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DISCLAIMER 

 

These notes cover the arguments of the course ‘Signal Recovery’ held by Professor I. Rech at Politecnico 

di Milano during the academic year 2022-2023. 

 

Since they have been authored by a student, errors and imprecisions can be present. 

 

These notes don’t aim at being a substitute for the lectures of Professor Rech, but a simple useful tool for 

any student (life at PoliMi is already hard as it is, cooperating is nothing but the bare minimum). 

 

Please remember that for a complete understanding of the subject there is no better way than directly 

attending the course (DIY), which is an approach that I personally suggest to anyone. 

 

In any case, if you found these notes particularly helpful and want to buy me a coffee for the effort, you’re 

more than welcome: https://paypal.me/LucaColomboxc 
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SIGNAL RECOVERY 
 

Normally we have a sensor with noise and an amplifier. The problem is that we cannot change the front 

end, so we have to deal with noise. So we have the signal and the noise. Just one of the two it is nosense, 

we will deal with the signal to noise ratio. Our target is to have a SNR equal to 1. This means that the 

signal and the noise have the same amplitude. 

 

Normally, we want a SNR of at least 3.  

We need to include a filtering section, whose noise is typically negligible. We will develop a one stage 

filter. This because the noise of the amplification is so high that the noise of the filter is negligible. 

 

Finally, we need a meter with negligible noise. It is the instrument that gives us the final measurement. 

The problem is that we don’t know anything about the signal and the noise. 

For the signal, every time we will have a different signal, the rect, the exponential and so on, so we cannot 

study all the possible signals and waveforms, hence we need some tools and properties of the signal that 

can be applied to all the signals to create filters. 

 

One of the important thing is the time domain and the frequency domain. 

 

MATHEMATICAL DESCRIPTION OF SIGNALS 

 

This is a first example of signal, with a laser that excites a fluorescent material. We have an exponential 

decay. The real signal is the blue one on the bottom right, noisy and with low resolution. 
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FREQUENCY DOMAIN: RECAP 

 

The first formula is the formula of a signal in the time domain written as a function of X(f), that is the 

Fourier transform of the signal. The signal can be expressed as the superposition of waves in the frequency 

domain. Similar, the signal in the time domain can be written as the superposition of deltas. 

In both integral we have the linearity property, which is important because we will work always with 

linear signals. 

As for the Fourier transform, one of its property, starting from the integral, is that in the time domain we 

will have real signals, while in the frequency domain we have complex signals, so we have both the 

module and the phase. If I remove the phase (the exponential), from the equations above I need to put t 

= 0, so that the exponential is 1. So the value of the signal at t = 0 is equal to the integral from -inf to +inf 

of the Fourier transform in the frequency domain and viceversa. 

 

This is important because this will be used a lot of time. For instance, let’s integrate from -inf to + inf the 

Fourier transform of the 1st order LP filter (exponential decay) that is 1/(1+s*tau). 

We know the expression in the time domain and, using the equation 1, at t = 0 the integral of the Fourier 

transform is x(t = 0), which is 1. So the value of the integral is 1. 

In the time domain we can consider the signal as an overlap of deltas. 

 

CONVOLUTION: RECAP 

 

We take the delta of the input, we pass in the filter, we get a delta response. Then we shift the delta 

response for all the delta of the signal and then we sum at the output all the delta response with the weight 

of the amplitude of the signal. 

 

Computing the convolution 

For instance, we need the convolution of the delta response and of my signal. 
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Top we have the delta response of the filter. To make the convolution we take the delta response, we flip 

it, we shift the one flipped as a function of the signal and we make the integral of the product. 

 

The convolution of a rect with itself gives as a triangle with a peak equal to the peak value of the rect. If 

the triangle is the convolution of the rect with itself and the convolution in the time domain is the 

multiplication in the frequency domain, in the frequency domain we will have a sinh squared. 

 

TRUNCATED SIGNALS 

We have a sinusoidal waveform. In the real world it doesn’t exist because it goes to -inf to +inf. The 

Fourier transform of the sinusoidal waveform is two delta of half amplitude at the frequency of the 

sinusoidal. It must be remembered. 

I need to multiply the sinusoidal by a rect, whose Fourier transform is the sinh, I truncate the sinusoid in 

the time domain and so in the frequency domain I’m making the convolution of the two deltas and the 

sinh. This is the Fourier transform of a truncated signal. 

 

It is important for the following reasons. In real world, we see just a part of the sinusoid. 

To avoid aliasing, we need a sampling frequency that is two times the maximum frequency of the signal. 

If we have a truncated signal, which is the frequency of the sinusoid? We are creating aliasing because in 

the frequency domain the truncated sinusoid has the sinh that goes to -inf and +inf in the spectrum. 
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SIGNAL ENERGY 

From a signal we can recover some information, e.g. the energy of the signal. We need to use all they 

possible information to increase the SNR, but at the same time simplifying them. 

The energy is defined as in the image. 

 

It is the integral of the square of the signal in the time domain from -inf to +inf. For instance, let’s take 

the voltage over a resistor, this integral is exactly the energy on the resistor from the electrical point of 

view. 
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The other important formula is the autocorrelation formula. 

It is the integral from -inf to + inf of what in the image. It is similar to the convolution but not the same. 

This formula gives us the level of similarity of the function (or signal) with itself. In the previous image 

we defined the energy. Energy is nothing else than the autocorrelation at zero shift. 

 

Example 

Some useful signals are the exponential decay time and the rect. Which is the autocorrelation of the 

exponential decay time? I take the exponential decay time and the exponential decay time with the shift 

equal to zero, we multiply them and make the integral. So we add a factor 2 to the exponential. So we 

get an exponential whose tau is half the original tau of the signal if I put the 2 at the denominator. Thus 

the integral will be half of the tau (integral of the signal was tau). So the energy of the signal is tau/2. 

 

Now I shift the signal and make the same computation, so multiply the 

two signals and make the integral. The multiplication of the two functions 

at the extremes is 0 (both are zero), and in general if one of the two signals 

is zero the multiplication is 0. So we need just the integral of the part 

where both are different from zero. The first signal has the same original 

tau, but a smaller amplitude. 

 

Another example, the autocorrelation of the rect. 

tau 
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Autocorrelation of a delayed exponential is the following. 

 

 

 

 

Missing factor 2 
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CROSS CORRELATION 

Level of similarity between two different signals. It is the same of the autocorrelation but the second 

signal is shifted. 

The formula is similar to the one of the convolution. We take the signal, the second signal, we shift, 

multiply and make the integral. It seems the convolution but without the flipping that we have in the 

convolution. 

If I make the convolution of signals x and y I get z(T). 

Now I do the convolution with a modification, instead of x(alpha) I take x(-alpha) and do the 

convolution. Now x and y are in the same direction, so I’m doing the cross correlation. So if I take the 

first signal, I flip it and I convolve with the second one I’m doing the cross correlation (because in the 

convolution I would have need to flip the second signal, so I return back with the two signals in the same 

direction). 
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The last formula in the box is important because we don’t know anything for the cross correlation, but 

we know that the convolution in the time domain is the multiplication in the frequency domain, we have 

a connection for the cross correlation in the frequency domain. So we have the possibility to switch from 

the frequency domain to the time domain. 

 

ENERGY SPECTRUM 

 

It gives an information on how the energy of the signal is distributed. 

 

We have just to use the formula in the first box, which is the Perceval’s theorem. It applies to real signal. 

The energy is defined as the integral of x^2 from -inf to +inf. The Perceval theorem tells us that we can 

make the integral of the square of the signal in the time domain (if real) and getting the same result if we 

make the integral of the square modulus of the Fourier transform, both from -inf to +inf. 

In the time domain I have the energy and I want to have some information related to the energy also in 

the frequency domain, and this can be done with this relationship. 

 

I define the square modulus of the Fourier transform as the energy spectrum. It is something that 

integrated from -inf to + inf in the frequency domain gives us the energy. 
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In the real world, the spectrum is not correct just from -inf to +inf, but also for a small amount of 

frequency. I can evaluate the spectrum at a specific frequency with a small df. 

 

The energy spectrum is also the Fourier transform of the autocorrelation. Then the energy is the 

autocorrelation in zero that is the integral of the square modulus of the Fourier transform. 

The spectrum is indeed a function that, if integrated in the frequency domain from -inf to +inf gives us 

the energy. But it is also the Fourier transform of the autocorrelation. 

 

The integral of -inf to +inf of a function in the frequency domain is the value in zero of the inverse Fourier 

transform. So the inverse Fourier transform of the spectrum has to be the value in zero, so the energy, 

that is the autocorrelation in zero. 

 

The tau of the exponential is Tp. We know the autocorrelation function (it is tau and not |t|). We also 

know the energy, which is the value in 0 of the autocorrelation. 

Then we want to move in the frequency domain, and we get the spectrum. Plot x is a linear-linear plot, 

not the Bode diagram. In the linear-linear plot, the area of the plot will give us the value of the white 

noise of the signal, so to compare the filters we need just to compare the area. Same reasoning for the 1/f 

noise but with a linear-log plot. 

 

 

 

 

SIGNAL POWER 

x 
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The energy of a sinusoidal waveform is infinite, the average value is zero but the energy not. So instead 

of the energy we can define the power. All that was defined for energy has to be defined for power. 

The power is the limit of the square of the signal divided by two times the period 2T (and we added the 

limit). It has the same shape of the energy formula. 

 

We are considering power signals, not energy signals. If instead of x we use the truncated signal x_T, at 

this point we can write the integral from -inf to +inf, because it is zero where we are not interested. 

Once we have the truncated signal and the integral from -inf to +inf we can use the Parseval theorem. 

 

In x the limit is shifted inside because the integral is linear. So also for the spectrum definition we have 

something similar, but we add the limit and 2T. 

 

Auto-correlation function – power type 

 

The autocorrelation in zero is exactly the power, so the formula is correct (equivalent seen for the energy). 

x 
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The autocorrelation of the signal is the limit of the integral from -T to T of the formula in the second line. 

Now I use the same trick as before shifting to -inf to +inf the integral and with the truncated signal. The 

thing is that the equation, without the limit, is not valid. If I have tau = 0 the equation is correct for any 

t, but if tau != 0, the equation is equal only for the limit that goes to inf. 

 

So the autocorrelation is the limit of the autocorrelation of the truncated signal (bottom image, first 

formula). The autocorrelation of the truncated signal is known because the truncated signal is an energy 

signal because the truncated signal is limited in time. 

Hence we can define the new power spectrum as the Fourier transform of the autocorrelation (x). We 

have the exact same relationships that we had for energy. Of course, inside the formula of the spectrum 

and so on we have the limit, but since we will never calculate the integral, we are good. 

 

Cross-correlation function – power type 

 

If one of the signal is power and the other one is energy, what do we do? The energy type autocorrelation 

must be used. 

x 
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Comparison between energy and power 

 

NOISE 
 

NOISE WAVEFORMS 
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The problem with noise is that we have more ensembles. The case is the image below. 

 

The ensemble tells us that if we consider 3 identical amplifier and we apply the same input signal, at the 

output we will have the same output signal, but for the noise, these 3 identical amplifiers will have three 

different waveforms. So we need to introduce the fact that the noise signal is no more deterministic. 

 

Classifying the amplitude of noise samples 

Let’s focus on t1. We choose one time of the axis and we study what happens for one waveform. So at 

t1 we have one value for each replica, so if we have thousands of replica we have thousands of values. 

What I can do is to see how many times the amplitude of the replicas has a certain amplitude at t1, I 

count them. Then I divide the number of times I found by the number of replicas (e.g. in how many 

replicas the signal is in the second step? In the second one? Then I count the number of times in the 

different replica). 

If I make the plot I get an histogram. 

 

 

 

 

The distribution I get is a statistical distribution. The distribution I get is the probability. The integral of 

the probability function is 1. So I have the probability to have a certain value. 
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The problem is that this result is not enough, we have to replicate the information for every time. We are 

lucky because sometimes the noise is stationary, i.e. the distribution is the same for every time instant. 

But also in this case we still don’t have a complete description of the noise, the probability is not enough. 

We can demonstrate that the probability is not enough. To demonstrate, let’s consider three different 

amplifiers and for every time someone has given us the probability density. It is enough? 

If I consider t1 and t2, we are considering a real amplifier, and if the distance between t1 and t2 is small, 

the voltage is similar. But if the time distance is different, there is no way they are similar. So when the 

time difference is very small, there will be a strong correlation between the two values, while if tau 

increases the correlation drops. 

 

Now we consider another example with the same probability density in t1 and t2. If the probability 

density is enough to describe the noise we would obtain the same result. This time, instead of the output 
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of the amplifier we take the offset. The offset is not deterministic, it changes from one amplifier to the 

other. At t1 I will have an offset different for each amplifier, I cannot predict it, it is different for any 

amplifier. Then I take t2. The offset is constant in the amplifier, we don’t know it but it is a number. 

Hence as soon as we have the offset at t1, it is the same for any time. It is different for the replicas but the 

correlation between t1 and t2 of the same replica is 1 for all the time. The problem is that the probability 

density in each point is equal to the probability density of the previous point. Hence just the probability 

density is not enough to describe our problem. 

 

 

 

 

 

COMPLETE DESCRIPTION OF THE NOISE 

 

We have infinite ensembkes and, for each replica we have the time and amplitude axes. We can define 

the probability density for each time, which is the probaibilty to have a certain value at a certain time, 

but it is not enough, so we need the joint probability, which is the probability of having a certain value at 

time t2 if I have a certain vale at time t1. So it is a function of x1, x2, t1 and t2 (x1 and x2 are amplitude 

values). 

 

The problem is that the formula is vary complicated to write and manage. 

So our description of noise is composed by marginal probability (probability having a certain value at a 

ceartain time), and for stationary noise the probability density doesn’t depend on t, it is the same for any 

time (definition of stationary). 
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Then we need the joint probability because the marginal one is not enough. Again, if the noise is 

stationary, so the marginal probability is the same for all the times, it is possible to demonstrate that the 

joint probability depends only on the time interval tau, and not on t1 and t2, we are interested just in the 

distance between them. 

Time average and ensemble average 

We can do a thing we did with the signal. We try to extract some numbers that are summary of some 

properties. E.g. the energy of the signal or the shape of the signal, which are two different things. With 

noise we have two directions, time and ensembles, so the complexity is squared. 

Since we have two direcitons, we can try ti simplify in both. 

The upper formula in the image is similar to the one of the energy, but we don’t have the square, we are 

just averaging over time the signal. The average in time is indicated with <x>. 

 

We have also the ensambles, so we can try to extract also the average on ensambles. We are at one time, 

and at this time we have the probability of having a certain value. I sum all the values and divide by the 

number of values, but the problem is that in the ensemble direction the system is dominated by the 

statistic, so we cannot sum all the possible values, because we have an infinite number of replicas. So the 

idea is that we go from -inf to +inf of the probability. So we are making an average of the probability 

density. 

 

DESCRIPTION OF NOISE WITH 2ND ORDER MOMENTS OF PROBABILITY DISTRIBUTION 

Normally, the average over time of the noise is zero, and the average on the ensembles is zero. 
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Noise is different from disturb and from offset. In general, the background like an offset of the noise is 

not a problem, because it is deterministic and we can remove it. The problem is that associated to the 

background there is noise, but the background itself is not a problem, we can measure it and remove it. 

 

So we want something different than the averages on ensembles and time. We need the moments. 

The moment of the marginal probability is the integral from -int to +inf of the x^n times the probability. 

It is the same as before, but we increase the power, so the average is the moment of order 1. The same 

can also be done for the joint probability. 

As soon as n increase, we increase the detail we can observe. We will stop at n = 2 so the average and 

the moments of the second order. 

n = 0 is 1, because it is the integral of the probability, so it is useless. 

 

The mean square value is the moment of the second order, but if we look at the equation, we are 

calculating the energy. We are making an average (integral from -inf to +inf) of the noise squared (we 

multiply by the p(x) to make an average on ensembles). Saying that we are computing the energy is not 

correct because it is not the energy of the noise, but the ‘energy’ of the noise at a particular value. Only if 

the noise is stationary it holds for all the times, otherwise we need to compute this integral for every time. 

 

It is not energy but power because if we square it we will have an infinite value. 
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We can compute the variance of the noise for each particular time instant. If the noise is stationary, the 

variance is a number and doesn’t depend on time, it is the same for all the times. 

 

We are not interested in the covariance, but something different. With the signal we computed the 

autocorrelation, now we compute the mean product, in the ensemble domain, not in the time domain. 

We are making an average on ensembles the product of x(t1) and x(t2). Also in this case, if the noise is 

stationary, the product depends only on tau and not t. 

 

AUTOCORRELATION OF NOISE 

Autocorrelation is not exactly the same as for the signal, it is just a matter of name. Now we are not 

making an average on time, but we are making the multiplication between two different values on 

different ensembles. It is autocorrelation Rxx(t1, t1 + tau), which are the two variables. 

 

It is a function of t1 for nonstationary noise. If the noise is stationary, we can write Rxx(tau). 

 

The autocorrelation of the noise is, again, an ensemble value, while the signal autocorrelation is a time 

average. 

Furthermore, if we compute the autocorrelation at zero tau value, we get the mean square value. It is the 

same connection we had for the signal. One variable still remains and it is t, if the noise is not stationary. 

If the noise is stationary, the autocorrelation in zero gives us the information about the power. 

 

POWER SPECTRUM OF NOISE 

We want to move in the frequency domain also for the noise. 

x 
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We can extend the power concept just making an average on ensembles (already said), and also the 

autocorrelation is done with an average over the ensembles. So why not trying to make the same thing 

for the spectrum? For the signal we had a certain definition of the power, why not adding an average on 

ensembles also for the spectrum from the formula for the signal power spectrum? 

We can bring the average on ensembles inside the integral (after Parseval theorem) and we can define the 

spectrum as x. It is the same definition but with an average on ensembles added. 

 

Has this formula connections with the previous ones? We never defined the power of the noise, but the 

means square value, the connection between means square value and autocorrelation is the similar I had 

between power and autocorrelation in signals. Now I’m defining the power, which is the integral of the 

spectrum (last formula) and it is the same I had with the signal. 

 

We are just making, at this point, an average on ensembles. For signals, the power spectrum is the Fourier 

transform of the autocorrelation. Let’s do the same for noise with also an average on ensembles. 

The problem is that the autocorrelation we considered was Kxx, not Rxx. It is not the autocorrelation we 

defined for the noise. We would like to merge all together and understand, e.g., the relationship between 

Rxx and Kxx. If they are different, which is really useful? 

 

Autocorrelations similarities 
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So the power spectrum is the Fourier transform of the autocorrelation Kxx averaged over samples. Kxx 

is x(t)*x(t+tau) averaged over time (<x(t)x(t+tau)>). The problem is that the directions of time and 

ensembles are different and uncorrelated. So the average on ensembles can be brought inside the average 

over time, but if we do so we get Rxx (x). 

 

Now we can say that the spectrum is the Fourier transform of the autocorrelation in ensembles averaged 

over time. 

Sx(f) is one power spectrum, it is a function of frequency but it doesn’t have the issue of ensembles, 

because we are making the average over ensembles. 

Moreover, for stationary noise, the autocorrelation of the noise, averaged on time, because the noise is 

indeed stationary, it is exactly the autocorrelation of stationary noise. 

Hence we can write the final equation, saying that the spectrum is the Fourier transform of the 

autocorrelation (if stationary). 

 

It is an important formula because we have a connection between the power spectrum and the 

autocorrelation and we can say that the power is the integral of the spectrum, so it is the variance of x 

because a property of the Fourier transform is that the integral in the frequency domain is equal ot the 

value in zero in the time domain of the anti-Fourier transform, which is the autocorrelation. 

So if the noise is stationary, the power is the mean square value. 

 

BILATERAL AND UNILATERAL SPECTRAL POWER DENSITY 

There is a problem, that is the integral is made from -inf to +inf, but we cannot apply this formula. we 

are making, in fact, an error of factor 2. 

When we made the computation of the power, we integrated from -inf to +inf the spectral density. We 

liked this because we can use the Parseval theorem and move from the frequency domain to the time oan 

vice versa. The problem is that Sx(f) is symmetrical, so we will consider two times the spectral density. 

 

x 
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To solve this issue, the spectral density used so far is called bilateral spectral density Sxb(f), and we call 

two times the bilateral density and the unilateral spectral density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOISE SOURCES 
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NOISE IN DIODES 

 

A carrier travelling in a junction generates noise. P is the probability that a carrier crosses the junction 

and q is the charge of the carrier. In this case the average value of the current is not 0, so we have noise 

associated to a current that is not 0. 

 

Shot noise is associated to any current in the diode, including the signal current and background current. 

Moreover, the spectral density we compute is the unilateral one. 

Shot noise is not exactly 2qI. 

 

Diode noise in forward bias 

Let’s start from the formula of the current in the diode. We have to pay attention when we are at zero 

bias; at zero bias we have the exponential term is 0, so we have Is – Is and the current is 0. At this point 

the noise is not zero, because the ‘zero current’ is positive current plus negative current, and in noise we 

sum the square → we have two times the noise in the normal case (4qI). 

The zero bias condition has to be studied for low voltages applications in IC. 
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NOISE IN RESISTORS 

We are using the bilateral power spectral density. The resistor noise is 4nv/sqrt(Hz) for 1k resistance. 

Same reasoning can be applied for the velocity of light, which is 30 cm/ns. 

 

WHITE NOISE 

A white noise is a noise whose autocorrelation is a delta. The problem that it has infinite power, 

because in a stationary white noise the value in zero of the autocorrelation is the power and it is infinite. 

In fact, if we make the Fourier transform of a delta we get a constant, so the spectrum is flat and hence 

the white noise has infinite power. 

 

So white noise is something that doesn’t exists in real world, the white noise will always be limited by 

someone else. 

So we need to approximate the white noise. To define if a noise is white or not, we can say that if the 

autocorrelation function is narrow with respect to the duration of the signal, that is equivalent to say if 

the signal is constant over my bandwidth of interest. 

 

Moreover, we might also have non stationary noise, and non stationary white noise. Since it is white the 

autocorrelation is a delta, and non stationary means that it changes time by time, and the thing that 

changes of the delta is the area. Also in this case it doesn’t exist. 
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Filtering white noise 

What I can do is changing the weight of my samples depending on what I want. I’m making a linear 

superposition changing the weight of each information. For the noise we need to square and make the 

average on ensembles (we have also the cross products). 

 

If the noise is white, the autocorrelation is a delta, which has an infinite value at t = 0 ad 0 for any other 

time. So if the distance between two samples is different from zero, the two samples are uncorrelated. So 

the average of the cross product will be zero. 

 

Moreover, if the noise is stationary, so the mean square value is the same for any point, we can make the 

sum. If the noise is not white doing this is more complicated. 
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Band-limited white noise 

Every time we will have something that limits our bandwidth, the amplifier, the PCB and so on. 

 

Let’s consider a single pole. The autocorrelation is the formula x, which is exactly the double exponential. 

The problem of this noise is nothing in particular, but it is not a delta. However, if tau is very small it 

seems, but it is not a delta. It is for sure not flat in the frequency domain. So this is not exactly good for 

the approximation of the white noise. 

 

The real problem is that if we think about the definition of the white noise, the autocorrelation is 0 for 

any other time than t = 0. The exponential has a non-zero value for any time in the axis. So we would 

like to approximate the double exponential with something that is easier to be managed, as similar as 

possible to the white noise from the computations point of view. E.g., to goodly approximate a real white 

noise, we would like to have a rect in the frequency domain. 

 

The rect in the time domain cannot be used in the time domain to approximate the delta (for white noise) 

because the Fourier transform in the frequency domain is a sinh, which goes negative. The Fourier 

transform of the autocorrelation is the spectrum, and if we integrate the spectrum we get the power. The 

x 
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sinh has negative part, so if I make the integral do I get a negative power? No, so the model is not correct. 

We could have used a sinh in the time domain, but it is not easy to be managed in the time domain. 

 

Let’s consider an example to demonstrate that the model can be wrong. In a capacitor, the energy is E = 

½*C*Vdd^2. If I have a capacitor with no voltage across it, the energy is 0. So the overall energy of the 

system is E. 

This energy ‘inside the box’ cannot change. Now I connect the two capacitances inside the box; each 

capacitor will have Vo/2. The new energy would be ½*(Vo/2)*2C. So in theory the energy is decreased. 

The wrong thing is the model. In fact, the missing energy is dissipated in the resistance of the wire 

connecting the two capacitors. 

 

The same for instance applies for LASER light modulation with a sinus. We need to have an offset, 

otherwise we are like creating negative light. 

 

Simplified description of wide-band noise 

We decided that the triangle is a good approximation for the time domain (goes to 0 after a certain area), 

and for the frequency domain we choose the rect. 

 

If I approximate the double exponential with a rect I would like to get the same results. To have the same 

results, I would like to have the same equal msq noise for the rect spectrum. I have to variables: value in 

t = 0 and area. The second condition that I can apply is that the value in zero of the spectrum (in the 

frequency domain) is the area in the time domain. So the value in zero in the frequency domain is the 

area of the autocorrelation → I can say that at least in 0 I want the same power spectrum of the Lorentzian 

spectrum, which has a shape that is not a rect. 

 

In the time domain again we want the same msq value. As for the width, I know that the area of the 

autocorrelation is the value in zero of the spectrum and so I set the product of value in zero and 2Tn 

equal to that. 

 

Hence I defined a model both in the time domain and in the frequency domain. This model is working, 

but there is no link between the model in the time domain and the model in the frequency domain through 

the Fourier transform. 
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The idea is that someone has given us the spectrum of the white noise, which is a Lorentzian one, and 

we want to approximate the real white noise in both the time and frequency domains. In the frequency 

domain we want something flat up to a certain frequency, and the two approximations are the ones in 

the previous image. 

When we make a model we want a model that is correct and easy to use. We can use a model with a 

different Fourier transform if we use it just in the time domain, we don’t need correlation with the 

frequency domain, but the result we get must be the same than in the case of the real noise. 

 

The total power and, in the frequency domain, the flat value at 0 Hz are the important parameters for the 

white noise. So we have one parameter for the frequency domain and one for the time domain. 

 

We know that the value in 0 in the frequency domain, that we want to maintain, is the integral from -int 

to +inf in the time domain. Similarly, the power is the integral from -inf to + inf of the spectral density. 

 

In the next image we have the superposition of the Lorentzian curves and the approximations. 

The bandwidth of the white noise that approximates our Lorentzian spectrum is fn = 1/4Tp. 

 

Power: P = Sv*B, where B is the bandwidth. Sv = 10nV/sqrt(Hz), the amplifier has a BW 500 MHz. To 

calculate the real noise, B = 2 * 1/4Tp, where Tp is connected to the pole of the amplifier (2 because 

bilateral). 

 

The real white noise has zero correlation for any time, but the real white noise has some correlation. 

However, the Lorentzian shape in the time domain tells us that we have correlation at every time, and 

this is not good. I’d like to have something that doesn’t involve and exponential decay time in the time 

domain, or similarly, that is as flat as possible in the frequency domain. 

 

Sb is the area of the autocorrelation, which is has to be equal to the area of the triangle, because the area 

of the autocorrelation is the value in 0 of the spectral density, that I want to maintain. In the frequency 

domain we would like a rect instead of the Lorentzian spectrum; the value in zero is the same, and then 

the area of the approximation and of the real spectrum has to be the same. The area of the real spectrum 

is the power (n^2_bar), integral from -int to +inf of the Sn(f). 

So to approximate the Lorentzian spectrum with a rect we need to choose the same value in zero and a 

fn value that gives us the same power. 
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So for instance n^2_bar = Sb*2fn, where Sb is the bilateral spectral density ( = Suni*fn). 
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FILTERING SIGNALS 

The filtering of the signal is very easy to be done, we need to create the weighting function. 

The goal is to choose a particular time t_m in the time axis and I want to compute the value of the signal 

at t_m. How do I choose t_m? So far we won’t consider this problem. What if we want the filtered value 

of the signal at t_m? I can use the information of the signal that I have before t_m to improve the value 

of the signal at t_m. 

The past events can be used to improve the SNR. This is done with a linear system, which is a linear 

superposition of different events properly weighted → we make a linear superposition of past events. 

 

Digital filter approach 

I have a lot of numbers from the past and I want them to create the new value. I can sum the samples 

with proper weights. The weight must not depend on the input signal (if a filter has the weights depending 

on the signal we are considering adaptive filtering), and it is not constant. 

 

Then we just take the output as sum of each sample times a weight. We can define two types of filters: 

- Constant parameter filter: the weight that I use is the same for all the t_m. 

- Non Constant parameter filter: the weight that I use is different as a function of t_m. 

 

It is a digital approach because we are using samples. 

 

DISCRETE-TIME SIGNAL FILTERING 

We want to create a filtered signal creating a filter. The idea is someone is sampling the signal and I have 

just to define the weight for each sample and then, in order to create the output signal, I create the 

samples, multiply by the weight and make the sum. 

This is for the digital approach. 
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CONTINUOUS TIME SIGNAL FITLERING 

The equivalent of the sum in the digital approach but in the analog one is the integral, while the weights 

are translated into weights as function of the integration variable. 

 

Just to be clear, the integral might be from -inf to +inf, and it seems strange because +inf is the future. 

But this is done e.g. because we want to use the Perceval theorem. To extend the integral, we simply 

consider the weight function as equal to 0 after t_m, so that we can extend the integral to +inf. 

 

I need to find a way to choose t_m such that the SNR is maximized. 

 

We notice that the weight function is indeed a function, we take the input, multiply by it and make the 

integral. 

 

WEIGHTING FUNCITON OR MEMORY FUNCTION 

It is a function that gives the weight for every time that I have to apply to the function. It is called also 

memory function because it gives the amount of memory that I have in the past of the signal. 

 

The idea is the one already introduced before, multiplying and then integral. 

 

 



31 
 

 

CONSTANT PARAMETER LINEAR FILTERS 

Linear filter is needed because we use a linear system. Constant parameter means that the weighting 

function is the same for all the t_m. All the analog filters, e.g. the RC filter, are constant parameters filter. 

Let’s consider a LP RC filter. We will use a graphical approach to define how to create the weighting 

function. 

I take the time axis, I choose (or I’m given) the t_m and I want the value of the weighting function at 

time alpha_1. I have to apply a delta at time alpha_1 and I look at the delta response at alpha_1 of the 

LP filter. 

Then I take the value of the delta response at t_m and I use it as the value of the weighting function at 

time alpha_1. This is what is done in the image above. 

 

If I make this calculation for the different times I get the last graph x. 

 

If I change t_m, the weighting function is simply translated, because for a constant parameter filter the 

weighting function has to be the same (in terms of shape) for all the time instants. 

 

We notice that in this case the weighting function is not so different from the delta response of the LP 

filter, but it is in the opposite direciton. 

x 
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We know that the output of any filter is the convolution of the input times the delta response of the filter. 

It seems, from a graphical point of view, that the weighting function is the delta response, shifted and 

flipped. Can we confirm this mathematically? The response is in the image. 

In x the output is the convolution of the input and the delta response and it is actually the definition of 

the convolution (it should be from -inf to +inf, but we can have the weightening function to 0 after t_m). 

The result is that the weightening function is indeed the delta response flipped and translated. 

A weightening function equal to the delta response would be impossible, because we cannot weight the 

future. 

 

TIME-VARIANT LINEAR FILTER 

It is a filter that changes as a funciton of the time, not as a function of the input. It is the opposite of the 

constant parameter filter. One example of this filter is a switch added to a CR. 

 

Let’s consider an RC (not CR!) and a switch. I have also to decide when to open and close the switch. 

I want to understand the weightening function of this situation. 

 

Again, I apply a delta, I study the effect of the delta on the output at the time t_m and I use that value as 

a value of weighting function for the time where I applied the delta. 

I have the switch, I apply a delta, and what happens is that I have a decay time because the switch is 

closed and then, when the switch is open, there is no current and so the response remains constant. 

So I create the delta response and if I apply another delta I will have a different situation. 

x 
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Now I have to retrieve the value of the weighting function. At t_m the value is 1, but now I don’t have 

to mirror the delta response, it would be wrong. In fact, if I apply a delta when the switch is open, the 

output is always 0. This is the reason why when the switch is open the weighting function is 0 (x). 

 

Let’s now do the opposite. The approach is exactly the same. So I apply a delta, i look at the output and 

use that vale for the weighting function. 

x 
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WEIGHTING FUNCTION IN THE FREQUENCY DOMAIN 

What done so far was in the time domain, but we want to switch to the frequency domain. For the 

frequency domain we use Parseval. A*(f) is the conjugate of A(f). The same theorem can be applied if 

a(t) and b(t) are two different funcitons. 

 

Summary 

 

In the end, what is t_m? For a constant parameter filter it is very easy to be chosen, because the result of 

a constant parameter filter is the result of the convolution. To maximize the SNR, the value of t_m to 

choose is the maximum of the output, because the noise is always the same, and to maximize the SNR I 

have to maximize the signal. 

 

For non constant parameter filter it is harder. The output of a non constant parameter filter is not the 

convolution, but it is a number, not a function. To apply a non constant parameter filter we have to firstly 

change the weighting function, because it changes as a function of t_m. To choose the weighting funciton 

we have to choose t_m first, then we have to understand the weighting function at that t_m and apply 

the formula. 
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FILTERING NOISE 
 

We need to extract the power of the noise, to understsand the type of noise we are dealing with, and the 

shape of the noise, thanks to autocorrelation. 

 

MATHEMATICAL FOUNDATION TO MANAGE NOISE – NOISE FILTERING 

Our goal is to derive the autocorrelation of the noise. 

I have a noise and a filter, and an output noise. We want to understand the output of the noise at the 

output of the filter, in terms of autocorrelation and power. 

 

Someone gives us the autocorrelation of the input noise Rxx, and we can write its definition (x). On the 

right there is what we want to derive, mathematically, that is the autocorrelation of the output Ryy. 

In the middle there’s the filter. 

We have the data x, but this formula is connected with the weighting function, and we can calculate the 

output as a function of the input and of the weighting function. 

We can write the output autocorrelation at two different times t1 and t2. The first integral is at time t1, 

then second at t2, and then we take the average of ensembles. 

 

An average on ensembles is something related to the statistics, but w1 and w2 are not statistic variables, 

so we can bring the average inside the integral and average just the statistic variables x(alpha). 

 

Them x(alpa)x(beta) averaged on ensembles is the autocorrelation of the input. So the autocorrelation of 

the output is the integral of the autocorrelation of the input times the weighting functions at t1 and at t2. 

This is the formula that gives us the output noise in any case. 

 

Starting from this formula, we change the name of the variables to prepare it for stationary noises, where 

the autocorrelation depends only on the difference between two time instants, and not on t1 and t2 

independently.  

 

 

 

 

x 
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Once the substitution is performed, we can rewrite Ryy. At this point we need to define the power, that 

is the mean square value of the noise, i.e. the autocorrelation at tau = 0. We will end up with the 

expression x, which is the power of the noise only if the noise is stationary. The power of the noise is a 

number, but here we have a function of t1, so it cannot be power. If the noise is stationary, the mean 

square value at any time is the same, but if it is not stationary it is different, and to compute the power 

we need to take an average on time of all the possible mean square values. 

 

This formula holds for any linear filter, not for adapting filter, because to derive the expression x we used 

the weighting function. 

 

FILTERING STATIONARY NOISE 

In a stationary noise, the variance doesn’t depend on the time instant, and the autocorrelation depends 

only on the time distance between two time instants. The noise is the same for every time instant. 

So we can say that the autocorrelation of the input is just a function of gamma, time distance. 

 

x 
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The autocorrelation of the output still is a function of t1 and tau. It makes sense because the input noise 

is stationary, not the output one. if the filter is a constant parameters filter, also the output is, but in the 

case of a non-constant parameter filter the output won’t be, because we are changing the filter as a 

function of the time. 

 

We notice that the inner integral is the autocorrelation function. Going on with the calculations: 

 

To compute the autocorrelation of the output we take the autocorrelation of the input, the 

crosscorrelation between two points and we make the integral. Formula x holds for any filter. 

k11w is the autocorrelation of the filter. 

 

The Fourier transform of the autocorrelation, the power spectrum, is the absolute value of the weighting 

function squared. This is useful because we want to compute the mean square value in the frequency 

domain, because ewe know already how to compute it in the time domain. Using the Parseval theorem 

we can get it. 

 

x 
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FILTERING WHITE NOISE 

It is stationary, so we remove alpha, and to identify that is white we consider the area Sb times the shape, 

which is a delta. We need to plug this in in the original formula. 

 

Formula x is still in the case if the noise was not stationary. 

k12_w is the crosscorrelation at 0 time, because we are considering a delta for the white noise, but still 

there is a distance between time t1 and t2. 

Then, the mean square value, if not stationary, at time t1 is like in the formula. 

 

Since then I want to compute the power, I want the autocorrelation with the same time in 0, so we have 

Sb and the autocorrelation of 11, so the two times are the same (k_11). 

 

Summary 

 

In general, the output mean square value is the integral of the product of the autocorrelation of the input 

and of the autocorrelation of the filter in the time domain. The only constrain is that the noise is 

x 
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stationary. In the frequency domain we consider the spectrum of the noise and the weighting function 

squared. 

 

FILTERING NOISE WITH A CONSTANT PARAMETER FILTER 

It should give us the shape of the white noise limited by a single pole. In a constant parameter filter, the 

shape of the weighting function doesn’t depend on the time t_m, but the function (not the shape) changes. 

Moreover, a constant parameter filter is a delta response flipped and shifted. 

 

Hence the squared absolute value of the weighting function is the absolute value squared of the Fourier 

transform of the delta response. 

 

Furthermore, constant parameter filters are permutable, i.e. we can change the order. If we have e.g. 

three different independent low pas filters, it doesn’t matter the order in which they are placed. 

In addition, they are reversible. If we apply this filter, we can always go back, doesn’t matter the filter we 

are using, because we can always design the reverse filter. This is possible because in a constant parameter 

filter, the zero in the transfer function is just one. 

 

Constant parameter filters with stationary input noise 

We start from the general expression for the autocorrelation, then we replace the weighting function at 

time t1 as the delta response at time t1 flipped and shifted. Then the delta responses are just a function of 

alpha and beta. The second integral is the convolution between the autocorrelation and the delta response 

at t2, but since the delta response is the same for any time instant, just h(beta). Then we have again 

another convolution with h(alpha). 

 

In the end, for stationary noise, the autocorrelation of the output is independent on t1, so it is stationary 

also the output. h(gamma) * h(-gamma) is the autocorrelation of h, k_hh(gamma). Rxx(gamma) is the 

autocorrelation of the input. Hence in the frequency domain, the output spectrum is the product of the 

input spectrum and the absolute value squared of the delta response. 

 

It makes sense because the Fourier transform of the autocorrelation of the noise is the power spectrum. 

The Fourier transform of the autocorrelation of the delta response is the absolute value squared of the 

Fourier transform, so everything is coherent. But if I want to compute the power, I need to compute the 

value in 0 of the autocorrelation. 
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So the mean square value, the power of the noise (because of stationary also at the output), is the value 

in zero of the autocorrelation. 

Then I can write the same thing in the frequency domain with the Parseval’s theorem. 

 

In a constant parameter filter, with input stationary white noise, the autocorrelation of the output is 

stationary and it is a delta convoluted with the autocorrelation of the delta response, so it is the 

autocorrelation of the delta response. 

 

The ideal white noise that passes through a LP filter, so we have a single pole that limits our noise, we 

have an output that is the Lorentzian autocorrelation. If the tau is very short, so the frequency of the filter 

is high, we can say that the Lorentzian response is a delta. 

 

If I consider the Lorentzian response, the value in zero will be A^2*tau/2, where A is the amplitude of 

the response, that in a LP filter is 1/tau → 1/(2*tau). 

If I consider the unilateral spectral density instead of the bilateral one (like in the image), I need to further 

divide by 2: Su * 1/(4*tau) = Su * pi/2 * f_pole.  

 

NB: the autocorrelation function has always the maximum in zero. 
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LOW PASS FILTERS 

 

In a lot of cases we manage signals that start from 0 Hz and will finish at a certain frequency, so the signal 

is centered around zero; this is the reason why LP filters are important. 

 

Moreover, when creating a filter we need to find a way to highlight the difference between the signal and 

the noise. In some cases we will have a complete overlap between signal and noise and we won’t be able 

to distinguish them. At this point we cannot extract the signal and we will need another approach, the 

modulation. In the frequency domain, normally the signal is limited in the low frequencies, while the 

noise is over all the frequency, like in the case of the white noise, or at specific frequencies. 

 

Furthermore, a HP filter can be designed starting from a LP filter (1 – LP filter).  

 

The idea of the LP filter is to save only a small amount of frequencies centered around zero. The effect 

in the time domain is that, since I’m reducing the BW in the frequency domain, the delta response is 

larger and larger. Since I’m trying to reduce the BW, I will have something larger in the time domain, 

this is the intuitive idea. 

 

Elements to create a LP filter 
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We are considering any LP filter, not necessarily the RC one. Other than extracting the useful 

frequencies, the LP filter is used also because, let’s consider e.g. an exponential decay. 

 

The Fourier transform of 100ns of tau exponential decay time is the LP filter, and the frequency content 

can be at 1/(2*pi*tau) → signal in the order of MHz. 

Instead, if we consider a rect, its Fourier transform is a sinc, and the frequency content lies the most under 

the first lobe, and the frequency of the first zero to confine the lobe will be 1/T. 

 

So the BW of the signal is in the order of MHz for both the signals in the time domain. 

 

Let’s consider an RC as a LP filter, if the BW is 10MHz, the frequency to be chosen is normally one 

decade after, so that the shape of the signal is not distorted and I’m cutting the noise. Then, depending, 

the data we want to extract, we need to save either the shape of the signal or the amplitude after the filter. 

Depending on knowing the shape or not, if known we don’t have to preserve it, the important information 

to be saved is the amplitude. 

 

If we want e.g. to save the shape of the signal, 100MHz would be ok, but to extract the amplitude is 

enough the BW of the signal. Of course we are not keeping the shape, but we are cutting of one more 

decade the noise. In this case, the average value of the signal is an important parameter. 

 

RC INTEGRATOR 

 

We know the delta response of the filter and its amplitude. The other response is the step response; 

sometimes, in fact, we have the output of the circuit and we don’t know how the circuit is implemented, 

and applying a delta in the real world to the circuit is not easy, whereas applying a step is easy. 

To extract the tau, if I have the step response, the time from 10% to 90% is exactly tau, in this way I 

extract it. It doesn’t matter if the step response is not exactly exponential. 

 

Then we know the Fourier transform of the delta response, with plot x that is the one in the linear-linear 

axes. The point where we have 0.5 of the peak value, in linear scale, is the pole frequency. 

 

 

 

 

x 
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Frequency response 

 

The LIN-LOG plot is useful for the 1/f noise. All these 3 are 3 different plots of the same response. 

 

The power of the noise is the integral from -inf to + inf of the spectral density of the noise times the 

absolute value squared of the Fourier transform of the weighting function of the filter. 

 

The area under the LIN-LIN response is, by definition, the power of the noise. When comparing filters, 

we can identify the best one by comparing the area. The one with the smaller area has the smaller noise. 

 

We need also LIN-LOG because the previous consideration works with the white noise because the 

spectral density is flat, but for the 1/f noise it is no more correct to bring out Sb of the integral, because it 

is no more constant, so the first plot area cannot be used. Instead, the power is the area of the graph for 

1/f noise if we use the linear-log scale. 

 

CONSTANT PARAMETER LP FILTER 
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The weighting function is the delta response shifted and flipped. Then the weighting function is equal to 

an average over a time interval 2*tau (Tf = tau). 

An average is take different values, sum them and divide by the number of them. In this case we are 

considering a weighted average. 

 

Again, we know the weighting function in the frequency domain and plot it, it is again the delta response. 

 

Autocorrelation 

In the time domain we know the autocorrelation of the noise, and we need the autocorrelation of the 

delta response to know the autocorrelation of the output. This is the only information we need in the 

time domain, the autocorrelation of the filter. 

As for the noise, the autocorrelation of the noise is a delta. The autocorrelation of the noise is taken, 

multiplied by the one of the filter, take the integral and we get the noise power. 

 

NB: something times a delta is the value in zero of the other function. 

 

If the Tn is much smaller than the filter, I can easily use a delta, so using the delta or the approximation 

is the same. If Tn is larger or comparable with the filter, I cannot use a delta. 

 

k_mmw is the autocorrelation of the filter. 

In the end if I consider the Rxx as a delta, I get the formula found before. 

 

X formula is very important to be remembered. It is crucial in the time domain, and we need the i/o 

autocorrelation, that typically is a data, and the autocorrelation of the weighting function, which instead 

in general has to be calculated (for instance the autocorrelation of the RC filter is a double exponential, 

i.e. Lorentzian shape). 

Formula x also allows us to identify if a noise is white or not. I want I white noise because if so I can 

replace the autocorrelation with the delta and use a simplified equation. To do so, I compare the width 

of the autocorrelation of the noise with the width of the autocorrelation of the filter. If small, I can use a 

delta and use the last formula. 

Last expression y works only for the RC filter, while the one SbB*k_mmw(0) for any filter. 

 

x 

y 
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Sometimes we are not interested in the shape of the signal, but other information like tha amplitude. In 

these cases, the LP is even more important. However, the shape can still be used in some ways. 

 

Frequency domain 

In the frequency domain we have the integral of the spectral density of the noise times the absolute value 

of the Fourier transform of the weighting function squared. 

If the noise is white, its spectral density is flat and we can take it out of the integral (last formula). Formula 

x is the one to be remembered. 

 

If the bandwidth of the noise is much larger than the one of the filter, we can say that the spectrum of the 

noise is like the spectrum of the white noise, so its flat. In the end, with the last formula, we get the same 

result obtained starting from the time domain. 

 

f_fn is the equivalent noise BW. We are defining the integral of the filter as a rect area. 

 

Noise BW of the filter 

The input must be white noise. 

 

x 
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We need to identify f_fn, which is the autocorrelation in 0 divided by 2. This is true for any filter, to the 

autocorrelation in 0 is a very important parameter. For the RC filter, the autocorrelation in 0 is 1/4Tf. 

 

RC INTEGRATOR ACTIVE FILTER 

 

In the time domain, the delta response is the same of the passive RC, we simply need to change the 

amplitude both in the time and frequency domains. 

 

This circuit is nothing more than an RC from the signal recovery point of view, because any amplification 

of a filter doesn’t matter. 

Our target is the SNR, and every time we have a gain it is the same for the signal and the noise, so the 

SNR is unchanged. 

 

However, the gain is also important because if we have two stages, the noise of the first stage, since it is 

multiplied by the gain, dominates the second one, and we can neglect the noise of the second stage. For 

us it is not important because we have just one stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

MOBILE MEAN LP FILTER 
 

It is a LP filter where the idea is trying to make an average. We have an input and we want to make an 

average; we are at t_m, and if we want to plot an average of the signal with the weighting function, the 

result is a constant for a constant value. 

The parameter of the rect weighting functions are width and amplitude. The width Ta defines the time 

for the average, while the amplitude can be seen in two ways. 

 

Normally, a gain is defined as a ratio at 0 frequency in linear filters (value of the output divided by the 

value of the input). 

We want the value in 0 of the Fourier transform of the rect, but we don’t need to know the Fourier 

transform, because the value in 0 of the Fourier transform is the area in the time domain, which is 

Ta*1/Ta = 1. In the time domain is input multiplied by weighting function, integrated. So again it’s 1. 

 

We are setting the amplitude of the rect to 1/Ta because we are trying to make an average. If the 

amplitude is changed, no more average filter but some other kind, like an integrator. Hence the one in 

the image are the rect specifications to make an average. 

 

NB: increasing the width of the filter increases the noise, but we are also increasing of a much higher 

ratio the signal, so SNR is improving. 

 

We are still in the field of constant parameter filters, and it is ‘mobile mean’ because the weighting 

function is moved in time. 

 

Mobile mean LP filter is a constant parameter filter 

Let’s consider an active integrator. Its weighting function, for all the time, since I have sum of all the 

previous time values, is a rect to -inf (blue). 

But this is not the weighting function of the MM filter, so I need to add a branch. What I do is to make 

an integral delayed by a time Ta, and then I have an amplifier with gain -1 (red plot). Then if I sum the 

two branches I get the weighting function of the MM filter. 

 

The transmission line is nothing more than a cable. The charge speed in the cable is more or less 20 

cm/ns. 
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MM filter vs integrator 

 

The RC is the equivalent of an average over a couple of tau and the weighting function is not actually an 

averaging one. 

For the MM filter, if the width is increased, the amplitude has to be set to 1/width, and also for the RC 

the amplitude is 1/tau. How can we compare the two filters? 

We look at the SNR giving the same signal in input. If I set the gain equal to 1, the output signal for the 

two is the same, so I have just to compare the noise, under the hypothesis that the gain of the two 

filters is 1, we can do so. 

 

So we need to define the noise of the RC filters. If I have white noise, the noise of the RC filter is the 

1/(2Tf), that is the delta times the autocorrelation in 0. 

If we make the comparison, we are interested in the value in zero of the autocorrelation. The 

autocorrelation of the RC is the Lorentzian spectrum (double exponential). 

 

The autocorrelation of the rect is a triangle, and we are not interested in the shape, but in the value in 

zero. So we take the rect, we multiply it by itself, so 1/Ta^2 of amplitude, and we take the integral over 

Ta. The final value in zero is 1/Ta. 
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In the end we need to compare 1/(2Tf) and 1/Ta. If Ta = 2Tf, the SNR of the two filters is the same, and 

an RC is equivalent to a MM overt two tau of a signal., because it is equivalent to make a MM filter with 

a width of 2*tau. 

 

Shifting in the frequency domain, on one side we have the Lorentzian spectrum, and the Fourier 

transform should be a sinc^2, because we need the absolute value squared (in the image just the modulus). 

 

In which case should I prefer the MM over the RC filter? The important thing of the MM filter are the 

zeros, because at that frequencies the gain of the filter is 0 and we can filter noise at a specific frequency, 

e.g. at the 50Hz of the power line. 

 

Furthermore, when we considered the rect, its Fourier transform is the sinc, whose zero is 1/width, which 

practically means that, since the rect is making an average, every time we have an integer number of 

periods in the width of the rect, we should have a zero in the frequency domain, because the average is 

0. So the 0 is when the average is 0, i.e. we have multiple of the periods in the rect width. 
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BANDWIDTH AND CORRELATION TIME OF LP FILTERS 

 

Other constant-parameter LP filters 
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SWITCHED PARAMETER FILTERS 
 

Mobile mean filter are limited by the width, we cannot create filters with a width larger than 100ns. With 

SPF we can create a filter similar to MM, but larger. The output of a SPF is not a function, we are not 

making the convolution, but it is a number, because with the SPF we choose the t_m and then we 

compute the signal only at that time, obtaining the result. 

 

Once we understand how to choose t_m with SPF, we will do the same with constant parameter filters. 

 

RC LOW PASS FILTER 

Let’s try to modify the RC to create a non-constant parameter filter. This can be done by adding a switch. 

Someone has to tell us when the switch is open or closed. when we choose a constant parameter filter we 

don’t have to worry about the switch, in a NCPF (non-constant parameter filter), we need to define when 

the switch is open and when it’s closed. 

 

We need for instance to understand when the signal starts and ends to get when to close the switch. So 

normally someone is giving us a sync, synchronization signal synchronized with our experiment. At this 

point I know when to close the switch. 

The point is that we don’t have always the sync, but sometimes we still create a workaround, in other 

situations there is no way to know and we cannot use a NCPF. 

 

For instance, if a system responses with an exponential, we perfectly know when the signal starts because 

we have a peak at the beginning and we know when the laser is given to the sample to get a response 

(time instant). If instead we send a laser to the satellite, we know when we send the signal, but we don’t 

know when we will receive the signal wrt when we sent it (we don’t have the sync, hence), because it 

depends on the distance. However, in this latter case the NCPF can still be used, and the workaround is 

based on a repetitive approach. 

 

Instead, there is no workaround if e.g. we are collecting a signal from a star in the sky. We are receiving 

a signal that comes from the past and we don’t have any sync signal for sure. 

 

We have to know when the switch is closed, and when it is open we hold the value stored on the capacitor. 

Which is the initial state of the switch and of the capacitor? We start from a discharged capacitor and 

switch open. 
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We close the switch and we want to understand the weighting function. If the tau of the RC (Tfs) is much 

smaller than the Tgate, the discharge finishes before the end of Tgate. The amplitude is of sure 1/Tfs 

(classical RC response). 

 

It I increase the tau, we get the green result, but we have a part of exponential. The last case is if the tau 

is very long with respect to the Tgate, and we get a constant value, because the discharge is very long 

(extreme case of the linear discharge). 

The red filter is very useful, not so good from the filtering point, and the blue one is really useful. The 

green is practically useless. 

 

SAMPLE AND HOLD 

The first one is the sample and hold. This red weighting function is a S&H but it isn’t a delta. From the 

math point of view, if we have a signal and this is the weighting function, to get the output of the NCPF 

we need to integrate from -inf to t_m the product between signal and w_function (weighting function). 

If we reduce the tau, the portion of the signal we are acquiring is reducing a lot (the response shortens) 

→ we get a good approximation of a delta. Then as soon as I open the switch I’m saving the value on the 

capacitor C. 

 

The DC gain of the filter should be 1 if I’m creating a S&H, because I want to freeze the input signal 

value. In DC, the gain in the frequency domain is the value in 0, so the integral from -inf to +inf in the 

time domain, so the area of the weighting function, so I need an area of the exponential equal to 1. 

The area of the exponential with amplitude A and decay time tau is A*tau. So in our case the area is 

exactly 1. 
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As for the noise, we have the w_function of an RC, so we know the autocorrelation of the RC in 0, which 

is 1/2Tf. 

 

Real and ideal S&H 

 

If we reduce R to get closer to an ideal S&H, tau is reduced, so 1/tau increases and we are increasing the 

noise. We are picking more noise because the noise is spread over all the frequencies, and as soon as we 

shrink in the tie domain the weighting function, we are spreading it in the frequency domain, so we are 

increasing the BW in the frequency domain and collecting more noise. So we can approximate the filter 

with a delta response, but we are also increasing the noise. 

 

S&H equivalent model and readout noise 

 

Which is the noise of the S&H? 

It is kT/C, so it is independent on R. Using the bilateral noise spectral density, we know that the only 

source of noise in our circuit is the resistance R. Then we know that the weighting function is the one of 

the exponential and its autocorrelation (that is the double exponential). 

 

The readout noise is the bilateral spectral density times the autocorrelation in 0, because in input we 

assume to have a delta in the time domain. 
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GATED INTEGRATOR (GI) 

 

Gated because we choose when we start and end the integration. In this case I’m choosing a Tf, tau, 

which is much larger than Tg, so I have a rect. Since 1/Tf is very small, the DC gain (value in 0 of the rf 

frequency response) is much less than the unitary gain (Tg/Tf << 1). 

 

Furthermore, since the gain is not 1, it is different from the other filters, so when we compare filters we 

cannot just compare the noise, but we have to compare the SNRs. 

A solution would be to use an active integrator to recover the gain of 1. 

 

The GI has a remarkable filtering action on wide-band input noise because, since now we can choose 

any Tg, we are reducing the BW in the frequency domain, and if so we are acquiring less noise. 

 

Time domain and frequency domains 

In the time domain we need the autocorrelation of the weighting function, because the value in zero for 

the autocorrelation, for the white noise, gives us the noise at the output. The amplitude in zero is not 

1/Tf, because the area of the filter is not 1, but it is Tg/Tf^2. 
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Filtering and SNR enhancement by GI 

I want to understand the gain from the SNR point of view. 

The input noise is not the ideal delta, we need the approximation Sb*2*fn (area of the rect in the frequency 

domain), in the time domain we approximate the delta with a triangle. 

 

For the signal output we have the input signal times the gain (we are integrating the signal, and the gain 

is the area of the weighting function). 

As for the noise, Sb*(Tg/Tf^2), because the noise is Sb times the autocorrelation in 0. Then I do some 

mathematical tricks to extract the gain, which is a parameter that in the SNR should simplify. Then, 

Sb/(2Tn) is the input noise, so I can write in the end the output noise as a function of the input noise and 

of the gain. 

 

The result is that the SNR at the output is the SNR at the input times something, which is the 

improvement of the signal to noise ratio. It is a key parameter, because we are interested in improving 

the SNR. We could naively say to increase Tn to increase the SNR, because the noise is a data, we cannot 

change it. The parameter we can manage is Tg → if we want to increase SNR we have to increase Tg 

and the SNR improves with the square root of the Tg. 
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Output signal and noise of GI 

 

An integral of a constant value is a linear value. As soon as I increase Tg I increase the output 

proportionally to Tg, because I’m picking more signal. As for the noise, the noise increases with Tg, but 

proportionally to sqrt(Tg), so with a ratio of increase that is smaller. 

To get an active filter with a gain = 1, Tf = Tg, so the noise goes as 1/Tg. 

 

GI COMPARED TO OTHER LP FILTERS 

In making the comparison, we notice that the gain is not 1, but we can normalize the filter using a unitary 

DC gain for Tf = Tg (active integrator). At this point, the output of the noise is Sb/Tg. 

We get, as a final result, that if Tg = 2RC the two filters have the same noise in output. 

 

NB: we cann apply a GI only if we have a sync signal. 
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The following is the plot of the RC (red) and of the absolute value squared of the weighting function of 

the GI filter (blue). The two are very similar. If we compute the areas of the two we get the same value, 

because we get the same noise iif we have the same area, the same gain. 
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AVERAGING FILTERS 

 

- Discrete time integrator (DTI) 

- Boxcar integrator (BI) 

- Ratemeter integrator (RI) 

 

DISCRETE TIME INTEGRATOR 

We want to study digital filters to compare them with the analog ones. The DTI is the average; from an 

analog point of view, the average is the GI with amplitude 1/Tg and duration Tg. For the digital average 

Ts is the distance between two samples, P the weight of each sample and Tg is the width of the equivalent 

analog filter, which is Tg = N*Ts. 

 

The other hypothesis is that 2*Tn << Ts. The width of the autocorrelation of the noise, 2*Tn, much be 

much smaller than Ts. If this condition is satisfied, since the autocorrelation ends in a very small time, 

the samples of the noise are totally uncorrelated in the time domain. 

 

For the GI, the SNR improved with a factor of sqrt(Tg). Now we want to demonstrate that the SNR of 

the DI increases with something like sqrt(N). 

The output of the signal is the input one multiplied N times the weight P. The DC gain is NP, which is 

not 1. If we set P = 1/N, it is 1. 

As for the noise, we are making the sum also of the samples of the noise (n_xk is the sample we are 

considering). Then we compute the square value of n averaged on ensembles. 
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If noise samples are not correlated, cross products are zero. Furthermore, if the noise is stationary, the 

square vale is the same. 

 

Finally we ca get the SNR_out, which depends on the sqrt(N). 

 

Discrete time averager 

We want to compare the digital and analog approach, so we need to set the same gain and equal to 1. 

Therefore, the signal is the same. 

N = Tg*fs, and the improvement of the SNR is sqrt(N), so sqrt(Tg/Ts). In the gate integrator it was 

sqrt(Tg). It seems that if we change Ts we can obtain any improvement, we have just to increase the 

freqeuncy. So it seems that the digital sampling could be much better than the analog one, just we need 

to increase fs. But the problem is that if we increase fs, it seems that we are increasing sqrt(N) (if stationary 

noise and noise samples uncorrelated, if neither of the two hypothesis is valid the formula is not true), 

but samples start to be correlated. 

 

Example – exponential averager 

Why don’t we try to compare also the RC with a digital filter? Can we create something that recalls the 

RC weighting function in a digital approach? 

 

NB: in this example the signal is constant, at the exam it might not be. 

 

A digital approach is to use a sampling with a weight that goes down with a power law. Why should we 

choose the equal weights situations or the decreasing weight situation? 

x 
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If the signal is constant, both the solutions can be used and we will choose the one that maximizes the 

SNR. If the signal is not constant, but it is neither a very fast signal (e.g. the temperature of a room), so 

it changes slowly over time, to maintain the noise uncorrelated we can use only a certain amount of 

samples. The idea is to take more samples over a larger time giving a high weight at the samples near to 

where I’m observing the situation, and less weight to the samples back in time, which are less correlated 

with the current temperature. This is better than using a lot of samples in a short window close to t_m. 

 

If instead the signal changes as a square wave, it is instead better to use constant weight if I need to sample 

each change time interval. The idea of the exponential decay time is to increase the amount of time for 

the average but if the signal changes over this time we decrease the weight of the last part of the filter. If 

the signal is constant it is better to weight all the samples with the same weight. 

 

Now we can make the computations (previous image). The low is the x one, and it is a power law with 

a specific constraint. 

 

For the signal, we have to sum all the samples, but each sample with the correct weight. The sum from 0 

to infinite of r^k is 1/(1-r), so the DC gain is P * 1/(1-r). 

Same approach for the noise. Also here we can use the two hypothesis on the stationary noise and 

uncorrelation of samples. 

The condition 1 – r << 1 is used in x. The result is the blue formula. This expression is no more valid if 

we don’t have an input signal that is constant, because the noise part is the same for any signal, but the 

signal part is different. If the signal is changing we have to take into account its change in the expression 

y. 

 

DISCRETE TIME INTEGRATOR VERSUS GI 

The idea is to show which is the best, that will be the analog filter. It is more intuitive to understand this 

in the frequency domain rather than in the time domain. 

 

Firstly we define our system. For us, a digital filter is an analog filter. The first contender is the GI, and 

the digital filter is a series of delta, but a delta is an analog filter. It is important to consider a digital filter 

as an analog one because we don’t know anything so far about digital filters, and we have all the formulas 

for the analog filters. 

If I want to compare in a fair way the two filters, I need to set the same gain, and the best solution is 1. 

So the amplitude of the GI is 1/Tg, and P = 1/N. 

 

 

x 

y 
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The other hypothesis is that we consider the BW of the noise much larger than fs → we consider the 

noise white, so that we can use Sb/2Tn. 

If we set a unity DC gain, for the Gi the improvement of SNR is the blue expression, and for the DI it is 

the red one. 

Since one of the digital filter goes with sqrt(N) and the other one as sqrt(Tg/2Tn), it seems that we can 

obtain any improvement of the digital filter with N. In theory also if Tg goes to inf the SNR improves, 

but to do so we need the signal to span to infinite values, but the signal is typically limited in time. 

Moreover, a large Tg means that we need a lot of time to wait for the filter. So it seems easier to increase 

N for the DI, but also here just increasing N is not improving SNR because at a certain point it is no more 

correct that the samples are uncorrelated. 

 

If Ts < 2Tn, so if we sample noise that starts to be correlated, we still have an increase of SNR, but the 

improvement factor is no more sqrt(N). 

The limit of the improvement of the SNR will be the SNR of the analog filter. In fact, if we increase the 

number of delta we are approximating the analog filter that is the rect. 

 

Time domain 

We have to compare two different filters. The first thing to do is plotting the weighting function of both 

filters and the autocorrelation (in time domain the product of the autocorrelation of the filter and of the 
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noise integrated from -inf to +inf gives us the output noise in the time domain). For the GI (or MM filter) 

we have the autocorrelation k_ww of the filter and Rxx the one of the noise. 

 

The area of the delta x is the spectral density, Sv, times the value in 0 of the autocorrelation of the 

weighting function in the frequency domain. 

The weighting function of the DI is a series of delta. The autocorrelation of the comb of delta is another 

series of delta, but how many and with which shape? The number of deltas is doubled and with a 

triangular shape. The value in 0 is 1/N, which is (1/N)^2 * N (we are summing N delta in 0, so it is not 

(1/N)^2). At this moment we are not interested in the shape of the autocorrelation, we just want the 

value in 0. 

 

Let’s zoom around 0, the autocorrelation of the filter in the analog domain is flat, because the triangle is 

very flat, and the value is k_ww(0). As for the digital filter, we will find a set of deltas of amplitude 1/N, 

still k_ww(0). The number of deltas we find around 0 should be 1, because the samples are uncorrelated 

and since the delta tells us where we are sampling, one delta is in 0 and the other where the 

autocorrelation is 0 (check the book). 

In our case delta are no more decreasing like a triangle because we are decreasing Ts at so high level that 

the number of delta is so high that there is indeed a decrease as a triangle, but the triangle is so huge that 

at first approximation the deltas around 0 have the sample amplitude (similar to the analog case). 

 

Now we need to perform the computations. How can we compute the noise (gain is the same so I need 

to compare just the noise)? 

We need to multiply the autocorrelation of the noise, the autocorrelation of the filter and make the 

integral, and we want to do this both in the analog and digital domains. In the digital domain the integral 

will be only in some points. 

 

For the digital we have to multiply the series of delta times the autocorrelation, and if we multiply a series 

of delta with an analog shape, we have some deltas with the value of the autocorrelation, and then we 

have to make the sum. The amplitude of the delta is Ts/Tg. Then, Ts times the samples of the filter’s 

autocorrelation are the area of the blue box of the following image. 

 

This is the same result for the analog, where the area of Rxx is the result of the integral. 

 

Now, if we reduce Ts, we are reducing the base of the boxes, so approximating the analog approach, so 

getting the same noise of the analog filter and since the signal is the same, also the same SNR (if Ts → 

0). 

 

x 
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The problem is that, ok the limit of the digital filter is the analog one, but it seems that for any value of 

Ts the digital filter has the SNR smaller than the analog one, so the area of the sum of the blue boxes is 

the area of the autocorrelation. This is a correct sentence, but it is difficult to be demonstrated for each 

Ts (check book). 

 

Hence we move in the frequency domain where we don’t need any demonstration for this. 

 

Frequency domain 

The output noise in the frequency domain is the integral of the PSD of the noise multiplied by the absolute 

value squared of the Fourier transform of the weighting function, from -inf to +inf. Let’s do this for the 

analog and digital filters. 

In the frequency domain, the Fourier of the rect is the sinc with a zero in 1/Tg and value in 0 that is 1, 

which is the area of the rect (Tg * 1/Tg). 

As for the digital filter, the Fourier transform of a comb of delta is a comb of delta. But we don’t have an 

infinite number of deltas, but a finite one. To get a finite number of delta, we multiply the infinite comb 

of delta with the rect in the time domain, so in the frequency domain I need to convolve. 

Hence in the frequency domain we will have the convolution of the Fourier transform of the rect in the 

position of the deltas. We can check if the value in 0 is still 1 because the value in 0 of the digital filter 

was with area 1 in the time domain. 

 

Now we have the Fourier transform of the digital filter. We multiply by the PSD of the noise (Sb) and 

make the integral. 
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The integral from -inf to +inf of the product of x and y is the area of x. The digital filter has Sb limited by 

fn, In the digital filter we have an infinite number of replicas of the weighting function, but we have to 

consider the replicas up to fn. 

 

At first approximation, the noise of the analog is the area of one sinc, while the noise of the digital is the 

area of five sinc (from the image). So the noise of the digital filter has to be larger than the analog one, 

because we are integrating more replicas. 

 

How can we demonstrate now that the limit of the digital filter is the analog one? 

As soon as I increase fs (so I reduce Ts) I’m pushing some replicas outside the limit of the noise, so ideally 

we reach the output noise of the analog filter. 

So when fs is larger than fn we have just one replica, but we are not so lucky because the sinc has a tail 

that spans to infinite, so to get exactly the same value we need to push the replica to infinite distance. So 

also in the frequency domain I can say that the limit of the digital approach is the analog filter. 

 

Noise filtering analysis: GI vs DI 

We have a DC gain = 1 so we have to make the integral of the number of replicas that fall in fn, the 

bandwidth of the noise. This number can be computed saying that the output noise is the analog one (i.e. 

the integral of one replica) times the number of replicas. The number of replicas N_L = 2* fn/fs. 

 

In the end we must have the same result in the frequency domain that we got in the time domain. 

x 

y 
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BOXCAR INTEGRATOR – BI 

 

We want to combine the digital and analog approaches. We will acquire the signal with the GI but, 

instead of acquiring it one time, we acquire it several times and make a digital average of the acquired 

signals. This because sometimes just one acquisition of the signal is not enough, because its amplitude is 

too small. This is not possible always, but e.g. for the fluorescent emitted by a single molecule this can be 

done. For the satellite signal it is the same, since it is at a fixed distance, we can send a pulse and repeat 

the measurement several time. 

 

The idea is to use just the GI (circuit on the left, RC and a switch, the buffer is not compulsory) and 

removing the reset of the capacitor from it to get the GI. In fact, one of the hypothesis of the GI was to 

start with a capacitor empty for every measurement. In our new system we remove this hypothesis. 

Since it is a NCPF, we need to define how to control the switch. We do it periodically, without 

discharging the C. 

 

With a new filter, the first thing to dimension is the weighting function. We create it with the usual 

procedure. Instead of closing just one time the switch I open it and close it without the reset. I apply a 

delta every time the switch is closed to create the weighting function. The capacitor can discharge only 

when the switch is closed, so from +inf to -inf the capacitor is discharging (theoretically exponentially). 

 

The other important thing when defining a new filter is the autocorrelation of the noise and gain. 

From the gain standpoint, we are integrating the exponential decay time, but only some slices (it is sliced 

because of the action of the switch) of it so the area will be lower than the full area of the exponential 

decay time. 

The gain is the value in 0 in the frequency domain, that is the integral from -inf to +inf of the weighting 

function in the time domain. But the w_f is the exponential decay time just sliced and split, so the area is 

exactly the original area of the exponential decay time, which is 1 in a standard RC. So the gain is 1. 

 

The other parameter is the autocorrelation, theoretically. The autocorrelation is a function, but at first 

level, if we consider white noise, we are interested in the value in 0. Hence the question is: which is the 

value in 0 of the w_f? 

We need to take the function, multiply it by itself and take the integral. The value in zero is exactly the 

value in 0 of the autocorrelation of the non-sliced exponential. So the autocorrelation in zero is 1/2Tf. 

 

We won’t compute the autocorrelation function of the boxcar because it is not useful. 

Now we everything to compute the improvement in SNR. 
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SNR ENHANCEMENT IN THE BI 

The approximation of the white noise in the time domain is Sb/2Tn, this is a data. Then we are interested 

in the output of the BI, knowing k_wwB(0). 

 

The SNR in output is the input SNR times sqrt(Tf/Tn). The signal in input is exactly equal to the signal 

in output, we can reason only on the noise. 

The SNR enhancement doesn’t depend on 

the rate, and in fact the frequency of the 

pulses is not in the formula. 

 

In the end we are making an average with 

exponential weight of a lot of GI. 

So the improvement in SNR of the GI is 

sqrt(Tg/2Tn); but we are making the 

average of different GI exponentially, and 

the exponential averaging has an 

improvement factor of sqrt(2Tf/Tg). 

Putting them together we get the 

improvement factor of the BI. 

 

However, there are some applications 

where we want to have a dependance on 
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the ratio, because sometimes the information on the signal is not in the amplitude or shape, but in the 

ratio. 

 

RATEMETER INTEGRATOR – RI 

The circuit is the same, but I add a buffer between the switch and the RC. If we compute the w_f, when 

the switch is closed we get the RC, but when it is open, the RC sees the low impedance of the output of 

the buffer, so the C can discharge through this path. So the capacitor keeps discharging, doesn’t matter if 

we open or not the switch. 

Again, we want to retrieve the w_f, the gain and the autocorrelation. 

 

The w_f is the same as in the BI, but the second slice doesn’t start when the previous has finished, because 

the capacitor has discharged in the meantime. 

As for the gain, it is less than 1 because we are making the integral only of some slices of the fully 

exponential decay time, because when the w_f is 0, the capacitor is still discharging. 

The problem is that computing the autocorrelation in 0 of the RI w_f is not easy, because it is no more 

the exponential sliced. 

 

So what we can do is to see the RI as the product of a lot of GI (if Tg << Tf) and the average of exponential 

decay time, but the difference is that the amplitude difference between one GI and the other is no more 

Tg/Tf, but (Ta + Tg)/Tf. 
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We want to compute the area of the slices. We know the distance Ts between two slices Ts, the amplitude 

of the slice that is Tg, and the area of the exponential decay time that is 1. Tf is the exponential time 

constant. If Tf >> Ts, then Tf >> Tg, and every Ts I’m interested in acquiring one slice. Since Tf >>Ts, 

we have like a rect in of width Ts an amplitude of the exponential decay time. The fraction of the area 

that we are acquiring every slice is Tg/Ts, under the approximation of flat curves and I repeat this for 

all the Ts. Then the sum of all the recto of base Ts is the exponential decay time, which is one. But each 

Ts I don’t want all the rectangles of width Ts, but the one of with Tg. So in the end the area is Tg/Ts. 

 

SNR ENHANCEMENT 

 

Point b) is the improvement of the digital average. 

The final SNR improvement formula depends on the frequency fs. If we are interested in measuring the 

rate, this is a good thing. Instead, if we are not interested in the rate, because it is e.g. fixed, at this point 

using a RI is useless. In fact, if for some reasons the rate is changing statistically and we are not interested 

in the rate, we cannot use this formula because we don’t get something reasonable. 

 

To get if the BI or the RI is better, in both cases the GI is the same, so its ratio of improvement is fixed, 

while we have to compare the digital average of the exponential decay time for the BI and for the RI. But 

in both cases we are choosing Tf to maximize the SNR improvement. 
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Passive circuit comparison – BI and RI 

In both cases we have a switch, so in order to control it we need to know where the signal is → we need 

the sync signal, compulsory. 

 

Tf is a value we need to choose to understand what I want from the signal. The BI doesn’t depend on the 

Tf, but on how many times I open and close the switch. In fact, with the ratemeter, after a certain time 

there is nothing to integrate, the capacitor has discharged. Instead, with the BI I discharge the capacitor 

only when I acquire the signal. 

 

Active circuit comparison – BI and RI 

Since in the RI we have a gain smaller than 1, the solution is to introduce an active circuit with a gain. 

these two active filters are identical to the passive ones, because, for us, the gain doesn’t matter. 
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OPTIMUM FILTER 
 

Which is the best possible filter in terms of SNR? It depends on the information we want to extract. 

 

AMPLITUDE MEASUREMENT OF PULSE SIGNAL 

When the signal is really small, normally we are not interested in the shape of the signal (which is known 

generally), but in the amplitude and in the area. If we know the shape of the signal, speaking about the 

area or the amplitude is the same, because from one we can compute the other if we know the shape. 

 

Examples 

 

Ionizing radiation spectrometry 
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FILTERING TO MEASURE AMPLITUDE OF SIGNALS BESET BY WHITE STATIONARY 

NOISE 

 

We know the shape but we don’t know the area and amplitude, but we have a LF signal, so if we compare 

the signal with the autocorrelation of the noise, the autocorrelation of the noise is much smaller than the 

one of the signal, so we can assume the noise as white (i.e. in the frequency domain its BW is more 

extended than the one of the signal). 

 

In the frequency domain it means that the BW of the noise is much larger than the BW of the signal. 

 

 

The filter we need to design is probably a LP filter, because the information in the frequency domain is 

around 0. This is a rect in the time domain, for instance. The question is: is it possible to design the best 

possible LP filter? 

 

The only information that we have is the shape of the signal. We can write the signal as y(t) = A*b(t), 

where b(t) is a function with an area of 1, so A is the amplitude or area. 

One information is the shape of the signal, the other information that we have is that the noise is white. 
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We want to compute the optimum filter theoretically. The signal is defined as y(t) = A*b(t), where A is 

the area of the signal, and we know the shape of the signal, b(t). 

The goal is maximize the SNR. 

 

OPTIMUM FILTERING OF SIGNALS IN WHITE NOISE 

The signal at the output is the integral of the product between the weighting function and the signal itself. 

As for the noise, it’s the integral of the autocorrelation of the noise times the autocorrelation of the filter. 

Since we are considering WN, the autocorrelation of the noise is replaced with a delta. 

 

For the signal, the integral can be rewritten considering the cross-correlation multiplied by the area. 

The Schwartz inequality x proves that the maximum of the SNR is when w_m(alpha) = b(alpha), that is 

when the filtering weighting function shape is proportional to the shape of the input signal. 

 

Every time we choose a matched filter it is almost compulsory to write equations z. 

 

 

 

 

x 

z 

z 

z 
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SCHWARTZ INEQUALITY – MATCHED FILTER 

For the optimum filter we are weighting the noise and the signal, but since the noise is always the same, 

better to increase the weight of the filter when the signal is high and reduce it when the signal is small. 

 

The matched filter is so called because the shape of the filter is the same of the signal, i.e. is the optimum 

filter. 

 

Optimum SNR for WN 

Sb is the bilateral spectral density. k_bb(0) is the autocorrelation in 0 of the signal. 

The first formula can be rewritten considering the energy definition. 

Starting from these formulas, an interesting point would be to understand which is the minimum 

amplitude of the signal we can detect. 

So we want to revert the formula to get the amplitude. However, at this point we need to define a target 

SNR, otherwise we cannot reverse the formula. From theory, 1 is the minimum SNR to have a minimum 

detectable signal. In the real world, with a SNR = 1 we cannot distinguish the signal, at least we need a 

SNR = 3. 

Then we solve the equation for SNR = 1 (from theory) and we get the Amin. 
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OPTIMUM FILTERING WITH ANY STATIONARY NOISE 

We are considering a stationary noise, not just a WN. Is it possible to apply the same theory? No, because 

to compute the optimum filter we used an approach that worked with white noise, because writing the 

noise at the output as Sb*k_ww(0) is correct only if WN. 

However, we can get the same result changing something in the filter. 

 

For CPF, they are reversable (i.e. we can always go back) and we can always change the order of the 

filter. Since it is reversable, every time we apply a filter we can always go back, so we are not loosing any 

original information. The information might be modified but it is the same. 

 

We want to obtain a situation where SNR in input, we apply the optimum filter and we get SNR_best at 

the output. This works only if the noise is white. 

The problem is that in this case the noise is not white, so we cannot put the matched filter in the middle. 

But still exists the best filter in this case, we just don’t know which is. 

 

I use another approach. We add two blocks, 1/S(f) and S(f), where S(f) is a CP (constant parameter) filter. 

Since we CPF is reversable, I apply a filter and then I reverse it and apply it again. So after the two filters 

I have the same information, but also in the middle between the two CP filters, it is just changed, the 

CPF cannot increase or reduce the amount of information. 

 

The first block can be a filter that makes the noise white, making the spectral density of the noise in the 

frequency domain flat. So in the middle between the two CPF 1/S(f) and S(f) the noise is white. Hence 

the S(f) and BEST (that is not the matched) blocks compose the matched filter, because it brings the WN 

to the optimum SNR in output. 
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This is not the only way to get the best result, we can define directly the best filter with MATLAB without 

making the noise white, but the important thing is to get the optimal SNR as a result. 

 

The whitening filter is applied on the noise, but since the filter is in the chain, I’m applying the same fitler 

also to the signal. So when I design the next matched filter I will design a filter with the same shape of 

the signal at the output of the whitening filter, not the original signal. 

Optimum filter 
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OPTIMUM FILTERING FOR HIGH IMPEDANCE SENSORS 

 

HIGH IMPEDANCE SENSORS AND LOW NOISE AMPLIFIERS 

Let’s suppose to have a high impedance sensor. 

 

High impedance sensor 

It is a current generator for both the signal and the noise, and since it is high impedance we also have a 

capacitor. The sensor equivalent circuit has two generators, one for the signal and one for the noise, and 

a parallel capacitor. 

 

Low noise amplifier 

The preamp is used to read the current form the sensor. The input resistance of the preamp is the true 

physical resistance, because noise is associated with physical resistances. 
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If it is big we can remove the input resistance, and this is done on purpose because we have thermal noise 

associated to the resistance, which in terms of current noise depends on 1/R. This noise current generator 

has to be placed in parallel to the preamp noise generators, which are in parallel with the signal. So if I 

reduce the resistance I increase the noise in parallel to the sensor. 

 

If for instance we use 50 Ohm and we compute the spectral noise, we get 18 pA/sqrt(Hz). Since the noise 

of the preamp is typically smaller, we are adding a lot of noise. We considered 50 Ohms because it’s the 

impedance of a transmission line. 

The input resistance Ria to be removed works if the preamp system is close to the sensor, otherwise we 

need to use transmission lines and the 50 Ohm resistance has to be considered. 

 

The input signal can be modelled as a delta, because even if it is an exponential decay time, sometimes 

the tau is so small that it can be modelled as a delta if the signal is fast. E.g. for a pn junction a delta is a 

very fast laser pulse that hits a photodiode, which gives us a pulse of current. 

 

Si is the current generator of the preamplifier plus the current generator of the sensor plus the one of the 

resistance (that has however been removed). 

 

The result is that if we look at the voltage noise, it is not white. The fact that the noise is not white is due 

to the capacitor Cl of the sensor, because integrating a current over a capacitor gives us a spectrum that 

is no more flat. A delta of charge in a capacitor gives us a step. 

 

The plot of the result x is in the next image. Where the 1/f noise is equal to the white noise we have the 

corner frequency. 

The tau associated to the noise corner is y. Accordingly, we can also define the noise corner resistance. 
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NOISE WHITENING FILTER 

The spectral density from which we start is Sn(w), and it has one pole in the origin and a zero. To obtain 

a flat behaviour I need a filter with a zero in the origin and a pole later. 

 

This filter is the HP filter. 

Since we are considering the noise, it is important the squared absolute value of Fourier transform of the 

filter, because we are whitening (1/f)^2, otherwise we would not whiten the just the 1/f noise. 
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Whitening result 

 

I applied the whitening filter, and we also have to consider the signal. The step in input to the whitening 

filter gives us an exponential decay time.  

Now the noise is white and the signal is the exponential decay time, after the whitening filter. At this 

point I have to apply the matched filter (filter whose weighting function has the same shape of the signal), 

and I don’t have to apply the RC filter, because the RC has the exponential decay time as a delta response, 

not as a weighting function, that is the delta response flipped. 

Furthermore, the matched filter with this exponential decay shape doesn’t exists because it would require 

an integration for an infinite time. 

 

Signal in output to the whitening filter 
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MATCHED FILTER 

The red one is the weighting function. As for the signal to noise ratio, we write its definition (integral) for 

both signal and noise. 

 

OPTIMUM FILTERING 

The signal in output is the prduct of the weighting function and the singal in input, so the expoenntial 

decay time squared. 

As for the noise of the matched filter, it is 1/(2Tnc), because the weighting function is the exponential 

decay time, that is not the one of the RC, but from the noise standpoint having a weighting function or 

the flipped one is exactly the same. Since the autocorrelation of the RC is a double exponential with 

value in 0 of 1/(2Tf), for the matched filter in this case it is the same shape and value in 0.  

 

The problem is that this filter doesn’t exists. Firstly because we are not able to develop this shape form 

an analog point of view, and moreover it is an anticausal filter that lasts for infinite time. To solve the 

problem of anticausality we change the t_m position with a delay line, putting it in the end of the 

exponential curve and not in correspondence of the peak. The thing is that we are creating an 

approximation in this way because we are cutting part of the weighting function. 
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PRACTICAL APPROXIMATIONS OF THE OPTIMUM FILTERING 

 

RC integrator approximation of the matched filter 

In the image we have the delta response of the RC filter, whose weighting function is not the red one, but 

the red one flipped and shifted in time. 

Let’s try to do this error anyway, using an RC instead of the matched filter. 

We tune the delta response of the RC with the same tau of the output of the whitening filter to have the 

best possible RC. It is a CPF, so if I apply it I need to make the convolution of the delta response with 

the whitening output. 

 

Once we have the output of the RC integrator, I have to take t_m, which is in correspondence of the 

maximum of the output curve. The maximum is exactly at one tau (at Tnc). Since here I have the 

maximum, I don’t have to perform the convolution but just apply the weighting function at t_m and 

multiplying it with the signal in output of the whitening filter. 

 

Now to compute the SNR we cannot use the formula of the optimum filter, but the general formula. 
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Since we calculated the optimum filter and the RC has the same tau = Tnc, the noise is again 1/(2Tnc) 

for the noise computation, we have just to compute the noise. 

 

If we compare the obtained SNR with the one of the matched filter (or we just compare the signals, since 

the noise is the same), the SNR is 73% lower than the previous case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

1/f NOISE 
 

It is an issue in several applications. Simply making a measurement with the 1/f noise present it’s 

impossible. 

 

1/f NOISE FEATURES 

1/f means that the spectral density of the noise is 1/f, even if in the real world it is not exactly 1/f. 

From the power point of view it becomes larger and larger. Bipolar transistors have a low 1/f noise, 

MOSFETs have a strong impact due to the 1/f noise. 

 

However, 1/f is not just related to electronics, it is an issue in several application because its origin is a 

process that is common also outside the electronics. 

The main difference between 1/f and white noise is that samples are strongly correlated even at a long 

time distance, while for white noise two samples are always uncorrelated regardless the distance between 

these two samples. 

 

As said previously, 1/f is to the power of alpha in reality, but it really doesn’t matter at all if we just use 

1/f, it is still a good approximation. 

With 1/f^2 it’s easy to whiten the noise, while if f is to the power of 1 it is very difficult to whiten it. 

 

The 1/f comes from the release of carriers trapped in the channel of a mosfet but with different times. In 

general, when we have events happening at different times, their sum is the 1/f noise. 
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1/f NOISE SPECS 

P is the intensity, but it is a constant that is not known generally. Normally in a datasheet we have the 

frequency corner of the integral of 1/f. To make the power we have to make the integral from 0 to +inf 

of P/f (we are using the unilateral, otherwise from -inf but with the modulus). Here we have the first 

problem, because normally we have also the white noise in our system. 

 

Since we have the white noise we can define the frequency corner, that is the point where the 1/f noise 

crosses the white noise. Clearly, it is better to have a small frequency corner so that I can increase the 

portion of the spectrum where the noise is just white. But there is also another reason; in fact, we have 

less noise if we decrease the frequency corner. Every time we shift the frequency corner to high 

frequencies we are increasing the noise. 
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Frequency corner 

Since P is related to the power of the 1/f noise, as soon as we increase fc we increase the power related 

to the 1/f noise. 

White noise is in the range of nV/sqrt(Hz), so the fc goes typically from 10 Hz to 10 kHz. For standard 

applications, this is a big value, so we cannot neglect it. 

Sb is the spectral density of the WN, but if we are using the unilateral spectral density for the 1/f noise, 

we have to use it also for the WN. 

 

1/f BAND LIMITS AND POWER 

 

Theoretically, 1/f at 0Hz is infinite, while goes to -inf at infinite frequency, so it is not limited. We need 

something that goes to infinite in both the directions. If I apply no filter, the integral of 1/f is hence 

infinite. 

 

One of the reasons why we can integrate the 1/f noise and not getting infinite is that we are limited by 

the instrumentation, so we cannot read up to an infinite frequency. So we have no problem in managing 

the HF, but also the LF is not a problem because 0 frequency would mean that we have to observe our 

signal for an infinite amount of time, but this is not actually feasible. 

x 
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So if we have both a limitation at LF and HF (fs and fi), and these two limitations are a sharp cut off and 

far from each other, we can try to calculate the 1/f noise. Hence I integrate between fs and fi. 

 

Formula x gives us some information. In fact, power of the noise depends on Sb, fc and the ln of the ratio 

between fs and fi. This is a good thing because WN depends linearly on the frequency Sb*(fs-fi), and the 

logarithmic dependance is weaker. Furthermore, the 1/f noise depends on the ration between fs/fi, while 

the WN on the difference between, fs and fi. 

We have to select fs and fi. 

 

1/f noise is slowly divergent for fi →0 and fs → inf, because we have the logarithmic of the ratio. 

 

The problem is that to decrease the noise we have to make a strong change in the fs/fi ratio, but since the 

change in the noise value when fs and fi change is almost the same, even if we change fs and fi we don’t 

gain much, we will be always limited by the 1/f noise. 
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The good news is that it is not necessary to know the exact value of 1/f noise. 

 

In the example we are using the equivalent noise BW for the WN, which makes no sense for the fs of 1/f 

noise. The error we are making in the 1/f noise is just 10% higher, even if the difference in frequency is 

50%. 

 

1/f NOISE FILTERING 

 

Firstly we change the integration variable. Since I’m filtering the noise, the output noise is the integral 

from 0 to +inf (unilateral) of the spectral density of the noise Sb*fc/f times the absolute value squared of 

the w_f. With 1/f we will always work in the frequency domain, because to solve this integral in the time 

domain I would need the autocorrelation of the filter and of the 1/f noise, which is the antifourier 

transform of the function 1/f, which is not mathematically possible. 

 

The new integration variable is d(ln(f)). 1/f works in the logarithmic scale, while WN in linear scale. The 

result is that we can use a graphical approach to compute the noise both for the WN and 1/f noise. With 

WN we plot the w_f in a linear-linear scale and compute the area, while for the 1/f we need a linear-log 

scale. 
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Example: RC integrator 

 

For the WN we have to compute the area of the true w_f (black), that is equivalent to the area of the 

green rect (that is Sb*fs). For the 1/f we have to plot the w_f of the filter in linear-log scale and then make 

the integral. 

We get the second plot, with the red one that is the approximation. The value of the integral is infinite. 

It is expected because we have just a LP filter, we are not setting a limitation at LF. 

 

Let’s include a limitation also at LF using a HP filter. For the white noise the computation, compared to 

the previous one, it is the same, because if fi is much smaller than fs, we are basically integrating the same 

area (fs – fi remains almost equal to fs). 

 

As for the 1/f noise, now we have both a cutoff at LF and HF. The area is the one of the blue curve. 

Now, if I plot on the same graph two different filters, for the white noise, comparing the area of the square 

modulus of the w_f (|W(f)^2|), the smaller the area the better the filter, and so to compare the filters we 

could theoretically compare the areas. The same is valid for the 1/f noise in the linear-log scale, without 

making the actual computations. 

 

This is important because we want to compare the filter developed in the next and the CR. 
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INTRINSIC HIGH PASS FILTERING VS CORRELATED DOUBLE SAMPLING (CDS) 

 

Every time we make a measurement we will use this filter, but this filter also doubles the noise. 

The real idea is that we don’t make a measurement for an infinite time. For instance, if we have to do a 

measurement, we turn it on, we calibrate it and then we perform the measurement. This is what we have 

to do to measure the 1/f noise. 

 

The zero setting is mandatory. Every time we make the measurement this is the first thing to do; we can 

make a measurement with 1/f noise because someone made the zero setting. Now we have to understand 

the zero setting. 

 

From a signal perspective, what is a zero? What is its effect on 1/f and WN? 

The effect on the 1/f noise is that we are doubling the noise. How come? 
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ZERO SETTING BY CDS 

Let’s start with a measurement; a measurement is a S&H at this moment, I’m sampling the signal, so I 

have deltas. So at 0 time I have the delta that I use to measure the signal. But before we measure the 

signal, somewhere in the past, someone, that produced our system, implemented a measurement of the 

zero, which will be subtracted to the measurement I’m making currently. Since it is a subtraction, it is a 

delta with the -1 (x). This is the zero setting. 

 

In the real world, we don’t use delta to acquire signals, are we sure we use it for the offset? We will have 

the same problem, because acquiring the signal or the baseline (offset) is exactly the same. 

The fact that the noise is doubled for the WN is in the fact that we are acquiring a signal two times, one 

for the baseline and one for the actual signal, so we are acquiring the noise twice, because the useful 

signal is actually sampled only once in 0. 

 

So we have to express the weighting function, that is a delta at t minus it translated in time (y). Then we 

have to shift to the frequency domain, because the goal is to compare this filter with a HP filter to find a 

cutoff frequency, and a HP filter is much easier to be treated in the frequency domain. 

The Fourier transform of the sum is the sum of the Fourier transform, so we apply the Fourier transform 

to the delta adding the exponential that gives the shift in time. Then the exponential is rewritten using 

Euler’s expansion. 

 

Then we take the absolute value squared of the w_f. Expression z is useful because we can approximate 

it to (wT/2)^2 when wT is really small, with then the factor 4. 

 

Let’s now plot the w_f. We want to compare the w_f of the zero with an HP filter, and understand if the 

zero gives us a cutoff at lower frequencies. 

At LF, we have the CR and the w_f very similar from the math point of view, even if RC (tau) and T are 

two completely different things. Let’s plot the w_f with T = RC. 

 

 

 

 

 

x 
Y 

z 
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Blue and green curves are different, they are not the same filter, but we are interested in the LF, 0Hz, and 

we notice that the zero setting is equivalent to HP filter. If so, at lower frequency the zero setting is 

introducing a cutoff in frequency, that is equivalent to introducing a CR with tau = T. 

 

The problem is that we have to understand if T can be chosen or not, and if yes, which is the value to be 

selected. 

 

CDS VS CR HP FILTER – WHITE NOISE 

The first comparison is with WN, then we will do 1/f. 

To compare two different filters for the WN, we need to plot the w_f in the lin-lin scale. In green we have 

the CR, in blue the CDS. 

Let’s plot the green times a factor two (red), that is the average value of the sinusoidal waveform that 

goes from 0 to 4. I’m interested in the average value because for the WN we want the integral, i.e. the 

area, and the integral of a sinusoidal is its mean value multiplied by the sinusoidal between -1 and 1, so 

it is the mean value. 

 

The CDS has an area of 2, as for the CR, the area is almost 1, not exactly 1 because I loose something at 

0Hz. Why if the noise is exactly doubled, here I have almost a factor 2 between the areas of the w_f? 

The difference is that we were comparing the sampling without a filtering when saying it is exactly 2, 

while here we are comparing the CDS with the CR. 
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The output power of the CDS is double of the unfiltered noise. If we use the CR we are filtering. 

So we are doubling the unfiltered noise and more than doubling with the CR. 

T is the delay between when I make the zero and then I perform the measurement. Sometimes T can be 

chosen and can be small, because we know when we make the measurement. In other cases we don’t 

know when we are making the measurement, so we have to wait and consider the worst case. If T is 

huge, the tau of the CR is a very low frequency, so we are picking a lot of 1/f noise.  

 

Time domain: filtering band-limited WN by CDS 

In the time domain we have to make the integral of the autocorrelation of the filter times the 

autocorrelation of the noise. The last plot is the autocorrelation of a WN limited by a single pole. 

 

We have just to multiply the second plot and the third one. If the noise was really white, so the BW is 

much larger than our time scale, the autocorrelation would have been a delta, but I can approximate it 

with a triangle with Tn very small with respect to my time scale, and T defines the time scale. So it Tn 

<< T, the double exponential goes to much before 0, so we are doubling the noise when we perform the 

multiplication. 

 

Instead, if the autocorrelation of the noise is very large (not white), the output noise is due the acquisition 

2 times in the middle and then one time per side, but if I enlarge the autocorrelation of the noise, in output 

I get 0 because the side sampling becomes close to 2 times the sampling in the origin. 
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Extreme cases 

 

Now I have to do the same thing with the CR. 

 

Filtering band-limited WN by CR 

Wf is the delta response of the CR flipped. The delta response of the HP filter is 1 – the delta response of 

the LP filter. 

 

The w_f is the sum of two component, an exponential and a delta. So for the autocorrelation ido the 

autocorrelation of the delta, of the exponential and the autocorrelation of the cross-product. 

The autocorrelation is needed because we are trying to study the 1/f in the time domain for the CDS. 

 

 

 

Unfiltered noise 
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We have to multiply the two plots in the next image. Our goal is to understand what happens when we 

have a noise with a very short correlation time (with noise) or high correlation time (1/f). If t_m is very 

small, so ideal white noise because of short correlation time, at the output we have exactly the input. This 

has to be compared with the correlated double sampling, where we have a factor 2 with WN. 

It t_m is very large, the output noise is the input noise attenuated, that is the same situation of the CDS. 

 

So for both CDS and Cr, when the correlation time is long we are attenuating the noise, but when the 

noise has a short correlation time, in one case CDS we have a doubling of the noise, in the other case just 

the input noise. 

 

So it seems that the CR is better than CDS, because we have no doubling of the noise. We still have a 

problem, in fact also with a factor 2 I would use a CDS instead of the CR. 

With CDS I’m acquiring the signal with a delta, here with a shape that is not a delta, so I’m losing some 

frequencies, but the real difference, from theory, is that the CR is a filter we are applying on the chain 

after the signal, so directly on the signal and the noise we have to study the effect of the CR. So if the 
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signal has some components at LF, with the CR we could damage the signal. The CDS instead is acquired 

at the zero of the measurement, so we acquire the baseline and then when we acquire the signal we are 

acquiring all the signal, not with also the filter. With CDS we are just choosing the cutting of the 1/f but 

not changing the signal. 

 

CDS VS CR HP FILTER: 1/f NOISE 

 

For the 1/f we have to plot the w_f of the CR and CDS (blue) in a linear log scale. The area of the blue 

line and of the green line (and red dotted line) is the amount of noise we are collecting. 

Also for the 1/f, the CDS oscillates around a factor 2 and goes between 0 and 4. At first approximation, 

also for the 1/f we are doubling the noise. This seems strange because we are using it to remove the 1/f 

but in reality we are doubling it. The reality is that without CDS, the 1/f is infinite; then we apply CDS 

and we get a 1/f noise that is doubled with respect to the 1/f that we could get with a CR. Again, it would 

be better to use the CR because we don’t have the doubling of the noise but the problem is that it applies 

also on the signal. 

 

There’s never an optimal solution, we need a tradeoff between not touching the signal and keeping high 

noise or viceversa. 
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Which is the limit at LF that the CDS sets from the noise point of view? For the CR and 1/f it is the pole 

(f_ip), while for the CDS is 1/2*pi*T, where T is the distance. So for the noise computation we need to 

set Sb, fs, fc and f_if. For the lower limit f_if we have to set it as in the previous image depending on 

having the CR or CDS. 

 

Zero setting by CDS 

The doubling of the noise by the CDS is not the only problem, and plus it can be also somehow solved. 

The real problem is that we don’t know the time that passes between the turn on of the instrument and 

calibration and the measurement. This time is not fixed; to compute the 1/f we have to take the worst 

case in terms of elapsed time between the calibration and the measurement. And this is not good, having 

a SNR that changes depending on the time instant on which I make the measurement. I want to remove 

this dependance. 

 

Summary 
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CDS WITH FILTERED BASELINE – CDS-FB 

 

Do we really need a delta to acquire the baseline? The baseline is the offset, which ideally has a very LF. 

And we are acquiring something with a very LF with a delta, so acquiring a huge amount of noise to 

acquire something that is at LF. The ideal filter would be a LP filter → better to use a delta to acquire the 

signal and a rect to acquire the baseline. But the rect is GI, so as soon we increase the width of it in time 

domain, in frequency domain we are decreasing the BW and acquiring less noise. 

 

The drawback is, from a practical point of view is that we need some time to acquire less noise (if we 

increase the width of the rect to reduce the noise). 

 

So instead of using a delta for the baseline and a delta for the signal. 

Now we have to write the equations. 
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The w_f is the delta minus the w_f of a rect shifted. So the Fourier of the w_f is the Fourier of the delta 

minus the Fourier of the rect. The former is 1, the second is the one of the rect times the phase shift (we 

are shifting it in the time domain. 

 

Since we made a change, we need to check the data, and our data is to find a cutoff at LF. We need to 

check if we have a cutoff at LF, because we removed the doubling of the noise but maybe also the LF 

cutoff. 

 

The w_f when omega is really small (f << 1/T), the w_f of the rect is 1, so we have a high cutoff as in the 

normal CDS. If f > 1/T, the final w_f is 1. 

So we here have a cutoff at very low frequencies, but in the CDS is a sinusoidal oscillation between 0 and 

4 till to infinite, while here the w_f goes as the CR at HF. 

 

In the middle we still have a doubling of the noise. 

At very LF we have the same behavoiur of the CDS that was the same behaviour of the CR. At very HF, 

it goes to 1, that is exactly the value of the CR. In the middle we have the sinusoidal with a factor 2.  

We are focused on LF, but we should also consider the fs, HF cutoff, that is e.g. the frequency of the 

amplifier or of the filter to filter the signal, but now it’s far at HF. 

We have to extend the behaviour of the CDS-FB till fs (blue dashed). So I notice HP filter, doubling, one. 

So the blue curve is 1 after a certain point, in the CDS it has a factor 2 up to fs. 

 

So we have a doubling of the noise in the red rect, that in the normal CDS is large as fs. We need to 

define some frequencies; the first one is the lower cutoff, and f_if is the frequency of the intrinsic HP filter. 

Then the second frequency is fs, which is the higher limit for the noise. Then f_Fn is the BW of the filter 

we introduced for the baseline (the rect for the baseline), so f_Fn is the BW of the GI. 

 

I should make the integral of a factor 2 from f_if to f_Fn and of a factor 1 from f_Fn to fs. But instead of 

doing this, I do the integral from f_if to fs of the factor 1 and then in the previous interval I do the integral 

of a factor 1. This is for the computation of the output noise power. 
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Output nose power 

 

If we had two deltas, in CDS the f_Fn would be infinite, but if so we are limited by fs, so we return to the 

normal CDS, both for the 1/f and WN we get again the factor 2. 

 

What is the real value of fs? 

There is only one limitation, that fs has to be much larger than f_if, otherwise we cannot use the formula. 

So fs is any cutoff at HF, so we can imagine it as the cutoff of the filter to filter the signal, e.g. a GI. 

The doubling is avoided when fs >> f_Fn, which means that we can neglect the red term, i.e. in the time 

domain I’m integrating for a large time, using a large rect so that f_Fn small. In this way we get the 1/f 

and WN without doubling. 

This is why instruments take seconds to make the zero baseline. 

 

This result is just the starting point, because we still have the 1/f noise, ok it is not infinite with the LF 

cutoff, but not leading to an optimal SNR. The problem is that f_i si dominated by the distance between 

the baseline setting and the measurement, and it can be very large, so I’m integrating a lot of 1/f noise.  

 

To avoid this problem we could reduce Sb, but this cannot be done. Again, fc cannot be changed as soon 

as the fix the preamplifier. As for fs, it is the higher cutoff of the filter we will use, and with the optimum 

filter theory, the filter has to be the same shape of the signal, so the fs is the cutoff of the signal, so it is a 

data and we cannot change it. The only parameter we can change is f_i, but it has the problem that is 

very large. 
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CORRELATED DOUBLE FILTERING - CDF 

 

The WN and 1/f are described by a formula that has a limit at LF due to CDS and a limit at HF due to 

the filter that we are using. So to set the higher limitation we can use any type of filter instead of using a 

delta to acquire the signal. So we can study a particular case to make the zero as soon as we can. 

 

If we have the sync and know where the signal is, we can think of making the zero and making the 

measurement of the signal then. So we would like to use a rect also for the signal, not only for the baseline. 

If we use this approximation, we get exactly the same formula as before. In this case fs = f_Fn because 

the rects have the same width, so we are doubling the noise because we are using the same signal for the 

filter and for the noise. 

 

The difference is in the fact that the BW I have to use in the rect for the baseline should be much smaller 

than the one I use for the rect of the signal. In this way I can avoid the doubling of the noise. If we use 

the same BW of course we are doubling the noise. We study a particular case where T, the distance 

between the two rect, that is really small. This is a case not included in the previous calculations, because 

one of the hypothesis of the previous calculations was that fs is much larger than fi. 
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The w_f in the time domain is the convolution of the w_f of the CDS times the w_f of the LP filter, and 

in this case the LP filter is a gated integrator. If we put all together the convolution in the time domain is 

the product in the frequency domain, but we are interested in the squared product of the absolute values. 

For sure we will have a lower cutoff due to CDS and a higher cutoff due to LP filter action, but the cutoff 

of fs and of the LP filter that we used with the baseline is the same, because we are using the same rect 

for the signal and the baseline. 

The problem is that not only we collapse the two cutoffs of fs and fn, but we also collapse fs to a value 

that is really similar to the value of the lower cutoff. At this point we have no more the LF cutoff and the 

HF cutoff well spaced so we can use the normal formula. 

 

If we put all together (image below), the Fourier of the rect is the sinc and we get the function in the box 

of the next image. 

 

The shape has a cutoff at LF, like the HP filter, but instead of a part that doubles and another that has 

gain 1, it dies. The problem is that we don’t have a distance between lower cutoff and higher cutoff and 

so we cannot use the previous formula. 

So we can do two things; either we plot with MATLAB the w_f and we compute the noise (area of the 

function) or, since I have to use the filter just one time, I do an approximation, because the use of two 
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rects very close one to the other (0 distance, at the end of on rect it starts the other one) is something we 

will use several time. And if we reduce the distance between the baseline and the signal we are reducing 

the T and we are increasing the cutoff for the 1/f. So the higher limit at LF for the 1/f is when signal and 

baseline are at zero distance (T = Tf, the distance is equal to the width of the rect). 

 

In this situation the shape is the one above. I notice that there is one big lobe and several small ones, 

whose area is probably negligible. So the ide is to approximate the main lobe with a rect. 
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MEASURING PULSE SIGNALS WITH 1/f NOISE 
 

At this moment we didn’t solve the issue of the 1/f, we understood that we can make the measurement 

with 1/f without doubling the noise and without having a SNR = 0. 

The optimum filter theory doesn’t work because the noise is not white. The problem is that it is impossible 

to create a whitening filter for the 1/f noise → we cannot use the optimum filter theory. In principle we 

cannot manage this situation. 

 

But we can solve with the idea that the 1/f noise is logarithmic with the BW and connected to the ratio 

between HF and LF, while the white noise is connected with the difference of HF and LF. 

 

The first step is to completely remove the 1/f. Then we compute the whitening filter (e.g. if we have 

1/f^2) and the optimum filter and so on. If we are lucky, this is enough. 

 

As a second step we try to compute the effect of the 1/f on the filter we chose without considering the 

1/f noise. If it is negligible compared to WN we are finished. 
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If not, we try to add an additional filter to try to reduce the effect of 1/f. Obviously, the additional filter 

will be a HP filter, because the LP filter is for the signal, but how can I choose it? 

First of all, the additional HP filter has to efficiently reduce the 1/f noise and we don’t want to damage 

the signal, because if we apply this signal after the matched filter we are applying it to both the signal and 

the noise. 

 

The problem is that we apply the filter to both the signal and the noise, so we want to cut the 1/f noise 

but also have a small impact on the signal. Furthermore, adding a filter to remove the 1/f could have an 

effect on the signal (CDS theory) cutting a part of it, but also eventually enhancing the white noise. 

 

FIRST STEP 

We are neglecting the 1/f noise, so we can find the optimum filter since we have just WN, so the optimum 

filter is the matched filter low pass filter. As an approximation, we suppose that the LP filter in the 

frequency domain can be approximated with a rect and we are interested in the value in 0 in the time 

domain of the signal, because it is a very low frequency signal. 

The value in 0 of the signal is the integral of the Fourier transform in the frequency domain, which is the 

amplitude times the BW of the filter, because we approximated the matched filter with a rect in the 

frequency domain. 

 

Now we have the WN as Sb*fs, and the BW limitation for the noise is the same for the signal because 

we are using the matched filter. 

Then we have to introduce the 1/f noise to understand if we are lucky or not. Since we are using a 

matched filter with the same BW of the signal, it is not strange that both signal and WN have the same 

BW. 
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SECOND STEP 

We are introducing the 1/f noise to see if its effect is negligible compared to the WN. 

 

The effect of 1/f noise is Sb*fc*ln(fs/fi), if fs >> f_Fn. Sb, fc and fs are data, fi has to be chosen. 

So in theory I have just to choose the correct value for fi. The problem is that if fs = fi we are loosing part 

of (all) the signal, so the signal is 0. The signal is A(fs-fi) because we are cutting the low frequencies, that 

is the original signal A*fs minus a factor. 

If we want to loose e.g. only 5% of the signal, f1/fs < 0.05, so ln(fs/fi) > 3. 

 

The goal is to have 1/f noise much smaller than the WN. 

 

In order to have a 1/f noise negligible compared to the WN we need a fc that is fc < fs/3. At this point 

we don’t have any other parameter to choose if the text gives us this condition satisfied. If not, the 1/f is 

dominant. 

 

If so, we need to add another filter. 
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BASIC CONSTANT PARAMETER HP FILTER (CR DIFFERENTIATOR) 

Firstly, let’s study the basic CPF that the HP filter is. We have one zero in the origin and one pole. 

The bottom right plot is the w_f in the lin-lin plot. The delta response is the derivative of the step 

response. 

 

We can write the HP filter like the all pass filter minus the law pass filter, always. This can be 

demonstrated with the formulas in time frequency domain or time domain. The all pass is 1. 
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From the Kirchhoff standpoint: 

Seeing the HP filter as the difference of the all pass and LP filter saves time in the computations. We 

want to compute the ENBW for the HP filter. 

If I have WN and HP filter and I want to compute the power of the noise as if it was a rect, the ENBW 

is pi/2 * fp, because if all pass is constant and the LP is a rect at a frequency fp, then the HP is the 

equivalent rect. 

 

We wat to rewrite the integral x as Sb(fs – fi) and compute fi to write the noise as a rect. For the WN the 

limits for HP and LP are both 1/(4RC), and we want to find them writing the noise of the 1/f as a rect 

also for the 1/f noise. 

x 
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The idea is that if we use a HP filter, let’s compute the 1/f noise n_f^2 and we want to approximate the 

computation as a rect, as an integral from f_if and fs. This equation is true only if we have a sharp cutoff 

(rect). 

 

I want the f_if value that allows me to write it as a sharp rect with sharp cutoffs. So with f_if I have to 

choose the exact frequency of the pole if fs >> fp. 

 

Extended calculations 

The important thing is that when computing the noise power for the 1/f, f_i I have to choose the 

frequency of the pole for the HP filter case. 

 

So if I have to choose the frequency of the pole, so 1/(2*pi*RC) for the HP filter in the formula of the ln 

compute the 1/f, if I have the CDS, which is the value to put in the formula? 

1/(2*pi*T), because at lower cutoff the CDS is equal to a CR with T = RC. 
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SUMMARY 

 

The important thing is that the level of fs is dictated by the pulse signal to be measured; we cannot choose 

fs because fs is connected to the signal and we want to collected the signal and limit the amount of noise. 

As for fi it is necessary only to limit 1/f, normally it has no effect for WN. 

If we area applying a filter at the end of the chain that acts both on the signal and the noise, the higher 

the frequency of the HP filter, the lower the 1/f but also the lower is the value of the signal. 

 

However, 1/f is cut significantly even with low fi. Changing fs has not a really big effect, but changing fi 

has, because in principle 1/f starts from 0, so if instead of 0 we are taking a very close value for fi we are 

limiting the 1/f a lot. From 1.001 to 1.1 Hz we change a lot the 1/f noise, even if we are still at 1 Hz. 

For the WN this is not an issue. 

 

But we cannot simply use a HP filter to cut the 1/f, only if we are lucky that frequency corner is small 

and we don’t want to loose a lot of signal. But there is another problem with the HP filter. 

 

If the signal is a pulse, sometimes also if fs is lower than fs/3, we have problems because in the real world 

we never have just one pulse, but a sequence of them. Normally we are happy to have a sequence of 

pulses, because if they have the same amplitude (or similar), we can filter different pulses to increase the 

SNR. So if we can repeat the measurement we are happy. 

The point is that if we have a sequence of pulse with a CP filter (CR filter), something happens. 

 

CR FILTER AND PULSE SEQUENCE 

So we have our pulse, and for the problem of the 1/f we need to use a HP filter. If we pass a rect in the 

HP filter, if RC is much larger than Tp we get x. Normally we neglect the tail if the tau is very large, and 

the rect at the output is the same of the rect at the input, so we neglect the tail. 

 

In general, in the time domain the response of a filter is the convolution between the delta response of 

the filter and the signal, that in the frequency domain translates into the product of the Fourier of the 

filter times the Fourier of the signal. As for the Fourier of the HP filter, it is the HP filter; the value in 0 

of the Fourier transform of the CR HP filter is 0. 

When we multiply the Fourier transform of the filter and the one of the signal, if the Fourier of the filter 

has 0 in the origin, the result has to have a zero in the frequency domain. But zero in the frequency 

domain is the area in the time domain. 
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So every time we apply a signal to a HP filter, the output has to have zero area, because in the frequency 

domain we have a zero. So the area of the tail is exactly equal to the area of the rect. If we increase the 

tau, the difference between the beginning and the end of the rect is really small, but at the same time the 

length of the tail is very long (right plot). 

 

One of the problems of the CR is that there is a tail when we have a very long tau, but at the output of 

the filter the area must be 0 because it is a HP filter. The ling tail compensate exactly the area of the 

positive part of the previous image, and it lasts for a long time. The problem is not if we use a single pulse, 

but if we have a sequence of pulses 

 

CR FILTER AND SEQUENCE OF PULSES 

The first pulse creates the tail, and the second pulse starts from the tail of the first one, not from 0, and 

has a tail itself that sums to the previous one. 

If the input is a square waveform the sum of the tail is so important that we have a shift of the waveform, 

and this is correct because the positive part has to be equal to the positive one. For a periodic signal is not 

so bad to have a shift because the area has to be 0 at the output, because I can compute the shift, it is 

deterministic. 

x 
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The problem is that if the signal is not periodic but stochastic, we don’t know when the second pulse will 

come, so I don’t know delta and the real amplitude I’m measuring, I’m making an error of a quantity 

delta. 

Hence the CR is good because it is cheap, and compared to CDS we don’t have doubling of the noise. 

But if we use a CR we act both on the noise and the signal, so we remove part of the signal. Moreover, it 

creates tails and the tails are tolerable with periodic signals but not with stochastic signals, with the latter 

we cannot make measurements. 

 

So the CR works perfectly for the noise but not for the signal, so the idea is to introduce a baseline restorer, 

a NCP filter that is a CR only for the noise. 

 

BASELINE RESTORER 

We start from a CR and we add a switch. Every time we add a switch we need to define where to put it 

and how it works. Since we would like to have a CR only on the noise, we have to close the switch when 

there is no signal, so that we have a CR. 

 

x 
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The weighting function of the CR with the switch is x. When the switch is open, if I apply a delta to 

create the w_f, the effect of the delta on t_m is 0, but there is one time where there is an effect, that is 

exactly at t_m, this is the reason why there is a delta in the w_f for t_m, that is a value I choose (typically 

in correspondence of the maximum). 

 

The w_f in the blue box is a delta minus the w_f of a LP filter, which is exactly the idea of the HP filter 

(1 – LP). The difference is that we include the shift, because the switch gives us the possibility to shift 

where to take the 1 and the LP filter. 

 

CR FILTER AND BLR COMPARISON 

 

So the CR works also on the signal, but the BLR has the same w_f of the CR but the negative LP filter 

and the delta are shifted, so the signal is exactly the same. 

 

Now we increase the complexity of the filter because the real problems of the CR were that it acted on 

the signal, damaging it (remover with the BLR), but it had also a problem with periodic pulses. Can I 

solve this issue also with the BLR? 

 

Instead of opening the switch one time, I open it every time I have the signal. If the tau of the LP filter 

finishes between two different pulses I’m applying the same filter multiple times. The good thing is that 

as soon as I open the switch when I have the signal I’m not necessarily forced to have a CR that finishes 

between two pulses, because I can have a CR also with a long tau because the tau ‘doesn’t touch’ the 

signal. 
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Since the HP filter can be written as 1 – LP and 1 in the time domain is a delta minus a boxcar shifted, 

in the end we get the reverse of the boxcar integrator. 

 

BLR weighting in frequency 

 

Having more than one parameter allows us to choose the tau of the filter and where to close the switch. 

I want to get how to set the parameters. 

 

So the w_f is a delta (1) minus the w_f of a LP filter. The problem is that we are using a generic w_f for 

the LP filter, which I don’t know if it is real or a complex function. So I have to add also the complex 

part to take into consideration all the possible cases. 

The steps are the same of the CDS, and we are splitting the real part and complex part, because we want 

the absolute value squared of the w_f. Let’s carry on the calculations. 

For the LP filter we use the standard RC filter, then we put this in the original one. The unknowns are 

Tf, Tp and Rn. 

Since it is too complex, we can try to simplify the function and study only specific frequencies. We can 

go for instance to low frequencies, but since we have both Tf and Tp, what does lower mean? 

Let’s go for Tp. 
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For just w << 1/Tp, we still get something complicated, so let’s go for w << 1/Tp and 1/Tf. At very low 

frequency, the BLR seems equal to a CR with T = Tp + Tf. 

This is a good thing from the noise standpoint, because a cut at LF is something we like. 

 

BLR vs CR HP FILTER – CUT OFF 

Looking at the Bode plot at LF, the BLR is similar to a CR, so it works well. At HF, the curve is equal 

to the CR, which is good. However, we have no more a sinusoidal as in the CDS but an overshooting, 

oscillations and then to 1. 

We can plot the lin-lin diagram for the WN computations. 

The blue area is larger than the green due to the overshoot, but it is still much better than CDS, so we are 

paying less noise than CDS. The problem is the overshoot, and we need to catch how much it is big as a 

function of the tau. I will have a trade off between the cut of the 1/f and this overshoot. 
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The same can be done with the 1/f noise (below). 

 

The problem of the green line is that it acts also on the signal, so which one to choose? In the frequency 

domain can compare just the noise, I cannot change the correlation time of the noise. So we need to 

revert to the time domain. 

 

SELECTION OF THE BLR PARAMETERS 

To study the noise in the time domain I have to use the following parameters: 

- Autocorrelation of the noise 

- Autocorrelation of the w_f (to be multiplied with the one of the noise and then integral of the 

product). 

 

In the time domain, there is no choice in Tp, time delay between when I open the switch and I sample it, 

but it must be put in correspondence of the maximum of the signal, so Tp position depends on the shape 

of the signal.  

 

Then I have Tf. Tf = RC is the decay time of the LP filter part, and I can choose in general any value for 

it because it acts only on the noise and not on the signal, so I don’t have limitations. The goal is to provide 

a good reduction of the 1/f noise power and to avoid the significant enhance of the WN power. In fact, 
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e.g. with the CDS we can cut the 1/f but we double the WN. Also here I have an overshoot, so for sure 

we are enhancing the WN, but can we limit it? 

 

Since at very LF the cutoff is set by 1/(Tf + Tp), it seems reasonable to reduce Tf to cut as much 1/f as 

possible, reducing the tau and I’m not touching the signal with the BLR. The problem of Tf = 0 is that 

the BLR is a delta and the reverse w_f of the LP filter. If I reduce the tau for the LP, I’m obtaining a delta 

and I return to CDS, and the overshoot in the BLR becomes so large that it turns into the sinusoidal 

waveform of the CDS. 

 

So providing a good reduction of the 1/f noise and not enhancing the WN power are in tradeoff. 

 

TIME DOMAIN ANALYSIS 

We have to compute the autocorrelations of noise and w_f. We have the sum of a delta and a negative 

exponential, so the autocorrelation will be the sum of 4 terms: first squared (delta squared is a delta), 

second squared (negative exponential shifted squared, which gives double exponential centered in 0), 

cross-correlation between delta and negative exponential decay time (I get an exponential decay time in 

the same position) and cross-correlation between negative exponential decay time and delta (I get an 

exponential decay time shifted and flipped). 
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So the last plot is the autocorrelation, which has to be multiplied with the autocorrelation of the noise. 

Decay time of x is 2Tf, of y is Tf. 

 

In the multiplication we have two parameters, Tn and Tf (Tp is fixed), but Tn might be a data, not a 

parameter. Tn is related to the BW of the noise; if the noise is white, Tn is really small, almost 0, but 

since we are trying to apply everything to a general case, the WN at the end of the procedure is the WN 

filtered by the matched filter, and the BW of the matched filter is the signal BW, so Tn will be related to 

the BW of the signal. Also Tp will be somehow related to the BW. 

 

The good approach now is to modify the parameters to get something that I already have analyzed, since 

doing this product is complex. Performing the direct multiplication gives x, which is not easy to be 

computed. 

x 

y 

x 
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BLR filtering of band limited WN 

 

We want to use a benchmark to the test the effectiveness of the filter, and the benchmark is WN. So to 

have Tf really small to increase the cutoff in the frequency domain to have CDS. 

 

The equation x we get is the equation found with CDS. It is a good thing because if Tf is reduced to 0 we 

have a delta for the negative part, so the same w_f of the CDS, and here we computed a formula where, 

if we put Tf << Tn (condition of the baseline restorer), we get exactly the baseline restorer. 

 

With WN, with Tn very small (short correlation time), however, we are doubling the noise. If Tn is in 

the same order of Tp we have an enhance of WN and if Tn is much larger than Tp (long correlation time) 

the WN is really attenuated. In the intermediate situation where Tn is almost Tp is the situation in output 

to the matched filter 
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Let’s compute the same thing in the time domain with the autocorrelation. We plot the autocorrelation 

of the filter with the correct Tf and Tp. 

 

For the noise we have 3 cases: short, moderate and long correlation times. 

 

BLR with slow differentiation 

If Tf is small we get a good CDS a good cutoff to the 1/f, because at very long correlation time the noise 

is strongly reduced,  but we are doubling the white noise. 

 

Can we try to use a different Tf that doesn’t touch the signal? Again we analyze the three correlation time 

cases, and for each we try to choose Tf. 

For short correlation time, to keep the output noise equal to the input noise times 50%, so 1.05 of the 

output, we need Tf > 20Tn to limit the enhance of the WN. However, this is not a so common situation. 

 

The real important situation is in the case of moderate correlation time, with Tn in the same order of 

magnitude of Tp. Also in this case an enhance of 1.05 of the original noise. Tf muste be 3.5*Tp. 
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For long correlation times, the noise is attenuated just for any Tf, like in the CR. 

 

In the end, we can get good results with attenuation of 1/f and small enhancement of WN for Tf ~ 5*Tp. 

 

As soon as we increase Tf we are reducing the enhancement of the noise and with Tf = 5*Tp we can limit 

the enhancement to 5% but we are also moving the cutoff in the frequency domain, so increasing the 1/f. 

 

In a situation where the 1/f is orders of magnitude stronger than the WN, probably is better to cut 

completely the 1/f noise also if we are doubling the WN. Otherwise, if the 1/f is not so big, it is important 

to remove it without enhancing the noise we already have. 

 

BLR filtering with slow differentiation 
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Summary 

- The BLR is a high-pass filter that acts on noise and disturbances without affecting the pulse signal. 

This is the good thing. 

- The BLR is a switched-parameter filter; the low-pass section within the high-pass filter structure 

is a boxcar integrator that acquires the baseline only in the intervals free from pulses. 

- The BLR can thus establish a high-pass band-limit at a high value (suitable for reducing efficiently 

the 1/f noise output power) without causing the signal loss suffered with a constant-parameter 

high-pass filter having the same band-limit. So we can change the Tf without affecting the 

signal. 

- The high-pass band-limit enforced by the BLR is given (with good approximation) by the low-

pass bandlimit of the low-pass section in the BLR circuit structure. Since normally Tp is small, if 

we change Tf the BW of the LP filter gives also the cutoff for the 1/f. 

- The combination of: (1) optimum filter designed for the case of pulse signal in presence of 

wideband noise only (i.e. without 1/f noise) and (2) BLR specifically designed (for reducing the 

actual 1/f noise without worsening the wide-band noise) provides in most cases a quasi-optimum 

filtering solution. 
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BANDPASS FILTERS 
 

In the frequency domain, can we move the signal in a region where there is no 1/f noise? If I can move 

the signal at HF where there is not the 1/f noise, I have solved the problem of 1/f. This is not always 

possible, however. If I can move the signal, do I also improve the SNR? 

 

NARROW BAND SIGNAL 

Someone is giving us a narrow-band signal, whose band is very small with a center frequency fs. Narrow 

band means BW < 10 Hz, and the BW is much smaller than fs, so that we can clearly see the signal in 

the frequency domain → something similar to a truncated sinusoidal waveform. 

 

Can we measure such narrow base signal in presence of WN and 1/f noise? Normally the situation is in 

the image below, with a lot of noise superimposed to the signal. 

 

RECOVERING NARROW-BAND SIGNALS FROM NOISE 

The specs are the one in the image below. Then we create the setup with the amplifier, and so we will 

have an upper limit, e.g. 1 MHz. The WN PSD is 5nV/sqrt(Hz), and for the 1/f we take fc = 2 kHz 

(standard frequency corner). 

 



123 
 

We want to study what happens in 3 different cases: 

1. HF, with fs = 100 kHz, so very far from the frequency corner. 

2. fs = 1 kHz, just below the frequency corner. 

3. fs = 10 Hz, so exactly in the middle of 1/f 

Case 1 

The signal is at 100 kHz, and it’s really hard to detect the signal in the oscilloscope. For the signal we are 

at 100 kHz, and fc of 1/f is 2 kHz, so I can cut the 1/f placing a HP filter at e.g. 10 kHz, so that I don’t 

compromise the signal and I’m after the fc. If we cut all the 1/f, the only noise that remains is the WN, 

whose value is the PSD times the BW, where fh is the BW of the amplifier or of the subsequent LP filter. 

The problem is that if we now compute the SNR, we get 100nV/5uV and the SNR is 0.02, much lower 

than 1. This is not strange, because if we look at the oscilloscope, we are not able to distinguish the signal. 

So from the time domain standpoint we cannot distinguish the signal so far. 

 

If we move to the frequency domain, with a spectrometer we can detect the signal. The point is that, why 

can I detect the signal in the frequency domain with the spectrometer but not in the time domain or with 

the oscilloscope. The problem is that in the time domain, for noise computations, we are acquiring all 
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the possible WN and then comparing it to the signal. With the spectrometer, or in the frequency domain, 

we are instead comparing the amplitude of the WN and of the signal, we are not interested in the integral 

of the signal and of the noise as in the time domain. We have to translate this idea in the time domain. 

 

We can compute the power of the signal, which is included in 1 Hz, so in the frequency domain we can 

approximate the signal with a rect with an amplitude of 1 Hz. The result is 70 nV/sqrt(Hz). This because 

the integral of the power spectrum is the power. 

 

Then we need to understand the power of the noise, which is 5 nV/sqrt(Hz). 

 

But how can we get this situation? The idea is to use a BP filter with a BW that is equal to the one of the 

signal. Thus, we are integrating the power spectrum of 1 Hz of the signal, so all the signal, and 1Hz of 

the noise. When creating a BP filter, if the Q factor is huge, theoretically it is not possible to implement 

a BP filter. Even so, the filter would be so unstable to be practically unusable. In this case the Q = 10^5. 

 

Case 2 

We do the same computations of case 1, but we cannot cut the 1/f as before. For sure we will include a 

HP filter, but since the signal is at 1 kHz and we don’t want to touch it, we place the pole at 100 Hz, one 

decade before → some 1/f noise is included. 

 

The good thing is that the 1/f noise part is negligible because depending on the ln, and the WN is instead 

integrated over almost all the frequencies after the HP filter pole. 

In the end, as before, we cannot detect the signal in the time domain. 
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So the thing to do is to move to the frequency domain. 

 

In case 1 we compared the signal with the WN. Now we cannot compare the signal with just 

the WN, because we have also the 1/f. However, since the BW is small, we can compare the 

70 nV with the WN and the value of the 1/f noise in the central frequency of the signal. 

 

The contribution of the 1/f is not so high, the SNR is reduced but still 8, quite good. So if we 

could make a BP filter with 1Hz, we could get a SNR = 8. Now the Q = 1000, so not huge as before, but 

also in this case we cannot implement the BP. So also in this case 2 we can detect a signal with a filter 

that doesn’t exist, but ok, we can detect the signal. 
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Case 3 

Also in this case the 1/f noise is negligible with respect to the WN. So in the end we are increasing of 2 

orders of magnitude the frequency and the 1/f is inside the log so it doesn’t change too much, so it is 

negligible comparable with all the integral up to 1 MHz. 

The computations for the signal are the same as before. 

As for the noise, we have to do the same computation of case 2. We get a signal that is the same level of 

the noise even if we use a BP with a BW equal to the one of the signal. 

So the 1/f is a problem or not depending on the frequency. If we are further or close to the fc and we can 

create the BP filter we are ok, but if we are in the middle of 1/f noise there is no way to recover the signal. 

 

In the end, if I can move the signal, better to move it at least one decade of fc, as in case 1. 

 

Summary 

- For a narrow-band signal plunged in white noise (i.e. with frequency fs higher than the 1/f noise 

corner frequency fc ) a bandpass filter matched to the signal band is very efficient and makes 

possible to recover signals even so small that they are buried in the wide-band noise. 

- For a narrow-band signal plunged in dominant 1/f noise (i.e. with fs lower than the 1/f noise 

corner frequency fc) a bandpass filter matched to the signal is still quite efficient and in many 

cases makes possible to recover the signal. However, if we consider signals at progressively lower 

frequency fs, the 1/f noise density at fs progressively rises, so that the available S/N is 

progressively reduced. 

 

Open questions 

- We need efficient band-pass filters with very narrow band-width. We need to understand how to 

design and implement such narrow-band filters , but we shall deal with this issue after dealing 

with the following question. 

 

- If the information is carried by the amplitude of a low-frequency signal, it has to face also 1/f 

noise. It would be advantageous to escape this noise by preliminarily transferring the 

information to a signal at higher frequency. However: 

o How can we transfer the signal to higher frequency if I’m able to create the BP filter? 

o If we transfer to the higher frequency also the 1/f noise that faces the signal, this makes 

the transfer useless: how can we avoid it? How can I move only the signal and not the 1/f 
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noise? This is normally an issue. In fact, if e.g. we move the signal with something 

(multiplier) that has a lot of WN or 1/f noise, we are again in trouble. 

 

- For escaping 1/f noise, a low-frequency signal should be transferred to higher frequency before it 

mixes with 1/f noise of comparable power density: that is, frequency transfer should be done 

before the stage where the signal meets the 1/f noise source.  

 

- The frequency-transfer stages have their own noise, with different intensity in different types. 

Unluckily, the types with lowest noise bear other drawbacks, typically a limited capability of 

transfer, restricted to moderately high frequency. 

 

- For achieving our goal, the signal must be higher than the noise referred to the input of the 

frequency-transfer stage. If with a given stage the signal is not high enough, preamplifying is not 

advisable because a preamp brings its 1/f noise. In most cases it is better to transfer the signal «as 

it is» by means of a frequency transfer stage with lower noise and accept the limitations of this 

stage, typically a moderate operating frequency. 

 

MOVING SIGNALS IN FREQUENCY – SIGNAL MODULATION 

At this moment we suppose that we can create any BP filter, and we focus on moving the signal. The 

idea is the modulation. 

 

Let’s consider a small in BW signal centered around zero with small amplitude, and we are interested in 

the amplitude. The idea of modulation is to multiply the signal times a reference, that in this case is a 

cosinusoidal waveform. Then we multiply the two in the time domain. We get a cosinusoid with 

amplitude A*B, and B is a data. 

Normally phi_m disappears later on, because phi_m = 0 is a value that allows to maximize the SNR. 

 

What we want to do is a multiplication in the time domain, so a convolution in the frequency domain.  

A constant value in the time domain is a delta in the frequency domain, something that is almost constant 

in the time domain, it is something with a small BW in the frequency domain. In the frequency domain 

the cosine has two deltas at fm and -fm, with a positive sign. 

 

So let’s move to the frequency domain, where we need to make the convolution. 
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We have a problem. In fact, the result of the convolution is not always correct. 

 

Convolution in the frequency domain 

Convolution is more complex in the frequency domain rather than in the time domain. In fact, in the 

time domain we don’t have ‘negative time’, and we don’t have the imaginary axis, in the time domain 

we have real functions. In general, any Fourier transform in the frequency domain is a complex number. 

So integral x should be done with complex number, not trivial. 

 

In general, the convolution in the frequency domain is not given by the convolution of the absolute 

value of the two signals. The problem is that, from a graphical standpoint, we can make only the 

convolution of the amplitudes, not the convolution of the phase. 

 

However, there are some special cases where the convolution, at first approximation, is the convolution 

of the modulus. These cases are: 

1. X(f) confined in a narrow BW, and this is the case of our signal. 

x 
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2. M(f), the reference function, has a spectrum composed just by deltas with a fundamental fm is 

much greater than the signal BW. This because we don’t want the overlapping of the replicas, 

otherwise we would need to convolve also the phases. 

 

If both conditions 1 and 2 are verified, we can make the convolution of the modulus, shifting X(f) on any 

line (delta) of the second function M(f). We still get a complex function, but replicas are not overlapping. 

 

Example 

 

Now we want to apply this idea to a signal that is also a cosinusoid, as below. Also the reference is a 

cosinusoidal. Delta_fs of the signal is 2*fs = BW, and it must be much smaller than fm, so the hypothesis 

is verified. 
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Now we want to check the same things in the time domain, moving to it. 

We get the final formula in the box. The frequency of the cosine is fs – fm and the other fs + fm. It makes 

sense because the external deltas are centered at fs + fm, and the inner ones at fs – fm. 

These are the cosinusoids in the frequency domain. 
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SQUAREWAVE AMPLITUDE MODULATION 

 

It is not a sinusoidal waveform, but it is a much easier modulation than with an analog approach, because 

treating switches is easier. With a square wave modulation we can also avoid to double the noise. 

Furthermore, the cost is much smaller. 

 

We could also use just one amplifier because we need to create +B for the signal and -B for the reference. 

If +B is different from -B, we get an offset, which in the frequency domain is a delta in 0. Then when I’m 

convolving in the frequency domain, if I have a line at 0 Hz, I’m moving the signal also at 0 Hz, not only 

at the frequencies of the reference. The problem is that we have 1/f noise at 0 Hz, so we are placing part 

of the signal in the 1/f noise zone. So we use a single amplifier to have the same B for + and -. 

Sometimes, we could switch from amplifier and ground (second plot), but we have to manage the offset, 

because the ground will have an offset. We could use this solution because sometimes we are forced to 

use it because for instance the modulation is not an electrical modulation but an optical one, e.g. the 

sensor is a light signal and we want to modulate the light. Instead, it is quite difficult to create ‘negative 

light’, so to modulate a light signal the second approach of the previous image is the only way to go. 
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In both cases, we have to manage square waveforms. 

 

Squarewaves and F-transforms. 

 

The Fourier transform of a square waveform is a sum of deltas. How can we get this Fourier transform? 

The good thing of the transform is that it is composed only by lines, and it is a requirement for the 

reference. The red arrow is the small delta at 0 Hz that is present if we have a small offset in the B values, 

and we want to avoid it. 

 

We can study the chopper squarewave. We can study it as a symmetric square waveform plus an offset 

of B/2. And the offset due to B/2 is a delta at 0Hz, so it is the exact same Fourier transform of the 

previous case but with a delta in the middle. 

 

Chopper waveform 

Nowadays, all signals are fast and optical. When we have an optical signal and we want to modulate it, 

we cannot use just a sinusoidal modulation, because the light cannot be negative. So to create a square 

waveform that is ‘light’ and ‘no light’, we can use a wheel with holes that is rotating, so that the laser is 

passed either through the hole or stopped. If we increase the number of holes we are changing the duty 

cycle. This is the chopper. 

 

The chopper waveform helps because a replicated signal in the time domain corresponds to sampling in 

the frequency domain. So to compute the Fourier transform of something that is replicated, I take the 

Fourier of one replica (the sinc for the rect) and then I sample it, thus getting the deltas of the Fourier 

transform in the next image. Of course we need to take the modulus. 

 

Also in this case we are happy because we have only lines. The only problem is the red delta at 0Hz. 
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If we have the signal, we need to check if its BW is much smaller than the distance of the lines, fm. Then 

if the reference is composed only by lines. At this point we can perform the convolution in a graphical 

way as below. 

The problem is that we are increasing the number of problems we have, because the signal is no more 

cosinusoidal, but a sum of BP filters that doesn’t exist. 

 

Summary 

- As intuitive, narrow-band filtering is very effective for recovering narrow-band signals immersed 

in wide-band noise. 

- Besides wide-band noise, however, other components with power density increasing as the 

inverse frequency (1/f noise) are ubiquitous in electronic circuitry (amplifiers etc.). In the low-

frequency range they are indeed dominant. 

- At low frequencies the 1/f noise added by the circuitry is overwhelming, so that the solution of 

narrow-band filtering becomes progressively less effective and finally insufficient for recovering 

signals with progressively lower frequency. 
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- An effective approach to recover a low-frequency signal is to move it to higher frequency before 

the addition of 1/f noise. That is, to modulate the signal before the circuitry that contains the 1/f 

noise sources. 

- Narrow-band filtering can then be employed to recover the modulated signal; we will now 

proceed to analyze methods and circuits for narrow band filtering. 
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BP FILTERING WITH HP PLUS LP FILTERS – CR/RC 
 

The basic idea to develop a BP filter is to use a LP and HP filter combined. In the middle we need to put 

a buffer to decouple the impedance. We are interested in a very small BW, so I suppose that the same 

value for the pole of the HP and LP is chosen, they have the same tau. 

 

We are interested in the module of the delta response for the time domain and in the Fourier transform 

of the delta response (absolute value and squared for the noise). We will consider also the phase. 

The resulting t.f. for the BP filter has the following key parameters we are interested in: 

- Value at the central frequency. 

- Phase in the central frequency. 

- Bandwidth. We need to define it because it is difficult to define the BW if the shape of a signal or 

a filter is not a rect. 

 

The peak value of the delta response at the central frequency is ½, but we would like to have 1, even if 

the gain is not important (high gain allows to neglect the noise of the following stage), while the phase is 

0, so it is good, it seems that the combination of these two filters work well. 

 

Let’s plot the Fourier of the delta response. 
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To understand the BW of the filter it is better to use the Bode diagram. In general, for the LP and HP 

filter, the BW is defined as the frequency at which the gain drops of 3 dB. We can make the same thing 

also for the BP filter (right plot). 

 

BANDWIDTH 

We have to take the modulus, define the peak value and go down of 3 dB with respect to ½. 

In the end we get the result x. The final result is that the BW is two times the central frequency, and this 

is not a narrow band, so we don’t have a narrow band filter. This is a big problem from the signal point 

of view, but the purpose of the BP is to collect a small amount of 1/f noise, so we are interested more in 

the noise → let’s study the same thing from the noise standpoint. 

 

NOISE COMPUTATIONS 

We have to study the absolute value squared of the Fourier transform of the delta response. Let’s consider 

a unilateral spectral density and compute the ENBW, that allows me to design the noise in the frequency 

domain as a rect. |H(fp)| is the central value, delta(fn) the ENBW. 

We have to compute the value of the noise in the real case. 

The result is that the central value is ok, the shift in phase is perfect (0), the BW from the signal point of 

view is not good, but also from the noise point of view (pi * central frequency). For example, for 1 kHz 

we have 300 kHz of noise BW compared to the 10 Hz used as an example in the previous video. 

 

 

x 
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LCR RESONANT FILTER 

 

It can be designed in a parallel way or in a series way. Z is the impedance of the structure; we want to 

study the t.f. of this filter, computed as the ratio between the current output and the current input. We 

are lucky because Vout/Iin is the impedance Z, that we can plug in the formula. 

 

Parameters 

One is the resonance frequency, which is the frequency that allows to have a purely reactive impedance 

for Z. Moreover, the absolute value of the t.f. at the resonant frequency is 1, and the phase is 0. The other 

is the characteristic resistance Ro, which is the ratio between the amplitude of the voltage on the capacitor 

and the current in the inductor. 

 

We can also define alpha_0. 

If we study the behaviour of the delta response of this function in the time domain, we will find that it 

has 3 different behaviours, since we have 3 different parameters. So the delta response can be: 

- Damped, with real poles. 

- Critically damped, two coincident poles. 

- Oscillatory, two c.c. poles. 
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So the higher the value of the resistance, the lower the dissipation of energy and the slower the 

damping of the oscillations. 

The dissipation and energy give us the possibility to define the resonant quality factor Q. 

 

Resonant quality factor – Q 

We can more simply define Q = R/Ro. So the higher R compared to Ro, the lower the dissipation, 

because Q goes to infinite. We can also express the t.f. as a function of Q. 

 

The responses as a function of the Q are the following. If Q is small, the response is damped. 

Increasing Q we are increasing the tau of the envelope in which the oscillations are confined and damped. 

For Q = inf the oscillations will be self-sustained. 

 

Phase 

The following is the phase of the delta response in the frequency domain. For omega that goes to +- inf 

the absolute value goes to 0, and this is good for the BP, while the phase goes to -+90°. 

The phase at the central frequency is instead 0. We are also introducing another parameter, that is how 

much the phase changes as a function of omega as a function of the quality factor. 

The variation of the phase with respect to omega is proportional to Q. 
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Let’s plot the phase. 

 

If Q increases, the phase is much steeper. 

In fact, the idea of the BP is that we start from a signal that is modulated at a certain frequency and so 

we would like to put the BP exactly at the modulation frequency. But if the modulation frequency is not 

constant, if we have a steep behaviour, as soon as we move a bit the frequency we change a lot the phase, 

and this can be a big issue → the higher the Q the smaller the BW compared to the central frequency 

(good) but as a drawback, the phase becomes much steeper. 
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Module 

We want to study what happens at LF, HF and around the central frequency. 

 

We are interested in the BW of the filter, that we can suppose is something around the central frequency, 

so we can study the central lobe. 

 

Let’s take some examples for the LRC t.f.. 
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Increasing Q we can notice that we have a smaller BW for the filter, which is what we would like to 

obtain. 

Signal Bandpass 

Defined within the points where we have 3 dB down compared to the central value. 

For Q >> 1 we can use the central lobe approximation to solve the equation. This because we are 

interested in a very small BW. 

 

So the basic advantages of the resonant filter compared to the CR/RC BP filter are that: 

- No signal attenuation at the center frequency, where the modulus value is 1. 

- Narrow filtering BW even with moderate Q values. 

 

Noise Bandpass 

We want to write the noise as Sb*delta(f), so as a rect. In this case the value in 0 is 1, so we have just 

Sb*delta(f) and not Sb * value in central frequency * delta(f). 
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PROS AND CONS 
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ASYNCHRONOUS MEASUREMENT OF SINUSOIDAL 

SIGNALS 
 

It is not possible a RLC filter with a high Q factor and it is not possible to create a good BP filter at low 

frequency (where LF is hundreds of kHz). 

 

One idea could be to change the approach. We can resort back to the time domain and study the ways to 

detect the amplitude of a sinusoidal waveform in the time domain. 

In the asynchronous approach (that we won’t use) we have a cosinusoidal with a certain amplitude and 

in some cases we know the frequency, but not the amplitude. An example is the PS in our network. We 

have three different approaches, as below 

 

Mean-square detector 

I want to measure the amplitude, I’m not interested in the phase. I take the square of the sinusoidal, and 

we remove the HF part (cosine) with a LP filter. This is good because I can get the amplitude. 

 

The problem is that the output is a measure of the total input mean power. This means that if we have 

an offset we are also measuring the amplitude of the offset, it is not filtered by the LP filter. Normally the 

offset is in the signal, if e.g. it is not modulated in a symmetrical way. 
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More importantly, we are using a LP filter to remove the frequencies at two times the frequency of the 

signal, not to increase the SNR, so also the noise is multiplied by itself and included in the constant value. 

So the SNR of this approach is not very high. 

 

Hence one ideal is to find a new way to compute the amplitude of the cosinusoidal. In fact, if we find a 

way to compute it, we don’t need the BP filter anymore. 

 

Rectifier 

The idea is to use a half-wave rectifier. So we rectify the waveform, we compute the average value with 

the LP filter and in the end the average of the rectified amplitude is A/pi. It is a constant output 

proportional to the amplitude. 

We can also make a full-wave rectifier. The point is that the diode is like a comparator, that checks if the 

signal is positive or negative. It works perfectly theoretically, but we have also to consider its noise. 

Moreover, also the sum of the signal and the noise goes through the full-wave rectifier, so the crossing of 

the zero to activate the diode depends on the level of the noise. 

 

- The measurement with a rectifier is not really asynchronous, it is self-synchronized. The 

sinusoidal signal itself decides when it has to be passed with positive polarity and when passed 

with negative polarity (in the full-wave rectifier) or not passed at all (in the half-wave rectifier). 

- In such operation, the LPF reduces the contribution of the wide-band noise, thus improving the 

output S/N. However, this is true only if the input signal is remarkably higher than the noise, i.e. 

if the input S/N is high. 

- As the input signal is reduced the noise gains increasing influence on the switching time of the 

rectifier, which progressively loses synchronism with the signal and tends to be synchronized with 

the zero-crossings of the noise. 

- The loss of synchronization progressively degrades the noise reduction by the LPF. With 

moderate S/N the improvement due to LPF is modest; with low S/N it is very weak. With S/N 

< 1 there is no improvement, there is not even a measure of the signal: the output is a measure of 

the noise mean absolute value. 

- In conclusion, meters based on rectifiers can just improve an already good S/N. They can’t help 

to improve a modest S/N and it is out of the question to use them when S/N <1. For improving 

S/N it is necessary to employ filters before the meter. 
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SYNCRINOUS MEASUREMENT OF SINUSOIDAL SIGNALS 
 

EXAMPLE 

Let’s consider a Wheatstone bridge. The PS is a sinusoidal waveform. This configuration is an easy way 

to move the signal to high frequency, simply modulating the frequency of the PS. 

The problem of modulating the signal is that we have 1/f at LF, and we want to move only the signal at 

HF, not also the 1/f noise. So if we modulate the output we are modulating both the signal and the noise, 

so the idea is to modulate it at sensor level. 

 

The voltage we apply is sinusoidal (or cosinusoidal) and we get still a sinusoidal signal in output whose 

amplitude changes as a function of temperature (the information is in the amplitude and not in the 

frequency because we are modulating the signal). 

 

Since we are modulating the signal, we know the reference. How can we use this info to extract the 

amplitude of the sinusoidal? 

We want to move in the 

time domain, where we 

want to measure the 

amplitude of the 

sinusoidal. 

 

A constant value of the 

resistive sensor gives us 

a sinusoidal in output 

with a constant 

amplitude. If it changes, 

the amplitude changes. 

 

The goal is to extract a 

LF signal that is the 

amplitude of a signal at 

HF. 
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Peak sampling 

 

We have to measure the amplitude and we have the sync, so we can use a S&H because we know where 

the peak is, so we sample the signal at the maximum amplitude. It is an approach that works. 

 

Let’s consider an ideal delta for the sampling. We sample the signal and get the amplitude. 

The problem is that of course we are getting the signal we want, but since we are using a delta we are 

also sampling noise, e.g. if we have a flat spectral density as for the WN, we are collecting a lot of it. 

 

So we need to improve this solution to acquire less noise. 

One possibility is to acquire more than just one sample as done in the case above, also because the 

amplitude is changing at LF. For instance, let’s acquire five times the signal. 

To create the w_f made out of delta in the time domain. Which is the Fourier transform of a w_f made 

of 5 deltas? It is difficult to say, so we derive it. 

We take a delta, whose Fourier is known, and a comb of delta, whose Fourier is still a comb of delta. So 

we multiply the rect and the combo of delta in the time domain, hence convolution in the frequency 

domain. 
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We want the frequency domain because noise detection in the time domain is though, it would require 

the autocorrelation computation, so it is much more easier in the frequency domain. 

 

 

So the upper right plot is the Fourier of the sinusoidal, then we have the comb of delta. The formula in 

the blue box tells us that the distance between deltas in the frequency domain must be bigger than one 

over two times half the amplitude of the rect. This because the convolution in the frequency domain is 

not easy as in the time domain, since we need to consider the phase, but we can neglect the phase if one 

signal is composed just by lines and the width of the other signal is much bigger than the distance between 

two lines. 

 

From the noise standpoint, we have WN and 1/f, and the 1/f can be neglected if we are after the 

frequency corner. 

The green parts are where we are acquiring the signal, and noise is acquired instead in the green, blue 

and red regions. Compared with the ‘flat line’ of the previous case it is better, so we are acquiring less 

noise, but we have a problem; we are acquiring the signal in the green and the noise in all the other colors 

(just noise). But the real problem is not the blue, but the red. 

In fact, we want to get rid of 1/f, but due to the red we are also collecting it, even if we are modulating 

to get rid of it. So the problem is not the blue BW that gives us more white noise, but the 1/f. 

 

To solve this issue, we need to resort to signal theory. 
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DC suppression by summing positive peak and subtracting negative peak samples 

 

We can try to use an approach similar to the correlated double sampling. We can create something like 

x, with positive deltas and negative ones. So we acquire 5 positive and 5 negative deltas. Differently from 

CDS that acquires baseline and signal, here we acquire 10 times the signal. As an advantage, we are not 

acquiring the zero frequency, because if we have a constant value (0Hz), 5 positive minus 5 negative gives 

0 in output. 

 

Now the comb of delta is made out of positive and negative deltas. How can we create it? As below. 

 

Which is the Fourier t.f. of positive and negative delta sampler? 

We know the Fourier of the blue free sampler, then I do 1 – it, and shift in time. The nightmare is that 

shifting in time deals with phase, which is a problem with a pen and paper approach (it would not be 

with MATLAB). 

We could take the one peak of the blue and one of the read as a single CDS and replicate it in time 

domain, the problem is that still we are dealing with phase (replicating in time is sampling in the 

frequency domain). 

 

Following the idea that making the replica in the time domain is sampling in the frequency domain and 

vice versa, we can say that a delta is a sample, so infinite positive and negative deltas are an infinite 

number of samples, because the distance between the different delta is constant. So we are sampling 

something a lot of time. Since the samples are constant, the signal we are sampling a cosinusoidal at two 

times the frequency. 

x 

x 
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The Fourier t.f. of the sampling in the time domain is the replica in the frequency domain. The Fourier 

of the cosinusoidal are two deltas in the frequency domain; now we are sampling in the time domain at 

two times the period, so we are replicating in the frequency domain. So we have fm and -fm, replicating 

them. The difference is that 0fm, 2fm, 4fm and so on are missing, because we are ‘replicating’ at odd 

multiples. So x is the sampling of a sinusoidal. Then the Fourier of the rect is the sinc and we move the 

sinc on all the different replicas. 

 

Sample averaging with DC suppression 

 

Every time we modify something we have to check that the original behavoiur of the filter is still there, 

so in this case that we are still acquiring the signal. In our case it is ok (green). 

We are acquiring also the white noise (green and blue) but not at 0Hz, so no 1/f. The problem is that we 

are acquiring noise also at odd frequencies. Hence are we acquiring an infinite noise? 

No, because at a certain point we will have a cutoff of the WN due to the LP filter or the preamplifier. 

 

However, if we consider the replicas, theoretically the amplitude is doubled because we have two deltas 

overlapped. But we are happy because we are acquired both the signal and the noise two times. Then, 

when we normalize for the SNR, it is improved. 

 

Continuous sinusoidal weighting 

Further improvement. We want to match the w_f with the shape of the signal, hence creating a matched 

filter. We can try to use the theory of the optimum filter, so we use exactly a piece of the signal to get the 

deltas. 

In the end I get the w_f x, which is a part of a cosinusoidal (signal truncated by the multiplication with 

the rect). It is truncated because we want to check the signal for some time, not for an infinite time, in 

case the amplitude is changing. 
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The final result is that we acquire the signal in the green BW, and also the noise, but we don’t have the 

zero frequency noise and any other noise at other frequencies. So it seems we are acquiring a small BW 

around fm, which is exactly our goal, a narrow BP filter. It seems that this solution solves all the problems 

related to the BP filter. 

Which is the BW of this created BP filter? 

It is 2/T, where T is the observation time (width of the rect), so we are taking the first lobe of the sinc. So 

the BW is related to the width of the rect, while fm is related to the signal, which is uncorrelated with T. 

So we can change one or the other without having Q and BW of the BP filter related. So it seems we are 

solving the issues of the BP filter, at least in the frequency domain. But how can we implement this filter. 

 

 

 

 

 

 

 

x 
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Filter implementation – synchronous measurement 

We take the modulated signal, the reference, and we multiply the signal and the reference. After that, we 

apply a GI and we get the output. 

Firstly, we need to check that we can do that. We need an analog multiplier to multiply the input signal 

and the reference. Also the GI can be implemented at the output, because we have the sync. The output 

will be the amplitude A. 

 

Advantages 

Now frequency and BW are totally independent, and the BW is just the width of a GI, so we can create 

any BW, and so a huge Q. 

 

However, there is still a problem. E.g., if we are interested in measuring the temperature, which is a 

slowly changing function of time, with this filter we are multiplying the signal (which is modulated) with 

the reference and then the GI because we have the sync. The GI is a NCPF, and the output of any NCPF 

is a number. But I don’t want the temperature ‘now’ but its evolution in time, because I started from a 

signal varying in time. So I would like a signal changing in time also at the output of the filter, otherwise 

I have to sample every time the system. 

 

How can we get the entire waveform? Lock-in amplifier. 



153 
 

LOCK-IN AMPLIFIER 

The idea is that still we take the signal and reference and we multiply them, but instead of using GI 

(NCPF), we replace it with a RC, which is a CPF. We started with a GI because we needed a piece of 

the sinusoidal function, and the GI has a rect w_f. Now we are modifying it hoping to have a continuous 

output. but does it work? 

We need to check if this solution is doing the same thing of the previous one. 

 

Weighting function 

Z(t) is signal times the reference, and then we have a LP filter, so the output is z(t) times the w_f of the 

LP filter. 

 

 

The output of any filter (CPF or NCPF) is the integral of signal times w_f, in the time domain. If we 

compare the two equations, we get that the w_f of the lock-in is the multiplication of reference times w_f 

of the LP filter. 

 

Let’s move to the frequency domain. 
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Frequency domain 

In the time domain we are multiplying the reference and the w_f of the LP filter, so the last plot on the 

left is the w_f in the time domain. 

 

The w_f of the LP filter in the frequency domain is the Lorentzian spectrum. So the situation is as before 

with the GI, but instead of a sinc we have the Lorentzian spectrum. The BW is not related to the width 

of the rect (we don’t have it anymore) but to the RC of the LP filter, and the central frequency is still fm. 

So we have the same advantages as before and no disadvantage, with the difference that the output now 

is a function, and not just a number. 

 

SNR of the lock-in amplifier 

Signal is signal times the w_f, so 2*A/2*B/2 (w_f, not w_f^2 for the noise). 

For the noise we need to take the absolute value squared for the w_f. In the image we have the bilateral 

spectral density. 
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DC signal with LPF compared to AC signal with LIA 

Let’s resort back to the original problem, where we wanted to measure the temperature and we had the 

1/f. Let’s make a comparison applying everything as the beginning but with a constant value for the 

bridge, not sinusoidally modulated. 

The signal is A, constant or very slowly varying in frequency. The noise is spectral density times ENBW, 

and we know the ENBW of the LP filter. Now we consider just the spectral density as the mean density 

in the LP filter band. We don’t have delta(f) because we start from 0, so delta(f) = f_Fn. 

 

We can set the RC with the same tau of the LIA. 

 

It seems that we have a higher SNR without the LIA, because with LIA it’s sqrt(2)/2 (like if we were 

doubling the noise). So what are we missing? 

We are not doubling the noise with the LIA and the LP filter solution is worse than the LIA because the 

spectral density Snu_hat is not the same, since the LP filter BW is in the middle of 1/f, while in the LIA 

the spectral density was including jus the WN, not the 1/f noise. 
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So with just the LP filter we have the component around 0 (red), collecting the 1/f noise exactly when 

it’s higher. Just the LP filter is not enough because we are sampling the 1/f in zero, so we need to add a 

LPF, so all the reasoning related to eventually CDS or baseline restorer (all the problems already seen for 

the 1/f noise). 

 

Fake LIA passbands arise from imperfect modulation 

LIA implementation in the real world is not easy, especially when we have to create the analog multiplier. 

One of the problem with the analog amplifier are issues related to noise and dynamic ranges. 

Furthermore, it adds distortion to the signal, so ‘adding lines’. If we are adding lines to the reference due 

to distortion we are adding BW where we are collecting noise. If this BW is in zero, we are collecting 1/f 

noise. 

 

So normally we have a small DC value because we are not able to create a perfect reference. 

If we have a small line in 0, e.g. due to a small offset in the reference, we are opening a BW with small 

amplitude collecting some noise. 

But we aren’t necessarily damaging our work. We need to compare the noise x with the one of the signal, 

y. It depends on the value of B0. 
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From the theoretical point of view, the Lock-in is perfect because B0 doesn’t exist. The problem is that a 

perfect cosinusoidal doesn’t exist, as well as a perfect amplifier. 
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LOCK-IN AMPLIFIER 
 

In principle with the LIA we can obtain a high SNR also when the SNR at the beginning is very small. 

The problems are the non-idealities of the real implementation of the filter. 

 

Principles 

The problem is not the gain of the filter, but of the multiplier. 

If the amplifier has a drift or offset, we pay all the 1/f of the amplifier. So using a post-amplifier just to 

increase the gain doesn’t work. So maybe better to use a pre-amplifier. 
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If the signal is larger, the output will also be larger, so I amplify at the input. I’m amplifying both the 

signal and the noise, so SNR is not touched, I’m just changing the amplitudes. The BW of the amplifier 

must be large (AC coupled). 

Moreover, the preamp can have drift or 1/f, because it is then removed by the LIA. The only thing is that 

the preamp must be AC coupled, so it must include fm, frequency with which we modulate the signal. 

 

Fm is typically higher than the frequency corner, which is normally in the range 1k – 10 kHz, so greater 

than 1 MHz. The problem is that signal and noise must stay between the linear dynamic range of the 

multiplier. If we exit it, we create distortion or clamp the signal. 

With the preamp we are multiplying the signal and noise, signal is nV, but completely covered by noise, 

so if we move the signal to mV, we are moving the noise to V and the noise could be out of the dynamic 

range, while the signal is. As soon as we exit the dynamic range, the multiplier starts to distort everything. 

 

So we cannot amplify at the output of the LIA nor at the input. So either we create an amplifier and 

multiplier with large dynamic range, or we change perspective. 

 

The idea is to make something meaningless from the theory point of view. I use a preamp, which acts 

both on signal and noise, so the solution is to use a resonant filter RLC. We are not replacing the LIA 

with a resonant filter, we are adding it. The BW of the RLC is very large, while the one of the LIA is 

narrow, and the two are in series. But the idea is not to use the RLC to improve the SNR, but as a pre-

filter. 

 

We take the signal, we use a rough pre-filter with a large BW, but not so large as the input, so we cut 

some noise and then at this point the preamp will amplify the signal and the cut noise, and they will 

hopefully remain in the dynamic range of the analog multiplier. 
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Another possibility is to remove the analog multiplier. 

 

Elimination of the analog multiplier 

The idea is that we have to multiply the signal and the reference, but it doesn’t necessarily require an 

analog multiplier. If the reference is not sinusoidal, we can use two amplifiers and a switch. 

At this point we don’t have any problem about the dynamic range, because we removed the analog 

multiplier, but we have to be sure that the new solution works as the original LIA. 

 

So we have to study the LIA, but with a square wave reference. 
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The w_f of the LIA is the product of the w_f of the LP filter and the reference, but the reference doesn’t 

have to be sinusoidal (convolution in the frequency domain still retrieves the considerations previously 

done on the phase). With one amplifier and we switch the inputs, we are sure that positive and negative 

values are the same, since the amplifier is the same. This is an advantage since we can kill the offset. 

 

The new reference is a square waveform. 

 

Square waveform reference 

Its Fourier t.f. is made by lines whose distance is much larger than the BW of the LP filter, so we can 

apply the simplified convolution disregarding the phase. 
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Good things about a square wave reference: 

- Reference composed by lines, so easy to make the convolution. 

- It doesn’t have the delta at zero frequency. 

To create a small delta in 0Hz, we can create a mismatch between the positive and negative amplitude, 

or we can use a duty cycle that is not 50%. So, since these things hardly happen, this square waveform is 

a good candidate for being the reference. 

 

The drawback is that we have more noise, replicas at odd fm multiples where we acquire the noise. So 

we are acquiring more noise than the one required. More than that, thanks to these replicas we will be 

able to get a SNR higher than the SNR obtained with a sinusoidal reference. 

 

Recap 

The problem is always the 1/f noise; CDS or CR are useful for the 1/f, but if 1/f is too high we have a 

problem. However, it is possible to modulate the signal outside the 1/f, meaning at a frequency higher 

than the frequency corner fc. Not at too high frequencies because we could have problems with the 

amplifier. If we have available a BP filter, we would be happy if the signal is not in the middle of 1/f as 

a central frequency. 

The 1/f is infinite at 0 frequency, so if we collect something at 0Hz we are in trouble. So we add positive 

and negative deltas to acquire more times the signal (10 times instead of 5), but at the same time to remove 

the zero frequency. 

 

Starting from this idea, we have some problems. In fact, if we compute the SNR, we find a factor 2 in the 

lower part of the ratio, so it seems that we are collecting twice the noise. Indeed, we have a factor 2 on 

the noise, but we are doubling only the WN, while without the LIA we are not doubling it, but we are 

also not doubling the 1/f with LIA. 

 

The second problem was that, in order to create the LIA, we need an analog multiplier, which is a 

nightmare, since it might add distortion. As soon as we make a distortion, we are also distorting the 

reference and we are adding lines in the spectrum, so also collecting noise from these lines. 

So the idea, since the analog multiplier is a problem, is to make the same ‘job’ with a square wave 

reference, because in all the formulas there is no reference on the shape of the reference. 

Using a square waveform allows us to avoid the multiplier. In fact, multiplying by a square waveform 

means multiplying by B or -B, so we need just a couple of amplifiers and a switch. 
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Fourier transform of a real square wave 

We can notice that we are collecting more noise than required, fm, 3*fm, 5*fm, …, but also more signal. 

If we have a small offset, we might have a problem that depends on how much is big the delta at 0Hz. 

 

If we compare it with the sinusoidal reference, it seems that we are collecting more noise. Hence for sure 

we will obtain a lower SNR with this reference than with the sinusoidal one. The bandwidth is exactly 

the same, because we are using the same LP filter, but with the sinusoidal we were collecting noise only 

on fm and -fm. 

 

Let’s compute the SNR in this case and if it is possible to make a workaround. 

 

Frequency domain 

The w_f definition tells us that we compute the modulus and we make the integral from -inf to +inf of 

the Fourier of the signal times the Fourier of the w_f calculated in -f. 

 

Time domain 

We are making the product of a cosinusoidal times the square waveform, which is between -B and +B, 

so we will have B*A, and then the LP filter makes the average. We get (2/pi) * B*A. 
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Every time we have a line, we collect a BW of delta(f) of WN, we don’t have 1/f. Then we have to sum 

all the values at all the lines. 

 

SNR WITH SINUSOIDAL SIGNAL AND PERFECT SQUAREWAVE REFERENCE 

 

We can see that the SNR is a factor 1.11 lower than in the case of a sinusoidal waveform. It is not strange 

because we are more noise. 

So there is a trade off here. On one side I don’t have to use an analog multiplier, on the other side I’m 

reducing the SNR. How can we get high SNR? 

 

This solution is perfect from the cost and real implementation standpoints, but we are paying SNR 

because the problem is that we are collecting, together with the signal, also the noise where there is no 

signal. So signal two times and noise an infinite number of times. 

 

The first solution was to remove the BW where there is no signal, so we are collecting noise where the 

signal is, but if we don’t want to remove the BW where there is no signal, we have to see if it is possible 

to put the signal where we collect the noise. 
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Instead of a sinusoidal we use a square wave signal. 

 

LIA WITH SQUAREWAEV SIGNAL AND REFERENCE 

 

The signal has now a known shape, exactly the same shape of the reference, with a value A. We want to 

assess the SNR. 

For the signal is the integral from -inf to +inf of Fourier t.f. of the signal times the w_f calculated at -f, 

according to the image above. 

As for the noise, it is the same as before, since the reference tells us where we are collecting the noise and 

it is still a square wave. 

 

Putting all together we have the following. 

 

It is the SNR we got using a non-modulated signal but with a spectral density that is only the one of the 

WN, without 1/f, removing also the factor 2. 

 

So it seems that this solution is better than the LIA with a sinusoidal reference and signal. It seems 

impossible to get this result. 

Delta(f) is the BW of the LP filter I’m using, which depends on the real signal before the modulation, 

so it’s a data. Sb is the spectral density of the WN (with a sinusoidal we have a factor 2). A is the amplitude 

of the signal we want to obtain, the information we want to get. A modulated signal with amplitude A 

has a power A^2/2, which is half the power A^2 of a constant value signal before the modulation. 
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So if we change the way in which we modulate the signal from waveform to sinusoidal without touching 

the power, we are loosing in SNR. But if we are limited by the power dissipated by the sensor, if we use 

a square waveform the power is A^2, but in the sinusoidal is A^2/2, so we can double the power supply 

and dissipate the same. If we dissipate the same power we have exactly the same SNR. 

 

NOISE THROUGH LIA WITH IMPERFECT SQUAREWAVE REFERENCE 

 

Let’s suppose we have a light signal that we modulate on-off. Do we still have the delta at 0Hz? 

The average of the signal is 50%. So there is the b0 or not? b0 is the DC component of the w_f. In the 

time domain, the w_f of the LIA is the reference signal times the LP filter. The LP gives us the BW, the 

line is fixed by the reference, so b0 is in the reference if I have it. 

In our application, the reference is something that gives us the sync with the signal. If the signal has 1/0, 

the reference can be 1/-1, since we are interested in the synchronization. In our case is not important the 

DC component of the signal, because the signal doesn’t collect any BW on the noise, it is the w_f that 

has to avoid the DC component. 

 

So with a light source I modulate a laser with a sinusoidal waveform placing an offset and then over the 

offset I modulate, because we cannot have negative light. Offset is not a problem if the same sinusoidal 

is used as a reference but with no offset. It is the reference that must have no offset. 
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Summary and comparison 

 

REFERENCE PHASE ADJUSTMENT 

A cosinusoidal has a frequency and a phase. Normally we use the phase = 0 because the important thing 

is that it remains constant, otherwise we are changing the modulation. 
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PHOTONS 
 

SPECTRAL RANGES 

Changing the sensor we might change the signal we receive and the work to be done from the signal 

recovery standpoint. We want to understand the performances of light sensors. 

As for light, we are interested in the speed of light c. The near infrared range is of interest because of the 

sensor; at this moment, the best sensors are developed in the visible range, because still dominated by the 

silicon technology. 

 

PHOTON ENERGY AND MOMENTUM 

We want to detect the energy associated to a single photon, this is the signal we are interested about. We 

move from the energy in Joule to the electron voltage, which is the voltage which, multiplied by the 

charge of the electron, gives us the energy. 

 

The eV gives us information about the sensors we can use. In the case of silicon, the gap of energy is 1.12 

eV; if we know that 1.1 eV is the gap of silicon, we can detect photons only if its energy is higher than 

1.1 eV. Formula x is the one to remember. 

x 
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In the visible range we don’t have problem with silicon, while in the near infrared we can detect photons 

up to 1.1 um of wavelength. So we stop in the visible range as field of interest because we want not only 

to detect photons, but also to detect them with high efficiency. 

 

REFLECTION AND ABSORPTION OF PHOTONS 

We want to create an electrical signal from light. The first problem, often neglected, is the absorption of 

light. Indeed, the light has to arrive inside the sensor, and it could be reflected on the surface. The 

reflective index of air is 1, but of any other material is not 1, and if the reflective index changes, at the 

interface we have reflection. If light is reflected, there is no way to absorb it. 

To solve this, we can use an anti-reflection coating, modulating the reflection index in a smooth way to 

avoid the reflection. It is very important and it must be chosen carefully depending on the application, 

otherwise we could waste 20-30% of the light. 

Absorption of photons 

What happens inside the detector?  

If the light is not so high from the power point of view, the absorption is quite linear (moderate or low 

Pt). 
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Alpha is the optical absorption coefficient, L is the optical absorption length → alpha = 1/L. 

If we solve the equation, we get the classical exponential, and L gives us the tau of the exponential. L 

depends on the wavelength, so on the application in our case. Our goal is to absorb all the light. If the 

wavelength is big, we have to increase L; however, thermal generation is proportional to the length, so if 

we increase the dimensions we are also increasing the noise. 

The problem, looking at the graph, is that alpha changes from 10^7 to 10^-8, it is a huge change. We can 

take another graph that is the same but flipped, so it is the absorption length L. 

 

1/alpha is the absorption length of the exponential decay time; if we want to absorb all the light we need 

4 to 5 tau, so we can retrieve the thickness of the detector to collect all the light. The important values are 

400 nm, the starting point of the visible range and blue light (corresponding to L = 0.1 um), 5 nm, which 

is the green (1 um of L), 800 nm, which corresponds to 10 um of L. 
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THERMAL PHOTODETECTOR PRINCIPLES 

We have to understand how from the absorption of light we can generate a signal and which is the signal 

we generate. The first sensor we use is the thermal photodetector, which is no more used nowadays. 

Light has some power, which creates an increase of temperature in the material absorbing the light. The 

idea is to measure the increase in temperature. All the light can contribute to the increase of temperature, 

doesn’t matter if visible or infrared light, all can change the temperature. So with this detector we can 

detect any kind of light. 

 

The problem is that, to maximize the change in temperature, we need to reduce the amount of material; 

even with a small amount of material, we need a lot of photons to change the temperature of 0.1°C. 

Nevertheless, the sensitivity is not the most important problem. 

 

Principle of thermal photo-detector 

We measure the temperature of the material with respect to the ambient temperature (heat sink). In the 

middle we have a thermal resistance. 
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The formula x is a LP filter, and this is the real problem of this filter, since it acts on light as a LP filter. 

The only way to speed up this sensor is to reduce the capacitance, so to reduce the mass; but if so, we 

need to find a temperature sensor able to read a small amount of temperature. Nowadays, the speed of 

the sensor is very important as well as the SNR. 

 

RADIANT SENSITIVITY OR SPECTRAL RESPONSIVITY 

The radiant sensitivity is the electrical output voltage divided by the optical power of the detector, for this 

kind of sensors. It is independent on the wavelength of the radiation light. 

 

 

 

 

 

 

 

 

x 



173 
 

SUPERCONDUCTING NANOWIRE 

 

The idea is that we take a piece of material and we cool down it at very low levels, 0.4 K. At this point, 

we switch in the superconductive regime; in this regime, the material has no resistance and infinite 

conductivity. As soon as we absorb one photon, which has a certain energy, we change the temperature 

of the material, which it is at superconductive level, so it is enough a small change in temperature to 

break the superconductivity, and the resistance of the material is no more zero, it increases to the value 

of the material. So in this way we can detect every single photon. 

As far as we absorb the photon, after a while the material returns to the previous state because the heat 

is dissipated. So we can neglect a single photon, but with which precision? Up to some ps. 

 

Some problems are related to the cost of the system and the dimensions of these materials, which are very 

small, nm, and focusing the light on few nanometers is difficult. 

 

QUANTUM PHOTODETECTOR PRINCIPLES 

 

We need to create something from the commercial point of view. The idea is that we use the energy of 

the single photon or light not to change the temperature of the material but to create a carrier. We use 

the photoelectric effect to product a carrier, we create electrons directly from light. We have two types of 

detectors: vacuum tubes and semiconductor devices. They share the same working principle, and 

nowadays vacuum tubes are still used a lot in many applications, because we can create very large devices 

with low noise, while this is not possible with semiconductor devices. 
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Principles of Quantum Photodetectors 

Vacuum tube 

Let’s take a vacuum tube made of glass and we have an electrode on one side, the cathode where photons 

impinging can create electrons, which are emitted and are in the middle of an electric field due to the 

reverse voltage and are collected at the anode. 

Semiconductor detectors 

The photodetector is the silicon photodetector, so the pn junction. The photon creates a electron/hole 

pair and due to the electric field we have a current. The idea is the same of the vacuum tube, but in the 

case of the vacuum tube the detector is bulky and fragile (made of glass) 

EFFICIENCY 

 



175 
 

The photon detection efficiency is the ratio between the number of photogenerated electrons (or e/h 

pairs) divided by the number of photons reaching the detector. 

 

So let’s assume to have some photons with a wavelength lambda arriving with a rate n_p on a quantum 

detector. We can compute the optical power that is n_p times the energy of each photon. Hence we have 

an output current that is the multiplication of the charge of each electron times the rate of the produced 

current. 

 

Then, the radiant sensitivity is the ratio between the current and the optical power. 

 

Differently from the bolometer, radiant sensitivity strongly depends on the wavelength, so if we maintain 

the same power but we change the wavelength we are changing the energy of each photon so the number 

of photon, so the output current. This is not a big issue. 

 

PHOTON STATISTICS AND NOISE 

The arrival of photons can be approximated with a Poisson statistic, so the variance of the process is 

equal to the average value. 

From the noise standpoint, we can say that the optical power arriving to the detector is composed by 

quanta with energy hv, since each photon arrives with energy hv, with a random rate n_p. 
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This is the exact same situation that we have for the shot noise with the current, so we get the same 

unilateral spectral density of the shot noise, in functional form. 

 

CURRENT SIGNALS OF QUANTUM PHOTODETECTORS 

We can start by studying the delta response of the system. We have always a cut off at high frequency; 

also if we have a very fast shot of light, the output is not a delta, the output is still fast but with longer 

duration. 

Firstly, we define some parameters that help us to define the situation, such as the single electron 

response: the response of our detector to a single photon. If we don’t have a single photon we can use 

linear superposition and reconstruct the response of multiphoton as a linear superposition of a single 

electron response. 

 

The Shockley-Remo theorem helps us in understanding which is the output in current 

 

Shockley-Ramo theorem 

Firstly we study the motion of the electron in terms of trajectory and velocity. Then we have to use a 

reference electric field with the electron removed, the output electrode raised to unitary potential and all 

the other conductors at ground level. 
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Carrier motion in a phototube (PT) 

The potential distribution is linear. The trajectory of the electron is linear from the cathode to the anode. 

The transit time is the time at which we reach the maximum speed, that is the speed we have at the anode. 

 

Then we have to ground all the conductors except for the output collector anode that has to be set to a 

potential of 1. Since Va = 1 and cathode is to ground, the electric field is 1/w_a. 
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Single electron response (SER)  

It is a detector with an extremely high bias voltage, 100V, and we have a transit time of 3.3ns, which is 

almost 300MHz in the frequency domain. We can further increase the speed of the PT, reducing the 

transit time. We have to increase the bias voltage, which is however leading to an increase in power 

dissipation. Hence we can reduce the width of the detector, but in doing so we might increase the stray 

capacitance. So the idea is to use a grid. 

 

SCREENED-ANODE PT 

We use the grid to reduce the SER pulse. The idea is that the grid acts as an electrostatic screen. 

Since I’m adding a grid, am I changing the behaviour of the detector? Not necessarily, if I put the grid at 

a voltage that is exactly the voltage that I have in the position of the grid if I had no grid. In this case it is 

like if the grid isn’t existing. Now we apply the Ramo theorem. 
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Schockley-Ramo theorem application 

The electron has the same speed and trajectory of the previous vacuum tube simply because the electrode 

that is going out from the cathode sees exactly the same electric field. But we have a different evolution 

in time of the induced charge, because up until the grid, the electron is not able to induce a charge on the 

anode. If we apply the Ramo theorem, the grid electrode must also be grounded. 

Comparison  

With the grid, the single electron response is much shorter, and also higher. So we increase the BW and 

also SNR because the current is higher. 
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PHOTOTUBE DEVICE STRUCTURE 

 

Typically is not used as in the left, because the problem is in collecting light. Since the focusing is made 

with lenses, focusing it on the side is very difficult. The solution is the one on the right, the back 

illuminated cathode. 

 

Stationary I-V curve 

 

We have the plot of the photocurrent as a function of the bias voltage. The curve is flat, so we don’t need 

to increase a lot the bias voltage. However, at very low bias voltage we cannot reach a steady state for 

the signal. 

When electrons are near the anode, they can shield the electric field driving them, so the new emitted 

electrons see a smaller electric field → space charge effect. To overcome this issue, the bias voltage can 

be increased, so we need at least 100V of biasing. 

In the end we will use the sensor only on the flat portion of the characteristic, so it will behave as a current 

generator. 
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PHOTOTUBE DYNAMIC RESPONSE 

 

We have an intrinsic SER of the detector time response of Td. Then we have a load circuit, which 

typically includes also a capacitance, so an RC network. Are we limited by the sensor, RC or amplifier? 

The PT equivalent circuit is an RC network. 

The SER is for us a filter intrinsic in the detector, so it is the delta response of the PT. if we have more 

than one filter we have to convolve the output of the detector and the delta response of the filter. We are 

interested in the width of the response. 

 

At first approximation, the output time can be obtained as the square sum of the two times of the two 

filters. Of course we are neglecting the amplifier. 

We can be either dominated by the sensor or the RC, or they can be of the same order. The best scenario 

is being dominated by the detector, since once we choose the detector we cannot modify it, so we are 

interested in optimizing all the other parts, so the electronics. 

 

Fast response and wide active area 
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We want to get an RC value lower than 1ns, since it is the time response of the PT. Since we are interested 

in high speed, it is not suggested to use the optimum filter, typically fast and low noise are not compatible. 

Hence normally the R is 50 Ohm, the impedance of the transmission line. If the resistance is fixed, the 

capacitance has to be lower than 20 pF according to a Td of 1ns. 

 

Contributions on the capacitance 

- Input capacitance. 

- Stray capacitance of the connections, because we are going ‘outside the IC package’. 

- Electrode capacitance, proportional to the area. 

 

As far as the dimensions of the detector are increased, collection of light is easier, but the speed of the 

detector is not influenced on the area of the detector. This is a great advantage because focusing light on 

a detector is very difficult, e.g. if we are collecting light from a star. 

 

ELECTRON PHOTOEMISSION AND PHOTOCATHODE TECHNOLOGY 

 

Having an energy higher than the vacuum level is not enough to create a free electron emitted, because 

it has to reach the outside of the detector. So it has to have an energy higher than the vacuum level at the 

interface with vacuum to be released. 
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When the e- reaches the surface, it can either escape if the energy is higher than the vacuum level or it is 

lower and reabsorbed. 10nm is the distance the e- can travel without loosing too much energy. 

 

One problem is that electrons diffuse inside the material and loose some energy before being eventually 

emitted. If all the energy is lost, it cannot escape. Hence to optimize this emission, the absorption length 

must be in the order of magnitude of the length the e- travel before loosing all the energy. 

So we have to create very small detectors. As soon as we increase the absorption length, we would like 

also to increase the length with which the e- are travelling, but this is not possible, and in conclusion at 

long wavelength this type of detectors cannot collect anything. 

 

Semitransparent PT 
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Types of PT 

Quantum efficiency is 0.4% at 800nm, so not particularly efficient. S11 cannot instead detect at 800nm. 

If we increase the efficiency we are shifting the wavelength range. 

 

Radiant Sensitivity or Spectral responsivity 

 

The lines are the lines of fixed quantum detector efficiency, and we notice that there is no cathode with 

a quantum detector efficiency higher than 25%. So we cannot use them at a wavelength higher than 

800nm. 

 

PT WITH NEGATIVE Ea 

We want to overcome the problem of e- loosing energy before reaching the surface and hence not being 

able to escape. We use few atomic layers of Cs-O to vent the band diagram to have an electron energy 

that is higher than the vacuum level, so we are able to escape outside with an electron affinity lower than 

the conduction band. So the quantum efficiency is higher also at long wavelength, the drawback is that 

noise is increased. However, lambda is still 900nm, not um. 
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DARK CURRENT AND NOISE 

Electrons can also be generated with no light, that is the dark current. This is noise, electrons thermally 

generated, and we cannot distinguish a thermal or optical generated photon, so if it is noise or signal. 

 

Thermal generation is in the order of 10^3 electrons per square cm (neglecting S1 case), which is quite 

small with respect to the optical generated ones. 

The problem of dark current is not a problem itself, the fact that it gives us an offset is never a problem, 

we measure is and subtract it. The problem is not the absolute value of dark current, but the shot noise 

associated to it; in fact, we can remove the dark current but not the shot noise associated to it. 

 

Detector internal noise 

Once we have the thermally generated e- we can compute the current, which is shot noise. 

This value is not important for this kind of detectors because this noise is negligible compared to any 

other source of noise. 
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Amplifier’s noise 

Current noise of the amplifier is dominant over the one of the PT. with the PT we don’t create large 

device because they are unuseful, not because the noise is increasing, or better, is always negligible with 

respect to the noise of the amplifier. 
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LOW NOISE PREAMPLIFIERS FOR PHOTODIODES 

Let’s put aside the speed now to focus on the best possible SNR. 

 

Voltage buffer preamplifier 

The problem is the capacitance C_L, which is the capacitance of the detector Cd, small, the one of the 

amplifier Ca and of the connection Cs. So we might be in situations where the Ca and Cs are dominating. 

The idea is to change this approach (for semiconductor devices this problem is smaller since we have 

smaller area and so smaller capacitance). 

Furthermore, with large pulses in input we change the voltage across C_L, so we are also changing the 

bias voltage of the PT. 

 

The solution is the following. 
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Charge Preamplifier 

We have our sensor and the stray capacitance C_L, but we use a transimpedance amplifier and we put 

Cf in feedback. 

We can work with Cf much lower than C_L, so with a signal higher than the previous case. If we look at 

the signal, the effect of Cf is that we have Q/Cf instead of Q/C_L. 

 

We define a gain C_L/Cf just to compare the situation with the previous one. 
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X is the WN of before times the gain squared. So we are getting the same SNR but with some advantages. 

We are not just adding a gain, in fact we are changing the configuration when saying Cf << C_L. 

 

NEP AND DETECTIVITY 

NEP is the Noise Equivalent Power, which is unuseful for the PT. It is the minimum optical power I can 

detect to have a SNR = 1 if the only noise present is the noise of the detector. It is nosense on the PT 

because I’m never limited by the noise of the detector, but by the electronics typically. In a lot of other 

detectors this is not the case, however. 

NEP is minimum current divided by radiant sensitivity. It is an expression that works if we are limited 

by the noise of the detector. 

 

NEP depends on the bandwidth and on the area. However, the bandwidth is connected to the 

application we are using the detector in, not strictly to the detector. Moreover, also the area of the detector 

should be a choice of the designer depending on the application. 

 

So a new figure of merit is introduced, the detectivity. It is the bandwidth and area divided by the NEP. 

x 
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The detectivity describes how much good is the detector we are developing. 
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PHOTODIODE DEVICES 
 

CARRIER MOTION 

 

Same situation we have in the PT, and also here we can have a side illumination, even If the front 

illuminated junction can be used. Side illuminated device has a problem that can also be a good thing; 

normally, the diameter of these device is in the order of 50/100 um, much smaller than the photocathode. 

The problem is that the thickness of the depleted region is in the order of 1um, and focusing the light here 

is a problem. So the ‘height’ is 1 um and the length 50 um, and all this length can be used to absorb the 

light, even if the entrance light dimension is small. So I can absorb all the light with 50 um. In the front-

side illuminated I cannot absorb all the light. 

 

We can however focus light with a mono-mode fiber. However, the real advantage of this side-

illuminated structure is when I don’t have to focus the light in. 

 

Carrier motion in PD 
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Differently from the pn junction, in the PD we have to consider also upper neutral layer and substrate. If 

light comes from the left to the right, it seems that it is absorbed in the depleted region, but it could be 

absorbed also in the neutral layer.  

In the neutral layer or substrate we are generating still a carrier, but it is not travelling because there is no 

electric field, so it moves around, but it is also surrounded, in the neutral layer, by a lot of other carriers, 

so the anode cannot see it because it is like ‘shielded’. Hence in the neutral substrate and neutral layer 

the carrier is not generating a current.   

 

However, if the carrier is travelling in the neutral substrate and after a while with a random motion it 

reaches the depleted region, it is no more shielded, it sees the electric field and it generates a current. The 

problem is that there is a strong delay between when the carrier is generated is and the current is. 

We want to calculate the signal. 

 

I-V characteristic of PD 
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It is a diode current with an offset that changes depending on the optical generated current. The PD is 

always used in a revere bias mode, because we need depleted region to collect light, which increases 

increasing the reverse voltage.  

 

PD operation modes 

 

 

PHOTON DETECTION EFFICIENCY 

It has to take into consideration 4 different aspects (light comes from the top): number of photons 

absorbed in the depleted region, or in the opposite way the photons absorbed in the neutral region. The 

last is the number of photons reflected on the surface. 
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1-R is the amount of light that is not reflected. Than we have the exponential decay time of the light that 

is absorbed in the neutral region, which is lost at this moment. Then we have 1 -  light absorbed in the 

depleted region, which is the light that escapes from the bottom. 

From this formula we can compute the detection efficiency, which is the percentage of light we can use 

to create a signal. 

 

In the PD we can choose any parameter in the formula in the square box, not as a designer, but as a user, 

looking at the catalogues. Only the thickness of the neutral region (absorption length) is not of choice 

because the manufacturer tries to reduce it as much as possible. 

To increase the dimension of the depleted region, we can increase the applied voltage, and sometimes it 

is an issue, also because we have the problem of power dissipation. So reducing the bias voltage seems 

good. However, I also want a big depletion region because I want a high detection efficiency. 

 

Eta_D 
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Reflective index of Silicon is quite high and we can use an antireflection coating, and also the reflective 

index of SiO2 is in the middle between air and silicon, so putting a layer of it can reduce the reflectivity 

below 10%. 

 

As for the losses in the cathode neutral region, this is a problem because at this moment, at the first order, 

all the light absorbed in the upper neutral region is lost. So we should reduce it, but it is difficult to make 

a very thin upper neutral region form a technological standpoint. 

For the depleted region, the problem is the tradeoff between power dissipation and amount of light to be 

collected. 

DARK CURRENT AND NOISE 

The noise for us is what we have when there is no signal, i.e. in the dark since we have light sensors. 

Dark current is not a problem at all, we don’t have a problem with the baseline or background, the 

problem is the shot noise associated to the baseline, background or dark current. 

Normally, dark current is due to thermally generated carriers, which create a current with a shot noise 

associated to it. 
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With the PD the problem of G/R processes is higher than the PT. In the PD we have thermal generation 

as usual, but also tunneling. Tunneling increases as soon as we increase the electric field, so it might be 

reasonable to have a small bias voltage. However, increasing the bias voltage could be useful to increase 

the depleted region and to introduce a gain. 

 

Dark current of Silicon-PD 

Tau is specific of the material we are using. It defines the amount of time we need to have thermal 

generation, and it depends in a strong way on the material we are using and, once fixed the material, on 

the substrate (high quality or low quality silicon). Also with the same substrate, if we change the process 

to develop the device we could change the quality and the tau. 

 

Dark current and active area of Si-PD 

Of course, the thermal generation must be multiplied by the volume, which is the area times the length. 

So which is the maximum area, i.e. maximum diameter of the diode we can use, if we fix the noise? 

The result is in the formula x. 

 

To understand this, we can make some examples. We want the widest possible area with noise lower 

than the preamplifier. Looking at the result, the diameter must be smaller than 1.3 cm. with 10 cm, the 

noise was already negligible for the PT, while with PD we have a noise comparable with the amplifier 
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with 1.3 cm of PD. So with the PT, the noise of the PT is negligible with respect to the amplifier, with 

the PD it depends on the diameter of the PD. 

So let’s try to compare directly the PT and the PD. We want to understand the maximum diameter of 

the PD to have a noise that is comparable to the one of the PT. The result is 130 um, with a standard 

dimension of a PT in the order of inches (2.5cm), so we are comparing um with cm, and this is not good. 

 

 

CURRENT SIGNAL IN PDs 

 

Current signal involves the Ramo theorem; the problem is that it is really difficult. 

 

CARRIER MOTION AND DETECTOR CURRENT 

With the Ramo theorem we need the speed of the carrier in the device in terms of absolute value and 

direction, then we have to compute the reference electric field, we multiply them and we get the result. 

With the pn junction we don’t have just the drift current from cathode to anode, but we have a crystal 

and so the motion is not linear, because the crystal vibrates. Hence computing the real trajectory of the 

carrier is very difficult. 

Moreover, also for the absolute value we have a problem, because with the pn junction the speed of the 

carrier is proportional to the electric field, which is not constant in the junction. Moreover, the speed is 

proportional to the electric field only up to a certain level, then the relation saturates and we have velocity 

saturation regardless the applied electric field. 

 

Hence making a real calculation of the Ramo theorem in a pn junction is not piece of cake. So we need 

to make some hypothesis. 

 

 

 

 

 

 

 

 

 

 

x 
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Carrier motion in PD 

For the reference electric field we have to remove all the carriers in the junction for the Ramo theorem, 

so we have a capacitor. The problem is that the real electric field that gives the speed of the carrier is not 

constant, and moreover the electric field is always bigger than the electric field that causes velocity 

saturation. In fact, if it is high, we maximize the speed of the carriers and so the response of the device. 

If Ed is so high everywhere that the speed is saturated, the velocity of hole and e- is saturated, even if the 

trajectory is not linear. 

 

However, there is another problem, that is the fact that we don’t know where light is absorbed the carrier 

in the depleted region. So we have a carrier due to e- and one due to the hole. If the photon is absorbed 

close to the border, the hole reaches immediately the contact, so the current of the hole disappears 

immediately, while the one due to e- lasts more. We can also have the opposite case, where I have only 

the current due to the hole. 
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if we have the single electron response, if we have a signal that is more complicated, I can convolve the 

single electron response with the number of photons we get to get the signal shape. The problem with the 

PD is that as soon as we change the absorption point, we change the single electron response. We know 

that even if we consider deterministic systems, the absorption in the depleted region is exponential, but 

it is an average absorption, it doesn’t mean that every photon is absorbed at that thickness. It is a statistical 

process. 

 

Taking into account all these things makes impossible a real computation of the Ramo theorem. 

 

Single carrier motion and current 

Since the current of one e- is higher than the one of one h due to the difference in mobility, normally we 

try to design a device that uses mainly e-. E.g. if the light is at short wavelength, we design a p over n 

junction to be sure that all the light is absorbed at the beginning and the electron is the carrier we are 

interested in. Instead, if the light is absorbed at the end, because e.g. it is long wavelength, then the holes 

are important, and we can design n over p devices. 
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Saturated speed of the e- is in the order of 10 ps/um. 

We can make an assumption: we consider the pn junction as a LP filter for the light (mobile mean filter) 

with a band limit 1/Tt where Tt is the transit time of the carrier in the whole depleted region. 

With this definition we are ‘complicating’ the tradeoff. The depleted region is a tradeoff between power 

consumption and detection efficiency, now if we increase it, we are increasing Tt and so reducing the 

BW. 

As for the noise, it is thermal generation density times area times depleted region, so increasing it we are 

increasing also the noise (besides the power consumption). The depleted region is a number we have to 

choose depending on the application. 

 

PD EQUIVALENT CIRCUIT 
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  Nn m of the PD. At this point, the input resistance can be maximized, and so also the SNR. However, 

probably it is not always good to have a high resistance. We are interested in high impedance frontend if 

we want to maximize the SNR, and this is always true. 

 

However, this is not the path to take if we want to maximize the dynamic response. 

 

PD DYNAMIC RESPONSE 

As soon as we choose the detector, we fixed the transit time. So how can I minimize the RC of the circuit 

to maximize the dynamic response. We want a small R to maximize the dynamic performances, but if 

we do so we worsen the SNR → tradeoff between sensitivity and speed. 

 

However, we want to maximize the speed. We want RC lower than the transit time, and the transit time 

is fixed. The unknown are area and the resistance, then the saturated speed is a constant . 
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In the end we get that, to have a time response limited only by the transit time and not the RC of the 

circuit, the diameters must be 12,5 times lower than the depleted region, and this is not good (60 um of 

diameter). If so, it is really difficult to focus the light on the detector. 

 

CARRIER DIFFUSION EFFECTS 

If a single photon is absorbed in the depleted region, it gives us a current. instead, if we are in the neutral 

region, in theory we don’t have any contribution to the current, but in reality a carrier generated in the 

neutral region doesn’t give us any contribution to the current if it remains in the neutral region. In fact, 

it can diffuse and enter in the depleted region. At that point it acts as a carrier in the depleted region. 

This eventually happens after a delay that is random. 

So the response has a gaussian shape with a tail that gives the sum of all the photons absorbed in the 

neutral region that with a random delay reach the depleted region. 

If I’m interested in the detection efficiency, the tail is good because the detection efficiency is higher. 

Instead, the tail is a problem if we have a high rate of pulses. With one single photon I’m generating one 

single carrier, so the single electron response gives us the probability of having a certain current depending 

on where the photon is absorbed. 
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PHOTOMULTIPLIER TUBE – PMT 
 

In almost all the cases the noise of the PMT and sensor is negligible with respect to the noise of the 

electronics. If so, is there a way to improve the situation starting from the fact that the noise of the PMT 

is very low? Yes, we can add a gain. 

 

We are applying the gain between the PMT and the amplifier. We are actually amplifying both the signal 

and noise, so we are not changing the SNR of the PMT itself, which is however very high. 

If we applying a gain we can improve the signal and at the sme time we are also increasing the noise, but 

since the noise is small, even if amplified it could be negligible than the one of the preamplifier. Our goal 

is to reach a noise that, amplified, is higher than the one of the preamplifier. 

 

The gain is in the order of 10^3 – 10^6. Of course I cannot amplify with an amplifier, or the situation is 

not changing. So we need to create a gain without adding a noise, which happens with an amplifier. 

The idea is to modify the structure of the PMT. 

 

So far we have a cathode that generates a free e- due to the impinging photon. With an electric field it 

reaches the anode and generate current. now we add a dynode, which, if hit with an e- with high energy, 

generates more than 1 electron. Of course, we need to accelerate the first electron to reach high energy, 

so we need high voltages, from 100 to 1000V. 
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DYNODE MATERIALS 

 

With standard material it is linear (the secondary yeld) and then tends to saturate. 

To significantly increase the gain, the idea is to use a chain of dynodes. 

 

Drawbacks 

For each dynode we need some hundreds volts of bias one paired with the other, so at the end of the 

chain we have a very high voltage. For each dynode the gain is proportional to the bias voltage, and the 

overall voltage is the product of all the intermediate gain. 

Furthermore, the structure in the image below is a mechanical structure, the dynode must be placed to 

focus the electrons from one dynode to the other, so we have to mechanically align them to have a very 

good gain. 

 

So the structure of the PMT becomes complicate because of this chain of dynodes. 
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PMT STRUCTURES 

Moreover, a problem is that if we have a magnetic field, it could change the direction of e- and so the 

gain of the system, and this is not good. So EMI are a problem for PMT. 
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The PMT is able to detect a single photon (very high sensitivity), and the noise after the amplification is 

very low. The problem is that it is bulky, fragile (made of glass), sensitive to the magnetic field. 

 

GAIN 

 

In order to obtain a very large gain we have to increase the bias voltage between each dynode and the 

following one. To do so, we create not 12 different bias voltages, but we use a voltage divider. 

The problem is that the power dissipation is very huge, which is not our goal. 

 

The problem is that if we are extracting electrons from the dynodes to generate electrons, the biasing of 

the dynodes themselves is changing because we have a current flowing in the biasing resistor. Since the 

bias voltage is connected to the gain in a linear way, we are also changing the gain and the signal. 

The good thing is that this happens only if we have a pulse of light. 

 

PMT GAIN REGULATION AND STABILIZATION 

To solve the issue of the gain we can add capacitances. When a pulse of light comes, we have the 

generation of an electron but this electron flows through the capacitance and then the system goes back 

to the steady state value. 
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The problem with having the capacitances to ground is that we want to use the capacitance on a fast 

electrical pulse, and we cannot make fast capacitances with 3kV of bias voltage, because on one side the 

capacitance has ground, on the other side a huge voltage, so it cannot be a fast responsive capacitance. 

So their arrangement must be changed. 

 

Now each capacitance has the bias voltage just between two dynodes, so it can be fast. However, the 

issue related to the magnetic field is still there. 

 

SINGLE ELECTRON RESPONSE – SER 

The gain is not constant; from the cathode we have one electron, which goes to the dynode, and the 

dynode generates a number of e- that every time changes, it is a statistical number of electrons generated. 

So the gain of each dynode changes a little. Putting all the variations together in a chain, the SER can 

change a lot in terms of intensity. 

 

However, the detector is still very fast (ns), much faster than a photocathode. 
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Applying the Ramo theorem, we have to ground all the dynodes, and the reference electric field is only 

between the last dynode and the anode. However, if the gain is not constant, the signal also is not 

constant. This gain applies both on the signal and noise. 

 

Fluctuation of the signal is like having a new source of noise that we want to avoid. We can manage this 

noise like if we have a system that amplifies, and the noise at the output is the noise at the input times 

the gain squared. If the gain is changing, we have to add a factor, the excess noise factor F, which takes 

into consideration the fact that the noise is not constant. 

 

Statistical distribution of the PMT gain 
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The result is that, if we have some dynodes, the final variance of the gain is the variance of each single 

dynode times the excessive noise factor. Normally, F = 1 in a PMT. 

One idea could be to include an amplifier directly inside the device to obtain a better amplification 

without the F problem. The thing is that the good thing about PMT is how the amplification is made 

with dynodes. 

Without any signal, the amplifier has a certain noise at the output, which is not 0. The noise of a PMT 

at the output if we have 0 signal we have no noise due to the amplification (of course we would have the 

noise of the cathode, but we are dealing with amplification noise). 

 

So in this way we can get a very high gain without adding significant noise. 
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DYNAMIC RESPONSE OF PMTs 

The one in the image is the single electron response of a PMT. We notice that there is a delay between 

the peak of the single electron response and the photon arrival. This is not strange, because the anode can 

see the electrons only when they reach the last dynode, and this is the reason for the delay. 

 

We are not concerned about the delay because it is an offset in time of only few ns, and already connecting 

with a cable the device to the PS generates ns time of delay. 

The problem is that the offset in time is not always the same, it is a jitter that can depend on the trajectory 

of the first electron to reach the dynode. 
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In the real world, we have in the single electron response there is the convolution of two effects. Firstly 

the real single electron response, when we consider that is no jitter on the transit time, then this electron 

response will move on the left or right depending on the trajectory of the electron for each single pulse. 

If we convolve these two effect we get the real electron response. The good thig is that the jitter of the 

transit time is much smaller than the ideal single electron response, so we don’t notice any problem on 

the jitter. 
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SNR AND MINIMUM MEASURABLE SIGNAL 

 

We have the current generator of the cathode on the left, then the current noise of the cathode, then the 

gain with the excessive noise factor, the load, the noise spectral density of the resistance and noises of the 

amplifier. Then we have a LP filter to limit the BW of the system, if the amplifier is ideal. 

 

We will consider the photon electron current, which is the number of electrons times the charge of the 

electrons. We count the number of photons because the current is so low we can do this. Since we have 

to compare signal and noise, we will count the number of electrons also for noise. 

 

With a photosensor we have to add one more noise; we have the current noise, voltage noise, noise of 

the cathode (shot noise); but in this case the signal has a fluctuation, a Poisson one, so we have signal 

associated noise. It is the first time that the noise is directly related to the signal. 

 

Rl and Cl give us a tau, but if the pole is much higher than the LP filter at the end, we can neglect the 

filtering action of Rl and Cl. Of course we neglect only the filtering action, not the noise.. 
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We want to place all the sources of noise in only one single current generator because we want to input-

refer the output noise. If so, we can study the problem at the cathode level. 

 

We can model noise x as shot noise, even if it is not shot noise, this because all the other sources of noise 

are shot. To do so, we can create a current that is the spectral density divided by two times the charge. It 

is a ‘fake’ current. at this point we have only shot noise on the left, and we can compare signal and noise, 

directly comparing the current of the signal and of the noise. 

In a lot of cases, the noise associated to the anode is negligible with respect to the noise associated to the 

dark current, to the signal and to the background noise, which are the sources of noise we have at the 

cathode level. All these can be modelled as shot noise, and we can lump them in one single current 

generator. 

 

So I have the signal, shot noise associated to the signal and shot noise independent from the signal. Since 

the gain of the PMT is high, I can neglect the independent shot noise, but this is true up to a certain point; 

in fact, also PMT has noise (dark current and background) that is independent on the noise, so we would 

still have the same problem. 

 

x 
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MEASURABLE MINIMUM SIGNAL 

 

Sip is the noise associated to the signal, Sib is the noise independent of the signal, and it is shot noise due 

to dark current, shot noise of the background and not shot noise associated to the amplifier divided by 

the gain. But we can always take the total spectral density divided by 2*q to get an equivalent current. 

We notice that the current Ip at the top of the SNR is also at the bottom of the ratio. 

 

We can solve this equation for a SNR = 1 to retrieve Ip (Ib is given from the data). On the other side, we 

can make some hypothesis to be verified. If the final current is so high that the shot current associated to 

this current is much higher than the term with Ib, I can neglect the term with Ib and the equation is easier 

to be solved. On the other side, if the final background is much higher, Ip at the denominator can be 

neglected, and I’m in the classical condition with signal at the top and noise at the bottom of the SNR. 

Then I have to verify if the hypotheses are correct. 
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The drawback of making the hypotheses is that if we do the calculations and then we get that they are 

not consistent, we have to redo the computations. 

 

Minimum signal limited by photocurrent noise 

We are in the case of negligible background noise, so we completely remove the part that is independent 

on the signal because we suppose it is not dominant. 

We find that the SNR is proportional to the rate of photons time Tf, that is the number of photons we are 

reading with our gain. 

np (I/q) is a rate, and Tf is a time, so their product is the total number of photoelectrons I get, Np. 

 

But the rate times a time is a total number of photons. 

We are dominated by the shot noise of the signal itself, so by the statistic of the signal itself. If I’m 

acquiring n photons, n is the signal. Since the light is a Poisson process, if I acquire n photons, its variance 

is n, so the square root of N is the SNR. This is another way to see the same thing. 

The strange thing is that the value sqrt(Np) is not constant. 

 

For a SNR = 1, which is the minimum signal we can detect? 
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We write the same equation of before, and Nmin = 1 if we are dominated by the statistic of the signal, so 

it is one photon (or a rate 1/Tf). 

 

The plot is in log scale, so the SNR is the distance between the two curves, hence a SNR = 1 is where the 

blue and red curve cross. 

 

What if the background noise is not negligible? 
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Minimum signal limited by background noise 

 

If Nb is no more negligible, but much higher than Np, it is the dominant one. Consequently, Np = 

sqrt(Nb), if we are for SNR = 1. 

 

If neither the background nor the photocurrent noise are dominant we have to solve the complete second 

order equation. The good thing in making an hypothesis is that we can verify if it is correct or not, while 

with just the solving of the equation we get a number, and we don’t know if it is correct or not. 

 

 

 

 

 

Sqrt(Nb) is a constant because it is not related to the signal. Increasing the background we are shifting 

the red curve upward, making it dominant over the photocurrent noise. 
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PMT DEVICE STRUCTURES 

 

Can we improve the device more? 

 

CONTINUOUS CHANNEL MOLTIPLIER CCM 

I take a tube and I make a coating of the inside with the material of the dynodes. At this point, as soon 

as a photon exits the photocathode and enters the tube, we are not losing any generated electron, so 

maybe the efficiency of the system is better. 

 

The problems are multiple. Firstly I have to focus the light inside the tube, the electron has to enter the 

tube and the diameter and the tube sometimes is not big. 

Moreover, if I have an amplification, from one photon we generate an e- that enters the tube and it 

multiplies. At the end of the tube I have a lot of e- with an extremely high energy, because they are all 

accelerated. Furthermore, I apply the total bias voltage at the end of the tube, I don’t have anymore the 

voltage divider. 

 

However, high energy e- can create ions due to impact ionization, and the ion has an opposite charge 

compared with the e- and goes back in the opposite direction, impacting in the tube and generating other 

e-, so creating a positive feedback, which is increasing a lot the noise. 

 

The idea, instead of taking a straight tube, to use a curved one. Thus a generated ion will impact the tube 

on a small time in a small portion, so the feedback is limited in time. 
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 Moreover, the tube is very small and we are generating millions of electrons for each photon. Since we 

have a lot of millions of e- in a small volume, we have space charge that is shielding the electric field, and 

the only solution we have is to reduce the amount of charge. Of course we cannot do this reducing the 

gain, because the goal is to have a high gain. So we have to reduce the number of photons → this 

architecture works if we have few photons. 

 

MICRO-CHANNEL PLATE MLTIPLIER – MCP 

Every single channel has the same problem as before of the space charge, but all the photons generate 

electrons spread over the MCP, so the number of electrons of each tube on average is the total number of 

electrons divided by the number of tubes, so we can have a small charge effect for each tube but also 

having a total detector that can manage a very high number of photons. 

 

On the MCP, one electron can be emitted exactly horizontal to the tube and avoid any hit with the walls 

of the tube. This is not possible with the PMT. So if we change the number of impacts, it changes the 

gain. So for low noise applications the PMT is still better. 
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AVALANCHE PHOTODIODES 
 

IMPACT IONIZATION IN SEMICONDUCTORS 

 

In the image we have the CB and VB of a pn junction with an applied electric field. The idea is that if we 

increase a lot the electric field E, the electron in the CB can be accelerated by E ad if E is high, the energy 

the electron gains is so high that it can create another e/h pair due to impacts with the crystal. It is similar 

to the dynode in the PMT. 

In order to create an e/h pair we need to gain an energy that is not the energy gap of silicon, but it is at 

least 1.5 the energy gap. This is because silicon is indirect gap. 

 

If we gain an energy higher than this value, we can create a new e/h pair. So we are generating another 

e- that sees the same electric field, will be accelerated and eventually can create another carrier. But we 

are also generating an hole that goes in the opposite direction and can generate a pair. So it is a positive 

feedback mechanism. So it seems that from 1 or few electrons we can generate a lot of carriers, so a lot 

of current and a lot of signal. 

 

However, we have a feedback, and we don’t like this because we are adding noise (excessive noise factor). 

Moreover, theory of the APD is very complicated. Even if we have 1 electron that gains a lot of kinetic 

energy, and it reaches 1.4*Eg, nothing happens. So the process to generate a e/h process is not 

continuous, we need some time to gain energy to create new e/h pairs. So it is a discrete process. Having 

a discrete process makes it difficult to be analyzed and create a related model. 

 

CONTINUOUS MODEL OF CARRIER MULTIPLICATION 

We have to create a continuous process from a discrete one. If we are observing our phenomenon from 

a certain distance, with a time or space scale that is big enough to distinguish each ionization process, we 

can survive with an analog approach. 

Since the ionizing process happens in the depleted region, we have to avoid thin depleted region. At this 

point the idea is to define an alpha, the ionizing coefficient for electrons, the probability density of 

ionization in the carrier path, and beta for the holes. It is the probability for an e- to create another e/h 

pair after a dx space. So we will have a probability lower than 1 that will increase with the energy 

acquired. 
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Starting from this simplification, we can define also the mean path between ionizing collisions. 

The problem is that we have to add also k, which is the ratio between beta and alpha. It changes as a 

function of the material, it is almost 1 for indium-gallium-arsenide. Depending on k, the excessive noise 

factor completely changes. 

 

Ionization coefficients in silicon 

Moreover, alpha and beta change as a function of the electric field. But in a pn junction the electric field 

is not constant in the depleted region, so alpha and beta change as a function of the position of the electron 

in the electric field. 

Moreover, alpha, beta and k change also as a function of the temperature. 
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CARRIER MULTIPLICATION 

We can use a PIN junction, so that the electric field is constant, so we can understand the current of e- 

and h in any point of the device. 

 

We are interested in the total current in the device, not in the one of the single electron or hole. 

We have to distinguish e- and h because as soon as the e- goes to the right, it’s creating new pairs and so 

new electrons and holes, and the same for holes in the left. So to the right, the number of e- increases, 

while on the left the number of h is increasing. As soon as we have a lot of negative charge on one side 

and positive on the other, we are creating a dipole, and so an electric field that is in the opposite direction 

than the original electric field. Thanks to this charge distribution we will understand the final current in 

the device and also why the current is not diverging. 

 

We are lucky since we have the equations. The total current in the device is the input current (original 

one) divided by 1-Ii, where Ii is the ionization integral. The formula holds if alpha = beta, so k = 1 (GaAs). 
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This is the real formula, not a simplification. The ionization integral is the integral of the probability of 

the carrier to create ionizing impact in dx integrated from 0 to depleted region, so is the total probability 

of a carrier to generate one e/h pair in the whole depleted region. 

 

Also in this case we can write the gain, called multiplication factor M. The problem is that M can diverge 

if Ii = 1. So if we generate at least one electron in the depleted region, the process is diverging. Infinite 

gain is not good because it is associated also to an infinite noise. 

In order to have not infinite gain, the ionization integral Ii must be smaller than 1. Moreover, the formula 

is working for GaAs, but what about silicon, where alpha != beta, we have the following. 

 

 

Alpha is an equivalent alpha, and the ionization integral Ii can be computed as before, just alpha is 

changing. We will never compute alpha or Ii, we will stop on M. 

As said, M changes a lot as a function of the bias voltage. In fact, if we change the bias voltage we 

change the electric field. Moreover, M also depends on temperature. 

There is also another problem, since M gets steeper as the high-field zone gets wider. As soon as we 

increase the depleted region to collect more light, M gets steeper. 
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AVALANCHE BREAKDOWN 

M can be divergent, and since alpha depends on the bias voltage, we can define the breakdown voltage, 

which is the bias voltage at which the Ii = 1 and M diverges. 

 

Since the Vb has Ii = 1, and Ii depends on alpha, and alpha depends on temperature, also Vb depends on 

temperature. 

 

In the real world it seems that we have either no current or infinite current. But it is strange to create 

something with infinite current, so we have to manage a formula that deals with infinite current and the 

real world where it doesn’t exist. So we have to deal with the space charge effect, according to which we 

will reach a steady state value where the current is no more diverging. 
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AVALANCHE PHOTODIODES 

We want to be close to Vb but below it, so that Ii is not 1 and the current is not diverging. 

The idea is to create a device that can work at a bias voltage below the breakdown in a stable way from 

the bias and temperature point of view. This is the difference in standard pn junctions and APD. 

 

If we change the bias voltage we also change a lot the M according to the formula in the image. In fact, 

ripples on the bias voltage create a variation of M. 

 

Evolution of the APD structure 

If we have a doping profile (to create e.g. the n region of the pn junction) and we change the radius of the 

doping profile we see the accumulation of electric field lines in the region where the doping region is not 

flat, so the electric field is high. 
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The problem is that we are trying to work with a bias voltage that is close to Vb but not above it. If in the 

flat region of the doping region we are just below Vb, at the corner where the electric field is higher we 

are above Vb. 

 

So the idea is to create guard rings, diffusion region where the doping is much lower than in the flat part, 

so we compensate the fact that we have an accumulation of electric field with a lower electric field thanks 

to the presence of the guard ring. This is the difference between a standard pn junction, where we are 

very far from Vb because not of interest, and an APD. 

 

PIN structure is unsuitable for APD devices 

 

In the graph we have the behaviour at different temperatures. We notice that M as reasonable values (100 

in log scale), but it’s very small compared to the PMT (millions). However, the real problem is the shape 

of the curves in the plot, because it’s quite vertical, hence changing a little the bias voltage completely 

changes M. 

 

The problem is that as soon as we increase the region where we have high electric field (depleted region), 

the behaviour of M becomes steeper and steeper. The problem is that we need a wide depleted region to 

collect light. 

So the idea is to add a layer. 

 

REACH-THROUGH Si-APD DEVICES (RAPD) 

The region with very high electric field is limited to the p region, which is very small, but the depleted 

region is very large. 

In the flat region (depleted region), the electric field can be reduced. I don’t want high values there 

otherwise the behaviour of M is steeper and steeper, also because at a certain point we saturate the 

velocity and increasing more we just pay in terms of power consumption. 

So in the depleted layer we have the saturated speed of the carriers. 
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Now we notice that the characteristic is not so steep, even if we still have a dependance on temperature. 

Moreover, the M value is not increasing, we are not changing its absolute value but its behaviour as a 

function of voltage. At the exam, taking M = 100 is good, because M = 1000 is impossible, and M = 10 

is too low. 
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Avalanche statistics limits the APD gain 

 

We are neglecting what happens in the middle, we start with a signal and noise at the input and we look 

just at the output. 

 

As for the PMT we can define an excessive noise factor. 

In PMT the excessive noise factor F was lower than 2 and in some cases we could have considered it 1. 

This cannot be done with the APD because the physics of the device is completely different. In fact, the 

accelerated electron can generate at the best one pair, and not always. So the process is slower, which 

means higher noise. 

 

Furthermore, in the APD we have also holes moving in the opposite direction, and so a positive feedback 

that creates problems in terms of noise. 
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For k << 1, that is the case of silicon, we can summarize the excessive noise factor F as below. 

 

 

In the best of the cases, F = 2, cannot be smaller. So for sure we cannot neglect F when considering an 

APD. Moreover, F = 2 can be obtained only with special devices and if M < 50. As soon as we increase 

M, we also increase F. 

We want a gain so that the noise is negligible with respect to the noise of the next stage, that is the analog 

frontend (preamplifier). 

The problem is that as soon as we increase the signal we are also increasing the noise, but not the noise 

itself, but the F number. At a certain point we will increase the noise more than how much we are 

increasing the signal, and the SNR drops down. 

 

 

The positive feedback plays a key role. The situation is completely different if k = 1 or smaller. In silicon 

it is for instance almost 0. 
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When we want to compute the magnification to obtain, with a PMT we consider only the noise of the 

cathode and amplifier, while with the APD if we try to do this, we increase the noise of a factor M^2*F. 

 

With Silicon, to get F < 2.5 we have to work with M = 100. 
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Conclusions 
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SINGLE-PHOTON AVALANCHE DIODES 
 

SINGLE PHOTON COUNTING 

With the APD we can detect a single photon, but the gain is very small compared to the PMT. Moreover, 

we have much stronger statistical fluctuations for the APD than the PMT, they can reach a value equal 

to the gain M. 

So APD instead of PMT for single photon counting cannot be used. Or better, almost no for silicon APD 

and no for any other material. 

 

 

APD FOR SPC? 

 

We use a comparator to detect photons and not an amplifier because when we go to single photon 

counting we are in a totally digital approach, we don’t have 1.5 photons. So we use a comparator to have 

digital pulses to collect. 

Since it is digital, the output is digital, but the input is totally analog, since we have an amplification of 

the signal from the APD and then a comparator with a threshold. So the goal of the analog part that gives 

the digital output must efficiently reject the noise. So: 

1. Efficient rejection of noise, so I want to set 1 in output only if I have a photon, not if I have noise 

(dark count). To solve the issue that the threshold is crossed without signal we can increase the 

threshold 
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2. Efficient detection of photon pulses. 

 

Noise rejection in photon counting 

With a threshold larger than 2.5 or 3 sigma we are almost sure that we are not crossing the threshold with 

noise. For a SNR = 1 we need 40 to 120 electrons, and if we take 2.5 to maximize the noise we have from 

100 to 300 electrons for SNR = 1. So it seems that we have to set a threshold of 100 e- to avoid the 

problem with noise. The APD can have a gain of 100, and also 300 is lower than 500 (maximum gain of 

the APD in special cases), and so the signal is greater than the threshold and noise is much smaller. 

 

However, for some reasons, in the real world, we need a M that is much higher than Nnr. 

The problem is that the formula in the image comes from the optimum filter theory, which is in the end 

a LPF, and in our case is between 10 and 100 ns. The point of the LPF is that when we want to detect 

single photons, we don’t want to detect only one, but some of them, counting them. I have a threshold 

and to detect one photon we have to cross the threshold. To detect two photons I should cross the 

threshold two times, if the photons are not overlapped. For a 2 photon detection I have to cross the 

threshold 3 times at least (up, down, up). This is important because with a LPF we have a pulse of ligh 

that gives the response as in the image below, with a tail. If the second photon is close to the first one, 

there is a probability that the second signal is overlapped with the first one and the threshold is not crossed 

3 times, it is like we have one single pulse and we loose one photon → count losses in photon counting. 

 

The only way to solve the problem is to reduce the tail, making a faster system. But reducing the tail 

moves us to a sub-optimal filter, not the optimal one. Something that in the time domain is thinner has a 

bigger BW in frequency, and we are picking more noise, so the sigma has to increase, no more only 2.5. 
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TIME JITTER IN PHOTON TIMING 

We have the threshold and we need a clock, or a watch, that measures the time between the laser pulse 

and the crossing time of the threshold. 

But are we sure that the crossing time is fixed? No, because superimposed to the signal we have noise 

and so we could have a jitter in the crossing time, so the crossing time changes due to the noise. 

 

The jitter is in someway proportional to the variance of the noise. The problem is that we are proportional 

to the sigma of the noise, and this is the noise of the comparator for instance, not necessarily the one of 

the sensor. 

 

To improve the situation without changing the comparator, we can change the derivative of the sensor, 

making a steeper response, so that the jitter influence is reduced. To increase the slope of the rising edge 

of the signal we have to increase the BW. Again, if we increase the BW we increase the noise. 
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Photon counting and wide band electronics 

For reducing count-losses and time jitter, we must process the APD pulses with filter bandwidth wider 

than the optimum filter. However, this implies higher noise, hence higher threshold level and higher gain 

required to the APD. 

 

EFFICIENCY IN THE DETECTION OF SP PULSES 

I expect that every photon is converted in 1 electron, and 1 electron in 150-300 electrons to cross the 

threshold. However, it is not true that the efficiency of the detector is 1 every time between photon and 

electron, so we don’t have always the generation of an avalanche. 

Moreover, we are not even sure that the electron that is amplified gives always 150 electrons in the 

avalanche, because we have the excessive noise factor F, we don’t have always the same gain (the F 

formula in the image is not to be remembered). 

 

The point is that if in order to have a good SNR and neglect the noise we need 150 electrons starting from 

one electrons, 150 is not enough as a multiplication factor M, because the M has the behaviour as in the 

plot above. 150 is hence the average value. 

So when the gain is lower than the average and lower than the threshold, we are actually not detecting 

the photon, and this happens in the x region. When the gain is lower than the threshold, the signal is 

lower than the threshold. 

 

Sometimes, the amount of light that reaches the detector is really small and we have also to go fast. The 

solution is to choose a value of the gain that is much larger than the threshold. The point is that APD is 

not able to give too much gain. 

 

 

 

x 
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AVALANCHE DIODES ABOVE Vb 

The APD is used above the breakdown voltage Vb. Since we know that positive feedback is a problem 

with an APD (when K = 1, F is much larger than when K = 0), we should avoid it. Instead, we can use 

the positive feedback to work above the breakdown voltage. At this point is suppose that every single 

photon that creates an electron in the depleted region will cause an avalanche, due to e/h pairs that 

generate other e/h pairs. So it seems an infinite charge with a single photon (even if it is limited due to 

space charge considerations). 

The important thing is that the avalanche must be quenched. The name of the detector is SPAD. 
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SPAD I-V CHARACTERISTIC ABOVE Vb 

To get the blue curve we should have no current, but it seems impossible because every electron in the 

depleted region will be accelerated and create another e/h pair. So the only way to have no current is to 

have no electrons, and this is the situation. If the depleted region is empty, nothing can be accelerated 

and there is no avalanche. Of course it is not a stable situation, since we might have thermally generated 

electrons. If we don’t have them, the only way to generate an electron is to collect a photon. 

 

Geiger mode operation 

We are above Vb and two things can happen: either we have a thermally generated electron or the 

collection of a photon, and from point (1) we move to point (2). At this point, we have to bring down the 

voltage below the Vb to stop the avalanche to (3) and then bringing again the SPAD above Vb. 

 

 

 

 

 

 

 

x x 
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SPAD MAIN PROPERTIES 

EQUIVALENT CIRCUIT OF A DIODE ABOVE Vb 

We have a capacitance, a voltage generator that identifies the Vb, a series resistance, that is the space 

charge resistance, and a switch, because we have two conditions, ON or OFF. If there is current, the 

switch is closed, while if the voltage is below Vb the switch is open. 
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Passive quenching 

We add a resistance on the top to quench the avalanche. 

Passive quenching with repeated triggering 

We notice that the shape of the pulse is not always the same. The rest is in fact slow since I have to charge 

the capacitance, and this is the problem of this application. 

 

The point is that when we reach the blue Vb the avalanche stops and we open the switch because when 

the switch is closed, the bias on Ra and Vb cannot go below Vb because we have a Kirchhoff law. So 

how can we open the switch? The switch is open if we have no current or bias voltage below the Vb, so 

how is it possible that it works? 

Trying to solve the KVL it is impossible that works, so the other possibility is that there is no current in 

the circuit. 

The current is composed by carriers travelling in a certain time, and R_L is a very big resistance, so the 

final current has to be in the order of 50-100 uA because if it is too low, the number of carriers is going 

down, and in the depleted region there are no more carriers, the avalanche is no more sustained. Until 
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we have 1 carrier in the depleted region we still have an avalanche, but as soon as the current is so small 

that there is no more a carrier in the depleted region, the avalanche is no more sustained, and there is no 

current in the depleted region, not in the overall circuit. 

Active quenching 

The problem with passive quenching is that if the rate of photons is high (kilo-count per second) we have 

problems in detecting the photons, we have different performances of the detector. So the solution is with 

active quenching circuits. 

We use an electronics that senses the avalanche and has a quenching driver that stops the avalanche and 

resets the behaviour of the circuit. So the detector is in an off state for a fixed time, it is no more variable 

as in the passive quenching. 

 

This solution gives us good timing and a standard output, not with pulses with amplitudes varying. 
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SEMICONDUCTOR SPADs VS PMTs 

It is a very fast detector (ns) and with a good efficiency, better than the PMT. Moreover, they are used at 

relatively low voltages compared to the PMTs. 

 

Challenges in SPAD development 

 

This device works in a bistable mode, photon or no photon, and so we don’t have to have thermally 

generated electrons not to trigger an avalanche for many seconds to avoid unwanted avalanches. 
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SiPM – SILICON PHOTOMULTIPLIERS 

 

We still use PMTs because the PMT can give us something the SPAD cannot, that is the discrete increase 

in detected current, in the sense that counting the current we can detect how many photons are present 

simply checking the amplitude of the current. With the SPAD we cannot because we have an avalanche 

that is the same regardless of the number of photons impinging. 

 

To solve this issue, we can use a lot of SPAD, so a SPAD array, and passive quenching. Passive 

quenching in theory has a long reset time, but here the capacitance is very small because everything is 

integrated, while the resistance remains almost the same. The problem of passive quenching is if we have 

two photons on the same detector during the reset time. If we have a lot of detector, the probability of 

having two photons on the same detector is very small. We can use millions of detectors in parallel in a 

3mm x 3mm structure. The advantage is that if we have two photons on different sensors we have a 

current that increases in a discrete way with the number of detected photons as in the PMT. 

 

The real problem is the noise. In fact, we have a lot of SPADs and the noise is increased a lot. So in terms 

of noise the PMT is still better for the same area occupation. 



246 
 

TEMPERATURE SENSORS 
 

- Metallic RTDs: principle and fabrication 

- RTD Electrical Signal 

- Circuits for measurements 

- Thermistors 

 

METAL RTD PRINCIPLE 

It is a resistance that changes its value as a function of the temperature, and RTD has the advantage of 

being very linear. The value of alpha must be known for the exam, that is 4*10^3 (order of magnitude). 
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Metal RTD technology 

From the device point of view, we have to make a really small sensor to measure the temperature on a 

small region, but at the same time the variation of the resistance has R0 as an initial value, so we want 

R0 big but in a small amount of space. 

 

One of the problems is self-heating. To solve the problem we reduce the power dissipated on the sensor. 

 

RTD OPERATION AT A CONSTANT CURRENT 

With a constant current, the variation of voltage is proportional to the variation of temperature. 

Normally, we are interested in very small variations of the temperature, and the sensitivity of the RTD 

in this configuration is not so high, so we can resort to a differential stage. We use a fixed resistance to 

remove the offset. 
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Differential signal at constant current 

 

The problem is that normally the sensor is not near the electronics, so we might have a voltage drop over 

the cables. To solve this issue we add one more cable. 

 

Remote RTD operation 
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Wheatstone Bridge 

This configuration is easier and cheaper with respect to the one with two generators. Moreover, we have 

also a PS we can modulate with this configuration. To modulate the sensor, in fact, we have to modulate 

just one PS. 

 

The signal we read is the differential one in between the two resistive partitions. We have to make the 

circuit linear. 

As soon as the left and right sides are the same, we can set R0. We use one single R0 because it’s cheaper. 

On the top, instead of R0 we put x*R0 because we want to optimize the SNR and we don’t know which 

is the resistive divider that optimizes it. 

 

Then we take the derivative as a function of x and we get that is maximum for x = 0. For this value we 

maximize the sensitivity of our system. 
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Non linear operations 

From the theory point of view it’s easier to use the nonlinear operations. 
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Remote RTD operation 

If the sensor is far away from the frontend, and we are copying with small variations of resistance, the 

problem of the resistance of the wire is to be accounted for. 

The variation of the temperature along the wire can create a variation of resistance which can be 

comparable with the signal we are reading. So we have to use a symmetric configuration to balance the 

situation. 

 

RTD amplifiers 

 

R0 is typically small, so it is not difficult to have amplifier with high input resistance, it is not a hard 

constraint. The important thing is the CMRR. In fact we are interested in the differential input but both 

inputs are at half the dynamic range, so if we change the bias voltage we change the zero value and we 

must account for the common mode voltage variations. 
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THERMISTORS 

 

It works as the RTD but the material is different and the behaviour is not linear, but an exponential decay. 

It is much smaller than the RTD, but the real important thing is that the behaviour is exponential, because 

also the small dynamic range is no more a problem. 
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STRAIN GAUGES 
 

STRESS AND STRAIN 

 

When we apply a force on a piece of metal, we are increasing or decreasing its length. The variation on 

length is proportional to the strength through the Young Modulus. At the same time, the orthogonal 

direction is decreasing according to the Poisson ratio. 
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PIEZORESISTIVE EFFECT 

STRAIN GAUGE PRINCIPLE 

 

We want to see how the resistance changes as a function of stress. The relative variation of the resistance 

is the relative variation of the length, minus the relative variation of the area plus the relative variation of 

resisitivity. The relative variation of the length is the strain. 
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Gauge factor 

We have to remember at least the order of magnitude of G, which is from 1.8 to 2.2 for metals. There is 

a problem; we might have the same variation of resistance either due to the temperature or due to the 

strain. 

To understand which is the variation of the sensor with respect to temperature we need to understand 

how the sensor is made. 

 

DESIGN OF SG DEVICES 

 

We want to create an electrical isolated potential, this is possible making it on an isolated foil that is then 

glued on the substrate to measure. Moreover, we want also small sizes, for measure local strains 

 

 

 

 



256 
 

 

with lithographic processes we can create precise shapes with small vertical transverse axis, so the device 

is less sensitive on that direction to the stress or strain. Moreover, the vertical part is also larger so that 

we reduce the resistance and so the variation of it. 
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Electronic measurements with SG 

Let’s suppose that for instance we want to measure 1 microstrain, and G = 2. Which is the maximum 

variation of temperature we can tolerate? 

 

So it seems that we have to make a very precise measurement of the temperature to detect the strain, a 

precision of 1/1000 °C, but this is not feasible in reality. 

With the Wheatstone bridge above, however, we measure both the temperature and the strain. So we 

need to resort to a different configuration. 
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Compensation of temperature effects 

 

It is possible to have a sensor that is sensitive only to the temperature and not to the strain, but not 

viceversa. So what we do is to use the exact same sensor, placing it perpendicularly with respect to the 

sensing SG so that it compensate for temperature variations. 

I don’t have to know the temperature value because it is compensated using a dummy cell. 

 

But where to place the dummy cell with respect to the sensor? R1 and R2 is the best since in this way the 

common mode voltage stays the same. 
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MEASUREMENT OF BENDING 

 

We place R1 and R2 in the same divider, and they are the sensor on the top and on the bottom of the bar, 

so one experiencing length increase, the other compression. If there is no bending, both sensors change 

of the same length. If we have bending, one is elongated and the other one is compressed. 

But if the bending is something that I don’t want to measure, what we have to do is to change 

configuration. 
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So the idea is to use other two dummy sensors to compensate for temperature. 
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SEMICONDUCTOR SG 
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