RF Ciecut Desigu

Andrea
Bectazzom
AA. $2000 / 21$
| Cammuieation Theory |
How do we deliver an information?

\Rightarrow Carrier undulation sinusoid ${\underset{\downarrow}{A}}_{A_{c}} \cos \underbrace{\left(\omega_{c} t\right)}_{\downarrow}$
amplitude phase
"Carrier" because it carries the iufornenation.
Why do we reed "undulation" instead of just trausuit = ting the original information without carrier?

Baseband siqual (ie original information) is typically centered arand the origin.

Issue: $\frac{\lambda}{2}$ physical dimension of ideal Hertz dipole (antenna)
If $\frac{\lambda}{2}=15 \mathrm{en} \rightarrow \lambda=30 \mathrm{~cm} \rightarrow f_{c}=\frac{c}{\lambda}=l \mathrm{GHz}$!
Modulation is needed because autemas work around a certain frequency that depends on their size.
Hence we reed to eve the signal information to such frequency using a carrier of that same frequency.

AM (Amplitude Modulation) baseboard signal

$$
\left[x(t)=A_{c}\left[1+m \cdot x_{B B}(t)\right] \cos \left(\omega_{c} t\right)\right]
$$

Spectrum: Fourier trausforen of $x(t)$

$$
\begin{aligned}
& X(f):=\int_{-\infty}^{+\infty} x(t) e^{-j 2 \pi f t} d t \\
& x(t)=A_{c}\left[1+m \cdot x_{B B}(t)\right] \frac{e^{j \omega_{c} t}+e^{-j \omega_{c} t}}{2} \\
& \Longrightarrow X(f)=\frac{A_{c}}{2} \delta\left(f-f_{c}\right)+\frac{A_{c}}{2} \delta\left(f_{c}+f_{c}\right)+\frac{m A_{c}}{2} X_{B B}\left(f-f_{c}\right)+\frac{m A_{c}}{2} X_{B \infty}\left(f+f_{c}\right)
\end{aligned}
$$

After undulation (IX) we reed deuadulatiou (RX).

- AM with trausuitted carrier - AM without trausuitted carrier

$R X$
- Coherent demodulation (without trausuitted carrier)

"Coherent" because the demodulating signal is in phase with the undulating signal.

Issue: any phase error between transmitter and receiver will cause a degradation of the signal. This can be a problem since $T X$ and $R X$ have their awn independent locks that might hove a syuchronous urisuatch.

- Nou-coherent deuodulaticu (with trausunitted carrier)

$$
\left.x(t)=A_{c}\left[1+m x_{B B}(t)\right] \cos \omega_{c} t \rightarrow \begin{array}{c}
\text { Ewelap }(\text { peak }) \\
\text { detector }
\end{array}\right] y(t)
$$

Advantage: $R x$ does not need any internal clock for deunodulation.

- Nou-coherent demodulation (without trausuitted carrier)

$$
x(t)=x_{B B}(t) \cos \omega_{c} t \longrightarrow \text { Eur. get. }_{\rightarrow y(t)}
$$

$$
x(t)
$$

signal is rectified!

Issue: nou-cohereut dou has to trausuit the carrier, which impairs the efficiency of the process.

Phasar representation of a sinusoidal AM

$$
\begin{aligned}
x_{B o}(t) & =A_{m} \cos \omega_{m} t \leftarrow \\
x(t) & =A_{c}\left[1+m x_{B}(t)\right] \cos \omega_{c} t= \\
& =A_{c} \cos \omega_{c} t+m A_{m} A_{c} \cos \omega_{c} t \cos \omega_{m} t= \\
& =A_{c} \cos \omega_{c} t+\frac{m A_{m} A_{c}}{2} \cos \left(\omega_{c}-\omega_{m}\right) t+\frac{m A_{m} A_{c}}{2} \cos \left(\omega_{c}+\omega_{m}\right) t
\end{aligned}
$$

$$
x(t)=\operatorname{Re}\left\{\bar{x}(t) e^{j \omega_{c} t}\right\} \Rightarrow \bar{x}(t)=A_{c}+\frac{m A_{m} A_{c}}{2}\left[e^{-j \omega_{m} t}+e^{j \omega_{m} t}\right]
$$

$P M$
FM (Frequeucy Madulatiou)

$$
\left[x(t)=A_{c} \cos \left[\omega_{c} t+m \int_{-\infty}^{t} x_{B B}\left(t^{\prime}\right) d t^{\prime}\right]\right]
$$

$$
\left\{\begin{array}{l}
\omega(t)=\frac{d \varphi}{d t} \\
\varphi(t)=\int_{-\infty}^{t} \omega\left(t^{\prime}\right) d t^{\prime}
\end{array}\right.
$$

Relatiouship between argulare frequency ω and phase Q of a periodic sigual

Narzow Baud FM approximatiou (NBFM):

$$
\begin{aligned}
& {\left[\varphi(t)=m \int_{-\infty}^{t} x_{s B}\left(t^{\prime}\right) d t^{\prime} \ll 1 \mathrm{rad}\right]} \\
& x(t)=A_{c} \cos \left[\omega_{c} t+\varphi(t)\right] \\
& =A_{c} \cos \omega_{c} t \cdot \cos [\varphi(t)]-A_{c} \sin \omega_{c} t \cdot \sin [\varphi(t)] \\
& N_{\text {BFM }} \approx A_{c} \cos \omega_{c} t \cdot 1-A_{c} \sin \omega_{c} t \cdot \varphi(t) \\
& =\underbrace{A_{c} \cos \omega_{c} t}-\underbrace{A_{c} \varphi(t) \sin \omega_{c} t} \\
& \text { carrier AM inedulation of the } \\
& \text { quadrature empanent } \\
& \text { of the carerier } \\
& =A_{c} \frac{e^{j \omega_{c} t}+e^{-j \omega_{c} t}}{2}-A_{c} \varphi(t) \cdot \frac{e^{j \omega_{c} t}-e^{-j \omega_{c} t}}{2 j} \\
& \frac{A_{c} \phi\left(f-f_{c}\right)}{2 j} \\
& -\frac{A_{c} \phi\left(f+f_{c}\right)}{2 j} \\
& \text { Baudwidth" accupatian }
\end{aligned}
$$

Case: simsaidal FM.
It is passible in this case to stredy the spectrum with wo approximatiou.

$$
\begin{aligned}
x_{B B}(t) & =A_{m} \cos \omega_{m} t \\
x(t) & =A_{c} \cos \left[\omega_{c} t+m \int_{-\infty}^{t} A_{m} \cos \omega_{m} t^{\prime} d t^{\prime}\right]= \\
& =A_{c} \cos \left[\omega_{c} t+\frac{m A_{m}}{\omega_{m}} \sin \omega_{m} t\right]
\end{aligned}
$$

$$
\begin{aligned}
x(t) & =A_{c} \cos \left[\omega_{c} t-\beta \sin \omega_{m} t\right] \\
& =A_{c} \sum_{n=-\infty}^{+\infty}\left\{J_{n}(\beta) \cdot \cos \left[\omega_{c}+n \omega_{m} t\right]\right\}^{2}
\end{aligned}
$$

$$
\text { write } \cos (\sin t) \text { as a }
$$

Fourier series
first kind Bessel function

The bandwidth occupation of the entire signal would be infinite, due to the nou-linearity of the modulation without approximation.

Carson's BandWidth:
Gaud with associated $\left[B W_{98 \%}=2(\beta+1) f_{m}\right] \approx 2 f_{m}$
to 98% of the energy \longleftarrow bandwidth of the of the FM carrier baseband signal

Phasar representation of a siunsaidal FM

$$
\begin{aligned}
x(t) & =A_{c} \cos \left[\omega_{c} t+\phi(t)\right] \approx A_{c} \cos \omega_{c} t-A_{c} \phi(t) \cdot \sin \omega_{c} t \\
& =A_{c} \cos \omega_{c} t-A_{c} \sin \omega_{c} t \cdot\left[-\beta \sin \omega_{m} t\right]= \\
& =A_{c} \cos \omega_{c} t+\frac{A_{c} \beta}{2} \cos \left(\omega_{c}-\omega_{m}\right) t-\frac{A_{c} \beta}{2} \cos \left(\omega_{c}+\omega_{m}\right) t \\
\Rightarrow \bar{x}(t) & =A_{c}+\frac{A_{c} \beta}{2} \cdot\left[e^{-j \omega_{m} t}-e^{j \omega_{m} t}\right]
\end{aligned}
$$

PM (or FM) is equivalent to amplitude uiodulation of the carrier.
Then why is it rot a pure Pr e uoctulatiou?

The equivalence holds a by under NBFM approximation $\beta \ll 1 \mathrm{rad}$ (or $\varphi \ll 1 \mathrm{rad}$)

AM and PM (Quadrature Modulation)

- $x(t)=a(t) \cos \left[\omega_{c} t+\varphi(t)\right]$

Phasor: $\bar{x}(t)=A(t) e^{j \varphi(t)}$

$$
\operatorname{Re}\left\{\bar{x}(t) e^{j \omega_{c} t}\right\}=\operatorname{Re}\left\{A(t) \cos \left[\omega_{c} t+\varphi(t)\right]+j A(t) \sin \left[\omega_{c} t+\varphi(t)\right]\right\}
$$

- $x(t)=I(t) \cos \omega_{c} t-Q(t) \sin \omega_{c} t=$

$$
\begin{aligned}
& =I(t) \frac{e^{j \omega_{c} t}+e^{-j \omega_{c} t}}{2}+j Q(t) \frac{e^{j \omega_{c} t}-e^{-j \omega_{c} t}}{2}= \\
& =\frac{1}{2} \underbrace{[I(t)+j Q(t)] e^{j \omega_{c} t}+\frac{1}{2}[I(t)-j Q(t)] e^{-j \omega_{c} t}} \\
& =\frac{1}{2} \bar{x}(t) e^{j \omega_{c} t}+\frac{1}{2} \bar{x}^{*}(t) e^{-j \omega_{c} t}=2 \cdot \frac{1}{2} \operatorname{Re}\left\{\bar{x}(t) e^{j \omega_{c} t}\right\}
\end{aligned}
$$

$\left|H_{2}\right|_{\sim}$

$$
\left\{\int_{0}^{T_{c}} \cos \omega_{c} t \cdot \sin \omega_{c} t d t=0\right\}
$$

We are not able to build a pure ideal oscillator:

ideal

real
"spurs", unwanted tones, wiwauted livewidth, phase raise...
white raise

$$
\begin{aligned}
& A_{c} \cos \omega_{c} t+x_{n}(t)= \\
&= A_{c}\left(1+a_{n}(t)\right) \cos \left[\omega_{c} t+\varphi_{n}(t)\right] \\
& \text { different peak } A M \\
& \text { amplitude }
\end{aligned}
$$

White unise power is equally split between phase raise (PM) and amplitude raise (AM)

We qeverally do nat wary about amplitude unwise whilst we do care about phase raise, for the following reasons:

- there is usually clamping of the sigual/ceverier which reunors any amplitude fluctuation
- phase raise can cane from the integration of frequency raise:

$$
\varphi_{n}(t)=\int_{-\infty}^{t} \omega_{n}\left(t^{\prime}\right) d t^{\prime}
$$

which in terms of PSD means:
if $S_{w_{n}}=$ cons. there

$$
S_{\varphi_{N}}=\frac{1}{4 \pi^{2} f^{2}} S_{\omega_{N}}
$$

which diverges at low frequencies for white uaise, that is at long observation times.
Amplitude uarse does not suffer from this issue.

Consider phase uaise as a sinusoidal disturb:
neglect $a_{n}(t) \quad\left|\varphi_{n}(t)\right| \ll 1 \leftrightarrow N B F M$

$$
\begin{aligned}
& x_{c}(t) \approx A_{c} \cos \left[\omega_{c} t+\varphi_{n}(t)\right] \approx A_{c} \cos \omega_{c} t \cdot 1-A_{c} \sin \omega_{c} t \varphi_{n}(t)= \\
& =A_{c} \cos \omega_{c} t-\frac{A_{c} \Delta \varphi}{2} \cos \left(\omega_{c}+\omega_{n}\right) t+\frac{A_{c} \Delta \varphi}{2} \cos \left(\omega_{c}-\omega_{n}\right) t
\end{aligned}
$$

Single Sideband to Carrier Ratio (SSCR):

This result can be extended to any raise shape.

Example: phase raise as raudau walk

However if $f=f_{c}$ then $q_{n} \gg 1$ and NBFM does not hold anyunare
With no approximation it can be dencustrated that the noise ll has a Lorentzian shape around f_{c}.

Digital Modulation
－FSK（Frequency Shift Keying）

＇O ：$\bigcap_{T_{0}} \bigcap \bigcap \bigvee \bigcap$
－BPSK（Binary Phase Shift Keying）
＇＇＇：$\bigcap ⿹ 勹 龴 ⺝$
－ASK（Amplitude Shift Keying）
i $1: \Omega \bigcap$＇o＇：\quad＇
－OOK（On Off Keying）
＇s＇：\quad＇o＇： \qquad

Digital modulation is ut only binary．Using more symbols allows to have a higher bit rate at the saure syubd（trousuissicu）rete．

Additive White Gaussian Noise
Shaman＇s capacity theorem（AWGN chanel）

$$
\left[c=B \log _{2}\left(1+\left(\frac{D_{0}}{D_{n}}\right)\right]\right.
$$

（maximum）bit－rate［bi ts］Bandwidth $[\mathrm{Hz}]$

errors due to raise

corruption of the syubbal due to noise
signals here read as 'l'
threshold of decision
($=$ symmetry place)
To avoid errors, either signal power (A_{c}) should increase or ucise power should decrease. So a faster bit-rate (fewer trausuission errors) is grouted by a higher SNR, which is what sham mu's theorem on chanel capacity says.

Note how using snore symbols, which should in theory increase the bit-rate, does not really improve it unless a higher signal power is adopted, since otherwise the bit-rate is impaired by transmission errors.
In fact, the umuber of syubble does not appear in shoumon's capacity theorem, hence just using more syubds wan't improve the bit-rate.

Digital uoduloticu: $\left[x_{B 0}(t)=\sum_{n=-\infty}^{+\infty} b_{n} p\left(t-n T_{b}\right)\right] \quad \frac{1}{T_{b}}$: bit-rate $p(t)$: pulse
$b_{n}= \pm 1$ binary modulation (syuubol) shape
$b_{n}= \pm 1, \pm 2, \ldots, \pm M$ multi level or M-cary modulation

Ex:

Now what is the boudwidth (B) of $x_{B E}(t)$? x_{08} is a stochastic

Theoreun: $\left[S_{x_{B}}(f)=\frac{|P(f)|^{2}}{T_{b}}\right.$ where $\left.P(f)=F\{P(t)\}\right]$

Ex:

$\Rightarrow S_{x_{\infty}}(f)=\frac{|P(f)|^{2}}{T_{b}}=\frac{T_{b}^{2} \operatorname{sinc}^{2}\left(f T_{b}\right)}{T_{b}}=T_{b} \operatorname{sinc} c^{2}\left(f T_{6}\right)$

"BW of $x_{B B}(t)$ is the same as $B W$ of $p(t)$.

Power of $x_{B B}(t)=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{-T / 2}^{T / 2} x_{B B}^{2}(t) d t=1$

Issue: Intersyubl Interference (ISI)

chanel with limited BW

If a syunbal lasts langer than Tb, then it will pile up with the following syuubds.
It degrades the SNR.

Solution: Nyquist signaling
$x_{s o}(t)=\sum_{n=-\infty}^{\infty} b_{n} p\left(t-n T_{b}\right), \quad p(t)$ such that $p\left(k T_{b}\right)= \begin{cases}1 & k=0 \\ 0 & k \neq 0\end{cases}$
 any shape respecting this \qquad conditions will work

$$
x_{B B}(t)={\underset{N}{11}}_{b_{0}} p(t)+b_{11} b_{1} p\left(t-T_{b}\right)+\ldots
$$

NO ISI
Spectrum of Nyquist sigual

$$
\begin{aligned}
& \Longrightarrow p^{*}(k)=p(t) \sum_{k} \delta\left(t-k T_{b}\right) \xrightarrow{7} P(f) * l_{T_{b}} \sum_{k} \delta\left(f-\frac{k}{T_{b}}\right)= \\
&=\frac{l}{T_{b}} \sum_{k} P\left(f-\frac{k}{T_{b}}\right)=P^{*}(f) \\
& \Longrightarrow\left[\sum_{k=-\infty}^{+\infty} P\left(f-\frac{k}{T_{b}}\right)=T_{b}\right]
\end{aligned}
$$

Examples:
1)

2)

3) "Raised cosive"

$$
P(f)=1+\cos \left(\frac{\pi T_{b}}{\alpha}\right)\left(|f|-\frac{1-\alpha}{2 T_{b}}\right) \frac{T_{b}}{2}
$$

$$
\xrightarrow[\mathcal{I}^{-1}]{ } \quad P(t)=\sin c\left(\frac{t}{\sqrt{6}}\right) \frac{\cos \left(\pi \alpha \frac{t}{1 b}\right)}{1-4 \alpha^{2}\left(\frac{t}{\sqrt{16}}\right)^{2}}
$$

$\alpha:$ rall-off factor $(0 \leqslant \alpha \leqslant 1)$
$x=0$: Marrow specteune (rect shape) $B W=\frac{1}{2 T_{b}}$ slow envelop $\left(\div \frac{1}{t}\right)$
$\alpha=1$: wide spectrum (triang shape) $B W=\frac{1}{T_{B}}$ fast envelop $\left(\div \frac{l}{t^{2}}\right)$

Even though $\alpha=0$ is in theory preferable (for its narrower spectrum), the faster envelop of $\alpha=1$ allows to reduce ISI when there are syeuchronization errors between syuibols, since the signal interference (its value outside the peak) will be lower

Trade-aff between bandwidth occupation and resilience to syuchrouizatiou errors.

Nau-idealities of a Local Oscillator (LO)

Madulated signal: $x(t)=I(t) \cos \omega_{c} t-Q(t) \sin \omega_{c} t$ cartesian

$$
=A(t) \cos \left[\omega_{c} t+\varphi(t)\right] \text { polar }
$$

$$
A(t)=\sqrt{I(t)^{2}+Q(t)^{2}} \quad \Phi(t)=\operatorname{arcctg} \frac{Q(t)}{I(t)}
$$

We have already seen the effects of phase noise on the SSCR.

Let's now consider digital QFSK (Quadrature PSK):

$$
\begin{aligned}
x(t) & =\sum_{n} a_{n} p\left(t-n T_{b}\right) \cos \omega_{c} t-\sum_{n} b_{n} p\left(t-n T_{b}\right) \sin \omega_{c} t \\
& =\operatorname{Re}\left\{\sum_{n}\left(a_{n}+j b_{n}\right) \cdot p\left(t-n T_{b}\right) e^{j \omega_{c} t}\right\} \quad\left(a_{n}= \pm l_{j} \quad b_{n}= \pm 1\right)
\end{aligned}
$$

Constellation plane if $p(t)$ is a rect in time

Apparently, QPSK undulated signal seeps to have a carstaut euvelop. (phasor has couslaut absolute value). However, uar-instoutaneare transitions between two syubds actually cause the envelop to be uou-coustant:

if $p(t)$ is a rect

rau-caustant envelop

The euvelap will be useful later to describe the effects of some uar-idealities.

QPSK TX block diagram

$\rightarrow T_{c}$ chip period, $1 / T_{c}$ chip rate, $T_{c}=T_{b} / 2$

RF baud width:
For $\alpha=0$ (rall-off) t-shape is $\operatorname{sinc}\left(\frac{t}{T_{6}}\right)$

$$
B W_{B B}=\frac{1}{2 T_{b}} \Longrightarrow B W=\frac{l}{\uparrow}=\frac{l}{T_{b}}=\frac{l}{2 T_{C}}
$$

RF bandwidth of QPSK is given by the chip frequency divided by 2
Far $\alpha=1$ then RF bandwidth is exactly the chip rate.

We can now see the impact of LO PHASE NOISE (and other issues) an the quality of the modulation.

$$
x_{c}(t)=\cos \left[\omega_{c} t+\varphi_{n}(t)\right]
$$

 modulated carrier

Phasor affected by LO phase noise:

$$
\bar{x}(t)=\bar{x}_{i d}(t) e^{j \operatorname{qq}_{k}(t)}
$$

We introduce the following parameter:
Erear-Vectar Magnitude

$$
\left[E V M:=\frac{\frac{1}{N} \sum_{k=1}^{N}\left|\bar{e}_{k}\right|^{2}}{P_{\operatorname{aog}}}\right]
$$

It is a uaise-to-sigual ratio: EVM $\sim \frac{l}{S N R}$

- EVM induced by phase raise:

$$
\begin{aligned}
& {\left[E \vee M=\frac{|\bar{e}|^{2}}{P_{\text {avg }}} \simeq \frac{\left|\overline{x_{i d}}\right|^{2} \cdot \sigma_{q}^{2}}{\left|\bar{x}_{i d}\right|^{2}}=\sigma_{q}^{2}\right]} \\
& \underbrace{|\bar{e}| \simeq \underbrace{\left|\bar{x}_{\text {id }}\right| \varphi_{n}}_{\text {arc }} \Rightarrow|\bar{e}|^{2}=\left|\bar{x}_{\text {id }}\right|^{2} \odot_{q}^{2}}_{\text {chard }}
\end{aligned}
$$

$\Longrightarrow E V M \simeq \sigma_{a}^{2}$ regardless of $P_{\text {aug g (}} \quad(T X$ power).
SNR at TX output is linted by phase raise.
Also $R X$ phase raise (LO) \longrightarrow degrades SNR at $R X$

$$
S N R \leqslant \frac{1}{\theta_{\varphi}^{2}} \text { ("bottleneck") }
$$

- EVM induced by amplitude/phase errors:

ε auplitude errar
θ phase error

$$
\begin{aligned}
& E V r=\frac{P_{e}}{P_{\text {aug }}}=\frac{|\bar{e}|^{2}}{\left|\bar{x}_{i d}\right|} \quad \bar{e}=\bar{x}-\bar{x}_{i d} \\
& \bar{X}_{i d}=I+j Q \quad \bar{X}=I e^{j \theta / 2}\left(1+\frac{\varepsilon}{2}\right)+j Q e^{-j \theta / 2}\left(1-\frac{\varepsilon}{2}\right) \\
& \begin{array}{c}
\Longrightarrow-\bar{e}=\bar{x} i d-\bar{x}=I[\underbrace{1-e^{j \theta / 2}}_{\sim-j \frac{\theta}{2}}-\underbrace{e^{j \theta / 2}} \cdot \frac{\varepsilon}{2}]+j Q{ }^{1+j \theta / 2)}[\underbrace{1-e^{-j \theta / 2}}_{\sim+j \theta / 2}+\underbrace{e^{-j \theta / 2}}_{\sim\left(1-j \frac{\theta}{2}\right)} \frac{\varepsilon}{2}]
\end{array} \\
& \begin{array}{l}
e^{x} \simeq 1+x \\
1-e^{x} \simeq-x
\end{array} \quad \simeq I\left[-j \frac{\theta}{2}-\left(1+j \frac{\theta}{2}\right) \frac{\varepsilon}{2}\right]+j Q\left[j \frac{\theta}{2}+\left(1-j \frac{\theta}{2}\right) \frac{\varepsilon}{2}\right] \\
& \text { for } x \approx 0 \quad \text { suiall } \varepsilon \longrightarrow \varepsilon \theta<\theta \\
& \stackrel{1}{\sim} I\left[-j \frac{\theta}{2}-\frac{\varepsilon}{2}\right]+j Q\left[j \frac{\theta}{2}+\frac{\varepsilon}{2}\right]= \\
& =-\left[j \frac{\theta}{2}+\frac{\varepsilon}{2}\right](I-j Q) \\
& \Longrightarrow \bar{e}=\left[\frac{\varepsilon}{2}+j \frac{\theta}{2}\right] \bar{X}_{i d}^{*} \\
& {\left[E V M=\frac{|\bar{e}|^{2}}{\left|\bar{x}_{i d}\right|^{2}}=\frac{\left|\left(\frac{\varepsilon}{2}+j \frac{\theta}{2}\right) \bar{x}_{i d}^{*}\right|^{2}}{\left|\overline{X_{i d}}\right|^{2}}=\left(\frac{\varepsilon^{2}}{4}+\frac{\theta^{2}}{4}\right) \frac{\left|\bar{x}_{i d}^{*}\right|^{2}}{\left|\overline{x_{i d}}\right|^{2}}\right]}
\end{aligned}
$$

e.g.: $\varepsilon=1 \% \quad \theta=1 \operatorname{deg}=0,01704 \mathrm{rad}$

$$
E V M=\left(\frac{0,01}{2}\right)^{2}+\left(\frac{0,01704}{2}\right)^{2}=0,0004 \quad \text { EVM } d B=-33,9 d B
$$

- Irmpact of nau-livearity an the ruodulated sigual:

$$
\text { Mun } \rightarrow t \rightarrow x \rightarrow y
$$

usu-linear uew frequency components nou-coustant euvelope amplification outside baudwidth of interest

Reureuber:

$$
\begin{aligned}
\cos ^{3} x & =\cos x \cdot \cos ^{2} x=\cos x \frac{1+\cos 2 x}{2}= \\
& =\frac{1}{2} \cos x+\frac{1}{2}\left[\frac{1}{2} \cos x+\frac{1}{2} \cos 3 x\right]= \\
& =\frac{3}{4} \cos x+\frac{1}{4} \cos 3 x \\
\sin ^{3} x & =\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x
\end{aligned}
$$

$y(t)=\alpha_{1} x(t)+\underbrace{\alpha_{3} x^{3}(t)}+\ldots$ "static uon-linear model" cubic uou-livearity
assuming ne even order distortions (which are anyway lass haruiful than add order in terms of spectral regrowth)

- Coustant envelop: $x(t)$ is PM modulation

$$
x(t)=A_{c} \cos \left[\omega_{c} t+\varphi(t)\right]
$$

constant information signal

$$
\alpha_{3} x^{3}(t)=\alpha_{3} A_{c}^{3} \cos ^{3}\left[\omega_{c} t+\varphi(t)\right]=\alpha_{3} A_{c}^{3} \frac{3}{4} \cos \left[\underline{\omega_{c} t}+\varphi(t)\right]+
$$

no distortion

$$
+\alpha_{3} A_{c}^{3} \frac{1}{4} \cos \left[3 \omega_{c} t+3 \varphi(t)\right]
$$

A constant emelap signal is not affected by mon-linear amplifications.

- Nou-caustant envelop:

$$
\begin{aligned}
& \text { spectral } \\
& \text { regrowth to the power elevation } \\
& x(t)=x_{I}(t) \cos \omega_{c} t-x_{a}(t) \sin \omega_{c} t \rightarrow \text { carrier frequency } \\
& \alpha_{3} x^{3}(t)=\alpha_{3} x_{I}^{3}(t)\left(\frac{1}{4} \cos \omega_{c} t+\frac{3}{4} \underline{\cos \omega_{c} t}\right)- \\
& -\alpha_{3} x_{\underline{3}(t)}\left(\frac{3}{4} \underline{\sin \omega_{c}} t-\frac{1}{4} \sin 3 \omega_{c} t\right) \\
& y(t)=\alpha_{1} x(t)+\alpha_{3} x^{3}(t) \\
& \text { is distorted }
\end{aligned}
$$

Nou-linearity degrades
EVM (iuband disturbance)
ACPR

$$
\begin{aligned}
& {\left[A C P R:=\frac{\text { Power Peaking in adjacent chanel }}{\text { Power of the signal }}\right]^{\text {Padj }}} \\
& (\text { Adjacent Chanel Power Ratio) } \rightarrow \text { Darg }
\end{aligned}
$$

\Longrightarrow Trade - off in amplifiers between linearity and power efficiency ($\left.\eta=\frac{P_{\text {out }}}{P_{x}}\right)$

RX block diagram
Multi-user communication system
\longrightarrow MULTIPLE ACCESS to the chanel e.g. FDMA (Frequency Division Multiple Access):

$\Longrightarrow R X$ has to perform:

1. BAND selection (Duplexer): cut-of-band rejection
2. CHANNEL selection: cannot be performed at RF**

- tunable filters have worse performance thou fixed freq. filter

1. BAND selection

stopboud
Duplexing e.g. FFD (Frequency Division Duplexing)

2. CHANNEL selection
*example:

$$
\begin{aligned}
& f_{R F}=1 \mathrm{GHz}=\frac{\omega_{0}}{2 \pi} \quad f_{\Delta w}=200 \mathrm{kHz}=\frac{\Delta \omega}{2 \pi} \quad(\approx \text { channel }) \\
& \text { - dB BW } \\
& \text { of LC filter } \\
& \frac{\Delta \omega}{\omega_{0}} \ll \frac{1}{4 Q^{2}}
\end{aligned}
$$

LC filter e: $\quad|T(\Delta \omega)| \underset{\uparrow}{(2 n d \text { order })}$

If $|T(\Delta \omega)|=10^{-3}$ then $Q=2,5 \cdot 10^{6} \rightarrow$ too big!
Filtering a signal with very narrow bandwidth at a center frequency in the RF range would ied a too high quality factor of the filter.
$Q \propto \frac{\omega_{0}}{\Delta \omega} \longrightarrow$ to reduce Q of filter inst reduce center freq.

Intermediate Frequency

SAW filter « high Q factor (Surface Acoustic Wave)

Since we reed a lower center frequency the IF filter will be centered around:

$$
\begin{aligned}
& f_{I F}=\left|f_{R F}-f_{L O}\right| \leftarrow \cos \omega_{R F} t \cdot \cos \omega_{L O} t= \\
& \frac{1}{2} \cos \left(\omega_{R F}-\omega_{L}\right) t+ \\
&+\frac{1}{2} \cos \left(\omega_{R F}+\omega_{L 0}\right) t
\end{aligned}
$$

This type of chanel selection at the receiver is called HETERODYNE RX architecture
"different" frequency"
Such architecture also allows to filter at different central frequencies without the need of tunable filters (which are generally unreliable):

With a variable local oscillator we car shift the input spectrum and filter different channels with the same IF filter.

- Each baud is divided into 125 carriers:
$\frac{25 \mathrm{MHz}}{125}=200 \mathrm{KHz}$ frequency separation of chamels 125 (chanel $B W \sim 150 \mathrm{KHz}$ + guard freq. $\sim 50 \mathrm{KHz}$)
- Each channel is shared by 8 users:

TDMA
(Time Division Multiple Access)
+
TDD
(Time Division Duplexing)

In order to use TDMA and TDD (uou-continuaus transurssian and reception) you led digital modulation \rightarrow GMSK modulation which is a CPM (Continuous Phase Modulation)
has coustout auvelop \leftarrow
All these specs were chosen to maximize the efficiency of undile devices. Typical sensitivity: - $99 d B_{m}$
minimum signal
 sensitivity: $P_{د}=-99 d B_{m}$ out-of-band interferes:

$$
P_{B}=O d B_{m}
$$

in-band interferes:

$$
P_{B}=-23 d B_{m}
$$

$$
\begin{aligned}
d B_{m}=10 \log _{10} P_{[m w]} \quad \text { e.g: } \quad & O d B_{m}=1 m W \\
& 30 d B_{m}=1 \mathrm{w} \\
& -20 d B_{m}=10 \mu \mathrm{~W} \\
& -100 d B_{m}=10^{-13} \mathrm{~W}
\end{aligned}
$$

Impact of phase noise on $R X$ performance

1) Direct impact

Variable Gain Amplifier

$$
A x_{R F}(t) \cdot x_{D}(t)=x_{\text {FF }}(t) \Rightarrow A X_{R F}(f) * X_{L O}(f)=X_{T F}(f)
$$

$$
x_{L_{0}}(t)=A_{L_{0}} \cos \left[\omega_{\infty} t+\varphi_{N}\right] \Rightarrow S N R \leqslant \frac{l}{\theta_{\varphi}^{2}}
$$

The phase raise degrades the sigual-to-naise ratio of the receiver (as anticipated when discussing the Prausuitter phase raise).
2) Reciprocal enixing

The unixing of a nearby disturbance with the uaisy L o causes souse additional phase raise to fall in-boud.

$$
\begin{aligned}
& \mathcal{L}(\Delta f):=\frac{S_{n}\left(f_{1 F}\right)}{P_{B}} \xrightarrow{\substack{P_{n}\left(f_{I F}\right) \\
\text { res. }{ }^{2}}} S_{n}\left(f_{I F}\right)=\alpha(\Delta f) \cdot P_{B} \\
& \Longrightarrow\left[S N R=\frac{P_{S}}{P_{n}\left(f_{r}\right)} \simeq \frac{P_{S}}{\alpha(\Delta f) P_{B} \cdot B W_{I F}}\right] \\
& P_{B} \int_{B W_{R}} \mathcal{L}(f) d f=P_{B} B W_{R F} \\
& \text { asswiving } S_{n} \equiv S_{n}\left(f_{F}\right) \\
& \text { over entire BW }{ }_{\text {IF }} \\
& \Longrightarrow\left[\left.S N R\right|_{d B}=10 \log _{10} S N R=P_{S}-P_{B}-\alpha(\Delta f)-10 \log _{10}\left(B W_{I F}\right)\right] \\
& {\left[d B_{m}\right]\left[d B_{m}\right]\left[d B_{c} / \mathrm{Hz}_{z}\right]}
\end{aligned}
$$

Example: GSM

$$
\begin{aligned}
& P_{s}=-99 d B_{m} \\
& P_{B}=-40 d B_{m}
\end{aligned}
$$

(aut-of-band interferer at OdB attempted by an antenna filter by $\angle O d B$)

$$
\begin{aligned}
& f_{R F}=2,01 \mathrm{GHZ} \quad B W_{R F}=200 \mathrm{KHZ} \\
& f_{B}=2,03 \mathrm{GHz} \quad S N R>50 \mathrm{~dB} \\
& f_{L}=2,00 \mathrm{GHz}
\end{aligned}
$$

$$
\begin{aligned}
\left.\alpha(\Delta f)\right|_{d B} & P_{S}-P_{B}-\left.S N R\right|_{d B}-10 \log _{0} B X_{R F} \\
& =-99+40-50-53= \\
= & -162 \frac{d B_{c}}{H z} \text { at } 20 \mathrm{MHz} \\
& \uparrow f
\end{aligned}
$$

$\|$ Frequency Synthesizers $\|$

- Accuracy: $\frac{\Delta f_{0}}{f_{0}}$ (impaired by aging + drift)
e.g. GSM standard requires $\frac{\Delta f}{f} \leqslant 0,1 \mathrm{ppm}=10^{-+}$
$f=1 \mathrm{GHz} \longrightarrow \Delta f \leqslant 100 \mathrm{~Hz}$

$$
f=1 \mathrm{GHz} \longrightarrow \Delta f \leqslant 100 \mathrm{~Hz} \quad f \leqslant 1 \mathrm{ppm}=\mathrm{u}
$$

$L C$ oscillator: $f \propto \frac{l}{\sqrt{L C}}\left|\frac{\Delta f}{f}\right| \approx \frac{l}{2}\left|\frac{\Delta L}{L}\right|+\frac{l}{2}\left|\frac{\Delta C}{C}\right|$
$R C$ ascillator: $f \propto \frac{1}{R C}\left|\frac{\Delta f}{f}\right| \approx\left|\frac{\Delta R}{R}\right|+\left|\frac{\Delta C}{C}\right|$

- Resolution: minium (controlled) Δf of Lo
- for chanel spacing $\sim 100 \mathrm{kHz}$
- for temperature compensation $\sim \mathrm{Hz}$
- Settling time: chanel switching time
- switch from one frequency to another at each frame
- typically $\sim 100 \mu s$ or even $\sim 10 \mu s$
- Spurious content: reciprocal unixing
- Phase raise
- Pulling: sensitivity of frequency to supply or load changes $\left(\frac{\Delta f}{\Delta V_{D D}}\right)$

To improve accuracy: master/slave approach slave
RC/LC oscillators \longleftarrow Crystal oscillators \longleftarrow Atomic clacks (Quartz)

RC/LC
x par accuracy
\checkmark tunable
\checkmark caul operate at large frequency

Quartz
\checkmark good accuracy accuracy $\approx 100 \mathrm{ppm}$ aging $\approx 0,5 \mathrm{ppm} /$ year drift $\approx 0,5 \mathrm{ppm}$ in 0-75C
x not table
x low -frequency
e.g. TCXO (Temperature Compensated Crystal Oscillator)
We will focus an the "shaves" (RC/LC and Quartz asciblatars)

Phase-Locked Loop (PLL)
free-ruming (angular) freq thing sensitivity

Phase Detector
$A_{1} \sin \left(\omega t+\varphi_{\varepsilon}\right) \longrightarrow \longrightarrow^{\otimes} \xrightarrow{V_{P D}}$ LPF $V_{P D}$ (this is just are type of $P D$)
$A_{2} \sin \omega t$

$$
V_{P D}=-\frac{A_{1} A_{2}}{2} \cos \left(\underset{\text { fast }}{(2 \omega t}+\varphi_{\varepsilon}\right)+\frac{A_{1} A_{2}}{2} \cos \left(\varphi_{\varepsilon}\right)
$$

$\left\langle V_{P D}\right\rangle \simeq \frac{A_{1} A_{2}}{2} \cos \varphi_{E}$ if $B W_{\text {PF }} \ll 2 \omega$
Static PD characteristic:

Notation change

$$
\begin{aligned}
& V_{\text {ref }}=A_{r} \sin \phi_{\text {ref }} \\
& \phi_{\text {ref }}=\omega_{\text {reft }} t+\phi_{\text {ref }} \\
& \text { absolute excess } \\
& \text { phase phase } V_{\text {the }} \mathrm{K}_{\text {PD }} \text { :PD gain } \phi_{E} \text { :phase prot } \\
& V_{\text {out }}=A_{0} \cos \phi_{\text {out }} \Longrightarrow\left\langle V_{P D}\right\rangle \simeq \frac{\overbrace{A_{r} \cdot A_{0}}^{2}}{2} \sin \left(\overline{\phi_{\text {ref }}-\phi_{\text {out }}}\right)=K_{P D} \sin \phi_{\varepsilon}
\end{aligned}
$$

We can now compute the effects of the loop on the phase error, which indicates how well the output follows the reference:

$$
\begin{aligned}
\frac{d \phi_{\varepsilon}}{d t} & =\dot{\phi}_{\varepsilon}=\dot{\phi}_{\text {ref }}-\dot{\phi}_{\text {out }}=\omega_{\text {ref }}-\left(\omega_{F R}+k_{v c o} \cdot V_{\text {tune }}\right)= \\
= & \underbrace{\omega_{\text {ref }}-\omega_{\text {FR }}}_{\Delta \omega[\mathrm{rad} / \mathrm{s}]}-\underbrace{k_{\text {vo }} \sin \phi_{\varepsilon}}_{k\left[\frac{\mathrm{rad} / \mathrm{s} \cdot \gamma]}{\gamma}\right]} \\
& \Longrightarrow \dot{\phi}_{\varepsilon}=\Delta \omega-k \sin \phi_{\varepsilon}
\end{aligned}
$$

First-order diff. equation \longrightarrow first-order PL

Voltage follower $\ldots \ldots \rightarrow$ Phase follower

$\dot{\phi}_{\varepsilon}=\Delta \omega-k \sin \phi_{\varepsilon} \quad \phi_{\varepsilon}(t)$ unknown
Equilibrium points: $\dot{\phi}_{\varepsilon}=0 \Longrightarrow \sin \phi_{\varepsilon}=\frac{\Delta \omega}{k}$

- If $\left|\frac{\Delta \omega}{k}\right|<1$ the system has 2 equilibrium paints

$$
\begin{aligned}
& \quad \dot{\Phi}_{\varepsilon}<0 \Leftrightarrow \Delta \omega-k \sin \phi_{\varepsilon}<0 \\
& \phi_{\varepsilon} \text { decreasing }
\end{aligned}
$$

$\dot{\phi}_{2}>0 \Longleftrightarrow \sin \phi_{\varepsilon}<\frac{\Delta \omega}{k}$
$\phi=$ increasing

- If $\left|\frac{\Delta \omega}{k}\right|>1$ the system has no equilibrium paints ϕ_{ε} is always increasing ar decreasing.

$$
\begin{aligned}
\omega_{\text {out }} & =\omega_{F R}+k \sin \phi_{\varepsilon}(t) \\
\omega_{\varepsilon} & =\dot{\phi}_{\varepsilon}=\omega_{\text {ref }}-\omega_{F R}
\end{aligned}
$$

The distorted sinusoid is due
 to the fact that as $\omega_{\text {out }}$ approaches $\omega_{\text {rep }}, \omega_{\varepsilon}=\dot{\phi}_{\varepsilon}$ decreases, therefore wort which depends on $\phi_{\varepsilon}(t)^{\varepsilon}$ varies slawlier.

Conclusion: if $\left|\frac{\Delta \omega}{K}\right|<1$ then $\phi_{\varepsilon}(t) \longrightarrow\left[\varphi_{e}=\arcsin \left(\frac{\Delta \omega}{K}\right)\right]$ (stable equilibrium point)
\Longrightarrow steady-state phase error depends on the freq. offset between reference and free-ruming freq. of the VCO

To summarize:

- PD: unetiplier + ideal LPF $\left\langle V_{P D}\right\rangle=K_{P D} \operatorname{sic} \phi_{\varepsilon}$
- VCO: linear tuning $\omega_{\text {out }}=\omega_{F R}+k_{v c o} V_{t \text { tue }}$

$$
\phi_{\varepsilon}:=\phi_{\mathrm{ref}}-\phi_{\text {out }} \quad \Delta \omega:=\omega_{\mathrm{ref}}-\omega_{\mathrm{FR}} \quad K:=K_{P D} \cdot K_{\mathrm{Vco}}\left[\frac{\mathrm{rad}}{\mathrm{~s}}\right]
$$

$$
\dot{\phi}_{\varepsilon}=\Delta \omega-k \sin \phi_{\varepsilon}
$$

- $\left|\frac{\Delta \omega}{k}\right|<1: \quad \varphi_{\varepsilon}=\operatorname{arsin}\left(\frac{\Delta \omega}{k}\right)$ equilib. paint "LOCK STATE"
- $\left|\frac{\Delta w}{K}\right|>1$: ne equilib paints "OUT-OF-LOCK" "LOCK RANGE" $\quad \Delta \omega_{L}=k$

IMPOSE LOCK
Iuterpretaticu: impose equality
๑
 at steady-state)
$\omega_{\text {out }}=\omega_{\text {FR }}+k_{\text {NCo }} V_{\text {true }}=\omega_{\text {ref }}$
$\Longrightarrow \sin \phi_{\varepsilon}=\frac{\Delta \omega}{k}$ same result of
The lock state condition and lock rouge eau be intuitively explained by considering that the PD output is limited:

$\left\langle V_{P D_{\text {max }}}=K_{P D}>\frac{\Delta \omega}{K_{V C 0}}\right.$ to reach lock $\Longrightarrow \frac{\Delta \omega}{K_{v c o K_{P D}}<1 \text { same canditicu of }}$ diff. eq. approach
The limited dynamic range of PD limits lock range.

If course, the VCO also limits lacks range:

Perturbation analysis of the differential equation based an linearization:
$\dot{\phi}_{\varepsilon}=\Delta \omega-k \sin \phi_{\varepsilon} \quad \underline{H_{p}} \cdot\left|\frac{\Delta \omega}{k}\right|<1$ stable equilib exists

- $\Delta \phi_{e} \ll 1$ rad suall perturbation

If $\Delta \omega=0: \dot{\phi}_{\varepsilon}=-k \sin \phi_{\varepsilon}$

Let's eaupute the imput-to-autput trauffer function $\phi_{\text {out }}$ vs. $\phi_{\text {ref }}$ of the PLL:

$$
\begin{aligned}
& \omega_{\text {out }}=\omega_{f r}+k_{\text {vcr }} V_{\text {the }}(t)= \\
& =\omega_{f r}+K_{V c o} V_{\text {twee, }}+K_{V c o} V_{\text {twee }}(t)= \\
& =\omega_{\text {out, } 0}+K_{v c o} \sigma_{\text {awe }}(t)= \\
& =\omega_{\text {out }, 0}+K_{\text {rc }} K_{\text {pD }}\left[\phi_{\text {ref }}(t)-\phi_{\text {out }}(t)\right] \\
& \phi_{\text {out }}=\int_{-\infty}^{t} \omega_{\text {alt }}\left(t^{\prime}\right) d t^{\prime}=\omega_{\text {out, }} \cdot \cdot \cdot t+\varphi_{\text {alt }}(t) \text { causider } \\
& \downarrow \\
& \text { AbSOLUTE } \\
& \text { PHASE } \\
& \text { excess in its } \\
& \text { PHASE "rural signal" } \\
& \text { variations } \\
& \Longrightarrow \dot{\varphi}_{\text {out }}=K_{V C B} \cdot K_{P D}\left[\varphi_{\text {ref }}(t)-\varphi_{\text {out }}(t)\right]=\dot{\phi}_{\text {out }}-\omega_{\text {out, }} \text { reflect } D C \\
& s \varphi_{\text {out }}(s)=K\left[\varphi_{\text {ref }}(s)-\varphi_{\text {out }}(s)\right] \\
& \varphi_{\text {out }}^{\phi_{\text {ref }}}=\frac{k}{s+k}=T(s) \\
& T(s)=\frac{\phi_{\text {out }}}{\phi_{\text {ref }}}=\frac{s \phi_{\text {out }}}{s \phi_{\text {ref }}}=\frac{\Omega_{\text {out }}}{\Omega_{\text {ref }}}
\end{aligned}
$$

where $Q=\alpha[\varphi]$ and $\Omega=\alpha[\omega]$ (Lagrange transform)

Interpretation: in this PL, the VCO "follows" the phase and frequency of the reference clock with $B W=K$. Duly show variations of Dress (or $\omega_{\text {res }}$ are followed by the Vico.

$$
S_{\phi \text { out }}=|T(f)|^{2} \cdot S_{\phi \text { pref }}
$$

Low-pass filtering of input phase unwise

$$
\alpha(f) \simeq \frac{S_{\phi}^{\text {ss }}(f)}{2}
$$

Baud-pass filtering of irepert signal

Note: trade-ofl between BW and LOCK RANGE

Equivaleut model of livear PLL

- VCO: $\varrho_{\text {out }}(t)=\int_{-\infty}^{t} K_{v c o} \cdot v_{\text {twue }}\left(t^{\prime}\right) d t^{\prime}=$
excessionose

$$
\begin{aligned}
& \text { Qout }_{\text {out }}(s)=\frac{K_{\text {vco }}}{s} \cdot V_{\text {twe }}(s) \\
& V_{\text {ture }} \longrightarrow \frac{K_{\text {vco }}}{s} \longrightarrow \varphi_{\text {out }}
\end{aligned}
$$

- PD: $v_{P D}=k_{P D}\left[\phi_{\text {reff }}-\phi_{o u t}\right]$ livear $P D$

$P \amalg$
linear coutinous - time (average) undel of a PLL

First order PLL: $F(s)=1$

$$
\begin{aligned}
& G_{\operatorname{loop}}(s)=-K_{p D} \cdot F(s) \cdot \frac{K_{\text {veo }}}{s}=-\frac{K}{s} \\
& T_{\text {ideal }}(s)=1
\end{aligned}
$$

Second order PLL: $\xlongequal{F(s)=} \frac{1}{1+s \tau}$ (uare realistic thau 1st order)

$$
G_{\text {eopp }}(s)=\frac{k}{s} \frac{l}{1+s \tau}
$$

$$
T_{\text {ideal }}(s)=1
$$

vco \quad filter

$$
\begin{aligned}
& T(s)=\frac{G_{\operatorname{leop}}(s)}{1+G_{\operatorname{loop}}(s)}=\frac{K / s \frac{1}{1+s \tau}}{1+K / s \frac{1}{1+s \tau}}=\frac{K}{T_{\text {real }}^{2} \tau+s+K}= \\
& =\frac{1}{s^{2} \frac{\tau}{k}+\frac{s}{k}+1}=\frac{1}{\frac{s^{2}}{\omega_{p}^{2}}+\frac{2 \xi s}{\omega_{p}}+1} \\
& \omega_{p}=\sqrt{\frac{K}{\tau}} \text { natural frequency } \\
& \xi=\frac{1}{2 \sqrt{k \tau}}=-\frac{\operatorname{Re}(P)}{|P|} \text { damping factor } \\
& p_{1-2}=-\xi \omega_{p} \pm j \sqrt{1-\xi^{2}} \omega_{p}
\end{aligned}
$$

By choice of τ and K you can set ω_{p} and ξ.

Closed loop poles at 45 in Gauss plane (best tradeoff betwecu overshoot and rise tire):

$$
\begin{array}{r}
\xi=\frac{1}{2 \sqrt{k \tau}}=\frac{\sqrt{2}}{2} \rightarrow k \tau=\frac{1}{2} \\
k=\frac{1 / \tau}{2}
\end{array}
$$

factor 2
$\rightarrow \log$ distance
\Rightarrow Geassover of Glop (K) ave octave before the secund pale $(1 / \tau)$

$$
\omega_{p}=\sqrt{\frac{k}{\tau}}=\sqrt{\frac{1}{2 \tau^{2}}}=\frac{1}{\sqrt{2}} \cdot \frac{l}{\tau}=\sqrt{2} k
$$

The bandwidth is mot equal to k (like ane would expect frau the graphical approximation) but it is actually equal to $\sqrt{2} k$.
The phase unargiu is 63°.
\rightarrow again trade-off between BW and LOCK RANGE

Static Phase Error
It is the residual error at steady-state between $\phi_{\text {out }}$ ane $\phi_{x y}$.

1. What is the value of ϕ_{z} at steady-state?

Same result obtained with diff equations, but it holds for any order PL that has $F(0)=1$
variaticus at steady -state
 $\Delta \omega_{r}$
2. Why is the static ϕ_{ε} not ul, although \mid Gean $\mid \longrightarrow \infty$ at $D C$?

$$
\left|G_{\text {lop }}\right|=\frac{k}{s} \cdot \frac{l}{1+s \tau}
$$

(and order PLL)

In a voltage amplifier:

$$
v_{\varepsilon}=\underbrace{A_{0}}_{\substack{v_{0 i t}}} \longrightarrow 0
$$

Final Value Theorem: $\left[\lim _{t \rightarrow \infty} \phi_{\varepsilon}(t)=\lim _{s \rightarrow 0} s \phi_{\varepsilon}(s)\right]$

$$
\frac{\Phi_{\varepsilon}(s)}{\phi_{\text {ref }}(s)}=1-T(s)=\frac{1}{1+G_{\text {Reap }}(s)}=\frac{s(1+s \tau)}{s(1+s \tau)+K}
$$

$$
\begin{aligned}
& \omega_{\text {ref }}(t)=\Delta \omega_{r} \cdot \mu(t), \quad \text { step function } \mu(t)= \begin{cases}1 & t>0 \\
0 & t<0\end{cases} \\
& \Omega_{\text {ref }}(s)=\frac{\Delta \omega_{r}}{s} \\
& \xrightarrow[0]{ } \xrightarrow{\square} \\
& \Longrightarrow Q_{\text {ref }}(s)=\frac{\Omega_{\text {ref }}(s)}{s}=\frac{\Delta \omega_{r}}{s^{2}} \\
& \Phi_{\varepsilon}(s)=\frac{\Delta \omega_{r}}{s^{2}} \cdot \frac{s(1+s \tau)}{s(1+s \tau)+k} \\
& \text { F.V.T. } \\
& \Longrightarrow \lim _{s \rightarrow 0} s \phi_{\varepsilon}(s)=\lim _{s \rightarrow 0} s \cdot \frac{\Delta \omega_{r}}{s s^{z}} \cdot \frac{s(1+s \tau)}{s(1+s \tau)+k}=\frac{\Delta \omega_{r}}{k}=\varphi_{\varepsilon}\left(t^{*}\right)
\end{aligned}
$$

So the static phase error is due to static phase error the mature of the perturbation we are applying to the system. A step in frequency is actually a roup in phase. Since the "type" (i.e. unuber of pales in the origin) of the transfer function $\phi_{\text {ref }} \rightarrow \phi_{2}$ is l in this case, the F.V.T. returns a uan-unl value of the static phase error.
Note that in the voltage amplifier example we were (implicitly) applying a voltage step (rot a seaup) at the input so the error was (ideally) nil.

In ease of en phase step: $\phi_{\text {ref }}=\frac{\Delta \phi}{s}$
$\Longrightarrow \lim _{s \rightarrow 0} s Q_{\varepsilon}(s)=s \cdot \frac{\Delta \omega_{r}}{s} \cdot \frac{s(1+s \tau)}{s(1+s \tau)+k}=Q \rightarrow \begin{aligned} & \text { static phase } \\ & \text { ereror is nil }\end{aligned}$

So how can we build a PLL with zero static φ_{ε} even after a frequency step?
In general: Glop has n integrators and pres is of order m

$$
\begin{aligned}
& G \log (s)=\frac{k}{s^{n}} \cdot \frac{1}{H(s)} \quad \varphi_{x o g}(s)=\frac{\Delta}{s^{m}} \\
& \lim _{t \rightarrow \infty} \varphi_{\varepsilon}(t)=\lim _{s \rightarrow 0} s \cdot \frac{\Delta}{s^{m}} \frac{s^{n} H(s)}{s^{n} H(s)+K}=\lim _{s \rightarrow 0} \frac{\Delta}{k} s^{n-m+1}= \begin{cases}\frac{\Delta}{K} & n=m-1 \\
0 & n \geqslant m\end{cases}
\end{aligned}
$$

Static (phase) error is zereo IF the unuber of integrators in $G \operatorname{loop}(s)$ (= type of $G l o o p(s))$ is at least equal to the order of the input perturbation.

Phase Noise

reference oscillator phase elise

$$
S_{\varphi_{a u t}}(f)=S_{\varphi_{r n}}|T(f)|^{2}+S \varphi_{v_{n}}|1-T(f)|^{2}
$$

Interpretation:

- within PL BW the VCO follows the phase raise of the reference clock
- out of PLL BW, the VCO follows its own phase raise

Capture Range
Consider a perturbation of the reference frequency:

$K_{p o} \sin [\Delta \omega t+\ldots]$. for a fast step we can initially neglect this term

$$
\Longrightarrow V_{\text {twee }} \simeq K_{p D}|F(\Delta \omega)| \cdot \sin [\Delta \omega t+\ldots]
$$

$$
\begin{aligned}
& \left.\Longrightarrow \quad\left|\begin{array}{l}
V_{\text {tue }} \mid
\end{array} \leqslant K_{P D} \cdot\right| F(\Delta \omega) \right\rvert\, \text { since }|\sin [\ldots]| \leqslant 1 \\
&\left|\frac{\Delta \omega}{K_{v c o}}\right| \leqslant K_{P D} \cdot|F(\Delta \omega)| \quad \text { "CAPTURE (ar HOLD) RANGE" } \\
&|\Delta \omega| \leqslant K_{\text {vo }} K_{P D}|F(\Delta \omega)| \Longrightarrow \Delta \omega_{c}=K\left|F\left(\Delta \omega_{c}\right)\right|
\end{aligned}
$$

The capture range indicates if the PL can follow a quick and wide variation of the reference Frequency until steady-state is reached.
The lack range indicates instead if the PL can fallow a fixed frequency abready at steady state.

Iuteger-N PLL

Frequency follower

Valtage follower

Frequency unitiplier

Voltage amplifier

$$
T_{\text {out }}=2 T_{\text {in }}
$$

can be implemented with:
usodulo-2 canter (MSB output)

- Equivalent unodel of the frequency divider

$$
\begin{aligned}
& x_{\text {out }} \longrightarrow \underset{\Uparrow}{\mathbb{N}} \underset{N}{\text { freq dir }} \longrightarrow x_{\text {div }} \\
& \varphi_{\text {out }} \longrightarrow \frac{1}{N} \longrightarrow \varphi_{\text {div }} \\
& \varphi_{\text {out }}=\frac{\varphi_{\text {div }}}{N} \\
& \omega_{\text {div }}=\frac{\omega_{\text {out }}}{N}
\end{aligned}
$$

Equivalent model of integer -N PLL

$$
\begin{gathered}
G_{\text {loop }}(s)=K_{p D} F(s) \frac{K_{\text {vice }}}{s} \frac{1}{N} \quad T_{\text {ideal }}(s)=N \\
T(s)=\frac{N \cdot G_{\text {loop }}(s)}{1+G_{\text {loop }}(s)}
\end{gathered}
$$

Phase raise:

$$
\begin{aligned}
& S_{\varphi_{\text {out }}}=S_{\varphi_{\text {ra }}}|T|^{2}+\left.S_{Q_{o_{n}}} \frac{1}{1+G_{\text {tore }}}\right|^{2}
\end{aligned}
$$

(HFF) I outside BW
\Longrightarrow Int-N PLUs amplify the reference phase vase

Type -II PLL
We introduce type-II PULs to deal with the static phase error, as well as other issues, of type-I PLus.

Issues of type-I PUs

$$
\begin{gathered}
G_{l o o p}(s)=-K_{p D} \frac{1}{1+s \tau_{p} \frac{K_{v c e}}{(S)} \frac{1}{N}} \varphi_{r n} \quad \square \text { type-I system } \\
\hline \frac{1}{N}
\end{gathered}
$$

1) Limited VCO raise filtering

$$
-\frac{\phi_{\text {out }}(s)}{\phi_{r_{n}}(s)}=N T(s)=N \frac{G_{l o p o}(s)}{1+G_{e_{o o p}}(s)}
$$

$$
-\frac{Q_{\text {out }}(s)}{Q_{\text {th }}(s)}=1-T(s)=\frac{1}{1+C_{\text {teopo }}(s)}
$$

 corver frequency filtered output uaise prefile typical VCO raise prafile
$\Longrightarrow V C O$ uaise is rot well filtered!
(LF compoueuts are still relevant)
2) Static phase ereare

At steady-state:

$$
\begin{aligned}
\omega_{\text {out }} & =N \omega_{\text {rof }} \\
& =\omega_{F R}+K_{\text {vco }} V_{\text {ture }} \\
\left\langle V_{P D}\right\rangle & =V_{\text {twue }}=K_{P D} \varphi_{E}
\end{aligned}
$$

$$
\Longrightarrow \quad \varphi_{\varepsilon}=\frac{N \omega_{r g f}-\omega_{F R}}{K_{V C o} \cdot K_{P D}} \neq 0
$$

(q_{ε} is paraueter depeudent i.e. it may vary with teuperature, aging etc.)
3) Refereuce spurs

We waut to reurore the HF campouents frou the PD output, since the LPF will altennate then but wdi't caupletely cancal them.

Type-II PLLs solve thase 3 issues

Equivaleret uadel:

$$
\operatorname{Gelop}(s)=\frac{-K\left(1+s \tau_{z}\right)}{\left.s^{2}\right)} \cdot \frac{1}{N}
$$

1) Better VCO usise filtering

$$
\begin{aligned}
\frac{Q_{\text {ect }}(s)}{Q_{v_{n}(s)}} & =1-T(s)= \\
& =\frac{1}{1+G_{\text {loop }}(s)}=K^{\prime}=\frac{K}{N} \quad \vdots+40 \mathrm{~dB} / \mathrm{dec} /: \\
& =\frac{1}{1+\frac{K^{\prime}\left(1+s \tau_{z}\right)}{s^{2}}}=\frac{s^{2}}{s^{2}+s K^{\prime} \tau_{z}+K^{\prime}}
\end{aligned}
$$

typical VCO uaise profile filtered output uaise prafile
2) Zero static phase errar

$$
\frac{Q_{z}(s)}{Q_{r a f}(s)}=\frac{1}{1+G_{\operatorname{loop}}(s)}=1-T(s)=\frac{s^{2}}{s^{2}+s K^{\prime} \tau_{z}+K^{\prime}}
$$

Let's apply an input frequency step:

$$
\begin{aligned}
& \Omega_{\text {uy }}(s)=\Delta \omega / s \\
& \phi_{x y}(s)=\Delta \omega / s^{2}
\end{aligned}
$$

$$
q_{e}\left(t^{\infty}\right)=\lim _{s \rightarrow 0} s \frac{\Delta \omega}{s^{2}} \cdot \frac{s^{2}}{s^{2}+s k^{\prime} \tau_{z}+k^{\prime}}=0 \quad \begin{aligned}
& \text { (as expected frau } \\
& \text { previous discussions) }
\end{aligned}
$$

3) No reference spurs

At steady-state $\varphi_{e}=0 \Longrightarrow$ we con build a phase detector such that:
out $=0$ when $\varphi_{2}=0$ instead of just: <ant> $=0$ when $\varphi_{\varepsilon}=0$

Tri-state phase detector (PFD - Phase/Frequeucy) Detector
 reising-edge sensitive
 out \qquad out
 tri-state
out

Implementation of the PFD:

Same happens for $t_{\varepsilon}<0$.

So why is it called phase/frequency detector?
Consider for example during start-up when $w_{\text {rut }} \gg w_{d i}$. Then the output will be at $+l$ far most of the time since rising edges of "ref" are inch uncre frequent. So "out" is rot proporticual to t_{ε} however it provides a positive value so that the loop is forced to increase $\omega_{\text {dir }}$.

$\omega_{\text {ref }}$

Coin

<out> ≈ 1

In the opposite situation:

Now how can we obtain the summing u ode in the PFD implementation? $\square \square$ Charge Pump

- Sum of PDF out with current
- High output impedance correct ${ }^{\vee}$ © to perform integration without the wed of OPAMP
- Equivalent model of the PFD

Consider to apply a $t_{\varepsilon_{0}}$ step @ $t=0$

$$
\varphi_{\varepsilon_{0}}=\frac{2 \pi}{T_{\text {red }}} t_{\varepsilon_{0}} \quad \varphi_{\varepsilon}(s)=\frac{\varphi_{e_{0}}}{s}
$$

Evaluate $V_{\text {true }}(s)$ to find $\frac{V_{\text {tue }}(s)}{\phi(s)}$.

$$
\begin{aligned}
& \frac{d V_{\text {tune }}}{d t}=\frac{I_{P_{0}}}{C} \\
& \Delta V=t_{\varepsilon} \frac{I_{P_{0}}}{C}
\end{aligned}
$$

Gardver's limit:

$$
B W_{P L L}<\frac{f_{\text {ruf }}}{20}
$$

Vture can be appreximated as a raup:

$$
\begin{aligned}
V_{\text {tume }}(t) & \simeq \frac{\Delta V}{T_{\text {red }}} \cdot t=\frac{t_{\varepsilon_{0}} I_{P_{0}}}{C T_{\text {reg }}} \cdot t \\
& =\frac{I_{R_{0}}}{C} \cdot \frac{Q_{e_{0}}}{2 \pi} \cdot t \quad(t>0)
\end{aligned}
$$

$$
\begin{aligned}
& \text { to the } C P
\end{aligned}
$$

Couplete inpleuentation of a type-II PLL with PFD:

|Passive Netwarks ||
"to obtain voltage/current auplification without active componeuts '

Note: at RF frea. it is posseble
(1) Resanant circuits
 to implemeut integrated inductors

Impedence: $z=\frac{V}{I_{g}}=\frac{I_{R} \cdot R}{I_{g}}=H(s) R$ parallel RLC

$$
\frac{I_{R}}{I_{g}}=H(s)=\frac{1 / R}{1 / R+1 / s L+s C}=\frac{s \omega_{0} / Q}{\omega_{0}^{2}+s \omega_{0} / Q+s^{2}}
$$

$$
\omega_{0}=\frac{l}{\sqrt{L C}} \quad Q=\omega_{0} R C=\frac{R}{\omega_{0} L}=\sqrt{\frac{C}{L}} \cdot R
$$

$$
\begin{aligned}
& p_{1-2}=-\frac{\omega_{0}}{2 Q} \pm j \omega_{0} \sqrt{1-1 / 4 Q^{2}} \\
& \xi=\frac{1}{2 Q}=\frac{1}{2 \omega_{0} R C}
\end{aligned}
$$

Meaving of Q factor:

1. inversely propartianal to damping factar ξ ξ suall $\Longleftrightarrow Q$ large \Longleftrightarrow underdamped pales

2. $H(j \omega)=\frac{j \omega \omega_{0} / Q}{\omega_{0}^{2}+j \omega \omega_{0} / Q-\omega^{2}}=\frac{1}{1+j Q\left(\frac{\omega_{0}}{\omega_{0}}-\frac{\omega_{0}}{\omega_{0}}\right)}$

Iupose $|H(j \omega)|^{2}=\frac{1}{2} \longrightarrow \frac{1}{1+Q^{2}\left(\frac{\omega}{\omega_{0}}-\frac{\omega_{j}}{\omega}\right)^{2}}=\frac{1}{2}$

$$
\left[\left[\frac{\Delta \omega}{\omega_{0}}=\frac{\omega_{2}-\omega_{1}}{\omega_{0}}=\frac{\omega_{0} / 2 Q+\omega_{0} / 2 Q}{\omega_{0}}=\frac{1}{Q}\right]\right]
$$

Q is the ratio between the center frequency and the -3dB bandwidth of the frequency response.
3. energy meaning $Q=\underset{v_{0} R C}{\omega_{0}}=\omega_{0} \frac{\varepsilon_{\text {stored }}}{P_{\text {dis }}}$

$$
E_{\text {stored }}=\frac{1}{2} L i_{L}^{2}(t)+\frac{1}{2} C v^{2}(t)=\frac{1}{2} C|\bar{V}|^{2} \quad P_{\text {diss }}=\frac{1}{2} \frac{|\bar{V}|^{2}}{R}
$$

Q is wo times the ratio between stared energy and dissipated power in a resonator
Q is also 2π times the ratio between stored and dissipated energy in each cycle
4. amplification at resonance
 $\omega_{0}=\frac{1}{\sqrt{L C}}$

$$
\left|I_{c}\right|=\omega_{0} C \cdot|V|=\omega_{0} C\left|I_{g}\right| \cdot R=Q\left|I_{g}\right|
$$

$j \omega_{0} L \| \frac{1}{j \omega_{0} C} \approx 0$
Q is the current gain between input current and capacitor/inductar current

Same arguments are valid for series RLC
Impedance: $Z=\frac{V_{g}}{I}=R \frac{V_{g}}{V_{R}}=\frac{R}{K(S)}$

$$
\frac{V_{R}}{V_{g}}=K(s)=\frac{R}{R+s L+1 / s C}=\frac{s \omega_{0} / Q}{\omega_{0}^{2}+s \omega_{0} / Q+s^{2}}
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\frac{1}{\omega_{0} R C}=\frac{\omega_{0} L}{R}=\sqrt{\frac{L}{C}} \cdot \frac{1}{R}=\frac{1}{2 \xi}
$$

Impedance transformation (*matching networks*)

Upward/Downward impedance transformation to avoid signal reflection ($=$ power loss).

In general
 equivalence
To have the equivalence hold:

$$
\frac{1}{2} \frac{\left|V_{\text {in }}\right|^{2}}{R_{\text {in }}}=\frac{1}{2} \frac{\left|V_{\text {out }}\right|^{2}}{R_{L}} \Rightarrow\left[R_{\text {in }}=\frac{R_{L}}{\frac{\left|V_{\text {out }}\right|^{2}}{\left|V_{\text {in }}\right|^{2}}}=\frac{R_{L}}{G^{2}}\right]
$$

$G>1$: amplification \Rightarrow DOWNWARD transf.
$G<1$: attenuation \Rightarrow UPWARD transf.

* Upward L-match matwork (simplest network)

At resonance: $\left|I_{L}\right| \simeq Q_{L}\left|I_{g}\right| \simeq\left|I_{d}\right|$ where $Q_{L}=\frac{\omega_{0} L}{R_{s}} \gg 1$
fully real impedance

$$
\left|V_{\text {our }}\right|=\left|I_{L}\right| \cdot R_{s}=\left|I_{c}\right| R_{s}=
$$

$R_{\text {in }} \gg R_{s} \longrightarrow$ UPWARD impedance trausfarvention

$$
\begin{aligned}
& R_{\text {in }}+j \varnothing \\
& \left|z_{\text {in }}\right|=\frac{\left|V_{\text {in }}\right|}{\left|I_{g}\right|}=\frac{\left|V_{\text {out }}\right| Q_{L}}{\left|I_{L}\right| / Q_{L}}=Q_{L}^{2} R_{s} \longrightarrow z_{\text {in }} \cong Q_{L}^{2} R_{s} \\
& \left|I_{L}\right|=\frac{\left|V_{\text {out }}\right|}{R_{s}} \quad \text { at } \omega_{0}=\frac{1}{\sqrt{L C}} \text {, lossless approx. }
\end{aligned}
$$

- General case (ur lossless approx.)

series-to-parallel transformation:
equivalence valid for any

$$
j \omega L+R_{s}=j \omega L_{p} R_{p}
$$

$$
R_{3}\left(1+j Q_{L}\right)=j \frac{j}{j \omega L_{P} R_{P}+R_{P}} \quad \text { where } \quad Q_{L}=\frac{\omega L}{R_{3}}
$$

$$
\begin{array}{r}
R_{s}\left(1+j Q_{L}\right)\left(j \omega L_{p}+R_{p}\right)=R_{R_{e}}^{j \omega L_{p} R_{p}} \\
R_{s} R_{p}-R_{s} Q_{L} \omega L_{p}=0 \\
\omega_{s} L_{p}=\frac{R_{p}}{Q_{L}} R_{s} \\
R_{P}=R_{s}\left(1+Q_{L}^{2}\right) \\
L_{p}=L \frac{1+Q_{L}^{2}}{Q_{L}^{2}} \\
Z_{\text {in }}=R_{p}=\left(1+Q_{L}^{2}\right) R_{s}
\end{array}
$$

$$
R_{s} Q_{L} R_{p}+R_{s} \omega L_{p}=\omega L_{p} R_{p}
$$

$$
R_{s} Q_{L} R_{P}+R_{s} \frac{R_{P}}{Q_{L}}=\frac{R_{P}}{Q_{L}} R_{P}
$$

- it has a slight
\rightarrow shift frow the loss $=$ less cipprox due to beth R_{p} and L_{p}
at $\omega_{0}=\frac{l}{\sqrt{L_{P} C}}$, , approx.
mot LIII

L-watch notwork design rules
$\omega_{\text {., }} R_{s}$ and R_{P} known transformation ratio $R_{P /} / R_{s}$

1. $R_{P}=R_{s}\left(1+Q_{L}^{2}\right) \Longrightarrow Q_{L}=\sqrt{\frac{R_{P}}{R_{L}}-1}$

large transformation \Longrightarrow uarrawband transformation
2. $Q_{L}=\frac{\omega_{0} L}{R_{s}} \Longrightarrow L$
3. $\omega_{0}=\frac{1}{\sqrt{L_{P} C}}$ and $L_{P}=L \frac{1+Q_{L}^{2}}{Q_{L}^{2}} \Longrightarrow C$

* Downward L-match uetwork

- Lossless approximation: $R_{p} \simeq \infty$

$$
\begin{aligned}
\left|V_{\text {out }}\right| & =Q_{c}\left|V_{\text {in }}\right| \text { where } \quad Q_{c}=\omega_{0} \subset R_{p} \\
& \Longrightarrow Z_{\text {in }}\left(j \omega_{0}\right) \cong \frac{R_{p}}{Q_{c}^{2}} \quad \omega_{0}=\frac{l}{\sqrt{C L}}
\end{aligned}
$$

- Guural case: parallel-ta-series transformation (aroid resonance)

$$
\begin{aligned}
& R_{s}=\frac{R_{p}}{1+Q_{c}^{2}} \\
& C_{s}=\frac{1+Q_{c}^{2}}{Q_{c}^{2}}
\end{aligned}
$$

$$
Z_{\text {in }}\left(j \omega_{0}\right)=R_{s} \quad \omega_{0}=\frac{l}{\sqrt{C_{s} L}}
$$

All types of L-natch

UPWARD

DOWNWARD

Choice criteria: - frequency response

- DC blocking
- absarptian of stray capacitances

Basic relations for any type of transformation:

$$
R_{p}=R_{s}\left(1+Q^{2}\right) \quad X_{p}=x_{s}\left(1+\frac{1}{Q^{2}}\right) \quad Q=\frac{X_{s}}{R_{s}}=\frac{R_{p}}{X_{p}}
$$

* I-match uetwark (or "Calpitts" uetwork)

- Lossless approximation: $R_{p} \simeq \infty$

$$
\begin{aligned}
I=s C_{2} V_{\text {out }} & \cong-s C_{1} V_{\text {in }} \\
\downarrow & V_{\text {out }} \\
V_{\text {m }} & -\frac{C_{l}}{C_{2}}
\end{aligned}
$$

power diss power diss. $R_{\text {in }} \cong R_{P}\left(\frac{C_{2}}{C_{l}}\right)^{2}$

$$
\begin{aligned}
& Q=? C_{2}>C_{1} \text { UPWARD } \\
& Q=\omega_{0} \frac{\varepsilon_{\text {stored }} \cong \omega_{0} R_{p} C_{2}\left(1+\frac{C_{2}}{C_{l}}\right)}{P_{\text {dis }} \uparrow} \quad C_{2}<C_{1} \text { DOWNWARD } \\
&\left\{\begin{array}{l}
E_{\text {stored }}=\frac{1}{2} \frac{C_{1} C_{2}}{C_{1}+C_{2}}\left|V_{l}\right|^{2}
\end{array}\right. \\
&
\end{aligned}
$$

Q factor of π-network $>Q$ factor of L-network

- General case

$$
L_{1}+L_{2}=L
$$

UPWARD + DOWNWARD
L-watch L-watch

$$
\begin{aligned}
R_{s}=\frac{R_{P}}{1+Q_{2}^{2}} \text { where } \begin{aligned}
Q_{2} & =w_{0} R_{P} C_{2} \\
& =\frac{\omega_{s} L_{2}}{R_{s}} \\
R_{\text {in }}=R_{s}\left(1+Q_{1}^{2}\right) \quad \text { where } Q_{1} & =\frac{w_{0} L_{1}}{R_{s}} \\
R_{\text {in }} & =R_{P} \frac{1+Q_{1}^{2}}{1+Q_{2}^{2}} \quad \frac{R_{\text {in }}}{R_{p}}
\end{aligned}=\frac{1+Q_{1}^{2}}{1+Q_{2}^{2}}
\end{aligned}
$$

I-match network design rules
$w_{0}, R_{p}, R_{\text {in }}$ and Q known

1. $Q=\frac{\omega_{0}\left(L_{1}+L_{2}\right)}{R_{s}}=Q_{1}+Q_{2}=\sqrt{\frac{R_{i m}}{R_{s}}-1}+\sqrt{\frac{R_{p}}{R_{s}}-1} \Longrightarrow R_{s}$
2. $L_{1}+L_{2}=\frac{Q \cdot R_{s}}{\omega_{0}} \Longrightarrow L$
3. $Q_{2}=\omega_{0} R_{P} C_{2} \Longrightarrow C_{2}$
4. $Q_{1}=\frac{\omega_{0} L_{s}}{R_{s}} \Longrightarrow L_{1} \Longrightarrow L_{2}$
5. $\omega_{0}=\frac{1}{\sqrt{L_{2} C_{2} \frac{1+Q_{1}^{2}}{Q_{2}^{2}}}}=\frac{1}{\sqrt{L_{1} C_{1} \frac{1+Q_{1}^{2}}{Q_{1}^{2}}}} \Longrightarrow C_{1}$

ACL types π-match networks

(always UPWARD + DOWNWARD)

* Resonator with tapped capacitor (or inductor)

- Lossless approximatiar: $R_{p} \simeq \infty$

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{\text {in }}} & \cong \frac{C_{1}}{C_{1}+C_{2}} \quad \frac{1}{2} \frac{\left|V_{\text {out }}\right|^{2}}{R_{p}}=\frac{1}{2} \frac{\left|V_{\text {in }}\right|^{2}}{R_{\text {in }}} \\
& \Longrightarrow R_{\text {in }} \cong R_{p}\left(1+\frac{C_{2}}{C_{1}}\right)^{2}
\end{aligned}
$$

UPWARD trousforemation

* T-match network

(and all other peruntatieus)
- Lossless approximation: $R_{s} \simeq 0$

$$
\begin{aligned}
-V & =3 L_{1} I_{1} \cong 3 L_{2} I_{2} \quad \frac{1}{2} R_{\text {in }}\left(I_{1}\right)^{2}=\frac{1}{2} R_{s}\left(I_{2}\right)^{2} \\
& \Longrightarrow R_{\text {in }} \cong R_{3}\left(\frac{L_{1}}{L_{2}}\right)^{2}
\end{aligned}
$$

$$
L_{1}>L_{2} \text { UPWARD }
$$

$$
L_{1}<L_{2} \text { DOWNWARD }
$$

* Cascaded L-match network

$$
\begin{aligned}
& R_{\text {in }}=R_{s}\left(1+Q_{1}^{2}\right) \text { where } Q_{1}=\frac{w_{0} L_{1}}{R_{s}} \\
& R_{s}=R_{p}\left(1+Q_{2}^{2}\right) \text { where } Q_{2}=\frac{w_{0} L_{2}}{R_{p}} \\
& R_{\text {in }}=R_{p}\left(1+Q_{2}^{2}\right)\left(1+Q_{1}^{2}\right)
\end{aligned}
$$

(and all other perumtaticus)
(2) Inductor coupling (trauffouners)

\vec{H}_{1}, \vec{H}_{2} same orientation*
case of POSITIVE MUTUAL ENERGY

* depards on both 1) wire windings and 2) current direction

the dots indicate if the coupling is positive $(M>0)$ or negative ($M<0$)

both currents euter/exit the dots
only one current euters/exits the dot

$$
\left\{\begin{array} { l }
{ \phi _ { 1 } = L _ { 1 } i _ { 1 } + M i _ { 2 } } \\
{ \phi _ { 2 } = M i _ { 1 } + L _ { 2 } i _ { 2 } }
\end{array} \left\{\begin{array}{l}
v_{1}=\dot{\phi}_{1} \\
\sigma_{2}=\dot{\phi}_{2}
\end{array}\right.\right.
$$

egg. in this case it is POSITIVE
M is coupled inductance

$$
\begin{aligned}
\mathcal{E}_{m} & =\int_{0}^{t} \underbrace{\left(v_{1} i_{1}+\sigma_{2} i_{1}\right)}_{\text {power }} d t^{\prime} \stackrel{\downarrow}{=} \\
& =\underbrace{\text { positive untual energy }}_{\frac{1}{2} L_{1} i_{1}^{2}+\frac{1}{2} L_{2} i_{2}^{2}}+M i_{1} i_{2}
\end{aligned}
$$

Coupling coefficient $K:=\frac{|M|}{\sqrt{L_{1} L_{2}}}$
Conservation of energy implies that: $0 \leqslant k \leqslant 1$
both ideal cases no coupling maximum - coupling

Example: series of coupled inductors $i=i_{1}=i_{2}$

- Positive M (untual energy) because I_{1} and I_{2} both enter the dotted terunvals
- Total inductance $L_{\text {tat }}$:

$$
\begin{gathered}
\phi=\phi_{1}+\phi_{2}=L_{1} i_{1}+M i_{2}+\quad\left(L_{1}+L_{2}+2 M\right) i \\
+L_{2} i_{2}+M i_{1}=(1+K) L_{\text {tot }}=L_{1}+L_{2}+2 M=2 L+2 k \sqrt{L^{2}}=2 L(1+1+4 L \\
\\
\quad \text { if } L_{1}=L_{2}=L
\end{gathered}
$$

- negative m

$$
\begin{aligned}
&-\phi=\phi_{1}+\phi_{2}=L_{1} i_{1}-|M| i_{2}+L_{2} i_{2}-|M| i_{1}= \\
&=\left(L_{1}+L_{2}-2|M|\right) i \\
& \Longrightarrow L_{\text {tot }}=L_{1}+L_{2}-2|M|=2 L(1-k) \xrightarrow[\uparrow=1 \rightarrow 0]{t=0} 2 L
\end{aligned}
$$

$$
\text { if } L_{1}=L_{2}=L
$$

Equivalent models of coupled inductors

- Model based an ideal transformer

ideal transformer

Hp: 1) No flue dispersion

$$
\begin{aligned}
& \quad(k=1) \\
& \phi_{1}=n_{1} \phi \\
& \phi_{2}=n_{2} \phi \\
& \Longrightarrow \frac{\sigma_{1}}{v_{2}}=\frac{n_{1}}{n_{2}} \quad n_{2}>n_{1}
\end{aligned}
$$

Hopkire's law: m.m.f. $=\phi \cdot R=\frac{\phi}{\Lambda}$
Aupere's law: m.m.f. $=n_{1} i_{1}+n_{2} i_{2}$ magnetomotive force
Because of infinite $L: R \longrightarrow 0(\Lambda \longrightarrow \infty)$

$$
\begin{gathered}
\Longrightarrow m \cdot m f \longrightarrow 0 \Longrightarrow \frac{i_{1}}{i_{2}}=-\frac{n_{2}}{n_{1}} n_{1}>n_{2} \\
\Longrightarrow \frac{v_{1}}{v_{2}} \frac{i_{1}}{i_{2}}=\frac{n_{1}}{n_{2}}\left(-\frac{n_{2}}{n_{1}}\right)=-1 \longrightarrow \frac{v_{1} i_{1}+v_{2} i_{2}=0}{\downarrow}
\end{gathered}
$$ amplification

ideal trausforuer is lossless

$$
\text { Verificatian: } \begin{aligned}
& \phi_{1}=L_{1}+M, 2 \rightarrow L_{1}=\Phi_{1} \\
&\left.i_{1}\right|_{i_{2}=0} \\
& L_{1}=L_{1}+L_{M} \\
&=0 \rightarrow i_{1 a}=0 \rightarrow \phi_{1}=\left(L_{L}+L_{M}\right) i_{1}
\end{aligned}
$$

- T-circuit uodel

$$
\begin{aligned}
& \text { oue eud } \\
& \text { wust be joint } \\
& \text { use this model }
\end{aligned}\left\{\begin{array}{l}
L_{A}=L_{1}-M \\
L_{B}=L_{2}-M \\
L_{C}=M
\end{array}\right.
$$

Verification: $L_{1}=\left.\frac{\phi_{1}}{i_{1}}\right|_{i_{2}=0}=L_{A}+L_{C} \quad L_{2}=\left.\frac{\phi_{2}}{i_{2}}\right|_{i_{1}=0}=L_{B}+L_{C}$
|Oscillators
Eng: VCO or CCO \longrightarrow electrically-tured oscillators $\mathrm{XO} \longrightarrow$ crystal oscillator

Mathematical models: 1) feedback system
2) negative resistance

1) a. Negative feedback

Oscillation condition: $\left\{y\left(j \omega_{0}\right) \neq 0\right.$ with $\left.x\left(j \omega_{0}\right)=0\right\}$
 $s=j \omega_{0}$ is a solution of $G \ln (s)=-1$ $j \omega_{0}$ is a pole of the closed-lope system

$$
G_{\operatorname{loox}}\left(j \omega_{0}\right)=-1 \Longleftrightarrow \begin{cases}\left|G_{\operatorname{lop}}\left(j \omega_{0}\right)\right|=1 & \text { Barkhoueu's } \\ \angle G \operatorname{leop}\left(j \omega_{0}\right)= \pm 180^{\circ} & \text { equditious }\end{cases}
$$

 simespid at the output gets back through the loop with some amplitude and phase
b. Positive feedback

Oscillation condition

$$
\begin{aligned}
& G \operatorname{lom}\left(j \omega_{0}\right)=+1 \\
& \left\{\begin{array}{l}
\left|G \operatorname{limp}\left(j \omega_{0}\right)\right|=1 \\
\& G \operatorname{lemp}\left(j \omega_{0}\right)=0^{\circ} / 360^{\circ}
\end{array}\right.
\end{aligned}
$$

Examples:

- RC ascillatar (e.g. ring ascillator)

$$
\begin{aligned}
& \frac{V_{\text {out }}}{V_{\text {in }}}=-\frac{e_{l}}{l+S \tau} \\
& \quad G>0
\end{aligned}
$$

(simple linear noel)

Oscillation conditions:

$$
\text { 1. } \measuredangle \operatorname{Gloop}\left(j \omega_{0}\right)=-\pi
$$

2.

$$
\theta^{a^{3}}-3 \operatorname{arctg}\left(\omega_{0} \tau\right)=-\pi
$$

$$
\begin{gathered}
\left|G_{\operatorname{loge}}\left(j \omega_{0}\right)\right|=1 \\
\frac{G^{3}}{\left[1+\left(\omega_{0} \tau\right)^{2}\right]^{3 / 2}}=1 \\
G^{3}=(1+3)^{3 / 2} \\
G^{3}=2^{3}
\end{gathered}
$$

$$
\begin{array}{r}
\operatorname{arctg}\left(\omega_{0} \tau\right)= \\
\omega_{0} \tau=\sqrt{3} \\
\omega_{0}=\frac{\sqrt{3}}{\tau}
\end{array}
$$

$$
G=2
$$

$$
s= \pm j \omega_{0}= \pm j \frac{\sqrt{3}}{\tau}
$$

Root locus

- LC oscillator

pes. feedback

1. $\measuredangle G_{l o s p}\left(j \omega_{0}\right)=0$

$$
\Delta\left[\frac{j \omega_{0} \omega_{x} / Q}{\left(j \omega_{0}\right)^{2}+j \omega_{0} \omega_{2}+\omega_{2}^{2}}\right]=0
$$

$$
\frac{\pi}{2}-\operatorname{arctg}\left(\frac{\omega_{0} \omega_{x} / Q}{\omega_{\pi}^{2}-\omega_{0}^{2}}\right)=0
$$

$\frac{\pi}{2}$ when: $\omega_{0}=\omega_{x}$
2)

2. $|G \operatorname{loop}(s)|=1$

$$
\operatorname{GmR} \frac{U_{0}\left(U_{r} / Q\right.}{\sqrt{\left(\omega_{r}-\omega_{0}\right)^{2}+\left(\frac{\omega_{0}\left(\omega_{r}\right)^{2}}{Q}\right.}}=1
$$

$$
G_{m} R=1
$$

Root locus

Osulbation condition:
balance between dissipated power and active power

$$
\left\{z_{a}\left(j \omega_{0}\right)+z\left(j w_{0}\right)=0\right\}
$$

For example:

$$
\longrightarrow R_{a}+R=0, \quad \frac{l}{j \omega_{0}}+j \omega_{0} L=0 \longrightarrow R_{a}=-R, \quad \omega_{0}=\frac{l}{\sqrt{L C}}
$$

Iu geueral: $z_{a}\left(j \omega_{0}\right)=-z\left(j \omega_{0}\right) \rightarrow\left\{\begin{array}{l}\operatorname{Re}\left[z_{a}\left(j \omega_{0}\right)\right]=-\operatorname{Re}\left[z\left(j \omega_{0}\right)\right] \\ \operatorname{Im}\left[z_{a}\left(j \omega_{0}\right)\right]=-\operatorname{Im}\left[z\left(j \omega_{0}\right)\right]\end{array}\right\}$

To obtaiu a practical oscillator, we need an auplitude stablizatian evechauisur.
e.g. LC ascillator

- $G_{m} R<1 \longrightarrow$ pales iu LHP

- $G_{m} R>1 \longrightarrow$ poles in RHP

1) Autamatic auplitude cantral (regative feedback)

2) Nou-linearity of active devices

Nou-linear Gin

With suall sigual: $G_{m}>\frac{1}{R}$ hence oscillator starts up.

Oscillation then increases until the trauscouductance saturates.

Example:

We now reed to ask ourselves what amplitude of oscillation will the stabilized system settle at.

$$
\text { - } \begin{aligned}
i(t) & =i(v(t))=i\left(\sum_{k=-\infty}^{\infty} \bar{V}_{k} e^{j k \omega_{0} t}\right)= \\
& =\sum_{k=-\infty}^{\infty} \bar{I}_{k} e^{j k \omega_{0} t}
\end{aligned}
$$

$$
v(t)=\sum_{k=-\infty}^{\infty} \bar{V}_{k} e^{j k \omega_{0} t}
$$

periodic with frequency w.

Solve the system to derive the amplitude of each harmonic. In our analysis,
however, we assume to study HARMONIC OSCILLATORS $(v(t)$ is a pure simscid) ie with a high Q -factor

All higher order harmonics are suppressed

$$
z(j \underline{\omega}) \simeq \theta \quad \forall \omega \neq \omega_{0}
$$

The $H B$ is reduced to: $\bar{I}_{1} Z\left(j \omega_{0}\right)=\bar{V}_{1} \longrightarrow Z\left(j \omega_{0}\right)=\frac{\bar{V}_{1}}{\bar{I}_{1}}$

Defining $G_{m h}:=\frac{\overline{\bar{L}_{1}}}{\bar{V}_{1}}$ it is $z\left(j \omega_{0}\right)=\frac{l}{G_{\text {mk }}}$ harmonic (effective) trouscouductance amplitudes of and we can re-write the oscillation condition as

$$
\left\{G_{m h} z\left(j \omega_{0}\right)=G_{\operatorname{lomh}}\left(j \omega_{0}\right)=1\right\}
$$

we replaced the surall signal G_{m} with a harmonic Gm (evethod of "descriptive function")

Example: $\quad i(v)=I_{s} \operatorname{sigu}(v(t))$

Oscillator couditicu:

- If $A_{0}>A_{0}^{*}: \quad G_{m_{h}} \cdot R<l$ poles in LHP $\Rightarrow A_{0}$ decreases
- If $A_{0}<A_{0}^{*}: G_{m} \cdot R>1$ poles in RHP \Rightarrow A。 increases

Oscillator desigu rules:

1. startup condition G Gopp $\left(j \omega_{0}\right)=E G>1$
where EG (Excess Gain) is a coustant that represents the startup uargin (larger EG, faster startup)
2. ascillation amplitude Gleapk $\left(j \omega_{0}\right)=1$

Exaumples of real ascillatars:

- Differential oscillatar

$$
\begin{aligned}
& \Gamma_{L \text { loop }}(s)=\frac{V_{\text {eop }}}{V_{s}}=z(s) \cdot \underbrace{g_{m n}+g_{m p}}_{2}] \text { (differeuticl loop } \\
& \text { suall sigual } G_{m}
\end{aligned}
$$

Osciblatiou couditian: $G_{\text {loop }}\left(j \omega_{0}\right)=1$

$$
\begin{array}{ll}
\text { 1. } \measuredangle G \operatorname{losp}\left(j \omega_{0}\right)=0 & \text { 2. }\left|G_{l_{0}}\left(j \omega_{0}\right)\right|=1 \\
\Varangle z\left(j \omega_{0}\right)=0 & \frac{g_{m n}+g_{m_{r}} \cdot R}{2}=1 \\
\omega_{0}=\omega_{x}=\frac{1}{\sqrt{L C}} &
\end{array}
$$

Oscillation amplitude: assuming $A_{0} \gg \sqrt{2} V_{\text {or }}$

$$
\Longrightarrow A_{0}^{*} \simeq \frac{4}{\pi} I_{s} \cdot R
$$

- Single - transistor oscillator

decoupling (bypass) capacitance
How can we connect the emitter to the resonator without spoiling the resonator's Q ?

Oscillation condition:

$$
\begin{gathered}
\operatorname{Glopp}\left(j \omega_{0}\right)=1 \\
\frac{g_{m}}{m} \cdot R_{T} H\left(j \omega_{0}\right)=1 \\
1 . \measuredangle G_{\text {lope }}\left(j \omega_{0}\right)=0 \quad \text { 2. }\left|G_{\text {leap }}\left(j \omega_{0}\right)\right|=1 \\
\omega_{0}=\omega_{r} \quad \frac{g_{m}}{m} \cdot R_{T}=1 \\
g_{m} R=\frac{m}{1-1 / m}
\end{gathered}
$$

\Longrightarrow If m is too low, losses are optimmer choice for gain too high since R_{T} is too small.
If m is too high, Glop is attenuated too unch.

Oscillation amplitude:

$$
\bar{I}_{1} \simeq 2 \frac{Q_{0}}{T}=2 I_{s}
$$

$$
g_{m_{n}}=\frac{\bar{I}_{a_{1}}}{\bar{V}_{1}}=\frac{2 Q_{0} / T_{0}}{A_{0}}=\frac{2 I_{s}}{A_{0} / m}
$$

DC compaivent hence all components

$$
\begin{aligned}
G_{l \text { soph }}\left(j \omega_{0}\right)=1 \longrightarrow & g_{m h} R=\frac{m}{1-\frac{1}{m}} \\
& \frac{2 I_{s} m}{A_{0}^{*}} \quad R=\frac{m}{1-\frac{1}{m}} \Longrightarrow A_{0}^{*}=2 I_{s} R\left(1-\frac{1}{m}\right)
\end{aligned}
$$

- Calpitts ascillator

Lossless approx:: $\frac{1}{g_{m}}>\frac{1}{\omega_{0} C_{2}} \rightarrow V_{2} \simeq \frac{\underbrace{}_{1} V_{0}+C_{0}}{n<1}$

$$
\Longrightarrow R_{e q} \simeq \frac{l}{g^{m}} \frac{l}{\left|\frac{V_{2}}{V_{0}}\right|^{2}}=\frac{l}{n^{2} g_{m}}
$$

$$
\left\lceil G_{\text {lop }}(s)=Z_{\tau}(s) n g_{m}\right\rfloor
$$

Oscillator condition: (same as single-transistor ass.)

$$
G_{\text {loop }}\left(j \omega_{0}\right)=1 \rightarrow \begin{cases}1 \cdot w_{0}=\frac{1}{\sqrt{L C_{T}}} & n \leftrightarrow \frac{1}{m} \\ 2 \cdot g_{m} R_{T} n=1 \longrightarrow & g_{m} R=\frac{1}{n(1-n)}\end{cases}
$$

- Differential oscillator with single trauscouductor

$$
\left[\operatorname{Coloop}^{2}(s)=g_{\frac{m}{2}} z(s)\right]
$$

Oscillation condition:

$$
\left\{\begin{array}{l}
1 \cdot w_{0}=\frac{1}{\sqrt{L C}} \\
2 . \\
g_{2} R=1
\end{array} \quad i e \cdot z_{0}\left(j w_{0}\right)=-z\left(j w_{0}\right)\right.
$$

0
Oscillation
amplitude:

$$
\begin{aligned}
& \left|G_{m h}\right| R=1 \\
& G_{m h}=\frac{\bar{I}_{1}}{\bar{V}_{1}}=\frac{\frac{2}{\pi} I_{3}}{A_{0}} \\
\Longrightarrow & A_{0}^{*}=\frac{2}{\pi} I_{s} R
\end{aligned}
$$

(Note that the uarimun amplitude is ut limited by V_{∞} but rather

E.g.: add an extra delay of in the loop of a RLE OSC.

Oscillation condition:

isuit affected)

$$
z(s)=\frac{s \omega_{r} / Q}{s^{2}+s \omega_{r} / Q+\omega_{r}^{2}} \cdot R
$$

$$
\xi \frac{\pi}{2}-\operatorname{arctg}(x)=\operatorname{arctg}\left(\frac{1}{x}\right)
$$

$$
\Longrightarrow \omega_{0}<\omega_{r}
$$

$$
\uparrow
$$

(of course $\phi>0$ being a delay)
$\omega_{0}-\omega_{r}$

$$
\begin{aligned}
* \omega_{r} & \simeq \frac{\Delta \varphi=\varnothing}{\left.\frac{d \Sigma z}{d \omega_{0}}\right|_{\omega_{0}=\omega_{x}}}=\varphi \cdot \frac{1}{\left[\frac{1}{1+\left(Q \frac{\omega_{r}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{r}}\right.} \cdot \frac{Q}{\omega_{x}} \cdot \frac{-2 \omega_{0}^{2}-\left(\omega_{x}^{2}-\omega_{0}^{2}\right)}{\omega_{0}^{2}}\right]_{\omega_{0}=\omega_{x}}}= \\
& =-Q \frac{\omega_{r}}{2 Q}
\end{aligned}
$$

relative frequency variation induced by an extra delay Q is iverersely proportional to Q frequency stability

What about an extra delay in the lop of a ring_osc?

$$
\begin{aligned}
\text { lag. fl } & G_{\operatorname{loop}(s)=\frac{G^{3}}{(1+s \tau)^{3}} e^{-j \varphi}(G>0)}^{\forall G_{\operatorname{loop}}\left(j \omega_{0}\right)=-\pi \longrightarrow}-\underline{-\varphi}-3 \operatorname{arctg}\left(\omega_{0} \tau\right)=-\pi \rightarrow \omega_{0}=\frac{\operatorname{tg}\left(\frac{(\pi-\sigma}{3}\right)}{\tau} \\
& \longrightarrow \omega_{0}<\omega_{r}=\frac{\sqrt{3}}{\tau}=\frac{\operatorname{tg} \pi / 3}{\tau}
\end{aligned}
$$

$\omega_{0}-\omega_{x}$

$$
\Delta \omega_{0} \simeq \frac{\Delta \varphi}{\frac{d}{d \omega_{0}}\left[-3 \operatorname{arctg}\left(\omega_{0} \tau\right)\right]_{\omega_{0}}=\omega_{2}}=\varphi \cdot \frac{1}{-3 \tau\left[\frac{1}{\left.1+\left(\omega_{0} \tau\right)^{2}\right]_{\omega_{0}}=\omega_{2}}\right.}=-\varphi \frac{1}{\frac{3 \tau}{4}}=
$$

$$
\begin{aligned}
& \angle G_{\operatorname{loop}}\left(j \omega_{0}\right)=Q \quad\left(\left|G_{\text {map }}\right|=\ell\right. \\
& -q+\Varangle z\left(j \omega_{0}\right)=0 \\
& -\varphi+\frac{\pi}{2}-\operatorname{arctg}\left(\frac{\omega_{0} \omega_{x} / Q}{\omega_{x}^{2}-\omega_{0}^{2}}\right)=0 \\
& *\left\{\operatorname{arctg}\left(\frac{\omega_{x}^{2}-\omega_{0}^{2}}{\omega_{0} \omega_{x} / Q}\right)=\varphi\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =-\varphi \frac{4}{3 \sqrt{3}} \omega_{r} \\
& {\left[\frac{\Delta \omega_{0}}{\omega_{0}}=-\frac{4}{3 \sqrt{3}} \Delta \varphi\right]}
\end{aligned}
$$

Veltage - Cautralled Oscillatars (Vels)
\rightarrow use of variable capacitars (varactors)

2 main optious:
has leakage current!
a) $p-n$ juuctiou
 in reverse biasing: $C=\frac{C_{0}}{\left(1+\frac{V}{V_{0}}\right)^{m}}$
b) MOS junctious

no leakage - from ivversion to depletian

Phase ucise

- Indirect: AM-to-FM couversiou i.e upcouversion

$$
\begin{array}{r}
K_{v_{0}}=2 \pi \frac{\partial f_{0}}{\partial V_{\text {tue }}} \quad \text { VCO seusitiverty } \\
\quad(\text { ar gaiu })
\end{array}
$$

$$
K_{v_{\infty}}=2 \pi \frac{\partial f_{0}}{\partial V_{\infty D}} \quad V C O \text { supply pushing }
$$

$$
S_{V \text { rue }}(\omega) \underset{F M}{ } S_{\omega_{0}}(\omega)=K_{v c_{0}}^{2} S_{V_{\text {twe }}}(\omega) \underset{P M}{ } S_{q}(\omega)=\frac{S_{\omega_{0}}(\omega)}{\omega^{2}}=\frac{K_{V_{c o}}^{2}}{\omega^{2}} S_{V_{\text {tame }}}(\omega)
$$

- Direct: $i_{n}(t)$ is uoise associated to tank losses (resistar R)

$\Delta \omega \ll \omega_{\pi}$
$\omega=\omega_{r} \pm \Delta \omega$
$\begin{aligned} z(j \omega) & =R \cdot \frac{j\left(\omega_{r} \pm \Delta \omega\right) \omega}{}=\frac{\omega_{r}^{r}-\left(\omega_{x} \pm \Delta \omega\right)^{2}+j\left(\omega_{r} \pm \Delta \omega\right) \frac{\omega_{x}}{Q}}{l}\end{aligned}$ $=R \frac{1}{1+j \frac{\Delta \omega}{\frac{\omega_{x}}{Q}} \cdot \frac{\Delta \omega \pm 2 \omega_{\pi}}{\omega_{r} \pm \Delta \omega}}$

$$
\begin{aligned}
& \Longrightarrow \not \approx(j \omega r \pm j \Delta \omega) \stackrel{\downarrow}{\frac{1}{1} \frac{R \omega}{\omega r} \cdot 2 Q} \\
& \text { asebaud } Z^{\prime}(\pm j \Delta \omega):=\frac{R}{1 \pm j 2 R C \Delta \omega} \\
& \text { ivaleut } \\
& \text { z(jw)}
\end{aligned}
$$

 around resonance offset fram careriar

$S_{i n}=\frac{4 K T}{R}$ white uaise Rice theoreu in phase in quadratwre with arvier with carrier $S_{\text {in }}^{\text {AM }}=\frac{2 k T}{R} \quad S_{\text {in }_{P M}}=\frac{2 k T}{R}$

- AM uaise couponent:

Aupplitude uaise daesu't affet
 trausouductar operaticu.
$\Longrightarrow Z_{\text {arl }}(\omega)=Z(\omega)$ i.e. without cousidering the OTA

- PM uaise caupauent:

Trausconductor fully compensates current injected in R.
$\Longrightarrow z_{P r}(\omega)=\left.Z(\omega)\right|_{R \rightarrow+\infty}$ ie. considering

$$
S_{v}(\omega)=\frac{2 K T}{R}\left|Z_{A M}(\omega)\right|^{2}+\frac{2 K T}{R}\left|Z_{P M}(\omega)\right|^{2}
$$

$\Delta \omega \ll \omega_{r}: \quad \exists_{\Delta \mu}\left(j \omega_{r} \pm j \Delta \omega\right) \simeq R \quad Z_{P M}\left(j \omega_{r} \pm j \Delta \omega\right) \simeq \frac{1}{ \pm j 2 \omega c}$

$$
\begin{aligned}
S_{v}\left(\omega_{r} \pm \Delta \omega\right) & =\frac{2 K T}{R} R^{2}+\frac{2 K T}{R} \frac{1}{4 \Delta \omega^{2} C^{2}} R \omega^{2} \\
& =2 K T R+\frac{1}{2} K T R\left(\frac{\omega_{r}}{Q}\right)^{2} \frac{1}{\Delta \omega^{2}} \text { dominant }
\end{aligned}
$$

resonator efficiency
$0 \leqslant \eta \leqslant 1$

$$
0 \leqslant \eta \leqslant 1
$$

 to include usise due to active easements
power dissipated in the resonator $_{\text {in }} P_{R} \overline{]} \eta P_{D C} \longrightarrow D C$ power from supply
 power
Let us define a Figure of Merit far oscillators:

$$
\begin{aligned}
& =10 \log _{10}\left\{10^{-3} \cdot \frac{2 \eta}{\mathrm{KT}} Q^{2} \frac{1}{F_{a}}\right\}
\end{aligned}
$$

Therunodyramic limit of Fore of ascillators:

$$
\text { ideally } \begin{aligned}
\eta=1 \longrightarrow F_{0} M_{d B} & =10 \log _{10}\left\{\frac{2}{K T} \frac{Q^{2}}{F_{a}}\right\}-30 d B \\
& =197 d B \text { for } Q=10, \quad F_{a}=1
\end{aligned}
$$

e.g: $f_{\text {ox }}=1 \mathrm{GHz}$

$$
\begin{aligned}
& \Delta f=1 \mathrm{MHz} \\
& P_{D C}=1 \text { mW } \Longrightarrow \alpha_{\text {min }}(\Delta f)=\frac{1}{F_{O M_{\text {max }}}} \cdot \frac{l}{P_{D C, \text { mix }}} \cdot\left(\frac{f_{o c}}{\Delta f}\right)^{2}= \\
& Q=10 \\
& \text { by def. of For } \\
& =-F O M_{d B_{\text {max }}}-10 \log _{10} P_{x, \text { mu }}+20 \log _{10}\left(\frac{f_{\text {ax }}}{\Delta f}\right)= \\
& =-197 d B-O d B_{m}+60 d B=-137 \frac{d B_{c}}{H z}
\end{aligned}
$$

Circuit simulators (e.g. Cadence Spectre, Mentor Eld,...)

- DC DC analysis bias paint (uan-linear)
- AC AC analysis trauefor functions (linear*)
- NOISE noise analysis based an AC (linear)

LT approximation *uou-livear devices are replaced by equivabut linear circuits

- TRAN transient analysis transient behaviour (uardoes mot accanit for raise linear)
transient
- NoIsetran analysis with poise
luce se source ore unoblelled as randan sequences, needs many rums to get statistics time consuming
sub-granp of circuit simulators
RF circuit siumbatars (egg. Spectre RF, EDdo RF,...)
- PSS periodic steady state analysis (uau-livear) searches for T_{0} (period of oscillation) that satisfies a periodic steady state
V_{∞}

large sigual

$$
\begin{aligned}
& v_{1}\left(t+T_{0}\right)=v_{1}(t) \\
& v_{2}\left(t+T_{0}\right)=v_{2}(t)
\end{aligned}
$$

for every valtage and current

- PAC periadic AC analysis ζ LTV approx \nearrow 2iveap Tiwe-Variant
- PNOISE
periadic roise analysis (livear)
* livearizatiou accurs araund a bias poirt that is not coustant but periadic

Desigu of an LC ascillator
MOS devices: $\left|V_{T}\right|=0,35 \mathrm{~V}$

- $\left|\mu_{n} C^{\prime}{ }^{\prime}\right|=120 \mu \mathrm{~A} / \mathrm{V}^{2}$
- $\left|\mu_{p} C_{o x}^{1}\right|=60 \mu A / v^{2}$

Specificatious: $f_{0}=1,5 \mathrm{GHz}$

- $Q=20$
- $I_{s}=3 m A$
- max FoM

Vuknowns: •R

- A.
- $(W / L)_{n}$
- L
- $\alpha(\Delta f)$
- $(W / L)_{p}$ 1 MHz

1. Startup:

$$
\begin{aligned}
& G_{\operatorname{lop}}\left(j \omega_{0}\right)=E G \\
& G_{m} R=E G>1 \quad \text { e.g. } \quad E G=5
\end{aligned}
$$

2. Maximize FoM $\propto \frac{2 \eta}{k \pi} \cdot Q^{2} \longrightarrow$ maximize η

$$
\eta=\frac{P_{R}}{P_{D}}=\frac{A_{0}^{2} / 2 R}{I_{S} \cdot V_{D}} \longrightarrow \text { maximize } A_{0}
$$

Oscillatiou auplitude: $\quad G_{m n} \cdot R=1$

3. In a spreadsheet:

Data

Equatious

$$
\begin{array}{ll}
R=\frac{\pi}{4} \frac{A_{0}}{I_{s}} & 236 \Omega \\
L=\frac{R}{\omega_{0} Q} & 1,25 n H \\
C=\frac{l}{\omega_{0}^{2} L} & 9 p F \\
G_{m}=E G \frac{l}{R} & 2,12 \frac{m A}{V} \\
\left(\frac{W}{L}\right)=\frac{g_{m}^{2}}{\mu C C_{0}} & 2500 / 1250 \\
\alpha(\Delta f)=10 \log _{s}\left\{\frac{K T R}{A_{0}^{2}} \cdot \frac{f_{0}^{2}}{Q^{2}} \cdot \frac{1}{\Delta f^{2}}\right\} & \left.-142 \frac{\mathrm{~dB}}{\mathrm{~Hz}}\right\}
\end{array}
$$

"Basics of RF systems\|
autanca

to avaid reflectials
Seusitivity: uinimum detectable sigual (SNRmin)
\longrightarrow linited by: 1. nou-linearity
2. impedance matching
3. uaise

Note: power of a sigual $\cap \uparrow A(\}^{\prime}\left\{R \quad P=\frac{A^{2}}{2 R}=\frac{A_{\text {rms }}^{2}}{R}[W]\right.$

$$
\sigma(t)=A \sin (\omega t)
$$

Effects of rou-livearity

$$
\begin{aligned}
& x(t) \longrightarrow L T I \quad y(t)=x(t) * h(t) \\
& x(t) \longrightarrow L T V \rightarrow y(t) \quad y(t)=x(t) * h(t, \tau)
\end{aligned}
$$

$$
x(t) \longrightarrow \begin{aligned}
& \text { Non- } \\
& \text { Livear }
\end{aligned} y(t)
$$

- uenaryless ar static unadel $y(t)=$ Taylar series

$$
\begin{aligned}
& =1 \text { ayeor serues } \\
& =\alpha_{1} x(t)+\alpha_{2} x^{2}(t)+\alpha_{3} x^{3}(t)+\ldots
\end{aligned}
$$

we suppose, for
simplicity, all uan-

- uar-linear dyuanic systen linear systeus to be static
(1) Siugle tave at iuput
a. Harmanie generatian

$$
\begin{aligned}
& x(t)=A \cos \omega t \quad y(t) \simeq \alpha_{1} x(t)+\alpha_{2} x^{2}(t)+\alpha_{3} x^{3}(t) \\
& \xi \cos ^{2} x=\frac{1+\cos (2 x)}{2} \quad \cos ^{3} x=\frac{3}{4} \cos x+\frac{1}{4} \cos ^{3}(3 x)
\end{aligned}
$$

$$
x^{2}(t)=\frac{A^{2}}{2}+\frac{A^{2}}{2} \cos (2 \omega t) \quad x^{3}(t)=\frac{3}{4} A^{3} \cos \omega t+\frac{A^{3}}{4} \cos ^{3}(3 \omega t)
$$

"rectificatiou"
2nd harmaic fundamental 3rd harmanic
cau altere the bias point!

$$
y(t)=\alpha_{1} A \cos \omega t+\alpha_{2} \frac{A^{2}}{2}+\alpha_{2} \frac{A^{2}}{2} \cos (2 \omega t)+
$$

$$
\begin{aligned}
\text { small sigual } & +\alpha_{3} \frac{3}{4} A^{3} \cos \omega t+\alpha_{3} \frac{A^{3}}{4} \cos (3 \omega t) \\
= & B_{0}+B_{1} \cos \omega t+B_{2} \cos (2 \omega t)+B_{3} \cos (3 \omega t)
\end{aligned}
$$

where $B_{0}=\alpha_{2} \frac{A^{2}}{2} \quad B_{1}=\alpha_{1} A+\alpha_{3} \frac{3}{4} A^{3}$

+ unwanted ${ }^{*}$

$$
B_{2}=\alpha_{2} \frac{A^{2}}{2} \quad B_{3}=\alpha_{3} \frac{A^{3}}{4} \text { desired }
$$ componant

\Longrightarrow - Generated harunanic amplitude:

$$
B_{n} \propto A^{n} \quad n \geqslant 1
$$

(nth haruanic has amplitude $\propto A^{n}$)
$-B_{2 n}=0$ if $\alpha_{2 n}=0 \longleftrightarrow$ fully differential
(even-order harusuics cane fran evenarder un-linearities)
b. Gair coupressiai Laruonic gain
$B_{1}=\alpha_{1} A+\frac{3}{4} \alpha_{3} A^{3} \rightarrow$ gain of the systan:

COMPRESSIVE system:

$$
G=\frac{B_{1}}{A}=\alpha_{1}+\alpha_{3} \frac{3}{4} A^{2}
$$ gair compressicu

Def (1 dB compression paint): iuput amplitude (powere) A_{c} such that the system gain is reeduced by $H A B$

$$
\frac{\text { coupress. output aupl }}{\text { ideal (livear) output aupl. }}=\frac{\alpha_{l} A_{c}+3 / 4 \alpha_{3} A_{c}^{3}}{\alpha_{1} A_{c}}=10^{-1 / 20}=-1 d B
$$

(2) Two tones at inpert

$$
x(t)=A_{1} \cos \omega_{1} t+A_{2} \cos \omega_{2} t
$$

$y(t)=\alpha_{1} x(t)+\alpha_{3} x^{3}(t)$ for simplicity.
IM3: third-order intermodulation products

$$
\xi(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}
$$

$$
y(t)=B_{1} \cos \omega_{1} t+B_{2} \cos \omega_{2} t+B_{221} \cos \left(2 \omega_{2}-\omega_{1}\right) t+
$$

$$
+B_{1+2} \cos \left(2 \omega_{1}-\omega_{2}\right) t+
$$

where

$$
\begin{array}{ll}
B_{1}=\alpha_{1} A_{1}+\frac{3}{4} \alpha_{3} A_{1}^{3}+\frac{3}{2} \alpha_{3} A_{1} A_{2}^{2} & B_{221}=\frac{3}{4} \alpha_{3} A_{1} A_{2}^{2} \\
B_{2}=\alpha_{1} A_{2}+\frac{3}{4} \alpha_{3} A_{2}^{3}+\frac{3}{2} \alpha_{3} A_{1}^{2} A_{2} & B_{112}=\frac{3}{4} \alpha_{3} A_{1}^{2} A_{2}
\end{array}
$$

Harmanic geveratiou is ut unch of a probleu in RF systens since higher order harmanics eau be easily filtered out.
However, uon-linearities also canse intermodulation between the sigual and uearby interferers, which caunot be filtered.
 interforer
a. Blocking

In case of surall wauted A_{1}, lorege unvanted A_{2}.

$$
B_{1} B_{1}=\alpha_{1} A_{1}+\frac{3}{4} \alpha_{3} A_{1}^{3}+\frac{3}{2} \alpha_{3} A_{1} A_{2}^{2} \simeq\left(\alpha_{1}+\frac{3}{2} \alpha_{3} A_{2}^{2}\right) A_{1}
$$

sutput I componeut uegligible if $A_{1}^{3} \ll A_{1} A_{2}^{2}$ at ω_{1}
\rightarrow Gain of the system: $G=\frac{B_{1}}{A_{1}}=\alpha_{1}+\frac{3}{2} \alpha_{3} A_{2}^{2}$
b. Intermodulatiou

Assume $A_{1}=A_{2}=A$.

$$
B_{221}=B_{112}=\frac{3}{4} \alpha_{3} A^{3}
$$

sigual

If sigual were at $2 \Delta \omega$ distance then IMS would degrable SNDR, at 3^W it waild be IM7 and so an.

What about secoud-arder uou-linearity?

$$
\alpha_{2} x^{2}(t)=\alpha_{2} A^{2}\left(\cos \omega_{1} t+\cos \omega_{2} t\right)^{2} \longrightarrow B_{0}=B_{12}=B_{21}=2 B_{11}=2 B_{22}=\alpha_{2} A^{2}
$$

IM2 products fall outside sigual boudwidth.
Introduce now the notion of Iutercept Point
E.g. 3rd order IP (IP3)

$$
B_{1}=\alpha_{1} A+\frac{3}{4} \alpha_{3} A^{3}+\frac{3}{2} \alpha_{3} A^{3}=\alpha_{1} A+\frac{3}{4} \underline{\underline{\alpha_{3}} A^{3}}
$$

$$
\begin{aligned}
& B_{221}=\frac{3}{4} \alpha_{3} A^{3}+\underline{\underline{\alpha \alpha_{1}}}= \\
& 20 \log _{10}\left(\alpha_{1} A_{1}\right)=\quad \text { intercuode } \\
& =\alpha_{1 d B}+A_{d B} \\
& 20 \log _{10}\left(B_{221}\right)= \\
& \\
& =20 \log _{10}\left(\frac{3}{4} \alpha_{3}\right)+3 A_{d B}
\end{aligned}
$$

B_{1} and B_{221} both undergo compression due to higher
 odd-arder terms (3rd aud
Sth, respectively).
Therefore, the IP is typically extrapolated by uneasuring the respouse of the system for low A.

$$
\begin{aligned}
\alpha_{1} A_{\text {IPB }} & =\frac{3}{4} \alpha_{3} A_{\text {lPP }}^{3} \quad(\text { extrapolated }) \\
& \Downarrow \\
A_{\text {UP3 }} & =\sqrt{\frac{4}{3}\left|\frac{\alpha_{1}}{\alpha_{3}}\right|} \\
\longrightarrow A_{\text {IPP3 }} & =20 \log _{10} A_{\text {NP3 }}=10 \log _{10}\left(\frac{L}{3} \left\lvert\, \frac{\alpha_{1}}{\alpha_{3}}\right.\right)
\end{aligned}
$$

Remembere the 1dB compressiou point:

$$
A_{C d B}=-9,6 d B+10 \log _{10}\left(\frac{4}{3} \left\lvert\, \frac{\alpha_{1}}{\alpha_{3}}\right.\right)
$$

"two-tave test"
$\Longrightarrow 1 d B$ compressian paint is typically abaut 9,6dB lower than the IIP3

To retriave Anes we actvally just ueed are rueasurenent siuce the slepe is fixed. In fact:

$$
\begin{aligned}
& \frac{V_{\text {out }}\left(\omega_{1}\right)}{V_{\text {out }}\left(\omega_{2}+\Delta \omega\right)}=\frac{B_{e}^{\prime \prime}}{B_{221}^{\prime \prime}}=\frac{\alpha_{1} A^{\prime \prime}\left|V_{\text {in }}\right|}{\frac{3}{4} \alpha_{3} A^{3}}=\frac{A_{\text {l1P3 }}^{2}}{A^{2}} \longrightarrow A_{\text {11P3 }}=A \sqrt{\frac{V_{\text {out }}\left(\omega_{4}\right)}{V_{\text {out }}\left(\omega_{2}+\lambda \omega\right)}} \\
& \Longrightarrow P_{11+2} \\
& \left.\Longrightarrow P_{d P_{m}}=P_{\text {ind }}+\frac{1}{2} \Delta P_{d B_{m}}\right]
\end{aligned}
$$

impeet power
\rightarrow power difference (iu dB) bétwen fundannental and IM3

IIP3 of cascaded stages
will depend

$$
\begin{gathered}
x=A \cos \omega_{1} t+A \cos \omega_{2} t \\
y=\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3} \quad z=\beta_{1} y+\beta_{2} y^{2}+\beta_{3} y^{3}
\end{gathered}
$$

It can be demoustrated that: $\frac{1}{A_{1 r s, t+t}^{2}} \cong \frac{l}{A_{\| P s, 1}^{2}}+\frac{\alpha_{1}^{2}}{A_{111 s, 2}^{2}}$

* under hp. of uou-linearity of latter betwecu the two beocks stages daninates
otherwise, cascaded 2 nd arder
rau-linearities produce the
saure effect of a 3rd arder mou-
Qivearitly (IM3):

$$
\alpha_{2} x^{2} \rightarrow \omega_{2}-\omega_{1} \quad \beta_{2} y^{2} \rightarrow 2 \omega_{2}-\omega_{1} \Longrightarrow \text { IM3 term }
$$

Effects of impedance unatching

inpedance transformation uetwork (uedel)

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{s}} & =\frac{R_{\text {in }} n^{2}}{R_{\text {in } / n^{2}}+R_{s}} \cdot n \cdot A_{v} \cdot \frac{R_{L}}{R_{L}+R_{0}} \\
& =\frac{n R_{\text {in }}}{R_{\text {in }}+n^{2} R_{s}} \cdot A_{v} \cdot \frac{R_{L}}{R_{L}+R_{0}}
\end{aligned}
$$

α (input voltage division)

(conjugate matching)

To maximize power transfer:

$$
\begin{aligned}
& Z_{L}=Z_{s}^{*} \\
& R_{L}=R^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\left.P_{L}\right|_{\text {max }}= & \frac{\left|V_{\text {out }}\right|^{2}}{2 R_{L}}=\frac{\left|V_{S}\right|^{2}}{8 R_{L}} \\
& \frac{V_{\text {out }}}{V_{s}} \longrightarrow \frac{1}{2}
\end{aligned}
$$

Impedance ruatchirg basically allows us to maximize the power transfer while achieving a better gain, that is closer to the maximum obtainable:

* Try to maximize α (ie maximize gail):

$$
\begin{aligned}
& \frac{\partial \alpha}{\partial n}=\frac{R_{\text {in }}\left(R_{\text {in }}+n^{2} R_{s}\right)-n R_{\text {in }} \cdot 2 n R_{s}}{\left(R_{\text {in }}+n^{2} R_{s}\right)}=0 \longrightarrow R_{\text {in }}^{2}=n^{2} R_{\text {in }} R_{s} \\
& \Longrightarrow \alpha_{\text {max }}=\alpha\left(n_{\text {op }}\right)=\frac{1}{2} \cdot \sqrt{\frac{R_{i n}}{R_{s}}}>\frac{1}{2} \text { if } R_{\text {in }}>R_{s}!
\end{aligned}
$$

Note that $\frac{R_{\text {in }}}{n_{\text {op }^{2}}}=R_{s} \Longrightarrow$ impedance has been matched ** While maximizing the gain, also the power transfer has been maximized!

$$
\left.\frac{V_{\text {out }}}{V_{s}}\right|_{\text {max }}=\frac{\alpha}{\frac{\alpha}{2} n_{Q t}} A_{0} \frac{R_{L}}{R_{0}+R_{L}}
$$

By unatching the input resistance, we granted unaximun power transfer while increasing the gain by a factor $n_{\text {opt }}$.

Power gail
 antenna

In general: ar sower gain \neq square of voltage gain They are equal andy when $R_{s}=R_{\text {. }}$.

Effects of raise
input-referred
revise generators

Noise Figure:

It is a measure of how much raise the network is adding to the source raise.

Alse rote that:
total raise at the output
If the seurce raise is due to just the source resistance:

$$
P S D_{\text {in }}=4 k T R_{3} \cdot N F
$$

total raise density at the input

Noise figure of a bossy circuit

Nyquist theorem: $\left[\frac{\overline{\sigma_{n}^{2}}}{\Delta f}=4 K T \operatorname{Re}\left[z_{0}\right]\right]$

The raise figure of a bossy circuit is given by its available power loss (= inverse of its available power gaius).
e.g: filter with $2 d B$ power loss $\longrightarrow N F=2 d B$

Noise figure of cascaded stages

$$
\begin{aligned}
& \alpha_{1}=\frac{R_{\text {in }}}{R_{\text {in }}+R_{5}} \\
& \alpha_{2}=\frac{R_{i n_{2}}}{R_{\text {in }}^{2}}+R_{01}
\end{aligned}
$$

$$
\begin{aligned}
N F_{2}=1+\frac{\overline{\sigma_{n}^{2}} / \Delta f}{\alpha_{2}^{2} A_{G_{2}}^{2}} \cdot \frac{1}{4 K T R_{01}} & \Longrightarrow N F=N F_{1}+\frac{\left(N F_{2}-1\right)}{\alpha_{1}^{2} A_{v_{1}^{2}}^{2}} \cdot \frac{R_{01}}{R_{s}} \\
& \Longrightarrow N F=N F_{1}+\left(N F_{2}-1\right) L_{A_{1}} \longrightarrow G_{A_{1}}
\end{aligned}
$$

Iu geveral, for N eascaded stages:

$$
\left[N F=1+\sum_{i=1}^{N}\left\{\frac{N F_{i}-1}{\sum_{j=1}^{i-1} G_{A j}}\right\}\right]
$$

uaise figure of first stages Saminates

Exauple: filter + LNA cascade
(power lass) (Maise figere) Total uaise figure:

$$
\begin{aligned}
& {\left[N F=N F_{\text {jeltor }}+\frac{N F_{\text {MA }}-1}{1 / L_{A_{\text {jebe }}}}\right.} \\
& =L_{A \text { jeter }}^{\gtrless}+L_{\text {apieter }}\left(N F_{\text {INA }^{\prime}}-1\right) \\
& \left.=L_{A_{\text {fieter }}} \cdot N F_{\text {LNA }}\right] \\
& N F_{d B}=L_{A \text { feeter } d B}+N F_{\text {LNAdB }}
\end{aligned}
$$

\Longrightarrow The raise figure of the LNA is amplified by the losses of the previaus passive filter (therefore cascaded filters will degrade the total NF even further)

Noise matching

v_{n} and i_{n} are carrelated (arigin from the same physical uaise saurce iuside metwark 1)

$$
\begin{aligned}
& N F= 1+\frac{\text { uetwork uaise }}{\text { sowrce uaise }}=1+\frac{\overline{\left(\sigma_{n}+i_{n} \cdot R_{s}\right)^{2}} / \Delta f}{4 K T R s} \\
& \text { referred e.g. to the input of } \lambda \\
& \approx 1+\frac{\overline{\sigma_{n}^{2}} / \Delta f+\overline{i_{n}^{2}} \cdot R_{s}^{2} / \Delta f}{4 K T R_{s}}=1+\frac{\overline{\sigma_{n}^{2}} / \Delta f}{4 K T R_{s}}+\frac{\overline{i_{n}^{2} / \Delta f}}{\frac{4 K T}{R_{s}}}
\end{aligned}
$$

if we assume naise to be uncoserelated.

$$
\Longrightarrow N F \approx 1+\frac{\text { uetwark valtage uaise }}{\text { seurce valtage uaise }}+\frac{\text { uetwark curreut uaise }}{\text { saurce eurrent ubise }}
$$

NF has a teru devreasing with R s and a tereu ivereasing with R_{s}.
Therefore, a unimimun NF exists for an optiual R_{s}

$$
\left.\frac{\partial N F}{\partial R_{s}}=0 \Longrightarrow R_{s \text { opt }}=\sqrt{\frac{\overline{\sigma_{n}^{2}}}{\frac{i_{n}^{2}}{2}}}\right]
$$

RX sensitivity and Dyuramie Rauge
$R X$ susitivity $=$ uin detectable sigual (SNR miu)

Available uaise powore:

$$
\longrightarrow P_{n, a 0}=\frac{\overline{\sigma_{n}^{2}}}{R_{s}} \text { tot } \cdot \frac{1}{4}
$$

Raucenbering that $\overline{\sigma_{n \text { tot }}^{2}}=\overline{\sigma_{n j}^{2}} N F_{R_{x}}$
eratched load to

$$
\frac{\overline{\sigma_{n}^{2}}}{\Delta f}=4 k T R_{s} N F_{R x}
$$ campute Pau

we abtain $\frac{P_{n, a v}}{\Delta f}=\frac{L H T R_{s} \cdot N F_{R x}}{L+R_{s}}=\left(K T \cdot N F_{R x}\right.$

$$
\begin{aligned}
\longrightarrow P_{n, a u}= & K T \cdot N F_{R x} \cdot B W \\
& \longrightarrow S N R_{\text {mix }}=\frac{P_{s, a r_{\text {mix }}}^{K T \cdot N F_{R x} \cdot B W}}{} \\
& \text { of the } \\
& \longrightarrow\left[P_{3, a u_{\text {mix }}}=S N R_{\text {mix }} \cdot K T \cdot N F_{R x} \cdot B W\right]
\end{aligned}
$$

available power deusity of the source moise

$$
K T=4 \cdot 10^{-21} \mathrm{~J} \text { at } 25^{\circ} \mathrm{C} \longrightarrow 10 \log _{10} K T=-204 \mathrm{~dB} \mathrm{w} / \mathrm{Hz}
$$

$$
=-174 \mathrm{dBm} / \mathrm{Hz}
$$

$$
\left[\left.P_{S, a \sigma_{\text {min }}}\right|_{d B_{m}}=-174 \frac{d B_{m}}{H z}+\left.N F_{R x}\right|_{d B}+\left.S N R_{\min }\right|_{d B}+10 \log _{10} B W\right]
$$

Example: GSM handset

- sensitivity $P_{s}=-100 d B_{m}$
- $B W=200 \mathrm{KHz}$
- $S N R_{\text {min }}=9 d B$

$$
\begin{gathered}
\left.N F_{R X_{d B}}\right|_{<} P_{3}+174-S N R_{\min }-10 \log B W \\
<12 d B
\end{gathered}
$$

Dyuamic range ar SFDR (Spurious-Free Dyuauic
Range) Range)

$$
\left[S F D R_{d B}=\left.P_{i n} \max \right|_{d B}-\left.P_{i m_{\text {min }}}\right|_{d B}\right]
$$

two ut power of the two trues such that sensitivity level IM3 power equals raise power

Remembering that

$$
\begin{aligned}
P_{\text {uP 3 }} & =P_{\text {in }}+\frac{\Delta P}{2} \quad(i n d B) \\
& =P_{\text {in }}+\frac{P_{\text {out }}-P_{\text {out,M3}}}{2} \\
& =P_{\text {in }}+\frac{P_{\text {in }}+G_{A}-\left(P_{i n, m 3}+G_{A}\right)}{2} \\
& =\frac{3}{2} P_{\text {in }}-\frac{1}{2} P_{\text {in, M3 }} \text { impute }
\end{aligned}
$$

referred level
At $P_{i n}=P_{\text {in max }}$ by definition $P_{i n, M_{3}}=P_{n}$. of IMS products

$$
\begin{aligned}
& P_{11 P_{3}}=\frac{3}{2} P_{n_{\text {max }}}-\frac{1}{2} P_{n} \\
& \Longrightarrow P_{\text {in max }}=\frac{1}{3}\left(2 P_{11 P_{3}}+P_{n}\right) \\
& S F D R=P_{\text {in }_{\text {max }}}-P_{\text {in min }=\frac{2}{3} P_{\text {irs }}+\frac{1}{3} P_{n}-\left(P_{n}+S N R_{\text {min }}\right), ~(1)} \\
& {\left[S F D R_{d B}=\frac{2}{3}\left(\left.P_{\text {HP }}\right|_{d B m}-\left.P_{n}\right|_{d B_{m}}\right)-\left.S N R_{\text {min }}\right|_{d B}\right]}
\end{aligned}
$$

Scattering parauetoes (S-paranetors)

Reflection coefficient

$$
\Gamma:=\frac{\text { Preflected }}{P_{\text {madder }}}
$$

$\Gamma=\left|\frac{z_{i n}-z_{s}}{z_{i n}+z_{s}}\right|^{2} \longrightarrow \begin{gathered}\text { only if } z_{i n}=z_{s}: \Gamma=0 \\ \text { "terunuation" is matched reflection }\end{gathered}$ ("trumuatian" is matched to the characteristic impedance of the live)

Extensiar to 2-port networks
 coefficient at port 1 with evatched port $2^{\prime \prime}$
Same goes for other ones.
Input return loss. $R L_{\text {in }}=10 \log _{10} \frac{1}{\left|\Delta_{\mu}^{2}\right|}=-20 \log _{10}\left|\Delta_{u}\right|$
Output return loss: $R L_{\text {out }}=-20 \log _{10}\left|s_{22}\right|$
Forward gain $20 \log _{10}\left|s_{21}\right|$
Reverse isolation $-20 \log \left|s_{12}\right|$
Note: a mou-reatched load at the output of the network right cause stability issues if the reverse isolation is non-infuite ($\Delta_{12} \neq 0$)

|Low Naise Amplifiers (LNAS) ||
Requirements: • Low unwise (NF)

- Large gain (G_{A} or S_{21})
- Input matching $\left(1 / s_{1}\right)$
- Linearity (IIP3) because of Blockers

Lech: choke inductor

$$
\left.\frac{d i_{L}}{d t}=\frac{v_{L}}{L} \quad \begin{array}{l}
i_{L} \downarrow \\
L \frac{1}{3}
\end{array}\right) v_{L}
$$

$$
L_{c h} \rightarrow \infty \Rightarrow \frac{d i_{1}}{d t} \rightarrow 0
$$

$$
\Rightarrow i_{L} \rightarrow \text { constr. }
$$

Sufficiently large inductor is treated (open circuit ia $A C$)

Coy: bypass capacitor

$$
\left.\left.\frac{d v_{c}}{d t}=\frac{i_{c}}{c} \quad i_{c} \downarrow \right\rvert\, \frac{1}{C!}\right) v_{c}
$$

Sufficiently large capacitor $C_{b y} \rightarrow \infty \Rightarrow \frac{d v_{c}}{d t} \rightarrow 0$ is treated as a voltage generator (short circuit in AC)

At center frequency ω_{0} :

- Matching canditiau:

$$
1 / g_{m_{1}}=R_{s}
$$

- Voltage gain:

$$
A_{0}=\frac{v_{\text {out }}}{v_{s}}=\frac{R_{L}}{2 R_{s}}
$$

 neglecting $r_{0}, C_{8}, C_{d s}$ cascaded MOS raise \rightarrow does ut contribute to the total output

limited by the
Q factor of
the resoualar

$$
\left(Q=\omega_{0} R_{L} C=\frac{R_{L}}{\omega_{0} L} \leqslant 10\right)
$$

$S_{i_{n}}=4 K T \gamma$ gd. ("wan der Ziel" MOSFET uaise model)
where $g_{d_{0}}=\left.\frac{\partial I_{D}}{\partial V_{D S}}\right|_{V_{D S}=0}$

- Triode: $I_{D}=K\left[2 V_{o v} V_{D S}-V_{D S}^{2}\right] \rightarrow g_{d_{0}}=2 K V_{o v}=\frac{1}{r_{o n}}$
- Saturation: $I_{D}=K V_{o v}^{2} \rightarrow g_{d o}=g_{m}$

$$
\gamma=1
$$ valid for any operating region,

$$
\longrightarrow \gamma=\frac{2}{3}
$$

In case of carrier velocity saturation:

$$
g d_{0}=\frac{g_{m}}{\alpha} \geqslant g_{m} \Longrightarrow S_{i_{2}}=4 K T \frac{\gamma}{\alpha} g_{m}
$$

-Triode $\rightarrow \alpha=1$

- Saturation $\longrightarrow \alpha<1$
- Noise figure

$N F=1+\frac{4 K T \gamma / \alpha l / g_{m 1}}{4 K T R_{s}}+\frac{4 K T R_{L} / A_{0}^{2}}{4 K T R_{s}}$ (refereed to the matched $\mid=1+\gamma+$ LKTRs ${ }^{1}+$ input) iepeit $\longrightarrow=1+\frac{\gamma}{\alpha}+4 \frac{R_{s}}{R_{L}}$
tern enforced \leftarrow by necessity of impedance unatching

Shunt feedback topology

- Matching condition:

$$
1 / g_{m}=R_{s}
$$

- Voltage gaire:

With matched input: $G_{\text {lop }}=-1 \Longrightarrow A_{0}=\frac{1}{2}\left(1-\frac{R_{t}}{R_{s}}\right)$ (for $R_{f} \gg R_{e}, A_{0} \simeq-\frac{1}{2} \frac{R_{f}}{R_{s}}<0 \rightarrow$ inverting stage)

- Noise figure:

$$
\begin{aligned}
& N F=1+\frac{L K T \gamma / \alpha g_{m} \cdot\left(\frac{R_{8}+R_{s}}{1} G^{2}\right.}{4 K T R_{3} A_{0}^{2}}+\frac{4 K T R_{f}}{4 K T R_{3} A_{0}^{2}} \text { (referred to } \\
& \text { the output) } \\
& \underset{+}{\text { insert } \longrightarrow}=1+\frac{\gamma}{Q}+4 \frac{R_{s}}{R_{f}} \quad \text { (same as Cameneou time Cine, }
\end{aligned}
$$

matched $R_{f} \gg R_{s}$

To overcame NF limits:

- raise cancelling
- impedance transformation
- feedback (to decouple $1 / 8 \mathrm{~m}$ from Rs)

Noise coucebling
Take e.g. Shunt Feedback configuration:

$$
A_{1}=-\left(1+\frac{R_{f}}{R_{s}}\right) \Longleftrightarrow v_{\text {out }} H_{i_{n}}=0 \longleftarrow \frac{V_{\text {ait }}}{i_{n}}=A_{1} \cdot \frac{v_{x}}{i_{n}}+\frac{v_{y}}{i_{n}}=A_{1} \frac{R_{s}}{1-G_{\text {bop }}}+\frac{R_{s}+R_{f}}{1-G_{\text {leap }}}
$$

Signal transfers

$$
\begin{aligned}
& \frac{V_{0 u t}}{\sigma_{s}}=A_{1} \frac{\sigma_{x}}{V_{s}}+\frac{\sigma_{y}}{V_{s}}=-\left(1+\frac{R_{f}}{R_{s}}\right) \cdot \frac{1 / g m_{1}}{l / g_{s}+R_{s}}+A_{0} \quad \text { sew voltage gain } \\
& \text { snatched } \rightarrow=-\left(1+\frac{R_{t}}{R_{s}}\right) \frac{l}{2}+\frac{l}{2}\left(1-\frac{R_{t}}{R_{s}}\right)=-\frac{R_{t}}{R_{s}}=A_{0}^{\prime} \simeq 2 A_{0}!
\end{aligned}
$$

How can we implement sum and unltiplication, without adding extra raise that would spoil the concept of raise cancelling? find 2 nodes to be courcerued (in) ξ is cancelled, but signal $\left(v_{s}\right)$ is not cancelled rus

Noise trauffers

$$
\begin{aligned}
& \frac{V_{y}}{i_{n}}=\frac{R_{s}+R_{f}}{1-G_{\text {lop }}}>0 \\
& \frac{\sigma_{x}}{i_{n}}=\frac{\sigma_{y}}{i_{n}} \cdot \frac{R_{s}}{R_{s}+R_{f}}=\frac{R_{s}}{1-G_{\text {lop }}}>0
\end{aligned}
$$

the addition of the raise cancelling circuit.
 autpert auyenare

$$
\begin{aligned}
& N F=1+\frac{L K T R}{L K T R_{s}\left(\frac{R}{R}\right)^{2}}+
\end{aligned}
$$

$$
\begin{aligned}
& =1+\frac{R_{s}}{R_{f}}+\left(2+\frac{R_{f}}{R_{f}}\right) \frac{1}{g_{m_{3}}} \frac{R_{f}^{2}}{R_{d}^{2}} \frac{\gamma}{\alpha}
\end{aligned}
$$

(referred to the output)
Fare $R_{f}>R_{s}: \sqrt{N F} \simeq 1+\frac{R_{f}}{R_{s}} \frac{l}{g_{3}} \frac{R_{s}}{R_{j}^{2}} \frac{\gamma}{\alpha}=1+\frac{\gamma}{\alpha} \cdot \frac{l}{g m_{3} R_{f}}$
If $g_{m_{3}}>1 / R_{y}$ then the NF of this stage (independent of $g_{m_{1}}=1 / R_{s}!$) is lower than the NF of the shunt feedback topology without raise cancelling

Issue: parasitic capacitances
The raise reduction of this technique is limited by parasitics when $g_{m_{3}}$ becomes very large (fore a lower NF).

Impedance transformation
Exploit gate-saurce capacitance of a transistor with inductive degeneration

\Longrightarrow it's a series RLC!

Ls
By unaking L_{s} and $C_{g s}$ resonate, we can obtain an input impedance that is different from $1 / / \mathrm{gm}$.
New unatching condition: $\omega_{0}=\frac{l}{\sqrt{L_{s} C_{a s}}}$

$$
\text { - } \omega_{T} L_{S}=R_{S}
$$

Take e.g. Common Gate configuration:

$$
V_{\infty} \ldots
$$

"bias-tee"

degree of freedom

- Matching condition: when choosing L_{s} and C_{g}
- Voltage gain:

$$
\text { - } \omega_{0}=\frac{1}{\sqrt{\left(L_{s}+L_{8}\right) C_{8 s}}}
$$

- $\omega_{T} L_{s}=R_{s}$

equivalent input $\rightarrow \quad\rangle V_{g s}=Q \sigma_{s}$ where $Q=\frac{l}{\mid \omega_{0} C_{g s}\left(R_{s}+\omega_{t} L_{s}\right)}$
network at resonance

$$
\begin{aligned}
& \sigma_{\text {out }}=-g_{m} v_{g s} R_{L}=-g_{m} R_{L} Q \sigma_{s} \\
& \text { matched import } \longrightarrow=\frac{1}{\omega_{0} \cdot C_{g} \cdot 2 R=} \\
& \text { increase factor } \\
& \Longrightarrow A_{0}=\frac{\sigma_{\text {art }}}{\sigma_{s}}=-g_{m} R_{L} Q=-g_{m} R_{L} \frac{l}{\omega_{0} C_{g s} 2 R_{s}}=-\frac{\omega_{T}}{\omega_{0}} \frac{R_{L}}{2 R_{s}} \\
& \text { gain of standard CG topology }
\end{aligned}
$$

- Naise figure: what we really

$$
\begin{aligned}
& i_{0}+i_{n}^{\prime}=-\frac{i_{0}}{g_{m}} \cdot s C_{g^{s}}+\frac{-\frac{i_{0}}{g_{m}} \cdot s C_{g s} \cdot R_{s}-\frac{i_{0}}{g_{m}}}{s L_{s}} \\
& i_{0}=-\frac{s g m / C_{g}}{s^{2}+s\left(g m / C_{g}+R_{s} / L_{s}\right)+\frac{l}{L_{s} C_{g}}} i_{n}^{\prime} \\
& \begin{array}{r}
\frac{i_{0}}{\left.i_{n}\right|_{\omega=\omega_{0}} ^{\omega_{i}}} \begin{array}{r}
j \omega_{0}\left(\omega_{0} g_{m} / C_{s}+R_{s} / L_{s}\right) \\
\sqrt{L_{s} C_{0}}
\end{array}=-\frac{\omega_{T} L_{s}}{\omega_{T} L_{s}+R_{s} \uparrow}=-\frac{l}{2} \\
\text { matched } \\
\text { input }
\end{array}
\end{aligned}
$$

(omitting
for simplicity)
at resdrance

$$
\begin{aligned}
& \Longrightarrow N F=1+\frac{4 K T \gamma / \alpha g_{m}\left(\frac{l}{2}\right)^{2}}{L K T R\left(\frac{g m}{\omega g}\right)^{2}}+\frac{L K T / R_{L}}{L K T R s\left(\frac{g m}{\operatorname{LK} R_{2}}\right)^{2}} \text { (reformed to } \\
& \text { the share circuit } \\
& \text { output current) } \\
& =1+\frac{\gamma}{\alpha} \cdot \frac{R_{s} \omega_{0}^{2} C_{g s}^{2}}{g_{m}}+\frac{4 R_{s} \omega_{0}^{2} c_{g^{2}}^{2}}{R_{L} g_{m}^{2}}
\end{aligned}
$$

Maise term of standard CG topology
quality factor of (matched) Kg network

For LNAs, we define the transducer power gain as the ratio between output power and available input power:

$$
G_{T}:=\frac{P_{\text {out }}}{P_{\text {in, au }}} \leqslant G_{A}
$$

and the operating power gain as the ratio between output power and input power

$$
G_{p}:=\frac{P_{\text {out }}}{P_{\text {in }}} \geqslant G_{T}
$$

Mixeres

Heteredyue RX structure:

Mixer is used as a DOWN-cowerter.

Direct-couversian TX structure:

Mixere is used as an UP - couvertere.

Specificatiaus: Conversion gain: $G:=\frac{P_{\text {Put }}}{P_{R}}$ powerer at $f_{\text {RF }}$

- Limearity because of Blockors (sigual of RF port is livearly traneffreed to \mathbb{F} port)
- Noise figure because LNA gain (iu RX) is livited
- Feedthraughs: unvanted signal tranfor from sue port to another are (sigual at RF iuput leaks into IF dutput, at IF part there is a sigual eampouent at $f_{R F}$

Passive Returu-to-zero (RZ) uixer

Close the switch when thresholel is reached

Defining the fuuctiou s so (t) :

$\omega_{\omega}=\frac{2 \pi}{T_{\omega}}$
(Duty Cycle depends su threshold)
$\Longrightarrow L T V$ systeu (ideally if $r_{o n}$ is coustant)

$$
\sigma_{F F}(t) \cong \frac{R_{L}}{R_{L}+\gamma_{o n}}\left[\frac{1}{2}+\frac{2}{\pi} \cos \left(\omega_{L} t\right)+h a r m a n i c s\right] \cdot \sigma_{R F}(t)
$$

50% Duty Cyele
(sto (t) is exact square wave functiou) RF-to-IF wauted f feed through componeut

Assume $\sigma_{R F}(t)=A \cos \left(\omega_{R F} t\right)$

$$
\begin{aligned}
\Longrightarrow \sigma_{\mathbb{F}}(t)=\frac{R_{L}}{R_{L}+r_{I N}} \cdot & {\left[\frac{A}{2} \cos \omega_{R F} t+\right.} \\
& +\frac{1}{2} A \frac{2}{\pi} \cos \left(\omega_{L E}-\omega_{R F}\right) t+ \\
& \left.+\frac{l}{2} A \frac{2}{\pi} \cos \left(\omega_{L E}+\omega_{R F}\right) t+\text { ther terws }\right]
\end{aligned}
$$

- Couversisu (valtage) gaice: $A_{G}=\frac{V_{I F}\left(\omega_{L \rho}-\omega_{R F}\right)}{V_{R F}\left(\omega_{R F}\right)}=\frac{1}{\pi} \frac{R_{L}}{R_{L}+r_{\text {or }}}<1$

$$
A_{\sigma_{\max }} \xrightarrow{r_{\text {on }} \rightarrow 0} \frac{l}{\pi} \simeq-10 \mathrm{~dB}
$$

- Linearity: $r_{0 n}$ depends in reality an $G_{g s}$ ie. de $V_{R F}$ hence linearity improves for $r_{0 n} \ll R_{L}$
large parasitic capacitance $\Longleftarrow \operatorname{large}$ MOSFET
- Feed through:

LO- To -IF

$$
L Q-\text { to -RF }
$$

\Longrightarrow Linearity - Feed through trade-aff

- Noise:

- MOS noise

$$
=2 k T r_{0 n} * \sum_{n=-\infty}^{+\infty}\left|C_{n}\right|^{2} \delta\left(f-n f_{L_{0}}\right) \cdot\left(\frac{R_{L}}{R_{L}+r_{0_{n}}}\right)^{2}
$$

$$
=2 k T r_{o n} \underbrace{\sum_{n=-\infty}^{+\infty}\left|C_{n}\right|^{2}} \cdot\left(\frac{R_{L}}{R_{L}+r_{0 n}}\right)^{2}
$$

power of $s_{\infty}(t)$

$$
\int_{-\infty}^{+\infty}\left|\mathcal{L}_{20}(f)\right|^{2} d f=\frac{l}{T_{L 0}} \int_{-\frac{T_{0}}{2}}^{\frac{T_{10}}{2}} s_{L}^{2}(t) d t
$$

Parceval's theorem

Since $S_{o_{n}}$ is white, the couvalutiare with infinite detas results in the sum of infinite white raise components that are unonataically decreasing ("spectrum folding")
U_{n} is transferred to $\sigma_{1 F}$ only for half of the time (50\% DC)

- Rel noise

$$
\left.v_{\mid F_{n}}\right|_{R_{L}}=\underbrace{v_{n}(t) \cdot s_{L}(t) \frac{r_{0 n}}{r_{O n}+R_{L}}}+\underbrace{v_{n}(t) s_{L_{0}}(t)}
$$

when switch when switch
 is closed is open

$$
\left.\Longrightarrow S_{\sigma_{\text {FF }}}^{D S B}(f)\right|_{R_{L}}=2 K T R_{L} \cdot \frac{1}{2} \cdot\left(\frac{r_{\text {on }}}{r_{\text {on }}+R_{L}}\right)^{2}+2 K T R_{L} \cdot \frac{1}{2}
$$

- Total uaise

$$
\begin{aligned}
& \begin{aligned}
\Longrightarrow S_{G_{F}}^{S B B} & =2 k T r_{\text {on }}\left(\frac{R_{L}}{R_{L}+r_{o n}}\right)^{2}+2 k T R_{L}\left(\frac{r_{a n}}{r_{o n}+R_{L}}\right)^{2}+2 k T R_{L} \\
& =2 k T\left(r_{\text {on }} / / R_{L}\right)+2 k T R_{L}
\end{aligned} \\
& \text { half PSD half PSD } \\
& \text { when switch when switch }
\end{aligned}
$$ is closed is open

Iupeut referred: $\quad S_{U_{R F}}^{S B B}=\frac{S_{G_{I E}}^{s B B}}{\left(A_{V}\right)^{2}}=\frac{2 K T\left(R_{L} / / r_{o n}+R_{L}\right)}{\left(\frac{l}{\pi} \frac{R_{L}}{R_{L}+r_{o n}}\right)^{2}}$

$$
\frac{\partial S_{U_{R F}}^{S S B}}{\partial R_{L}}=\left.0 \longrightarrow S S_{R F}^{S O B}\right|_{\text {min }} \simeq \frac{115}{\searrow} \cdot k T \cdot r_{\text {on }} \text { for } R_{L}=\sqrt{2} r_{n}
$$

 inixer uprise is typically considerably larger than source raise

NF contribution is relevant
(internal raise of mixer is dawncouverted and folded by harmonics; RF raise is rat folded by having a LPF at the RF port)

Active mixers: We discriminate between passive and active mixers by their gain (lower and greater thane ane, respectively) and by the presence of DC bias current in the stage.

Single-Balanced mixers

$$
\sigma_{I F}(t) \simeq g_{m i} \sigma_{R F}(t) \cdot x_{L}(t) \cdot R_{L}
$$

Hp: full switching of $\mathrm{M}_{2} / \mathrm{M3}$

- 50% Duty Cycle
- Ml is always in saturation

$$
\begin{aligned}
\sigma_{R F}(t) & =A \cos \left(\omega_{R F} t\right) \\
\sigma_{F F}(t) & =g_{m_{1}} R_{L} \cdot A \cos \omega_{R F} t \cdot\left[\frac{4}{\pi} \cos \omega_{L \infty} t-\frac{4}{3 \pi} \cos 3 \omega_{L} t+\ldots\right] \\
& =g_{m_{1}} R_{L} A \frac{4}{\pi} \cdot \frac{1}{2} \cos \left(\omega_{L_{0}}-\omega_{R F}\right) t+\text { other terms }
\end{aligned}
$$

(ideally) mo RF-to-IF ferdthraugh! \Longleftrightarrow "SINGLE-BALANCED" (20 signal is balanced)

- Caurersian (voltage) gain: $A_{v}=\frac{V_{F F}\left(\omega_{L}-\omega_{R F}\right)}{V_{R F}\left(\omega_{R F}\right)}=\frac{2}{\pi} g_{m_{1}} R_{L}>1$

Noise PSD changes whether the circuit is unbalanced (ie are MOS is fully an and the other is fully off)
or balanced (i.e. both transistor are slightly on or off). If the switching time is mat instantauears, then there will be a fraction of the pried during which the circuit is balanced.

$$
\left.S_{\sigma_{F}}^{s s e}\right|_{\text {ONEAL }}=2 \cdot 4 K T R_{L}+4 K T \gamma / \propto g_{m_{1}} R_{L}^{2}
$$

M2 and M3 are cascaded
$2 R_{L}$ resisters $\sigma_{I F_{n}}=R_{L} \cdot i_{n_{1}} x_{L_{0}} \longleftrightarrow S_{U_{I F}}=R_{L}^{2} S_{i_{M 1}} P_{x_{L}}$ where $P_{x_{\infty}}=\frac{l}{T_{0}} \int_{-T_{1 / 2}}^{T_{0 / 2}} x_{L_{0}}^{2} d t=l$

$$
\begin{array}{r}
S_{\left.\sigma_{\text {IF }}\right|_{R A L}}^{S B}=8 K T R_{L}+8 K T \gamma / \alpha g m_{23} R_{L}^{2}+0 \\
R_{L}
\end{array}
$$

If abrupt switching: $S_{v_{I F}} \simeq S_{\sigma_{I F}}$
$D C$ of unbar coufig.
If low-pass filtering at mixer output: $<\left.S_{\sigma_{v_{F}}} \simeq S_{\sigma_{r i}}\right|_{\text {UNA }} \cdot \widetilde{\left(1-\frac{2 t_{w}}{T_{10}}\right)}$

$$
+\left.S v_{i F}\right|_{\mathrm{sN}} \cdot \frac{2 t_{\mathrm{N}}}{T_{L 0}}
$$

DC of Bal coufia.
Passive siugle-babanced unixer

$$
\text { - } A_{v}=\frac{2}{\pi} \frac{R_{L}}{R_{L}+r_{a n}}=\left.2 A_{v}\right|_{R z}<1
$$

- zero RF-to-IF feed through zero LO-to-RF
uan-zero LO-to-IF
(same for the active version)

Is there a unixer topology that also has zero Lo-to-IF feed through?

Dauble-Balouced unixers
\rightarrow both $\angle O$ and RF are balanced

$$
\begin{gathered}
\sigma_{\mathbb{F}}(t)=g_{m+1} \sigma_{R F}(t) \cdot x_{\infty}(t) \\
\Downarrow \\
\cdot A_{v}=\frac{2}{\pi} g_{m_{1}} R_{L}
\end{gathered}
$$

- zero LO-to-IF feedtheaugh \longrightarrow valuable surce LO is large signal

- Livearity (of active mixers):
- livearity of g_{m} stage
- current divisian between M2/M3 and $C_{p a x}$
man-lineare if $\mathrm{M2} / \mathrm{M3}$ go to triode regiou

limited LO amplitude
|Trausceivers Architectures $\|$

RX Architectures

- Heterodyue architecture
- Sirgle IF
- Dauble IF
- Direct eouversiou ar zero-IF arclitecture
- Sliding IF
- IF saupling
the selectivity
 autema filter attennates out-of-boud interferers can't perfaru chourel' selection because chaunel selectivity in wirelass systans is in the arder of $60 d B$ be feasibly abtaiued with standard filters (which would also yeed to be twuable)

A possible solution is using an heterodyne receiver.

2 advantages: SAW filter

- IF freq. is lower than RF freq.
- IF filter doss not used to be tunable
\rightarrow low IF to improve selectivity (lower center freq.) lower Q required)

Issue: image problem

\rightarrow high IF to ineprare image
high IF rejection

$$
\Longrightarrow \text { Trade-aff between }\left\{\begin{array}{ll}
R X & \text { sensitivity } \leftrightarrow
\end{array} \begin{array}{l}
\text { images } \\
R x \text { selectivity } \leftrightarrow \text { in-band } \\
\text { interferes }
\end{array}\right.
$$

Another solution to relax this trade-off: Dual-IF

- Large $f_{i F_{i}}$: relaxes \mathbb{R} filter $\left(B P F_{2}\right)$
- Sural $f_{i_{2}}$: relaxes chaumal select filter ($B P F_{4}$)

Issue: secondary image
A signal in the same band of our chanel can became an in age frau the point of view of the second unixer

Solution: use BPF_{3} to filter out the secoudry inge. However, yow daesu't BPF3 meed a larger $\mathcal{I}_{F_{2}}$ to effectively reject the secondary iurage?
Not necessarily, since the center freq. has been brought blown to $f_{F_{1}}$ hence the Q factor will be auquay lower (with respect to the IR filter of the single- IF architecture, which was centered around $f_{R F}$)

$$
Q \propto \frac{f_{R F}}{2 f_{I F}}
$$

Dual -IF

$$
Q \propto \frac{f_{F_{1}}}{2 f_{F_{2}}}
$$

These advantages and the elimination of the sensitivityselectivity trade -off come at the cost of additional components, with additional raise and man-linearities.

Full architecture of a single -IF $R X$:

DEP
Down conversion Lean $f_{\text {IF }}$ to BB
The high variable gain of the VGA is receded to allow any signal, which can span frou-lood Bm to OdBm ($0 \mu \nu$ to 600 mV peak-to-peak) an a 50Ω resistance) to explait the FSR of the ADC.
To choose the gain of the VGA, an AGC (Automatic Gain Coutral) system unit check the amplitude of the incensing siqual.
Finally, the number of bits and FSR of the ADC unit be chosen to account for not only the SNR, but also the presence of interferes which night cause saturation issues, while keeping same margin for passible avers.

\rightarrow noise floor
(quantization raise)
Inure: half-IF problem

How can this interferer harm?
2 mechanisurs:
(1) LO and hormanic

LNA and order ucu-linearity
(2) VGA and order uou-linearity

LNA and order rou-liu.
(1)

also the signal will have its harmonic

At the output of the mixer:

At the output of the unixer:

At the output of the VGA:

SNIR (slightly) degraded!

Direct-Cenversion RX (or Zero-IF RX):

$$
f_{R F}=f_{0} \text { in a zero-IF RX } \Rightarrow f_{1 F}=\left|f_{L_{0}}-f_{R F}\right|=0
$$

The double demodulation is needed to individually recover the trousuitted I and Q (this is true for any receiver).

Advantages:

- Iurage sableu apparently salved
\Longrightarrow no wed for \mathbb{R}^{\prime} filter
- Chanel selection is performed with a LPF (rather thou BPF)
$\Rightarrow \mu 0$ need for offchip SAW filters Capacitor switched
LPF can be implemented in silicon (SC active filters)
Direct-coversian RX architecture suitable for fully integration in silicon

Critical issues:

- LQ leakage: $f_{10}=f_{k F} \Rightarrow L O$ is in LNA and BPF BW (Lo signal also has large power)

LO signal can be emitted and $R x$ might violate radiation limits ($<-80 \div-50 d B_{m}$)

- DC offsets: - LO leakage \Rightarrow self-unixing of LO

Few mV of $D C$ effect can saturate the VGA - Interferer leakage \Rightarrow self-uixing of interferer

How cu we filter these DC offsets?

1) $A C$ coupling:

In order to leave most of the signal intact: $f_{p}<\frac{f_{\text {sw }}}{1000}$ raise here is relevant since we have yet to amplify
 (remove ally the lowest frequency components)

- AC coupling requires a total of 4 capacitors
- C.R product unest be large to have a low f_{p}
- R resistors introduce raise (degrading SNR)
a good in plementatiou would red 4 very large capacitances (to have low R raise)

2) Offset carecellatiou with switched Capacitor

during offset cancellation

Since signals came in bursts (e.g TDMA), when mo signal is present the switch is closed and the offset is memorized in the capacitor.
When the signal is present, the switch is opened and the offset cancels out with the voltage droop of the capacitor leaving only the signal at the input of the VGA.
An issue of this solution is that the offset due to interferer wight not be constant and cause offset compensation everars; not only that, also $D C$ \&f sets caning fou LO leakage that has been emitted and then reflected back in the RX depend on the suveauding euvirauueut and are therefore (slowly) variable in time.
To compensate such arrears ane can average the offsets sampled over several samples to derive a ware correct $D C$ cancellation

The switched capacitor offset cancellation:

- solves the low-frequency pole issue
- does not salve the uprise issue:

capacitance still reds to be large to have low raise

3) Offset cancellation with feedback

It can be deuroustrated that this solution requires a C larger than that of AC coupling

$$
\downarrow
$$

not a viable option
4) Effect cancellation with $D A C$

Two-step: to avoid VGA saturation

This is the most-used technique in CMOS technology.

Another critical issue of direct-courersian $R X$:

- I/Q mismatch

Two paths: amplitude mismatch ε phase mismatch θ

$$
\begin{aligned}
& x_{R F}(t)=I(t) \cos \omega_{0} t+Q(t) \sin \omega_{0} t \\
& \left\{\begin{array}{l}
x_{\text {OI }}(t)=2\left(1+\frac{\varepsilon}{2}\right) \cos \left(\omega_{0} t+\frac{\theta}{2}\right) \\
x_{L O Q}(t)=2\left(1-\frac{\varepsilon}{2}\right) \sin \left(\omega_{0} t-\frac{\theta}{2}\right)
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
x_{\operatorname{BRI}}(t)=I(t)\left(1+\frac{\varepsilon}{2}\right) \cos \frac{\theta}{2}-Q(t)\left(1+\frac{\varepsilon}{2}\right) \sin \frac{\theta}{2} \\
\left.x_{B Q Q}(t)=Q(t)\left(1-\frac{\varepsilon}{2}\right) \cos \frac{\theta}{2}\right) I(t)\left(1-\frac{\varepsilon}{2}\right) \sin \frac{\theta}{2}
\end{array}\right.
\end{aligned}
$$

wanted signal component image leakage
$\varepsilon \Longrightarrow$ gain err
orthogonal component
leaking for mou-zero θ
$\theta=$ crosstalk or image leakage

It is still an "image" problem where the image now comes fed the same RF frequency of our segual. While in an heterodyne receiver a good IR filter was weeded to reject images, in a direct conversion receiver a good quadrature is Heeded instead.

$$
\left[I R R=\frac{P_{s}}{P_{i m}}\right] \text { Image Rejection Ratio }
$$

$$
\begin{aligned}
& x_{B B I}=I \cdot\left(1+\frac{\varepsilon}{2}\right) \cos \frac{\theta}{2}-Q \cdot\left(1+\frac{\varepsilon}{2}\right) \sin \frac{\theta}{2} \\
& x_{B B Q}=Q \cdot\left(1-\frac{\varepsilon}{2}\right) \cos \frac{\theta}{2}-I \cdot\left(1-\frac{\varepsilon}{2}\right) \sin \frac{\theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left\lvert\, R R=\frac{\left|\bar{x}_{R F}\right|^{2}}{|\bar{e}|^{2}}=\frac{\left|\bar{x}_{R F}\right|^{2}}{\left|\bar{x}_{B B}-\bar{x}_{R F}\right|^{2}}=\frac{\mid \bar{x}_{R I^{2}}}{\left(x_{B B I}-I\right)^{2}+\left(x_{B B Q}-Q\right)^{2}}=\right. \\
& \Rightarrow \frac{4}{\varepsilon^{2}+\theta^{2}}=\frac{1}{\left(\frac{\varepsilon}{2}\right)^{2}+\left(\frac{\theta}{2}\right)^{2}}
\end{aligned}
$$

after dive approx.
Typically, an accurate design in GHz range leads to $\mathbb{R R} \simeq 30 d B$ (e.g. with $\varepsilon \leqslant 0,1$ and $\theta \leqslant l^{\circ}$)
programmable amplifiers

I/Q unisuratch cabiratiau:

How cone we did rat discuss I/Q urisuatches in single and dual -IF ardirtectures, since they also have quadrature demadulatian? (Note that the other critical issues instead are not present in heterodyne structures).

The reason is that amplitude and, mare importantly, phase errors are munch weaker when deurodulating at low frequencies (i.e. at IF instead of RF)
$x_{\text {LI }}(t) \nwarrow$ due to time constant $x_{\text {LI }}(t)$ delay eveors $\theta=\omega_{0} \tau=2 \pi f_{\text {. }} \tau$ and time response θ is actually a function of f_{0} boturnath two paths
\Longrightarrow The larger ω_{0}, the higher will be the phase erear θ

Again another critical issue of direct-cowersian $R X$:

- Even-arder haruarics

$D C$ components cau be caucelled

If au interferer is auplitude usdulated, another prablen arises in the farm of unwanted deuno dulatiau of AM interferers.

$$
x(t)=[\underbrace{A_{\text {int }}+a(t)}] \cdot \cos \omega_{c} t \quad y(t)=\alpha_{1} x(t)+\alpha_{2} x^{2}(t)
$$

AM inodulation of an interferer 1 - $\cos \left(2 \omega_{2} t\right)$

$$
\begin{aligned}
\alpha_{2} x^{2}(t) & =\alpha_{2} \cdot 2 A_{\text {int }} \cdot a(t) \cdot \cos ^{2} \omega_{c} t+\ldots= \\
& =\alpha_{2} 2 A_{\text {int }} \cdot a(t) \cdot \frac{1}{2}+\cdots
\end{aligned}
$$

AM unodulated interferere
K is the ratio betwecu RF-to-IF feedthrough gain A_{f} and canversian valtage gaiu of the unixer A_{0}
e.g:: iu a passive $R z$ uixer $A_{8}=\frac{1}{2}, A_{v}=\frac{1}{\pi}$

$$
\longrightarrow K!\frac{1 / 2}{1 / \pi}=\frac{\pi}{2}
$$

Concluding the list of issues associated with direct conversion architectures, also $1 / 2$ noise can be especially troublesame due to the fact that the gain stage is at the end of the $R X$ chain and hence all early stages introduce raise that is relevant.
Solutions to this issue are: 1) larger devices to reduce their flicker uaise generation and 2) offset cancellation techniques to unitigate the effects of flicker uaise at low frequencies.

The direct couversicu architecture was the first to be conceived among all $R X$ architectures. However, its several issues made it too hard to be practically implemented and so other solutions (single-IF, double \mathbb{F}) were used.
Only in eure recent times was it possible to overcame these issues to exploit the advantages of direct couversisu, first of all the possibility of having a fully integrated system.

Image -Reject receivers
Single -IF:

Dual-IF: to relax image-selectivity trade-aff
These two are solutions based an filtering. Direct conversion is a solution based an demodulation. The advantage of the latter solution is that there is us need for additional off-chip filters:

LNA reguizes an output stage to drive the Filter input impedance

RF off-chip blocks (such as fillers) require impedance matching
large power consumption

With direct demodulation, instead, the LNA is connected directly to the unixer and requires no impedance snatching

Is it possible to pursue image rejection based an filtering, whithout having to deal with BFF in the RF range which would require off-chip blocks?

1) Hartley image-reeject RX

Avoids extra BPF for image rejection. Requires two mixers with quadrature LB, 2 LPFs (which can easily be obtained in integrated circuits unlike BPF at RF) and ane phase shifter.

The phase shifter with the summing node can be obtained similarly to what we have already seen:

(introduces losses)

Trausfore fuuctiau of phase shifter
In time domain:

$$
\Longrightarrow G(\omega)=-j \operatorname{sigu}(\omega)
$$

Effects of Hartley IR filter on the spectrum of au input sigual 7 image:

low side injection

In case of couversiau errors (ε and θ) there will be a small leakage of the image in the output spectrum. The Image Rejectiau Ratio will be again given by

$$
I R R=\frac{4}{\varepsilon^{2}+\theta^{2}}
$$

2) Weaver image-

Effects of Weaver \mathbb{R} filter on the spectrum of an input signal + image:

Comparison of Hartley vs. Weaver architectures
Hartley: phase shifter has limited BW and is sensitive to $R C$ absolute accuracy \Rightarrow limited IRR phase shifter also introduces thermal raise and power loss

Weaver: problem of secondary image
\Rightarrow med to use BPF instead of LPF or move $\omega_{\mathbb{F}_{2}}$ to θ

Ix Arditectwees
Key issues:

- ACPR: TX has to limit emissions
\downarrow
linearity to avoid spectral regrowth in limits uau-coustant envelope undulation
PA power efficiency
\rightarrow to have high bit-rate in a limited BW
- Loss-selectivity trade-aff

power loss degrades
 efficiency of Ix
- Modulatian imbalances (ε, ϑ)

$\Longrightarrow \cos \omega_{s B} t \cdot \cos \omega_{5} t-\sin \omega_{\infty S} t \sin \omega_{0} t=\cos \left(\omega_{0}+\omega_{A B}\right) t$
With unisuatches: $I R R=\frac{P_{s}}{P_{\text {in }}}=\frac{4}{\varepsilon^{2}+\vartheta^{2}}$ ideal
\Longrightarrow Add a BPF before PA to improve IRR
- LO pulling: oscillators are subject to INJECTION
signal modulated at f_{0} with large power

The oscillator "locks" to the injected signal if its frequency is within the axillator's BW (ie. $3 d B B W$ of are $L C$ ass.)
If the injected simsaid is undulated, the ascillator (locked) fallows its phase/ frequency modulation

Introduce an offset between $L O$ frequency and PA frequency to reuse coupling

1) Two-step TX architecture

- Avoids LO $L D_{1}$ pulling
- Improves I/Q unatching

2) Siugle-sidebound mixer TX architecture

(It is the dual of the Hartley $R X$ architecture)
