜𝑔𝑖𝑐 represents
the outputs assigned by each state, which are dependent on the operation that is being conducted.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Datapath: is the portion of the microarchitecture dedicated to the connection of all the units. Functional units
that execute the operations must be instantiated, then registers are added to save the intermediate values and
wires and multiplexers to connect all the blocks.

Since the output of a specific unit is the input of another unit, but the port of a unit might have more than one
source, a corresponding number of multiplexers is needed to drive the signal. An equivalent input computation
is performed to estimate the total number of multiplexers: if 𝑛 sources must be connected, up to 𝑛 − 1
multiplexers might be needed.

Memory usage in software is for storing bits, once we have data we have a lot of pointers.

Why and when use pointers?

• computing offsets
• dynamic resolution of addresses, because maybe I don’t know in advance what the target array is
• access to an external memory or external resource

In this slide a complex accelerator from the memory point of view is shown: a top function at which
parameters are passed as pointers, then there are local variables and then there are four submodules that
exchange data and results through the external memory. A memory interface and configuration registers are
shown.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Through system c it is easier to define dimensions of memory locations and signals. We’re writing software but
at the same time we are doing hardware design and we’re defining logic

The pointer is the address of an element in this unified space, any operation on the pointer is an operation in
the relative memory location. We don’t use pointers or addresses for architechtural elements

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Pointer encoding in hardware is very complicated, let’s understand why. Let’s consider a pointer that

• interacts with a single memory location → it can directly be connected to the memory location
• interacts with multiple memory locations → all the memory locations that are pointed by the pointer

must be connected

the problem is creating an efficient logic to evaluate and route and connect all the cases. In hardware,
everything must be defined at compilation time and the designer must control where the data is stored. Once
the memory space needed by the accelerator is determined, the required memory space must be partitioned
in physical resources. These resources might be inside or outside the accelerator. During synthesis the
memory units are connected to correctly store the data. The problem with pointers is that pointers must be
able to access any variable, no matter where their information is available, pointers could refer to anything in
the memory space. In software pointers dynamically change the object at which they point, in hardware it
would require the implementation of logic to read the whole memory.

Arrays can be translated by allocating memory resources or register files, then the logic to read the data must
be generated. Virtual addresses in software must be translated into specific memory resources operations.

An approach to solve this design issue is the daisy-chain architecture for pointer arithmetic:

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The basic part of this structure is an internal bus that connects all the memories, starting from the inner ones
to the outermost ones in a chain.

The outermost part that is connected to the system interconnect is the Memory interface, then deeper with
respect to the memory interface the submodules are connected with their own PLMs.

This architecture allows us to put a request on the bus while an operation is being performed, the state
machine of the controller will execute one operation per clock cycle, so it is guaranteed that only one unit is
writing on the bus. Successive requests can be chained.

Partitioning is then performed: each address pointed by the pointer will correspond to one and only one
memory location, it can’t be determined statically but it can be put on the bus and there will be one and only
memory location that will correspond to that request.

On the side of the memory identification is simple because it can be checked if the address on the bus is in the
range of the assignment:

• If it is, that specific portion of memory is selected to reply to the request and the output value is put on
the bus. Since a daisy chain of memory has been implemented, the request is performed, the answer is
received and all the pointers can be resolved dynamically.

• If none of the addresses responses, the data is not inside the accelerator, so the request is
forwarded to the external memory controller.

An approach to the implementation of the connection between memories has been explained, the question
now is how to create the local memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Let’s suppose that the 𝑃𝐿𝑀 𝑈𝑛𝑖𝑡 (𝐵0) must be
implemented. A library of modules to implement SRAM
memories is implemented and offers these options

• 1 ∙ 2048𝑥32 element
• 2 ∙ 1024 𝑥 32 elements
• 4 ∙ 512 𝑥 32 elements

What changes from the memory point of view?

There’s no significative difference since the memory
space is the same. What significantly changes is that
with a single element there’s a single port so the SRAM
can’t be accessed in parallel, while with 2 or 4
elements the port can be accessed. This is why
partitioning of arrays might be used.

The problem is, how do I assign the elements of the initial array to the new array? An access pattern must be
chosen.

Before choosing how to assign the data to the “new” module, it must be understood how data is assigned to
the first module by means of data unrolling. (let’s consider as an example a two SRAM module implementation)

1. pattern 1 (no optimization): if the first 1024 bits are assigned to the first memory and the other 1024
bits to the second one no significative advantage is obtained because two consecutive memory
operations will be insisting on the same block and the other one is inactive

2. pattern 2 – cyclic partitioning (optimization): the even bits could be assigned to the first memory
block and the odd ones to the second block, so that while one operation insists on the first block, the
successive insist on the second block and could be parallelized. This is called cyclic partitioning
because all the blocks are being used with a round-robin approach.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Obviously, this is a simplified case because the assumption is that operations are performed on the array in a
sequential fashion. The more regular the loop is, the easier it is to determine an optimized access pattern.

If the loop is irregular the access pattern becomes irregular and determining how to parallelize the access
becomes quite more complicated. One approach to irregular loops could be duplicating the data, so that one
access can be executed on the first block and the next on the second block independently of the position of
the data being accessed. The drawback is that to parallelize access, the memory dimension is doubled. This is
also the only available option when the access pattern of the loop is completely unknown.

Idea of Array partitioning: transformation of the array to create independent data structures that can be
accessed in parallel, exploiting more memory resources, so each substructure becomes a possible new array
that is mapped into a memory resource and the data is distributed in the way that follows the change of
indexes of the array.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The architecture must be specialized as much as possible. Through HLS the logic for the computational part is
created, but the creation of PLMs is still “handmade” because it’s a critical part that must be as optimized as
possible, even technology related optimizations must be considered and implemented.

In this slide are represented the two approaches to PLM customization:

• Performance optimization: the performance is optimized by assuming that the memory architecture
can always be generated in that optimized way. The HLS defines the accelerator logic and the possible
parallel accesses.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• Cost optimization: the assumption is that it will be possible to generate a memory architecture, always
able to sustain the accelerator performance. Is it always possible? Yes, by using buffers.

One PLM for each array, the index that is used to access the array becomes the position inside the memory.
The idea is that if two arrays that are never alive at the same time, they can reuse the same memory space.

The difference between the two approaches is that the memory is created to satisfy all the requirements and
then a single memory architecture is created for the entire system, in order to reuse all the elements and to
reduce as much as possible the area occupied by the memory.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design chain:

1. Design the HW accelerator, perform the HLS and Design Space Exploration to create the accelerator logic
with the specific requirements.

2. Apply transformations that are not technology aware like splitting and merging of data.
3. Local memory transformations, aware of the technology, to hit the required performance target.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

In this case it is not used the same memory space: data are alive at the same time but ports are never used in
the same moment in the same way. A ping-pong buffer is implemented:

• when 𝐶 is reading one memory location, 𝑃 is writing in another one and vice versa

they can be put in the same memory space to reuse the same ports and reduce the area.

Three arrays must be implemented with compatibility:

• 𝐴0 𝐵0 are address base compatible → can be placed in the same memory space (same for 𝐴1 𝐵0)
• 𝐴0 𝐴1 are memory-interface compatible → same data footprint after data allocation

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

How can we solve a graph like this? We can do basically clique partitioning?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

with optimization we can also reduce area by 50%

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Until now on-chip memory has been treated, now the off-chip memory problem, for large datasets, will be

assessed. As shown on in the slide, on chip memory could even be 1

16
 than the required off-chip memory.

This slide refers to a method of accessing memory where data chunks can be scattered across different
locations in memory but can be gathered efficiently when needed by the accelerator.

The idea is using equally-sized large chunks of data instead of using small memory pages, this mean that the
memory is divided into larger, fixed-size blocks. This makes memory access simpler and more efficient. Then a
small page table is implemented, because since the chunks are large and equally sized, the page table (that
is used to map virtual to physical addresses) can be small and simple. This kind of design reduces memory

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

management overhead, speeds up translation and data access and enhances scalability and performance in
multi-accelerator systems.

Both computation and communication problems must be balanced. It makes no sense to have a very fast
computation and not being able to transfer the elaborated data without bottlenecking the device. It’s a waste
of computational or communication resources.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

In this slide the “DarkMem” architecture is presented, this is an extension of a PLM design with fine-grained
power-control logic to optimize power usage in memory intensive hardware accelerators.

Two significative components are added:

• SMC (Scenario Management Control): identifies the current execution scenario based on the values
of the configuration registers and determines which part of the memory needs to be active.

• OMC (Operating Mode Controller): manages the SRARM operating nodes based on the signals form
the accelerator logic, it controls power-gating and mode-gating for memory banks.

This design enables dynamic, power-aware memory management by adapting SRAM power states to the
current processing needs, using two control modules (SMC, OMC), this results in energy-efficient memory
usage in accelerator-based systems.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

13 - Hardware security

Designing components is complex and often it is not necessary to redesign every component from scratch,
this is particularly important for steady devices that must be updated generation by generation.

ex: new generation of Iphone, we do not redesign every component, we extend only with new features, I do not
want to redesign an antenna device or usb-c handler. Most importantly I want to integrate components
designed by other companies, this is due the hyper specialization of components. There are few industries that
design the whole SoC while most of the other companies design a specific component with highest quality
because they’re specialized in it and then sell the IP. As an integrator we must trust all these parties, because
there are many cases of tampered devices that then have been exploited to perform attacks. There’s an
increasing concern about security of devices in general, this is coming together with the reuse of devices. We
save money on the design but we move the investment to the integration of components, on top of this we
integrate it in an SoC and then we must fabricate it. Obviously small companies cannot have their own fab, so
they must go to a third party, give them their design and ask them to produce their chip.

So we need guarantees that the design is secure.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The direct effect of third party components and fabless companies lead to the globalization of the supply
chain of semiconductors.

Globalization: globalization is the idea that a specific process is spread across the world. This is a way to
reduce cost but also introduces lot of security concerns.

In the slide is shown the entire supply chain of an electronic device:

Green dots represent the design phase, where the product is originated, the design is made and we see some
distribution of the design (US, Europe, India…) why so?

1. It is convenient because in some countries the labor is cheaper. That is possible because the
developing environment is decentralized. The core of the design center might be in Poland, then people
can be distributed across Europe because they work from home. Cost is the driving factor.

2. Even if the entire process is distributed, companies can still claim that the design is made in specific
country because maybe it starts/finishes in one country, so for a marketing approach the consumer can
maybe read “designed in California”, then in reality the production is more very distributed.

3. Fabrication of semiconductor devices is concentrated in the east, because it is the region where they
invested the most to have very advanced production processes.

4. Assembly of the devices is also distributed. Some legislation allows that if the last part of the
production is made in one country, then you can say the whole process is in that country.

5. Distribution and lifetime are by definition distributed, they are in all the markets in the world and
consequently also the lifetime.

6. End of life: this is an issue for hardware security, ex in military related applications, if you lose a specific
device on the war field, others can access it. Many of ICs are still working even after the death of a
device, so people can still access it and recycling of IPs is a way to steal intellectual reason,
components that are at EOF are used to reuse or to reverse engineer the device.

There can be lots of malicious actors in the semiconductor process, also tools and integration can be
untrusted, during fabrication overproduction can be used maliciously.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The idea is to try to focus on embedding and protecting during the design phase, so that the approach is more
effective.

reverse engineering and IP theft: an attacker can extract the functionality of the chip in order to create illegal
copies

ex: I design an Iphone and then we find and equivalent product because someone copied the design.

By stealing and coping the function the design cost can be cut and the company can have a better position in
the market by having to spend less to reach the same results.

Note that these are not independent threats, they are strictly interconnected, one violation can support the
others.

ex: by means of reverse engineering, a trojan might be introduced

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Bambu is based on modular passes, every step is a pass, these steps can be extended to introduce new
functionalities.

ex: complex memory synthesis, with a daisy chain etc. and then the testbench generation to verify the module
can be implemented as other steps

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

This approach had previously been analyzed to implement the same approach as in software. It is interesting
analyzing it from a security point of view.

If, for some reason, there’s a security threat in software and the same exact implementation is kept in
hardware, the security threat is “translated” in hardware.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Dynamic Information Flow Tracking: it’s the marking of data coming from untrusted sources with tags called
taints. If tainted information is used in critical operations the OS is trapped.

Every piece of information coming from the user is tagged and marked as untrusted, because the behavior of
the user can’t be trusted. Then the information is propagated to understand if the input from the user is able in
any case to reach sensitive operations, like memory or communication operation. If this is the case, there’s a
security concern, because it is possible to reach critical operations from the outside.

ex: 𝑦, 𝑧 are not tainted, 𝑥 is tainted because its value depends from the
action of the user. If the user introduces a 𝑣 greater than zero or lower than
zero, 𝑥 depends on its choice, so it’s tainted.

Speaking of accelerators, they won’t work alone but will have to interact with lot of different systems and might
work with information that depends by the user, so that’s why this approach is taken. The concept is not
complex, but how can we apply so?

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• optimistic assumption: the accelerator filters all the information and vulnerabilities that I have
• pessimistic assumption: the accelerator doesn’t filter any information and nothing that comes from

the accelerator can be trusted. Safe data might be provided but the choice is not trusting anything
coming from it, so the OS will stop the execution because of security protections. This would stop the
execution in any case.

Nor the optimistic assumption nor the pessimistic assumption are correct and can be applied, the correct
solution is implement DIFT inside the accelerator, to correctly propagate the correct good information.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

TaintHLS is a tool methodology that applies taint analysis to HLS designs. Taint analysis is a technique used in
hardware security to track the flow of sensitive or untrusted data through a program. It’s useful to find
vulnerabilities such as information leaks, injection points, insecure data handling.

in every moment that we analyze our system, we can screenshot the execution and have the correct tags for
that specific data.

ex: when I send a write enable to that register I am writing data in the register, so I activate the tag and sample
the tag value, then for the memory I have the address in common and then I have an extra bus carrying the
tags, so that the operations can be done in parallel. when I have the operations in the datapath I share the path
for the propagation modules. in this case, we will send the same the control signals to both MUXs of the logic

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

and the corresponding MUXs of the shadow logic, so that if I activate a path from input to an unit, I will activate
the corresponding path from the starting register to the connected register module.

This is easy to be implemented in HLS

The redline is without any information flow tracking, then we have different levels of tracking and we can see
the area occupation.

if we can guarantee the same result of DIFT in software and in hardware we can guarantee higher security

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Logic obfuscation means locking the circuit in a way that makes it dependent on a 𝑘 𝑏𝑖𝑡 key. Then the design is
sent to the foundry without giving them the key, so that the design can have 2𝑘 netlists, then by applying the
correct key it can be used.

It is hard to implement because it must be implemented in the design by having wrong outputs when the
correct key is not applied and good outputs only when the key is applied.

The reasons for which it is hard to implement are:

• it must be guaranteed that exists one and only one key that produces the correct results
• it must be guaranteed that all the wrong keys introduce at least one error

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

• what does wrong result mean? Maybe some results are “wrong” but are still acceptable (ex a single
pixel in a frame of a video wrong is a negligible defect)

• all the keys must be equiprobable
• the key must be very long to avoid brute-forcing

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The constant is encoded and it can be obtained only with a 𝑋𝑂𝑅 applied between the encrypted constant and
the key.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Another technique of hardware security is the obfuscation of a control branch that describes the flow of the
device. It can be protected with a 𝑋𝑂𝑅 with a key. Without knowing the key, the correct branch can’t be taken.

ex: If the key is 0, I have a 0 𝑥𝑜𝑟 0 so I have 0 and I maintain the branch, while if the key is 1, I have 0 𝑥𝑜𝑟 1 so
I’m inverting the branch. If the key bit is 0 I preserve the same value, if the key value is 1 I swap true and false.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Another way to confuse a potential attacker is adding additional and fake operations, then propagate and
select the outputs of the operations based only on the key.

ex: Let’s suppose that the addition is the operation that must be performed, a subtraction in parallel is added
and the result is selected via a multiplexer that selects the correct result only based on the key. If the key isn’t
known, it is not possible to understand which is the correct operation.

Based on how we pair the operations, the attacker can even be more confused. If the attacker has some
intuitions about our algorithm works and understands that a subtraction can’t be performed for any reason,
the attacker understands that it is a fake operation. So as the attacker has information about our algorithm,
many of these operations become more complicated to implement. So obviously the correct value is
propagated only when the key is correct. Every time an operation is implemented, another operation is added
but the correct result is obtained only if the key is correct.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Area overhead is reasonable in the sense that it is similar to the original design but obviously becomes more
significant, because additional functional units and a multiplexer are added, so the area of the
implementation doubles.

In general how to select these possible variants is still an open question.

In the context of hardware design, dependencies become something very hard to follow. Here it is shown how
it becomes very complex very quickly, lots of memory operations are added for each addition. Some HLS tools
introduce optimizations for making this complication less heavy. At gate level these connections become very
difficulty and becomes hard to understand which values they do carry.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

One of the possibilities to confuse the dependencies is to create variants for our circuit by changing the
connections, but this becomes very tricky: let’s consider the variant 1 we connected the output of a unit to the
input of the same unit, we created a combinational circuit with a sort of feedback, so it can be put as a variant
but still is revealing information to the attacker but it’s clearly wrong, so the attacker understands that it is
wrong, while in the variant 2 we have a restructure of the design, this means that I have the operations that are
the same but now instead of a plus I have connected the first input to c that is then connected to the output of
the multiplexer, so I changed the order of the operations, I changed the inputs by changing the connections
between signals. Given 𝑘 bits of key I can introduce 2𝑘 variants and then merge them all together.

here we see that we did not add more functional units but just multiplexers.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

It can change the operations and semantically different variants, because how and which values are combined
changes. This can change the latency of the component so it can take more time in the path and can add or
reduce the number of cycles. Furthermore, a significant area overhead is added, because every time a key bit
is used, an exponential number of bits is added. This is very hard to implement from the RTL, so the only way to
create it is just using the HLS, not while tweaking the RTL. Easy to implement in HLS tools, so the key is
provided and how to manage the key at runtime is implemented.

Let’s see some results for these specific benchmarks

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

We can see that the design has a big number of total key bits even if the number of obfuscated branches is
pretty low, generally we don’t have many branches that can be obfuscated, we have just a 𝑋𝑂𝑅 function in
some specific branches of the design then based on the number of basic blocks and variants for each of those
we might have a significant number of key bits, in this case we have four key bits for each basic block, so we
have 24 variants, given the number of basic blocks we have a certain number of key bits. in half of the cases,
the number of key bits related to the constants is dominating the design, so we can already understand that
the constant and operation obfuscation is dominanting the overhead

1. cannot do optimizations
2. we introduce fake operations and multiplexers

When we have constant obfuscations we always obfuscate the whole constant, so if we have a 32 bit constant
we may even decide to obfuscate only half of that, because we might obfuscate the LSBs or we might
obfuscate the MSBs.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

The conclusion is that the obfuscation is a powerful technique, but we must always consider how the defense
can be attacked, we cannot say “the attacker won’t be able to find it”.

There are two ways to manage the key:

1. folding the key, so reuse it many times, we fold the key on the bits that we have
2. encryption

note: how can we validate the results?

One powerful metric is the output corruptability: (def. in the slide). Given the hamming distance we can
determine how many bits are flipped in the output for each of the one of the key. It gives information about the

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

distribution of the differences and the ideal case is that the probability distribution of the probability of flipping
each bit when given a wrong key is exactly 0.5. By changing the key I can obtain the correct or the incorrect
value. I can only flip the coin to decide what the correct key is, I have to guess the entire key. It would be very
difficult to achieve 50%, but the closer we are the stronger the defender is.

Obviously in very large designs I can’t obfuscate the whole circuit, because as we can see from the results, by
obfuscating some operations I have almost a 30% overhead. So I can select parts, but which parts do I select?
The ones that affect outputs? The ones that affect the inputs, so that the values coming in are not credible, but
we would need to be sure that the parts that we obfuscate we see the result on the outputs. Another way could
be a random choice, but that still must be done in a way that is effective, in the sense that the measure of the
level of obfuscation so also the level of security. Corruptibility is a metric giving information about the effects
on the outputs, but we can have a very obfuscated design, very hard to understand but with minimal effects on
the outputs, and vice versa.

The next problem is a consequence of this point, so once we have HLS we have a semantic difference between
input (that is a software) and an output (that is hardware). So the way to verify the correctness of the design is
simulation, so we test a certain set of inputs, we verify the outputs and we verify that are matching the golden
value. The problem in this case is that simulation based verification is not a “real” verification in the sense that
a design passing the simulation based verification doesn’t mean that it does not have errors for the values that
we provided, unless we provided an exhaustive set of inputs but that would mean that our design is very small.

If we find an error we know that the design is wrong, but we can’t know that the whole design is correct.

This can be used for several effects, one is positive that is implement watermarking. The difference between
locking and watermarking is that locking is an active method, this means that basically we are actively creating
an obstacle to slow or block the attacker, while watermarking is a passive method, we don’t create an obstacle
to the attacker but we are providing a way to certify if the design is the original one or a copy, this is usually
used in lawsuits when we find an infringement and we verify if the chip used is from our design, so a unique
signature is created and created inside the design and when we have the chip we have a way to easily extract
the signature and we verify if it is coming from us. Obviously this should be hard to remove, if it is a simple
signature it can be removed and is unuseful.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

To make this signature there are many solutions, like embedding special keys to use the concept of hardware
trojan in a good way.

Let’s imagine it in the benevolent way: in this case the secret that we want to be revealed is the signature that
we want to be verified. The fact that I have conditions means that during normal operation the trigger isn’t
active and isn’t giving information, while during the litigation it is activated and the behavior demonstrates
during the litigation that the chip is coming from my design.

so we create an extra functionality, reusing the unit by creating extra connections with extra wires and extra
multiplexers to recombine the different outputs.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

One solution is to decide a function to obfuscate and then we decide a list of operations that we want to use to
create the signature and the ones that we want to remove. This is tricky because if my probability of removing
the operation is low, the list of operation for the watermark would be similar to the original functionality, so this
means that the key is weak, because is similar to a value that I can always obtain, while if I have a very high
probability of removing operations, my list of operation that I keep for the watermark is very small. The result is
that the signature is weak again because the functionality is very simple, so the signature is very simple. We
have to find a good balance of probability of keeping of removing.

Then we put everything together, we have the datapath, the functional controller because is the controller of
the functionality and what we can do, by putting in the middle a payload controller, so once I have my inputs I
verify if I am in the normal operation or if I activate the trigger. Since these have the same structure they can
also be merged and an unique FSM can be implemented for functional and payload controller.

If the work for the malevolent hardware trojan is hard, here it is much easier. For a malevolent trojan I have to
find which rare conditions I should use to activate my hardware trojan without being detected. Here since I am
designing the functionality I know the distribution of the inputs and which inputs are never used or what
combination I can use to activate the trigger, so also the combination to activate the trigger is an information.
This can be implemented in many ways, so the payload controller can be added into the FPGA or in a chip or in
another way.

FPGAs are reconfigurable, why are they interesting for hardware security? The idea in hardware security is that
when designing a component we do not want to reveal the functionality and the FPGA are perfect for that,
because when you fabricate them we don’t know the functionality that will be implemented, so we can
implement any functionality, so the idea of implementing a functionality only by loading the bitstream. All the
information can be added into the flow, a trojan can be added in the code and we can try in test mode if it
works. The overhead can be high, especially in small designs, even 20%-25%, but for complex design maybe
we have 2%-3% that is acceptable, this only for the functionality, then we have the connections etc. usually we
do not add many FFs, what we do when we add an extra controller we may need more states in the state
machine we might need more bits to encode the state machine and so more FFs. In this case, the idea of

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

hardware trojans can be reused in a good way to create watermarks and we can have different ways to activate
it, test mode or explicit trigger based on the values etc.

We saw few solutions for each part, now we have to try to see if it is possible to analyze and use HLSs as an
attacker, to create attacks in the design.

Planned obsolescence is a way in which I want to degrade a component after a certain amount of time, is a
bad practice that the major players in the industry have been applying, especially in software but also in the
hardware. Our company might want to force people to buy a new one after a certain amount of time or we can
do that to a competitor, to undermine the reputation of the other products. This is problematic because all of
the reasons to change one device after a certain amount of time are not functionally related, they’re base on

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

performance or in terms of battery consumption, this means that if I still apply simulation based verification
the chip is correct, but if I introduce something like planned obsolescence, in HLS, with simulation based
verification it is not able to catch it, then I’ll have an RTL design that embeds these modifications and will pass
also all the equivalent checking, so since this is my reference design also the other copies will have it.

So in general the problem is that we cannot trust tools, also the behavior must be verified against bugs and
malicious intents, there’s an interesting direction towards open source tools, so that anyone can contribute
with new functionalities atc, so when designing we have to trust all the tools that are used.

Black-hat HLS: HLS that can act maliciously and also all the steps can be compromised. Looking at the HLS,
let’s start with degradation attacks.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Idea that we want to undermine the performance of the design after a certain amount of time, this is pretty
easy to be done because after a certain amount of time, like a counter, then we move and we change the
controller in where we have bubble states, empty states. The effect is slowing down the computations, and
there are specific points where if we add a bubble, the effect is multiplied by the number of operations. The
other problem is that even if we have the original FSM is hard to detect it by sequential equivalence checking,
because it is checking the results and the evolution of the values over time, to do so one of the key ideas of
SEC is to remove the concept of time from the analysis, so we’re intrinsically removing the bubbles and we are
always producing the correct result.

If we are very careful, we can add up to 16 bubbles, with no overhead in area the performance degradation is
20%.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

One of the most important reasons to change a mobile device is the battery exhaustion. So if we can
accelerate battery discharge we can implement battery degradation. The HLS tool knows which units are we
using at any cycle and which we are not using at any cycle. So we can imagine a way to drain extra current.
Here we have a multiplier and a modified multiplexer with malicious modification, then some logic is created
to basically say that if the unit is not used for some consecutive cycles you keep the value that is inside the
register and every cycle we flip every bit, so the MUX sees the inputs changing and the different values are
propagated, so the switching activity increases and so the power consumption. Then what happens is that the
value is put in the input of the register but it is not changed, so I’m using a lot of current without modifying the
functionality.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Another malicious way is Key Recovery, so creating a side channel during HLS

Most of encryption algorithms are based on rounds, so they repeat the operation a certain number of rounds,
for encryption and for decryption. This is a classic way that is implemented in HLS, with the FSM, then logic
and the loop. The problem is that the key can easily be recovered if the number of rounds is reduced so, if we
encrypt a certain information with 7 rounds, we still obtain a text that looks encrypted, but it is not strong
enough because by operating on this we can find it. We see that to insert this modifications in the circuit, to
execture sometimes 7 rounds or 18 rounds, we can change the value of the counter, we can change the start
value or we can change the end value. In this case there’s a collision between tool developer and the ip, in this
case we are adding modifications internally at the design so that it can be extracted later.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

For hardware security, every time we have a clear metric we can do any optimization that we want.

If our design is smaller than the previous one, it is a better design.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

Design Of Hardware Accelerators 2024/2025 – Alessandro Lazzaroni – alessandro1.lazzaroni@mail.polimi.it for feedback – here if you want to offer a me a beer

If we had clear metrics we could introduce automatic tools to evaluate and implement security
implementations, but to certify that the data is secure and no one can access the design, we would have a
security certified design, but this is impossible, it is difficult to prevent attacks.

It is already difficult to prevent attacks that we know, imagine what for the one that we don’t know.

The objective is usually not to make it completely impossible to make the attack but sometimes is enough
making so hard that it is not possible for the attacker to complete the attack.

The vertical and the orizontal integration is important.

mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02
mailto:alessandro1.lazzaroni@mail.polimi.it
https://www.paypal.me/alelazza02

	1 - Introduction to SoC
	2 - SoC components
	3 – Design flow
	4 - Introduction to Hardware Description (Languages)
	5 - SoC Challenges
	6 - Latency Insensitive Design
	7 – HW/SW Codesign
	8 – Dependability
	9 – Advanced Dependability
	10 - Introduction to High-Level-Synthesis
	11 - High-level functionality description
	12 - Microarchitecture Creation
	13 - Hardware security

