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1 Introduction and Requirements
• EMI: Electromagnetic Interference.

• RFI: Radio Frequency Interference.

• EMC is concerned with undesrtanding the ability of electromagentic emissions to cause interference in
electrical and electronic devices; and learing how to design systems for EMC. EMC is defined as the
capability of an electrical/electronic system to function compatibly with other electrical/electronic
systems and not produce or be susceptible to interference. More precisely it is concerned with the
generation, transmission and reception of electromagentic energy. Keep in mind the following blocks
scheme:

• A compatible system:

– does not cause interference with other systems

– it is not susceptible to emission from other systems

– it does not cause interference with itself

• An important detail: only undesired behavior of the recepetor constitutes interference. This means that
unintentional transmission or reception of electromagnetic energy is detrimental only if it is of sufficient
magnitude and/or spectral content at the receptor. How can we prevent interference?

– Suppress the emission at its source (firts line of defense)

– Make the coupling path as inefficient as possible (the efficiency is proportional to the height of the
passed signal frequency)

– Make the receptor less suscepitbe to the emission

• Susceptibility: vulnerability of the receptor to electromagentic disturbances.

• Subproblems:

– Cables: they have the potential for emtting and/or picking up e.m. energy - the longer the cable,
the more efficient it is. Moreover, interference signals can be passed directly between the
subsystems via diret conduction on cables.

– Enclosures: we mean metallic enclosures. Currents may be induced on these enclosure by both
internal or external signals. These currents can radiate...

– Radiated Emission (RE) or Radiated Susceptibility (RS): phenomena strictly related to the
presence of an accelerated charge.

– Conducted Emission (CE) and Conducted Susceptibility (CS): as partially suggested by their
names, these phenomena occcurs whenever electromagnetic energy is conducted on metallic
conductors.

– CROSSTALK (XTALK): unintended electromagnetic coupling between wires, PCB lands, or IC
interconnects that are in close proximity.

– ESD: electronic discharge. EMP: electromagnetic pulse. Lightninng. EMSEC. Power Quality.

2



• Lumped-parameter circuit theory: circuit elements are treated as ideal, capacitive and/or inductive
coupling among different circuit elements/parts are negelected. Propagation effects are not taken into
account and circuits are not allowed to radiate or pick up electromagnetic energy.
Electrical dimensions of the structure are more significant if expressed in wavelength:

de =
dg
λ

The condition required for lumped-parameter circuit modeling is: de � 1.
Or:

dg � λ→ dg
ν
� λ

ν
→ TD � T

Example 1: we have a lumped-circuit element along its connection lead an we suppose there is a signal
which is propagating. In the next tabel it’s summarized the analysis of this little simple system.
Note that the critical paremeter is the electrical length, that is the ratio between the psysical length and
the wavelength of the signal.

Distance: L

Velocity of signal: v

Period: TD =
L
v

Propagation constant: β =
2π

λ

Fundamental relation: λ =
v

f

Frequency of signal: f

Intensity of signal: i(z, t) = I · cos(ωt− βz) = I · cos
[
ω ·
(
t− z

v

)]
Phase Shift (z=L): βL =

2π

λ
L = 2π

L
λ

We can easily understand that if L� λ the phase shift is negligible!

Example 2: Trasmission line circuit. The electrical lenght determines the voltages (and currents) at the
section BB’. Obviously the signal is coming from AA’:

VAA′ = V0 cos(ωt) −→ VBB′ = VAA′

(
t− L

c

)
= V0 cos

[
ω ·
(
t− L

c

)]
Now we can evaluate how much the length of the transmission line would affect the voltage signal, for

istance at t = 0s. Another time, the critical parameter is ω
L
c
, that can be expressed as 2π

L
λ
.

Conclusion: for our purpose we say that a system is electrically small when the largest dimension is
smaller than one tenth of the smallest wavelength (that is, at maximum frequency). It’s known as rule of
thumb: L < λmin/10.
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• With media that are different from the void, the velocity is not c but "v".
In the following are shown all the relation to treat with this possibility:

Electricanl Permittivity: ε = ε0 · εr

Magnetic Permeability: µ = µ0 · µr

Constants: ε0 ≈
1

36π
10−9 F/m and µ0 = 4π · 10−7 H/m

• Requirements. Two types: mandated by governmental agencies or imposed by product manufacturer.

The firts ones are called legal requirements and cannot be waived. They are imposed to minimize the
elctromagnetic pollution, aka the interference generated by the product. However, compliance with these
requirements does not guarantee the absence of interference. Moreover, they must be respected in order
to have the product marked.

The manufacturer requirements, on the other hands, are voluntarily imposed and are intended to result
in constumer satisfaction.

In the US there is the FCC (Federal Communications Commision): it’s charged with the regulation of
radio e wire communicaation. The range of frquencies the FCC has determined to be "radio frequencies"
extends from 9 Khz to 3000 Ghz.
For what concerns the digital devices: they are defined as unintentional radiators that generate and use
timing pulses at a rate in excess of 9000 pulses (cycles) per second...
The FCC has divided the digital devices into two classes:

– class A: commercial, industrial or buisness enviroment;
– class B: residential enviroment

The frequency range for conducted emissions extends from 150 KHz to 30 MHz.

The frequency range for radiated emissions extends from 30 MHz to 40 GHz.

2 Practical Lecture: Decibel
The decibel is an important way to express data, because the decibel is a compression of large values or an
extension of the small ones. It’s defined as a ratio between two quantities, in general:

Voltages: 20 log10

(
V2

V1

)

Currents: 20 log10

(
I2
I1

)

Power: 10 log10

(
P2

P1

)
However, there are problems about the meaning of these values whenever they are meant to be absolutes. To
avoid this issue, we will express the previuos physical quantities introducing in the decibel conversion some
reference values:

Voltages: dBmV ≡ 20 log

(
volts

1mV

)

Currents: dBmA ≡ 20 log
(amps

1mA

)

Powers: dBmW ≡ 10 log

(
watts

1mW

)
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Moreover, oftenly we need to evaluate the gain of a device. We could be asked to compute the voltage gain or
the power gain of an amplifier, for example. Long story short, in decibel the results coincide:

Gp,dB = 10 log

(
P2

P1

)
= 10 log

(
V 2
2 /R2

V 2
1 /R1

)
= 20 log

(
V2

V1

)
= Gv,dB

For what concerns electromagentic compatibility, the most important parameters are fields. Similarly to what
seen above:

Electric field: dBµV/m
Magnetic field: dBµA/m
Impedance: dBΩ

Moreover we prefer to express voltages and currents in dBµ∗.

EMC MEASUREMENT SYSTEMS.
The reference impedance value, at which we want to have matching, is the typical 50Ω.
The signal sources can be modeled by the Thevenin equivalent circuit: VOC and Rs(≈ 50Ω).
In case of matching:

1. impedance seen at source outlet is constant over frequency and equals to 50Ω

2. no reflections occurs at every matched sections: the received signal is only attenuated due to cable losses

3. the signal source delivers to the load the maximum power:

Pmax =
VOC(rms)2

4Rs

This is actually what we should call, more precisely, the available power at the the source output. Next,
we can show that the output voltage is strictly related to the open circuit voltage - is the voltage that
would be measured across a matched load.

Vout =
RL

RS +RL
VOC =

1

2
VOC

Relationship between Pout and Vout:

Pout = Pmax =
V 2
OC

4RS
=

(VOC/2)2

RS
=
V 2
out

RS

In decibel:
Pout,dBm = Vout,dBµV − 107

4. Potential Losses: the amplitude of the physical quantity considered decreases esponentially:

A(x) = A0e
−α·x

Where α is a coefficient measured in neper/meter. Therefore the signal attenuation is given in neper!

ANEPER = log10

A0

A0e−α·x
= α · x

Thus in decibel: AdB = 8.686 ·ANEPER.

Particular case: Cable losses!
Definition:

Cable Losses =
Pin
Pout

−→ Cable LossesdBm = Pin,dBm − Pout,dBm
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3 Conducted Emission
• Conducted emissions are noise currents. They are conducted out of the product along the ac power cord.

The limits of its range is given in volts: we verify the compliance by measn of LISNs (line impedance
stabilization netwrok), placed into the units power cords. The CE are measured via a spectrum analyzer.

• Emission are possibly ascribed to:

– Switching devices and power electronics components: converters, inverters, variable speed motor
drives, etc.

– Undesired crosstalk (near-field) or radiated emission (far-field)

• Conducted susceptibility threat: the CEs exciting a product propagate along its powerline, reaching
the power grid and thus other electrical/electronic devices.

• Radiated susceptibility threat: the power grid is electrically-large in the CE frequency band, it
works like an efficient antenna and giving rise to possible problems in nearby electronic devices.

• Tyical Test Configuration

Now, as mentioned before, the LISN is required to control the conducted emissions.
In practice, it’s applied to the power cord outlet of the product and its goal is to present a constant
impedance over the frequency range of the coduceted emision test: 50Ω between phase conductor and
green wire; and 50Ω between neutral conductor and green wires.
The ideal LISN is the following circuit:
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• Modal Decomposition

Applied to three-conductors systems.
Noise currents are separated and related to two configurations: the differential-mode (DM) and the
common-mode (CM).
A possible decomposition is: 

Î1 = ÎC + ÎD

Î2 = ÎC − ÎD

Î3 = Î1 + Î2 = 2ÎC

In the third conductor ÎD = 0. Furthermore we call the third wire the return conductor, and:

Î1, Î2, Î3 total currents

ÎD and ÎC modal components

Relationnship between modal and common components:

{
Î1 = ÎC + ÎD

Î2 = ÎC − ÎD
⇒


ÎD =

Î1 − Î2
2

ÎC =
Î1 + Î2

2

Next, relating this theory to the ideal circuit shown above:



Îphase ↔ Î1 ∧ Îneutral ↔ Î2

V̂P = 50× (ÎC + ÎD)

V̂N = 50× (ÎC − ÎD)

• Dominant Effect: to reduce the conducted emissions at a particular frquency we must evaluate and
reduce the dominant component. In general we define

Itotal = IC ± ID

and it’s a fucntion of the frequency.

• Separation of CM and DM
Why? Because we must find the causes of emission within the EUT (equipment under test) in order to
optimize the power line filter design.
The diagnostic tool used to achieve this separation is marketed under the label of LISN-UP, invented by
C. Paul.
What we obtain with it?{

VP + VN = 2× 50IC = 2VC

VP − VN = 2× 50ID = 2VD
↔

{
VP = VC + VD

VN = VC − VD
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Just for curiosity, the following pictures show how to configure the wires and probes to do the
measurements of the common and differential modes current:

4 Power Supply Filters
Almost all products contain a power supply filter, because usually this is the last circuit through which noise
currents pass before going out.
Their task is to reduce CM or DM currents, or both.
Let’s begin with the defintion of the insertion loss of the filter:

ILdB = 10 log

(
PL,without filter
PL,with filter

)
= 10 log

(
V 2
L,wo/RL

V 2
L,w/RL

)
= 10 log

(
V 2
L,wo

V 2
L,w

)
Note that these parameters refer to the magnitudes, they are not complex values.

For istancee: Low-pass filter.

ILdB = 10 log(ωτ) ↔ τ =
L

RS +RL
� 1

• Test set-up

1. DM Insertion Loss measurement: the green wire is left unconnected, while the phase and neutral
wires form the circuit to be tested. Sometimes is called also "symmetric mode".
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2. CM Insertion Loss measurement: the phase and neutral wires are tied toghether, and the circuit is
closed with the green wire. Its alternative name is "asymmetric mode".

• The Power Supply Filter topology

CDL, CDR: Line-to-line capacitors to divert DM currents

L,L,M : Commond-mode Choke to block CM currents

CCL, CCR: Line-to-ground capacitors (Y-caps) to divert CM currents

LGW : Green-wire inductor ?

• The Common-Mode Choke

The windings are indentical, wounded on the same
core:

L1
∼= L2 = L ∼= M → k =

M√
L1 · L2

∼=
M

L
' 1

We want to compute the voltage-drop across one side of the choke.

What happens with DM current?

V̂ = ωLÎD + ωM(−ÎD) = ω(L−M)ÎD = ωLleakageÎD Lleakage = 0 (ideally)
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What happens with CM current?

V̂ = ωLÎC + ωMÎC = ω(L+M)ÎC = ωLleakageÎC

In other words we could say that L and M are parameters that gauges the rejection of the choke to
current flow, in fact they are add up when we consider CM currents and are substracted with DM
currents.
More precisely: in differential mode, the voltage drop across one side of the choke is ideally 0; thus L
could be replaced with a short circuit. On the other hand, when the voltage is not 0 and for a current
signal that is not constant, the magnetic flux inside the inductances generate an induced current that
flows in the opposite direction (law of Faraday-Lenz). Moreover, in the frequency domain we can design
the inductor to actually work alike a open circuit in CM mode.

• Line-to-ground Capacitor
Possible shock hazards if one of them shorts out.
Differential mode IL.

Ideal voltage: V̂L,wo =
Vs
2

With filtering: V̂L,w = V̂s
2R0

4R0 + ωCR2
0

Insertion Loss: ILdBDM = 10 log

[
1 +

(
ωR0C

4

)2
]

Common mode IL.

After some algebra:

ILdBCM = 10 log
[
1 + ω2R2

0C
2
]

• Location of components: in order to avoid the coupling of power supply/clock harmonics with the
wires, the filter should be place as close as possible to the power cord exit and to the power supply.

• Generic warning: the inductors are usually connected in series with the wires, and they are
specifically used to block currents. They are efficient if their impedance is way higher than load
impedance, i.e. they are used in low impedance circuits. On the other hand, capacitors are placed in
parallel and are used to divert currents. They are employed when the load impedance is higher.
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5 Practical Lecture: Insertion Loss Measurement
First part: the general theory

• Without filter:

• With an inductive filter: used in low-impedance circuits

Voltage phasor: V̂L,w =
R0

2R0 + ωL
V̂s

Filter IL: ILdB = 10 log(1 + ω2τ2)

Time constant: τ =
L

2R0

Cut off frequency: fcutoff =
1

2πτ

• With a capacitative filter: used in high-impedance circuit

Voltage phasor: V̂ =L,w=
Zpara

Zpara +R0

Filter IL: ILdB = 10 log(1 + ω2τ2)

Time constant: τ =
CR0

2

Cut off frequency:
1

2πτ
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Second part: three-paths line of transmissions - modal evaluation

Common Mode Differential Mode

• Example 1 - a simple powerline (in the place of the filter)

The DM is analyzed with the same reasoning followed for a capacitive filter. On the other hand, in CM,
since the circuit topology changes, also the result changes:

We could easily see that in the end:

V̂L,w = V̂L,wo ⇒ ILdB = 0

• Example 2 - a common-mode choke

Common Mode:

KV L : V̂s − 2R0Î − ω(L−M)
Î

2
= 0

⇒ V̂L,w =
2R0V̂s

4R0 + ω(L+M)

Differential Mode:

KV L : V̂s−2R0Î−ω(LÎ1 +MÎ2)︸ ︷︷ ︸
V̂1

+ ω(LÎ2 +MÎ1)︸ ︷︷ ︸
V̂2

= 0

⇒ V̂L,w =
R0V̂s/2

R0 + ω(L−M)
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Now, we can evaluate the Insertion Losses and the cut-off frequenncies:

Common Mode ILCMdB = 10 log10(1 + ω2τ2), τ =
L+M

4R0
, fcutoff =

1

2πτ
=

2R0

π(L+M)

Differential Mode: ILCMdB = 10 log10(1 + ω2τ2), τ =
L−M
R0

=
Lleak
R0

, fcutoff =
2R0

2πLleak

Note that, because of the leakage inductance in differential mode, the common mode choke would start
reduce also DM currents once the frequency increases over its cut-off frequency.
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6 Non ideal behaviour
• Modelling component leads:

1. Inductance of attachment leads:

Separation: s

Wires Radius: rw

Wires Length: L

Inductance: Llead =
µ0

4
ln
( s

rw

)
· L

2. Capacitance of attachment leads:

Separation: s

Wires Radius: rw

Wires Length: L

Capacitance: Clead =
πε0

ln(s/rw)
· L

• How we can take into account both the effects? Well, there is not a unique answer. We usually rely on
the lumped components equivalence theory, but there is not a single model: it’s a distributed parameter
phenomenon!

Reference circuit:

Ẑ

Possible solutions:

Ẑ

L

C Ẑ

L

C

Ẑ

L

C

2

C

2
Ẑ

L/2 L/2

C
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• Resistors: the behaviour depends on the construction technique. Wire wound resistor behaves more like
inductors, while wire wound and carbon composition resistor behave like capacitors. The resistor ideal
impedance is real: Zres = R+ j0. The bode plots show that both amplitude and phase are constant.
For istance, neglecting the parasitic inductance of a non-ideal resistor, the previous situation would look
like this:

b
Llead

Clead

a

d

CleakageR Cparas = Clead + Cleakage

• Capacitors: to suppress EMC we can use tantalum electrolytic capacitor for CE a or ceramic
capacitors for radiated emissions. The ideal impedance of a capcitor is pure imaginary: Z = 0 + (1/ωC).
In frequency domain, the capacitors effects are an amplitude decrease by 20dB/dec and a phase change
of -90°.
The circuit with a capacitor:

b

a
Llead

Clead

Rplate

C Rdiel

Usually Rdiel and Clead can be neglected. The total non ideal equivalent impedance is determined by the
series of Llead, Rplate and C. Besides, Rplate is known also as Equivalent Series Resistance (ESR → Rs:

Zequivalent = R+ j

(
ω2CL− 1

ωC

)
⇒ |Zequivalent| =

√
R2 +

(
ω2CL− 1

ωC

)2

It’s evident that for ω → 0 : |Z| → +∞. In other words, at low frequencies the dominant contribution is
provided by the capacitor (the inductor behaves like a short circuit)
On the other hand, for ω →∞, |Z| → +∞: at high frequencies is the inductor that prevails, the roles are
switched.
Note that minimum of the |Z| function is also the exact point at which the capacitor and inductor switch
their roles. The corresponding frequency is called self-resonant frequency of the capacitor:

f0 =
1

2π
√
LleadC

• Inductors: as for the other devices, the contruction technique determine the non-ideality. In general
the process of winding turns of wire on a cylindrical form introduces resistance of the wire and
capacitance between neighboring turns. The ideal model has an impedance value that is pure imaginary:
Z = ωL. In the Bode plot, likewise we’se demonstrate for capcitors, the inductors affect both amplitude
and phase: amplitude increases by 20dB/dec and phase changes by +90°.

Cpara

Llead

Clead

L

Rpara

Neglecting Clead and Llead, the analysis
leads to

f0 =
1

2π
√
LCpara

that is called self-resonant frequency of
the inductor.
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• Ferromagnetic Materials: they are used as core of inductors to increase their inductance. Are widely
used in EMC for noise suppression. The important properties are:

– The ability to concentrate magnetic flux. It stems from the large relative permeability, although
this latter parameter depends on magnetic field intensity (H, saturation), as well as on frequency.
Remember that the range of interest in EMC is quite large...

– Saturation: the inductance decreases wth increasing current:

µ =
∆B

∆H
L ∝ µ

– Frequency response:

As we can see (badly) from the picture, the mainly used materials are ferrites. They are basically
non conductive ceramic materials. The most common form is a bead which can be inserted in series
with a wire or land, and provide a high frequency impedance in that conductor. In EMC they are
used to provide a seletive attentuation of high-frequency noise that we may wish to suppress.

• Ferrite beads.

Inductance: Lbead = µ0µrK
Dimensional paramter: K
Complex permeability: µ̂r = µ̂r

′(f)− µ̂r ”(f)

The real part is related to the stored magentic energy, while the imaginary part is related to the losses.
As for the impedance of beads:

Z = ωLbead(f) = ωµ0µ̂r(f)K = ωµ0[µ̂r
′(f)− µ̂r ”(f)]K

Hence:
Z = ωµ0µ̂r ”(f)K︸ ︷︷ ︸

R(f)

+ω µ0m̂ur
′(f)K︸ ︷︷ ︸

L(f)
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7 Radiated Emissions
• Radiated emissions: electromagnetic emissions radiated by the product in the surrunding

environment. RE are produced by currents.

Class A digital devices used in commercial, industrial or business environment

Class B digital devices use in residential environment

Keep in mind that for Class B products, RE must be limited to the CISPR22 requirement: from 30MHz
up to over 1GHz.
Moreover, the distance at which the measurements must be done is 10m. Indeed, at this value we have
the product in the near-field region at low frequencies and in the far-field region for higher intervals.

• Hertzian Dipole

y

x

z

r
θ

φ

Î

The thick arrow placed in the origin
represents the hertzian dipole, an in-
finitesimal long antenna in which a cur-
rent (Î in phasorial expression) flows in
the direction of the arrow. At the red
point the vector representation of the
field components, on the θ plane, is:

Êr = Er · âr

Êθ = Eθ · âθ

Ĥφ

• Now we will observe the expression of the components in near-field and far-field regions. Do recall the
intrinsic impedance of free space and the propagation constant:

η0 =
√
µ0/ε0 ' 377Ω β0 =

2π

λ0
∧ λ0 =

c

ν0

Near field region:

Êr = 2
Î · dl
4π

η0β
2
0 cos θ

(
1

β2
0r

2
−  1

β3
0r

3

)
e−β0r

Êθ =
Î · dl
4π

η0β
2
0 sin θ

(


1

β0r
+

1

β2
0r

2
−  1

β3
0r

3

)
e−β0r

Êφ = 0

Ĥr = 0

Ĥθ = 0

Ĥφ =
Î · dl
4π

β2
0 sin θ

(


1

β0r
+

1

β2
0r

2

)
e−β0r
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In the following are shown the explicit expressions of the functions in the Far field region, reached over

the point at which the term
1

r
becomes dominant. For the Hertzian dipole: rB = λ0/2π ' λ0/6.

Êr → 0

Êθ =
Î · dl
4π

η0β
2
0 sin θ

(


1

β0r

)
e−β0r

Ĥφ =
Î · dl
4π

β2
0 sin θ

(


1

β0r

)
e−β0r

⇒


~Efar−field = β0η0

Î · dl
4π

sin θ
e−β0r

r
āθ

~Hfar−field = β0
Î · dl
4π

sin θ
e−β0r

r
āφ

1. the fields are proportional to 1/r, I, dl, sin θ

2. E and H are locally orthogonal

3.
| ~E|
| ~H|

= η0

4. ~E × ~H ‖ ār
5. in the time domain the phase term exp(−β0r) traslates to a time delay of cos[ω0(t− r/ν0)]

• Inverse Distance Rule: from the proportionality to 1/r is derived that:

| ~ED2| =
D1

D2
| ~ED1|

• General expression, valid also for other wire-type antennas

Êθ = M̂ Î
e−β0r

r
F (θ), Ĥφ =

Êθ
η0

F(θ) is referred to as the antenna radiation pattern. For a Hertzian Dipole is equal to sin θ, in 3D it’s a
doghnut around the antenna. Moreover:

M̂ = 
η0β0dl

4π
= 2π10−7fdl

• DM and CM currents of two parallel conductors:

{
Î1 = ÎC + ÎD

Î2 = ÎC − ÎD
⇒


ÎD =

Î1 − Î2
2

ÎC =
Î1 + Î2

2

DM currents are predicted by the majority of circuits, they are functional and usually higher than CM
currents. Moreover CM currents give rise to larger radiated emissions.
Note that, if we consider only infinitesimally long segments of a trasmission line, we have two
approximate hertzian dipoles!
Keeping this in mind, it’s evident that the RE of DM currents are 0 at any point equidistant from the
radiating antennas: the currents have opposite directions, so the fields emitted are opposite as well. On
the other hand, the components of each CM current are directed in the same way: they will add.
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• Total radiated field in the far-field region for two parallel wire-type antennas, considering components
only on the θ plane is:

Êθ = Êθ,1 + Êθ,2 Êθ,i = M̂ Îi
e−β0ri

ri

It’s easier to evaluate the fields with respect to the midpoint between the wires:

r1 = r − s

2
cosφ

r2 = r +
s

2
cosφ

r2 Êθ,2

r Êθ,P

r1 Êθ,1

However in the dominator we will trust the following approximation: r1
∼= r2

∼= r. Hence, we obtain:

Êθ = M̂
e−β0r

r

(
Î1e

+β0
s
2 cosφ + Î2e

−β0
s
2 cosφ

)
• For DM currents:

ÎD

L

ÎD

ÊD,max

s

d

Î1 = ÎD ∧ Î2 = −ÎD
r = d φ = 0

The spacing "s" is electrically small, so s/λ � 1. In this
way we can use this approximation:

1

2
β0s =

1

2

2π

λ
s = π

s

λ
� 1⇒ sin

(
1

2
β0s

)
∼=

1

2
β0s

Hence, applying the theory explained above we obtain a
general expression:

ÊD,max = 2π × 10−7 f ÎDL
d

e−β0d
{
e+β0s/2 − e−β0s/2

}
But taking into account the approximation:

ÊD,max = −4π × 10−7 f ÎDL
d

e−β0d sin

(
1

2
β0s

)
︸ ︷︷ ︸
→ 1

2β0s

Next, the magnitude:

|ÊD,max| = 1.316× 10−14 |ÎD|f2Ls
d

It’s really important to understand that the superposition theorem has been exploited, but the result is
not 0 because the two wires are not equidistant from the point at which we evaluated the electric field.
However, changing the point also the distances r1 and r2 will change.
The total electric field is sensitive to rotation of the cable.

• Reduction strategies.
Firstly, we need to mention that significant level of electric field are generally measured at high
frequency, typically above 200MHz. So, when we desire to reduce RE at a specific frequency, we could
either reduce the current level, either reduce the loop area (A = L · s).
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The first option is efficiently achieved increasing the rise/fall-times of the current pulse-signal, or
decreasing the pulse repetition rate (1/T ).
THe second one, on the other hand, should be addressed early in the design.

• For CM currents:

ÎD

L

ÎD

ÊD,max

s

d

Î1 = Î2 = ID

r = d φ = 0

Similarly to what we’done before:

1

2
β0s ∼=

1

2
× 2π

λ
s = π

s

λ
� 1 ⇒ cos

(
1

2
β0s

)
∼= 1

And finally we end up with:

ÊCM,max = 4π × 10−7 f ÎcL
d

e−β0d cos

(
1

2
β0s

)

Next we calculate the magnitude:

|ÊCM,max| = 1.257× 10−6 |Îc|fL
d

For electical small wire separation the pattern is virtually omnidirectional: the field generated by CM
currents is not sensitive to rotation of the cables. In other words we could replace the wires with only
one carrying 2Îc.

• Reduction Strategies.
At a specific frequency, we reduce Re reducing the current level or the line length. The first option is
achieved by reducing the peak levels, A; or increasing the pulse rise/falltimes (τr) or decreasing the pulse
repetition rate (1/T).The second strategy should be addressed early in the design, and tends to be more
f a problem with wiring hearness.

• Field Regions.

1. Reactive near-field region. It’s the portion of the near-field immediately surroinding the antenna
wherein reactive fields are predominant. In this region, E and H are out of phase by 90 degrees to
each other: {

~E = Ê · ~aE Ê = |Ê|eθE ;
~H = Ĥ · ~aH Ĥ = |Ĥ|eθH = |Ĥ|e(θE+π/2)

Therefore the Poyinting vector is nill in this region.
2. Radiating near-field (Fresnel) region. In this portion of the near-field region the radiation fields

start begin to emerge. Differently from the far-field region, here the shape of the radiation pattern
may vary appreciably with distance.

3. Far-fields (Fraunhofer) region. In this region the angular field distribution is essentially
independent of the distance from the antenna. Obviously, the radiated fields are predominant.
Besides, we are far enough to neglect size and shape of antennas. We can also assume that the e.m.
waves are purely a radiating spherical wave, locally plane. Lookin at their explicit expression in the
case of an ideal Hertzian Dipole, the field components decay as 1/r.

20



• Far-field region. The boundaries can approximately set at:

λ0/(2π) Hertzian Dipole

3λ0 "Wire-type" antennas

2D2/λ0 "Surface-type" antennas

Note that in communication systems, the receivers are always in the far-fields of the transmitting
antennas. However, the RE that cause interference are due to sources for which the receiver is in the
near-field region. Therefore, since the boundaries vary with frequency, keep in mind that changing for
istance form 1GHz to 30MHz would probably change the region even if the receiver is still in the same
position!

• Average power density. The total average power emitted is computed as the integral of the average
power density vector over a suitable closed surface surrounding the antenna.
For a Hertzian Dipole:

~Save =
1

2
Re{ ~E × ~H∗} =

1

2
Re{(Êθ~aθ + Êr~ar)× Ĥ∗φ~aφ} =

1

2
Re{ÊθĤ∗φ~ar − ÊrĤ∗φ~aθ}

Without showin every mathematical passage:

ÊrĤ
∗
φ −→ 0

ÊθĤ
∗
φ −→

1

(β0 · r)2

Hence:
~Save = S(r, θ) · ~ar

Where:

S(r, θ) = 15π

(
dl

λ0

)2

|Î|2 sin2 θ

r2
= S0 sin2 θ

And:

S0 = Smax = 15π

(
dl

λ0

)2

|Î|2 1

r2

Now, supposing to have a hertzian dipole in the origin of an observating sphere.
The differential power radiated through an elemental area dA is:

dPrad = ~Save · d ~A = ~Save · ~ardA = Save · dA

In the far field region of any antenna, Save is always in the axil direction.
The spherical coordinate system is recalled:

dA = r2 sin θdθdφ, dΩ =
dA

r2
= sin θdθdφ

So we have:
dPrad = SavedA = r2Save(r, θ, φ)dΩ

The total radiated power (for a Hertzian dipole) is

Prad =
∫

Ω
dPrad = r2

∫ 2π

φ=0

∫ π
θ=0

Sav(r, θ, φ) sin θdθdφ = {· · · } = 80π2

(
dl

λ0

)2 |Î|2

2
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• Radiation resistance.
Prad =

1

2
|Î|2Rrad ⇒ Rrad

It’s a fictitious resistance. The larger the radiation resistance, the higher the antenna effectiveness as a
radiator.
For the Hertzian Dipole:

Rrad = 80π2

(
dl

λ0

)2

Actually, the Hertzian Dipole is a very inefficient radiator.

• Input Impedance is the next step. The total impedance seen at the terminals of the dipole antenna:

Ẑant = Rin + Xin = Rloss +Rrad + Xin

For monopoles that are shorter than one-quarter wavelength (or dipoles shorter than one-half
wavelength) the reactive part becomes negative, symbolizing a capacitative reactance. For a dipole that
is shorter than one-half wavelength is zero.

• Antenna equivalent circuit:

source

−
+ V̂s

R

1m

Ẑant

Namely:

Îant =
V̂s

Rs + Ẑant
=

V̂s
Rs +Rloss +Rrad + jXin

Prad =
1

2
|Îant|2Rrad

Ploss =
1

2
|Îant|2Rloss

Pant = Prad + Ploss

• Antenna Factor: a parameter defined as the ratio of the electric field at the surfce of the measurament
antenna to the received voltage at the antenna terminals:

AF =
|Êinc|
|V̂rec|

In decibel:
AFdBm−1 = EincdBµV/m − V

rec
dBµV
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8 Practical Lecture: Radiated Emission Models
• Problem no. 1: An antenna measures the radiated emissions at 200 MHz from a product as shown in the
figure below. If the receiver measures a level of −93.5 dBm at 220 MHz, determine the voltage at the
base of the antenna in dBµV. The cable loss at 200MHz is 8 dB/100 ft. If the product providing these
emissions is located a distance of 20 m and the antenna provides 1.5 V for every V/m of incident field at
220 MHz, determine whether the emissions comply with the CISPR 22 Class B and FCC Class B limits
and by how much.

Receiver
50Ω RG58U

200ft 20m

Product

Solution:

Keep in mind that dBm is a unit of measure for power values, not for voltages. Remind that there is a
simple relationship to convert the measurement from power to voltage, or viceversa:

PdBm = VdBµV − 107⇒ VdBµV = −93.5 dBm+ 107 = 13.5 dBµV

Voltage at the base of the antenna:

V antdBµV = V recdBµV + Cable Losses ⇒ 13.5 dBµV +
8dB

100ft
× 200ft = 29.5 dBµV

Now, observe that the expression "providing 1.5 V for every V/m" is a clear reference to the antenna
factor, which is defined as the ratio between the magnitudes of the voltage detected by the antenna, and
the supposed electric field that radiate it.

AF =
|Êinc|
|V̂ant|

⇒ AF =
1V/m

1.5V
→ AFdB/m = −3.52 dB/m

Finally:
EincdBµV/m(20m) = V antdBµV +AFdB/m = 25.98 dBµV/m

However we have to evaluate the field at 3m and 10m in order to do the comparison to the limits
required:

EdBµV/m(3m) = EincdBµV/m(20m) + 20 · log10

(
20
3

)
= 42.5 dBµV/m FCC TEST PASSED

EdBµV/m(10m) = EincdBµV/m(20m) + 20 · log10

(
10
3

)
= 32 dBµV/m CISPR TEST NOT PASSED
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• Problem no.2: The radiated emissions of a cable are being measured as shown at 100 MHz. Determine
the magnitudes of the voltages corresponding to the maximum electric field due to the differential-mode
and common-mode component measured by the spectrum analyzer if the antenna factor at 100Mhz is 15
dBm−1 an the antenna is oriented parallel to and in the plane of the wires. The currents values are
I1 = 100 mA and I2 = 10 mA. The spacing is 10 cm.

SOURCE LOAD
I2

I1

ANT

3m

1m

Solution:

1. Since the currents in the wires are directed in the same verse the definition of the modal currents
are the following: 

ÎD =
Î1 − Î2

2

ÎC =
Î1 + Î2

2

⇒


ÎD = 45 mA

ÎC = 55 mA

2. At 100 MHz we have a wavelength of c/f = 3m, so we can assume the spacing to be electrically
small. Applying the thoery:

|ÊDM,max| = 1.316 · 10−14 · |ÎD|f
2L · s
d

= 1.316 · 10−14 · 45 · 10−3 · (100 · 106)2 · 1 · 10 · 10−2

3
=

= 0.1974 V/m ⇒ 105.91 dBµV/m

Similarly:

|ÊCM,max| = 1.257 · 10−6 |Îc|fL
d

= 1.257 · 10−6 55 · 10−3 · 100 · 106 · 1
3

=

= 2.3045 · 100 V/m⇒ 127.25 dBµV/m

Next, recalling the definition of the antenna factor:

AF =
|Êinc|
|V̂ant|

⇒ AFdB/m = EdBµV/m − VdBµV

3. Consequently:

V DMdBµV = |ÊDM,max|dBµV/m −AFdB/m = 90.91 dBµV

V CMdBµV = |ÊCM,max|dBµV/m −AFdB/m = 112.35 dBµV
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• Problem no.3: A current probe having ZT = 15 dBΩ at 100 MHz measures a current on a 0.5m wire as
shown in the picture. The spectrum analyzer is connected to the current probe with a 300 ft length of
RG58U coaxial cable, and reads a level of 20 dBµV [The cable loss is 4.5dB/100ft @ 100Mhz].
Determine the electric field in a FCC Class B radiation emission test. Will this device pass the test?

Analyzer

0.5m

300ft

Solution:

The value measured by the probe in terms of voltage is:

Vant(dBµV ) + Cable loss = VprobedBµV = 20 +
4.5

100
× 300 = 33.5 dBµV

Recall the Ohm’s Law:

I = V/Z ⇒ IdBµA = VdBµV − ZdBΩ = 33.5dBµV − 15dBΩ = 18.5dBµA

This result is the current detected by the probe, and we convert it in natural:

18.5 dBµA⇒ 8.4139 µA

In the end we evaluate the field emitted as half the field of two parallel conductors in common mode at a
distance of 3m (FCC test reference value):

E =
1

2
· |ÊCM,max| =

1

2
· 1.257 · 10−6 · |Î|fL

d
=

= 1.257 · 10−6 · 8.4129 · 10−6 · 100 · 106 · (0.5)2

3
= 88.125 · 10−6 =⇒ 38.90 dBµV/m

It does respect the FCC limit for Class B devices, that is 43.5 dBµV/m.

• Problem no.4: With reference to the line above ground shown in the picture, determine the current
measured by the monitor probe, knowing that at 300 MHz (a) the voltage measured by a spectrum
analyzer (SA) connected to the probe through a 30ft coaxial cable (with cable loss 5dB/100ft @ 300MHz)
is 20 dBµV, and (b) the probe transfer impedance is ZT = 12dBΩ.

ground

s = 5cm

I
L = 1.3m

5dB/100ft
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Solution:

The reasoning of the previous exercise holds true also for this one.

Vprobe = VSA + Cable loss = 21.5dB µV

Hence I = Vprobe − ZT = 9.5 sBµA = 2.985µA.

4.2: The current probe is the removed and an atenna is placed 10 m far from the signal line. Determine
the electric field measured by this antenna, and determine whether these emissions pass FCC class B test
(at 300 MHz is 46 dbµV/m)

Solution:
To solve this problem we need to rely on the principle of images, which let us replace the ground with
another wire. This substitution is allowed if the total field respect the boundaries conditions of the
ground. Besides, it leads to a solution that is acceptable only for the region of space in which there is
the first wire.
However, the equivalent model is the same of the DM evaluation:

2s

– @ d=10m: ED = 1.316 · 10−14 If
2Ls
d = 35.97 µV/m = 33.25 µV/m

– @ d=3m: ED,3m = ED + 20 log10

(
10

3

)
= 43.71 dBµV/m.

It does respect the test limit.

4.3: Repeat the evaluation at point (2) in the absence of the ground plane.

Solution:
We compute the field emitted by the wire as the one emitted by two wires in common mode divided by
2...

– @ d=10m: EC = 1
24π · 10−6 IfL

d = 37.28dBµV/m

– @ d=3m: EC,3m = EC + 20 log10

(
10
3

)
= 47.74 dBµV/m

It does not respect the limit.

4.4: For both configurations in (2) and (3), i.e, with and without the ground plane, determine the voltage
measured by a spectrum analyser connected ot the antenna through a 50 ft cable (cable loss = 5 dB/ft at
300 MHz) knowing that the antenna factor at 300 MHz is 14 dB/m.

Solution: {
AFdB/m = EdBµV/m − Vant,dBµV
VSA = Vant − Cable Loss

– With the ground: VSA = ED(10m)−AF − 5
100 × 50 = 16.75 dBµV

– Without the ground: VSA = EC(10m)−AF − 5
100 × 50 = 20.78 dBµV
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• Problem no. 5: The common mode current in a 1 m cable is measured, and consists of a 10 MHz
trapezoidal pulse train having a 50% duty cycle and ris/falltimes of 20 ns, as shown in the picture. The
maximum of I is 1mA. The radiated emissions of this cable are measured at a distance of 3m parallel to
the wire using an antena that has an AF of 8dB at 30MHz and 13dB at 100 MHz. Draw the envelope of
the emission as measured on the spectrum analyer between 30 and 100 MHz.

I

3m

Ant

t

I

1mA

Solution:
Observe the spectrum of current I:

f

|I|

1

πτ

1

πτr

−20dB/dec
−

40dB
/dec

Exploiting the following definitions we will evaluate the
frequencies of the poles and the values of the current
corresponding to the ends of the frequency interval we care
about:

Maximum: 2Aτ
T = 2Aδ = 60 dBµA (1 mA)

Period: T0 = 1
f0

= 100ns

Pulse width: τ = δ · T0 = 50ns

Hence:

f1 =
1

πτ
= 6.37 MHz f2 =

1

πτr
= 15.91 MHz

As we can easily see, the frequency we’re interested in falls in the third region, in which the decrease is
of -40dB/dec.
We will exploite an important and inherent property of the logarithmic plots: there is a linear relation to
evaluate the current at a specific frequency knowing the value and the corresponding frequency of
another point, and the decrease/increase in between. For istance:

I(f2) = I(f1)− 20 log10

(
f2

f1

)
Since I(f1) = 60 dBµA, then I(f2) = 52.05 dBµA. Similarly:

– @ 30 MHz: I(f3) = I(f2)− 40 log10

(
f3
f2

)
= 41.03 dBµA

– @ 100 MHz: I(f4) = 21.115 dBµA

Now, recalling that for only on ìe wire, the field is

ECM/2 = 2π · 10−7I
fL
d
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Hence, in decibel we have:

– @ 30 MHz: E(f3) = 20 log10

(
2π · 10−7 f3 × 1m

3m

)
= 57 dBµV/m

– @ 100 MHz: E(f4) = 20 log10

(
2π · 10−7 f4 × 1m

3m

)
= 46.54 dBµV/m

In the end we can compute the envelope of the emissions measured by the spectrum analyzer by
considering the AF spectrum:

V (f3) = E(f3)−AF (f3) = 49dBµV V (f4) = E(f4)−AF (f4) = 33.54 dBµV

Hence the sloped is:

slope =
V (f4)− V (f3)

log10

(
f4
f3

) = −29.57 dB/dec
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9 Antenna Parameters
• Antenna pattern: three dimensional plot that describes the directional properties of an antenna. The

fundamental term is the normalized radiation intensity, F (θ, φ):

F (θ, φ) =
S(R, θ, φ)

Smax

For the Hertzian dipole, F (θ, φ) = sin2 θ. The plot resembles a doughnut and Fmax = 1 in the broadside
direction. Usually is measured in decibel.

• the antenna is said to be "fairly directed", when most of the energy radiated is focused in the main lobe.
The enegy irradiated in the side and back lobes is considered wasted.

• Pattern solid angle: defines an equivalent cone over which all the radiationof the actual antenna is
concerned with equal intensity.

Ωp =

∫∫
4π

F (θ, φ)dΩ [sr]

• Isotropic Antenna: is an antenna with F (θ, φ) = 1 in all directions and Ωp = 4π.

• 3-dB bandwidth: it is defined as the angular width of the main lobe between the angles (θ1, θ2) at
which the magnitude is equal to half of its peak value: β = θ2 − θ1.

• Directivity:

D =
Fmax
F (θ, φ)

=
1

1

4π

∫∫
4π
F (θ, φ)dΩ

=
4π

Ωp

Note that for an isotropic antenna D=1.
Moreover, D can be also obtained as:

D =
Smax
Save

∧ Save = Siso

So, the directivity is defined as the ratio between the maximum power emitted by an antenna and the
power by an isotropic antenna.

For an Hertzian Dipole:
D = 1.5⇒ DdB = 1.76dB

• Radiation Efficiency: Of the total power supplied to the antenna (Pt), some is dissipated as heat
(Ploss) in the antenna while the remaining is actually emitted (Prad). The efficiency:

ξ =
Prad
Pt

=
Rrad

Rrad +Rloss

• Gain: defined as

G =
4πR2Smax

Pt

Observe that there is a relationship between the Gain and the Directivity:

G = ξ ·D =
Prad
Pt
·D
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10 Radiated Susceptibility
• Radiated susceptibility is due to intentional or unintentional radiation emitted by high-power

transmitter or by nearby electrical devices; or it is due to randomic phenomena with pulse characteristics.

• The EUT is tested in anechoic environment, in which we use a RF generator with an amplifier to
simulate the radiation. The RS test procedure is the following:

1. Field calibration in the abscence of the EUT to determine the antenna feeding conditions assuming
specific field levels where the EUT will be placed;

2. Place the EUT;

3. For each frequency: we let the radiation reach the EUT and we verify that it does not exhibit
malfunctions.

Usually the device itself is immune or schielded, but the radiation could couple with cable hearnesses.
During the test, cable hearnesses must be exposed at least for 1m from the EUT - after 3m they are
uncoupled thanks to the use of ferrites. Moreover, they should be lifted 10 cm far from the ground.
As for the EUT, its position must be changed to test it when all its surfaces are parallel to the
calibration plane. The cable must be replaced as well when we turn the EUT. Besides, this procedure
must be repeated for horizzontal and vertical polarization of the antenna. It’s a long procedure.

• Field to wire Coupling - introduction

RS RL

L

+

−
V̂s

+

−
V̂x

+

−
V̂L

y

z x

The generic fields configuration of the
incident wave:

E i

H i

S

Note that the propagation direction (~S) is not better specified with respect to the axis in order to
include every possible situation.
Now, the components which give rise to the EMI are:

– the electric field transverse to the line direction, that is directed as y:

Êit = Êiy

– the magnetic field that is normal to the plane of the wires, that is in the opposite direction of z:

Ĥi
n = −Ĥi

z

The surroinding medium is assumed homogeneous and nonferromagnetic. For two parallel wires with
radius rw and spacing s, the inductance and capacitance per unit length are:

l =
µ0

π
ln

(
s

rw

)

c =
1

v2l
=

πε0εr

ln

(
s

rw

)
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Focus on the normal component of H. The Faraday’s Law states that a varying magnetic flux
interlinked to a closed circuit gives rise to an electrical current, whose verse respect the thumb rule. The
response of the circuit consists of an induced current which flows in the opposite direction of the first
one, and that generates another magnetic flux compensating the variation of the original flux. Faraday’s
Law mathematical expression allow to modelize the source of the response like a voltage source.

emf(x) = −ω
∫
S

B̂in · ds = −ωµ0∆x

∫ s

0

Ĥi
n(x, y) · dy

In general the function H is a function depending on the longitudinal coordinate x, and the vertical one,
y (z doesn’t change).
Do consider an infintesimal segment (∆x) of the transmission line. Taking into account capacitance and
inductance per unit length, we have a closed circuit. Remember that we use voltage sources with same
direction of the induced current.
The voltage source for this segment is given computing |emf |/∆x:

V̂s(x) = ωµ0

∫ s

0

Ĥi
n(x, y)dy

In a similar way, with a dual analysis, we derive that the transverse component of E gives rise to an
induced current directed like −y. The expression is:

Îs(x) = ωc

∫ s

0

Êit(x, y)dy

We can obtain this result also with another reasoning: the transverse electrice field induces a voltage
(V̂E =

∫ s
0
Êit(x, y)dy) in series with the per unit capacitance within the wires (impedance: 1/(ωc∆x)).

The complete equivalent circuit is:

l ·∆x

−+

V̂s ·∆x

Îs ·∆xc ·∆x

∆x

Analyzing the structure, imposing the KVL and KVC, we have that:
V̂ (x+ ∆x)− V̂ (x) = −ωl∆x− V̂s∆x KV L

Î(x+ ∆x)− Î(x) = −ωc∆xV̂ (x)− Îs∆x KV C

We divide for ∆x and we impose that ∆x→ 0:
dV̂ (x)

dx
+ ωlÎ(x) = −V̂s = −ωµ0

∫ s
0
Ĥi
n(x, y)dy

dÎ(x)

dx
+ ωcV̂ (x) = −Îs = −ωc

∫ s
0
Êit(x, y)dy

To estimate the coupling the approximated solution is sufficient.

Approximated Model: for many case of practical interest the lenght is electrically small at the
frequency of interest (L� λ). Under this assumption we can consider lumped parameters by using one
section to represent all the line and we replace ∆x with L.
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Moreover, we can neglect the p.u.l. inductances and capacitances so long as the terminal impedances are
not extreme values such as short or open circuits.
Now, assuming that the wire separation is way smaller than the wire length (so it’s also electrically
small), the fields do not vary appreciably across the wire section. Therefore, the integrals for the sources
evaluation can be replaced with the wire separation s multiplied by the interfering component. Since
we’re considering the product with L, we define A the area of the circuit. We obtain:

V̂s · L = ωµ0Ĥ
i
n ·A

Îs · L = ωcÊit ·A

Rs

−+

ωµ0LsĤt
n

+

−

V̂S ωcLsÊit RL

+

−

V̂L

We exploit the superposition theorem to compute the
voltages at the terminals.

• Important observations.

1. the field-to wire coupling is proportional to the frequency, to the loop area (L · s) and it can change
with the orienttion of the line with repect to the radiation.

2. in the special case of a matched line with an end-fire excitation:

V̂induced = ωµ0Ĥ
i
n ·A = ωµ0

(
Ê

η0

)
·A = ω

Ê

c0
·A

Îinduced = ωcÊit ·A = ω
Ê

c0Zc
·A =

V̂induced
Zc

• Exact solution: equivalent circuit of Taylor.

Zc, γc

Φ(L)

IFT (L)

− +

VFT (L)

V (0)

I(0)

V (L)

I(L) Without the assumptions considered for the
approximated model, we can cast the equiva-
lent circuit at the end of the transmission line
as shown in the picture aside.[

V̂ (L)

Î(L)

]
= Φ̂(L) ·

[
V̂ (0)

Î(0)

]
+

[
V̂FT (L)

ÎFT (L)

]

• Exact Solution: equivalent circuit of Agrawal.

Zc, γc

Φ(L)

−+

VSL

− +

VSR

V (0)

I(0)

V (L)

I(L)

In this second case the voltages sources take
on the meaning of line open-end voltages due
to wire-field coupling.
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• Shielded Cables.

Coaxial cables consists of a concentric shield enclosing an interior wire that is located on the axis of the
shield. The intent is to completely enclose a circuit in order to prevent coupling to the terminations from
incident fields outside the shield.
However, the fields can penetrate the shield via diffusion of the current which is induced on the external
surface. At this point we introduce some simplifying assumptions...

For what concerns the external problem, we can calculate the current induced ISH by the external field
assuming the shield is a perfect conductor: any interaction between interior and exterior is neglected.

As for the internal problem, the shield current diffuses through the shield wall to give a voltage drop on
the interior surface of the shield of:

dV̂ = ẐT ÎSHdx

where ZT si the p.u.l surface transfer impedance of the shield.
For solid shields, ZT is given by

ẐT = rdc
γ̂ · tSH

sinh(γ̂ · tSH)
(Ω/m)

where:

P.u.l. Shield Resistance in DC: rdc =
1

σ2πrSHtSH
Thickness: tSH

Propagation constant: γ̂ = (1 + )/δ

Skin depth: δ = 1/
√
πfµ0σ

Analyzing the impedance expression:

– For tSH � δ, the transfer impedance tends to 1;
– For tSH > δ, the impedance decreases with decreasing skin depth(i.e with increasing frequencies)

Since the voltage drop along the interior surface of the shield acts as a voltage source, we can sketch the
following scheme for an infinitesimal line section:

− +

ẐT ˆISH∆x

RS

Î(x) r ·∆X I ·∆x

g ·∆x c ·∆x

Î(x+ ∆x)

RL

+

−

V̂ (x)

+

−

V̂ (x+ ∆x)

The lower wire is the interior surface of the shield while the upper one represents the interior wire. For
an electricaly short line we can approxiamte the solution by lumping the source and ignoring the p.u.l.
parameters of the inner wire-shield circuit. We obtain the following central segment:

− +

ẐT · LÎSH
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For a given shield current, ISh, the Larger is ZT the larger is the interference induced at the
terminations of the interior circuit. From the EMC viewpoint, it is desirable that a coaxial cable
exhibits a transfer impedance as low as possible in the frequency range of interest.

11 Practical Lecture: Radiated Susceptibility
• Problem no. 1: A 100Mhz, 10V/m uniform plane wave is propagating parallel to an air-filled two-wire
transmission line as shown in the picture. The electric field is in the plane of the two wire. COmpute the
magnitude of the voltage induced across the 50Ω load. Zc = 300Ω.

E = 10V/m

100Ω50Ω

+

−

Vout 1mm

1m

(Zc)

Solution:

We need the magnetic component to apply the superposition theorem:

|H| = |E|
η0

= 26.5 mA/m

And we need the capacitance to have all the parameters of the current source:

Zc =
1

c0 · C
=⇒ C =

1

c0 · Zc
=

1

3 · 108 · 300
= 11.1 pF/m

According to the equation obtained in the course of the lecture, we can compute the sources:

V̂sL = ωµ0HsL = 20.9 mV

ÎsL = ωCEsL = 69.7 µA

Hence we get:

V̂ount = − RL
RR +RL

V̂sL −
RLRR
RL +RL

ÎsL = −9.3mV
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• Probelm no. 2: A 100 MHz, 10 V/m unifrom plane wave is incident on a two-wire line as shown in the
picture. Determine the induced voltage V if the cable has a p.u.l. capacitance of 50pF/m. The incident
angle is θ = 30.

100Ω50Ω

+

−

Vout 1cm

10cm

(Zc)

~S

~E

Solution:

Similarly to what we did in the previous problem:

1. We need the magnetic component that is normal to the plane of the wires:
Hn = E/η0 = 26.5 mA/m

2. We nedd the transverse component of the electric field with respect to the vertical axis of the
tansmission line:

Et = E cos θ = 8.66 V/m

3. Now we are able to compute the sources:

V̂sL = ωµ0H
nsL = 20.9 mV

ÎsL = ωCEtsL = 0.272 µA

4. Finally, the voltage V is

V̂L = − RL
RL +RR

V̂sL −
RLRR
RR +RL

ÎsL = −17.3 mV

• Poblem no. 3: Special Cases: endfire incident, assuming matched loads, so RL = RR = Zc

Solution:

Since v = 1/
√
µε and η =

√
µ/ε:

V̂sL = ωµ0HsL = ωµ0
E/η0sL = ω E

c0
sL

ÎsL = ωCEsL = ωEsL 1

c0 · Zc
Solving the equiavlent circuit, neglecting as always the p.u.l. parameters, we obtain:

V̂L = − V̂sL
2
− Zc

2
ÎsL = − ωEsL

2c0
− ωEsL

2c0
= −ωEsL

c0

V̂R = +
V̂sL

2
− Zc

2
ÎsL =

ωEsL
2c0

− ωEsL
2c0

= 0

The opposite result would be obtained if the wave impinges the right terminal.
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• Problem no. 4: A 1 m shield cable is illuminated by a 1 MHz incident unifrom plane wave. The shield is
composed of 16 belts with 4 wires per belt of braid wires having radii of 2.5 mils. The weave angle is 30°.
The shield interior radius is 35 mils. Determine the net shield resistance (dc).
Determine the surface transfer impedance of the shield at 1 MHz.
The interior circuit si terminated in 300 and 50Ω resistors. Determine the voltages induced across the
loads if the current induced on the exterior of the shield is 31.5 mA.

a) 2.5 mils correspond to (2.5× 0.0254)mm = 63.5µm. So we have wires having diameters of 0.127
mm. The resitance of each wire is

Rw =
L

σπr2
w

= 1.36Ω

Remember tha the σ for cupper wires is 58 · 106S/m.
In DC, the shield resistance is:

RDC =
Rw

B · w · cos(θw)
= 24.6mΩ

b) The formula for the surface impedance of the shield is

ẐT = RDC ·
γ̂2rw

sinh(γ̂2rw)
= 19.2e−64,3◦ mΩ

Where γ̂ =
1 + 

δ
and δ =

1√
πfσµ0

= 66µm

c) The equivalent circuit is derived and analyzed:

RL V̂L

−+

ẐtÎSHL

RRV̂R

RL = 300Ω RR = 50Ω ISH = 31.5mA

Hence:

V̂L =
RL

RR +RL
ẐT ÎSHL = 0.225− 0.468 V V̂R = − RR

RR +RL
ẐT ÎSHL = −37.46 + 77.95 V

Note: since the direction of the shield current is not specifiec we should point out that we should care
only about the magnitude of the two voltages.
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12 Crosstalk
• A quick overview of the conclusions...

Conclusions

1. At low frequencies, xtalk grows linearly (+20dB/decade):

– CAP coupling dominates for high-impedance terminations;

– IND couplig dominates for low-impedance terminations;

– CI coupling is frequency independent and dominates only at very low frequencies.

2. At high frequencies, the line resonances shape the f-response.

3. In Time domain, crosstalk manifests itself as the time derivative of the surce signal (for slow
signals).

4. Crosstalk suppression:

– shielding avoids capacitive xtalk and limits inductive xtalk (if the shield is grounded at
both ends)

– twisting avoids inductive xtalk (capacitive xtalk is suppressed only with balanced ter-
minations)

• Crosstalk (or xtalk) refers to the unintended electromagnetic couplig between wires an PCB lands that
are in close proximity. In other words, it’s a near-field EM coupling phenomenon between circuits. There
are no standards developed for communication cables, and there are no EMC standards foreseen for
crosstalk measurement and compliance verification with limit levels.

• Do consider the three-conductor lines: there is a reference wire which closes the circuits related to
the generator and to the receptor.
The current and voltage associated with the generator (G) circuit will generate electromagnetic fields
that interact with the receptior (R) circuit.

;

As we can see from the picture, we define VNE(t) the near end voltage and VFE the far end one, with
respect to the signal source. Obviously we could switch to the frequency domain considering the phasors
of these functions: V̂NE(ω) or V̂FE(ω).
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• Elementary Explanation. First of all, we do some simplifying assumptions:

– Low frequency (line is short with respect to wavlength, L/λ� 1)
– Weak coupling (wires are sufficiently separated)

Netx, we will divide the analysis in steps...

1. Generator circuit alone:

ÎGDC
=

1

RS +RL
V̂S ∧ V̂GDC

=
RL

RS +RL
V̂s

2. Inductive coupling (IND): the generator current generates a magnetic field whose flux will couple
with the "victim" circuit (Lm = lm · L). There is a closed-form expression of mutual inductance lm
but it does exist only for simple geometries. Otherwise, numerical computation is required. In
general:

lm =
µ0

2π
ln

(
dGdR
dGRrw0

)
3. Capacitive coupling (CAP): electric potential difference induces charges proportional to the

capacitance between the two circuits (Cm = cm · L). Similarly to IND:

cm =
lm

ν2(lGlR − l2m)

4. We apply the superposition theorem of inductive and capacitance effects, and we evaluate the
terminal voltages in the victim circuit.

RNE

−+

ωLmÎGdc

RFEωCmV̂Gdc


V̂NE =

RNE
RNE +RFE

ωLmÎGdc
+

RNERFE
RNE +RFE

ωCmV̂Gdc

V̂FE = − RFE
RNE +RFE

ωLmÎGdc
+

RNERFE
RNE +RFE

ωCmV̂Gdc

5. Manipulating the equations is possible to isolate the transfer ratios V̂FE/V̂S (or V̂NE/V̂S).

IND CAP

NE M IND
NE =

RNE
RNE +RFE

Lm
RS +RL

MCAP
NE =

RNERFE
RNE +RFE

RLCm
RS +RL

FE M IND
FE = − RFE

RNE +RFE

Lm
RS +RL

MCAP
FE = MCAP

NE

So, in electrically short structure the crosstalk increases linearly with frequency. Moreover, one
contribution can be dominant over the other: for istance, inductive coupling prevails if
M IND > MCAP .
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At the near end (NE):
RFERL
Lm/Cm

< 1

At the far end (FE):
RNERL
Lm/Cm

< 1

Note that for a homogenous medium Lm/Cm = ZCGZCR.
These new parameters are defined as the characreristic impedances of each circuit in the presence of
the other:

ZCG =

√
lG

cG + cm
ZCR =

√
lR

cR + cm

They differ from the expression of the classic characteritic impedance for the presence of the mutual
capacitance. Which coupling is prevailing?

– The inductive couling (IND) dominates for terminations impedances that are low with respect
to the circuit characteristic impedances:

Small terminations impedances ⇒ large current ⇒ large magnetic induction
– On the other hand, the capacitive coupling (CAP) dominates for large terminations

impedances:
Large terminations impedances ⇒ large voltage ⇒ large electric induction

6. Coupling via common return conductor. The voltage drop due to ohmic losses acts as a source for
the victim circuit -

V̂0 ' R0ÎG ' R0ÎGdc
=

R0

RS +RL
V̂S

Hence, we have another "contribution" to take into account, indeed:

V̂ CINE

V̂S
= MCI

NE , MCI
NE =

RNE
RNE +RFE

· R0

RS +RL

V̂ CIFE

V̂S
= MCI

FE , MCI
FE =

RFE
RNE +RFE

· R0

RS +RL

Note that it’s frequency independent.

• Conclusion - the coupling between two circuits can be summarized as follows:
V̂NE

V̂S
= ω(M IND

NE +MCAP
NE ) +MCI

NE

V̂FE

V̂S
= ω(M IND

FE +MCAP
FE ) +MCI

FE

• In the time domain the crosstalk appears to be the derivate over time of the source signal!!
The condition under which this statemente holds true is the following:

rise/fall time > 10 · TD

It means that the signal is slow, and TD = L/v.

• Shielded wires are used to avoid capacitive coupling. Indeed, if Vshield = 0, both cRS and cGS are
connected to ground and we neglect them. In other words, there is no coupling between R and G
provided that the shield is connected to the ground at least at one end.

Moreover, if the shield is grounded at both ends, also inductive coupling is reduced !! This is possible
because a return current Is can flow back along the shield, giving rise to a magnetic flux ΨS that
counter-acts the flux ΨG due to the generator wire loop.
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Before continuing, note that with the shield connected to the ground we can separate the structure into
three sub-circuits: the generator loop, the receptor/victim circuit and that one replacing the shield.
As we did before, we show this analysis dividing it into different steps:

1. Current in the generator circuit:

ÎG =
1

RS +RL
V̂S

2. Current in the shield circuit:
ÎS =

ωLGS
RSH + ωLSH

ÎG

3. NE/FE voltages in the receptor circuit:

RNE V INDNE

−+

ωLGRÎG
Receptor
wire

− +

ωLRS Îs

RFE V INDFE

RSH

Îs

LSH

−+

ωLGS ÎG

(Shield)

V INDNE =
RNE

RFE +RNE
ω(LGRÎG−LRS ÎS) =

RNE
RFE +RNE

ωLGRRSH + ω2(LGSLRS − LGRLSH)

RSH + ωLSH
ÎG

Now, since:
LGS = LGR LRS = LSH

We derive the simplified expressions of these quantities:
V̂ INDNE =

RNE
RNE +RFE

· ωLGRÎG ·
RSH

RSH + ωLSH

V̂ INDFE = − RFE
RNE +RFE

· ωLGRÎG ·
RSH

RSH + ωLSH

Where the effect of the shield depends on the frequency. Note that the

fSH =
RSH

2πLSH

If:

– f < fSH : RSH

RSH+ωLSH
≈ 1

– f > fSH : RSH

RSH+ωLSH
≈ RSH

ωLSH

• Twisted Wires. It’s the dual technique with respect to the shielded wire. We can consider the circuit
as a sequence of half-twisted loops. The approximations that we need are the same assumed for the
shielded wire, the same valid from the paragraph named "Elementary explanation".

The magnetic flux due to the generator wire current threads the loop of the TWP, inducing emfs in each
loop. However, since the loops alernate in polarity, the induced emfs tend to cancel out in adjacent
loops! The worst case occurs for an odd number of loops.
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Since this solution is dual with respect to the shielded wire, we expect to have a reduction of inductive
coupling, while the capactive is unaltered.

However, it does exist a condition that allow the suppression of capacitive coupling as well: the
terminations impedances are balanced.

13 Practical Lecture: Xtalk
• Problem no. 1: For the ribbon cable shown in picture, assume the total mutual inductance and total
mutual capacitance to be Lm = 1µH and Cm = 250pF . If Vs(t) is a 1 MHz sinusoid of magnitude 1 V,
calculate the magnitude of the far-end crosstlak if the termination impedances are
RS = 50Ω, RL = 50Ω, RNE = 100Ω and RFE = 100Ω. Determine the near-end and far-end inductive
and capacitive coupling coefficients.

Solution:

As we studied in the theory we can exploit the superposition theorem, which is applied taking into
account three contributions: the inductive coupling, the capacitive coupling and the ohmic losses of the
resistances. In first approximation we neglect the last one.
It’s really important to point out that the circuits are electrically small, the wires are sufficiently
separated and there is not a big missmatching at terminations.

Under this assumptions we can analyze the equivalent circuits:

Receptor circuit: Generator circuit:

RFE

ωLmÎG

RNE ωCmV̂G

(reference wire)

−
+ Vs(t) RL

RS

(reference wire)

+

−

V̂G

Hence:

ÎG =
V̂S

RL +RS
=⇒ V̂G = ÎG ·RL =

RL
RS +RL

ÎG
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Now we determine the explicit expressions of the voltages:

V̂NE =
RNE

RNE +RFE
ωLmÎG +

RNERFE
RNE +RFE

ωCmV̂G =

= ω

(
Lm ·

1

RS +RL
· RNE
RNE +RFE

)
V̂S + ω

(
Cm ·

RL
RL +RS

· RNERFE
RNE +RFE

)
V̂S

And:
V̂FE = − RFE

RNE +RFE
ωLmÎG +

RNERFE

RNE +RFEωCmV̂G
=

= ω

(
−Lm ·

1

RS +RL
· RFE
RNE +RFE

)
V̂S + ω

(
Cm ·

RL
RS +RL

· RNERFE
RNE +RFE

)
V̂S

The terms inside the brackets are the coefficients we’re aiming to evaluate. The first ones are inductive
while the second ones are capacitive.
We have:

MCAP
NE = MCAP

FE = 6.25 · 10−9 s

M IND
NE = 5 · 10−9 s

M IND
FE = −5 · 10−9 s

And finally:
V̂FE = ω(M IND

FE +MCAP
FE )V̂s = 7.854 mV

• Problem no. 2: For the ribbon cable of the previous problem, assume the total mutual capacitance to be
Lm = 1 µH and Cm = 250 pF . Suppose that the termination impedances are equal:
RS = RL = RNE = R. Determine the value of R for which the inductive and capacitive coupling
contributions are exactly equal.
Solution:

|M IND| = MCAP −→ Lm ·
1

RS +RL
· RFE
RNE +RFE

= Cm ·
RL

RS +RL
· RNERFE
RNE +RFE

=⇒ Lm ·
R

4R2
= Cm ·

R3

4R2
= Lm ·

1

R
= Cm ·R⇒ R =

√
Lm
Cm

= 63.25 Ω

If we imagine to have solved the corresponding inequality of the previous equation (for istance
|M IND| > |MCAP |), we will obtain that if:

– R < 63.25Ω the inductive coupling prevails

– R > 63.25Ω the capacitive coupling prevails

(More problems following · · · )
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• Problem no. 3: For the ribbon cable of the first problem suppose that the wires are 28-gauge (7×36)
stranded. Determine the common-impedance coupling level fo the near-end crosstalk voltage if the total
line length is 3 m and the frequency where this level equals the inductive-capaictive coupling level.
Solution:

Looking on a table for the dimension of the AWG

dw ≈ 15 mil −→ rw = 7.15 = 0.19mm

Secondly we need to recall the general formula to compute the resistance of a cupper wire
(σCu = 58 · 106 S/m):

R0 = L · 1

σCuπr2
w

= 0.4537 Ω

Now we can analyze the equivalent circuit, calling R0 the common-impedance of the "return" wire:

−
+V̂s

R0

V0

RL

RS

RNE RFEV̂NE V̂FE

V̂0 = R0ÎG =
R0V̂S

RS +RL +R0
' R0V̂S
RS +RL

Hence, rememberign that RNE = RFE :

V̂NE =

(
RNE

RNE +RFE
· R0

RS +RL

)
· V̂S

V̂FE =

(
− RFE
RNE +RFE

· R0

RS +RL

)
V̂S = −V̂NE

When IND+CAP is prevailing over the CI? In other words: until which frequencies CI is prevailing?

– @ near-end:
2πfNE |M IND

NE +MCAP
NE | = |MCI

NE | =⇒ fNE ' 32.5 KHz

– @ far-end:
2πfFE |M IND

FE +MCAP
FE | = |MCI

FE | =⇒ fFE ' 292.9 KHz|

43



• Probelm no. 4: Consider the case of two wires above a ground plane shown in the picture. THe line has
parameters of lm = 2 nH/m, cm = 0.6 pF/m, VS(t) = 1 cos(ω · t) V, f = 1 MHz, L = 2 m, RS =
0, RL = 50 Ω, RNE = 200 Ω, RFE = 200 Ω. A shield is placed around the receptror wire, and is
connected to the ground plane only at the near end. Determine the near-end crosstalk voltage. By how
much does the shield reduce the crosstalk?.

ground

rwg

rwr

rsh

εr

hg

hr

Solution:

We know from the theory that if the shield is grounded at least at one end, and it does happen in this
case, the capacitive coupling is zero.
Next:

V̂NE(shielded) = j167.1 µV

The attenutation:

ATT = 20 log10

∣∣∣∣M IND
NE +MCAP

NE

M IND
NE

∣∣∣∣ ' 12dB

Problem no. 5: The shield of the previous problem is connected to the ground plane at both ends, and has
a per-unit-length resistance of 1 Ω/m and per-unit-length self inductance of 16 µH/m. Determine the
near-end crosstalk voltage.
Solution:

In general we can compute the near-end voltage as follows:

V̂ INDNE =
RNE

RFE +RNE
ωLGRÎG

RSH
RSH + ωLSH

But, collecting RSH in the last term we obtain:

V̂ INDNE =
RNE

RFE +RNE
ωLGRÎG

1

1 + ωLSH/RSH

= ω ·M IND
NE · 1

1 + ωτSH

Where τSH = LSH/RSH = lSH/rSH = 16 µs.
The next step is to evaluate the "cut-off" frequency for the attenuation:

fSH =
1

2πτSH
−→ fSH = 9.95kHz

Finally we can evaluate the near-end voltage and the attenuation in dB at the working frequency:

– @ 1 MHz: SF = −20 log10 |1 + ωτSH | = −40 dB

– Since 1MHz � fSH : V̂ INDNE = ωM IND
NE · 1

ωτSH
= 1.67 µV
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• Probem no. 6: Consider the ribbon cable of the first exercise. The total mutual inductances is
Lm = 1µH, and the total mutual capacitance is Cm = 25pF . If RS = 0, RL = RNE = RFE = 100 Ω,
and the pulse waveform shown in the picture below is applied, sketch the time-domain near-end crosstalk
and determine the maximum crostalk voltage level.

Solution:

– f-domain: V̂NE = ωMNE V̂S

– time-domain: VNE(t) = MNE · dvs(t)
dt

Hence we only need to apply the formula and we will find the mathematical expression of what is
requested:

1. Near-end coefficient:

MNE =
RNE

RNE +RFE
· Lm
RS +RL

+
RNERFE
RNE +RFE

· RLCm
RS +RL

= 6.25 · 10−9 s

2. the time derivate of vs(t):

vs(t) =

{
10(1− e−106t), V 0 < t < 10µs

10e−106(t−10−5), V 10µs < t < 20µs

Hence:
dvs(t)

dt
=

{
107 · e−106t, V 0 < t < 10µs

−107 · e−106(t−10−5), V 10µs < t < 20µs

3. Finally:

VNE(t) =

{
62.5e−106t, mV 0 < t < 10µs

−62.5e−106(t−10−5), mV 10µs < t < 20µs
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