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Lectures



Chapter 1

Semiconductor generalities

1.1 Energy GAP

For this course we are considering just semiconductors made of Si, an element located in the IV group of the periodic table and thus
presenting the configuration 352 3p? on its most external orbital. We already know that electrons in periodic potentials present
quantified levels of energy, so their conduction properties can be easily represented through the band diagrams. In particular,
we want to focus our study in particular on the Energy GAP, which is the most important energy level in semiconductors as
electrical and optical properties depend on that. The energy GAP can be described as the distance between the conductive band
FE., aband completely devoid of electrons, and the valence band F,, a band filled entirely with electrons (both considerations are
taken at 7' = 300 K). To sum it up
E.-FE, =FE¢g

AE
Conduchive Gond
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For semiconductors in general F¢ =~ 1eV, while in other materials, like insulators or metals, it is either higher or lower,
determining the conductability of said material (close to none for insulators, very high for metals).

Semiconductors on the other hand have a particular behavior referring to conductability, because their energy GAP depends



on the temperature according to this relation

oT?
Ec(T) = Eg(0) —
(1.1)
E —2aT(B+T) + aT?
9E¢ _Z20(B+T) +a =-2,6-10"% V/k
(B+12)
T=300 K T=300 K
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As we can see, the GAP decreases when temperature rises, improving electronic jumps as they now require less energy to be
performed. For Si in particular we have these values:

Ec(0) =1,169 eV

1%
a=4,9-10"* % — Eg(300K)=1,12 ¢V (1.2)

B =655 K

It is also important to remember that missing electrons can be considered as positive-charged carriers: the holes.

1.2 Density of states

We want to obtain a description of the energy dispersion relation approximated to the edges; first we are going to consider the
conduction band, therefore

2.2 2}.2 27.2
:hkm+ﬁky+hkz

1.3
2my 2m,, 2m., (1.3)

E—-FE,

where F is a generic energy state.

Kz

—
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i

As we can see, this is the equation of an ellissoid; if we were to find the axis intersections then we would simply reverse the
ellissoid equation and get

2m.(F — E.)

2m,(E — E.)
72

h? ’

- - 2m,(E — E.) -
fy = + By = £ = .=+ (1.4)



Effective mass for Si As we have already noticed, we can define different values for the mass according to the direction we are
currently heading to.!For Si, looking at the ellissoid function, we can distinguish a transvert mass from a longitudinal mass:

mge =m, = 0,19mg = my

(1.5)
my = 0,98mg = my

Now let’s consider the discretization of the k-space.

We can define a volume

A ok ks — S VO s
3 3
and a number of points
Vo1 4 /Bmemym,
C(pL3

We then want to see how everything changes according to a small energy variation

o /8mxmymz \/ﬁ

dE

Eventually we obtain the density of states for the conductive band as

dN i 487T
gc(E) dE —— 20bec S:> ( ) —5 V2 IV E—E;

Same procedure can be easily repeated for the desnity of states in the valence band, thus

=5 (Vo + /i) VE - E

where my,;, and my;, are heavy hole and light hole masses.

1.3 Fermi-Dirac statistics

Under thermodynamic equilibrium it is easy to compute band occupation as we are in a perfectly balanced situation (no net
processes are involved). Statistically, that is described through the Fermi-Dirac distribution

1
E—Ep
1 - -
+ exp ( KT )
defined as the probability that the generic state F is occupied by electrons; E'r is the Fermi level, which represents the last filled
level.

As we can see, KT determines the transition smoothness, in particular if £ — Er >> KT we can use the Maxwell-Boltzmann
approximation

f(E) = (1.6)

E—-Ep
f(E)~exp| ———— 1.7
(E) =~ exp T (1.7)
ﬁ2
'Remember that the effective mass in Quantum Physics is related to the energy levels like m* = 2B
k2
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Same reasoning can be repeated for the holes, this time considering the non-occupations of the energy levels though, so

| —f(B) = ! (1.8)

E-F
1+exp<— KTF>

Now we have all the ingredients to find the carriers concentrations, and we do it like that

n= /+0<> g(E)f(E)dE (1.9)

E.

&

oSS s
Electron concentration for Si  Substituting the values we found before for the density of states we get

= +0048—”,/2 2m\/E — E L dE (1.10)
n= . B mimy . E_Ep .

1+exp( KT )

. . . E_Ec_ EF_EC_ . . _ _E_EF
with some semplifications, such as xT = x and KT nresulting in dE = KTdr andx —n = KT

487r /7/%0 VKT
- l—l—e”f "KTdx

we get



and rearranging further the equation

48w

2 VT

n=——=—1/2m?m;(KT) 5 = N.

h:%

(1.11)

where N, is the effective density of states and 1 ,(n) is the Fermi-Dirac integral, which summarizes the information about Er

position with respect to the conduction band. If z — n >> 1, then

E.—E
Fipp(n) = exp <_KTF>

for Maxwell-Boltzmann2. Therefore
E.— Erp

n =N, Ce_ KT
For the valence band, same procedure is repeated

E,
p= / 00(E)(1 — (E))dE = N, Fy,(n)

—0o0

SO
EU - EF
p= Nve KT

Now we are left to see what is the position of E'r in the band diagram.

1.4 Intrinsic Si

Let’s see what happens when E, — Er << KT or EF is even higher than E:

E;////////—

EF—_ o

Es

Ev v
oSS

(1.12)

(1.13)

(1.14)

(1.15)

We would get that, using Maxwell-Boltzmann approximation, the occupation probability is well over 1, which doesn’t make
any sense. That’s because, in a logarithmic scale, Maxwell-Boltzmann statistics is a straight line, while the Fermi-Dirac one has

a more like parabolic behavior

&hmo

HB/

20nly valid if E. — Ep >> 3KT

veetdimator,



Now we want to find exactly where Er is on the band diagram. First we have to make a very important assumption: the
semiconductor is intrinsic, meaning that every Si atom occupies the position it is expected to have in the lattice, so

p=n (1.16)
Everything is perfectly balanced; we can develop 1.16 even further:
Ec - EF Ev - EF
Ne KT =N, KT

N FE.—FEr E,— FEFr E.+ FE, —2EF
=e KT ¢ KT =c KT

v

thus obtaining

v

B+ E, N
Ep = % — KTlog <N> — B (1.17)

E
where FE; is known as the intrinsic Fermi level; doing the calculations would result more or less in Ep ~ 7G We can also mix
1.16 with 1.17:

E.-E B —EBefp— Buofp 4 KT}y log (Ne/,) E.-FE, L, <N>
n=N.e KT =N.e KT — N, 2KT Ny ) _
(1.18)
1/2
_& log<> _ e
— Ne 2KTe \No) _ /N.Nye 2KT —p—n,

where n; is called intrinsic concentration® (highlighted terms are strongly dependent on temperature). We can rearrange 1.18 to
get

E.—Er—E +E; E.—FE; Ep —E;
n=Nge KT —Ne KT ¢ KT
which is resulting in
Er — E;
n=mne KT (1.19)
E, — Ep
p=ne KT (120)

That confirms what we have been doing since in intrinsic semiconductors £; = Er son = p = n,;. We can extend this concept

by introducing the law of mass action
n? = pn (1.21)

which is going to come in handy in the next sections.

1.5 Extrinsic Si

Intrinsic Si is a perfect crystal, but it can be doped with either donors (V group) or acceptors (III group) in order to increase
respectively n and p concentrations.

E. gl = | //C{é//ec
£O e

E, £ A

E — " &y

IO'WA i 1 +P\. u'tbgbwc_e. |
G&C}'zw Jecomer |
/rng;,tye. = DONcR :
+ | -

Nb —_— MD [ K7MA —> Na N

) ’& Accepor, Ifxdlasb
DonoR loNI128D CCEPTOR

JDonor

3For Si, n; (300K) = 1,45 - 10710 e¢m—3



The question we are asked is always the same: where is Er? Beginning from a n-doped semicondutor, it is reasonable to
assume that n # p no more, but it would have been increased by n = p + N g due to the introduced donor level.

OGS

As usual, Fermi-Dirac statistics can be exploited

E, - Efp

— 1
NCF1/2(77):NU6 KT + Np

Ep—F
1+ 2exp <DF)

(1.22)
KT

where the term highlighted in red is the probability 1 — f(E) that E is not occupied by electrons and the factor 2 is introduce to
take into account spin degeneracy. If we assume that Ep — Er >> KT, then 1.22 can be greatly simplified as Er would be so
below Ep that this would be completely devoid of carriers (complete ionization), thus 1 — f(F) ~ 1 and Maxwell-Boltzmann
would be appliable. On the overall, we obtain

E.—-Ep

—— Nc
N.e KT =R+ Np = EC—EF:KTlog( ) (1.23)
Np
Note that p at T = 300K is negligible as p << n;. Eventually we can write
n~ Np (1.24)
2
n;:
~ — 1.25
PEN, (1.25)

FEr goes upwards when Np increases; if Np is very high, a degeneracy occurs as Er ~ Ep and Maxwell-Boltzmann is no
longer valid. In this case, we have a n™-doped semiconductor.

Temperature dependence Empirically, it is observable that whenever T rises, £, — E actually increases; that’s beacause it
is true that the occupation probability is getting higher, but n is forced to be constant, therefore F'r must recede unitl it comes
very close to F/;. Hole concentration must be revisited as well. In fact p is no longer neglibile, but becomes even dominant

Ec

I
"—“—‘—*f‘.\_‘“\

Eec & —

s T e

_ 1 | — _
EFr 89i>aéaﬂ/z 165;. %Tgm% Epa——wE( )E

over Np: we enter intrinsic regime*.
n=p+Ng~p=n; (1.26)

On the contrary, whenever T falls, E. — E'r keeps shrinking. At a certain point, F'r becomes so close to E'p that we are not in
complete ionization anymore, meaning that not every donor is ionized

n=x+ N}, ~ N} < Np (1.27)

4Generally, intrinsic regime begins around 7" = 600 K

10



We enter freeze-out regime>.

Ey [

All those informations are summarized in the Arrhenius plot

lgn | | ,

R
ﬁmns}c PT ?UE:&_?KT ) ~

Note that for a p-doped semiconductor it is the same

p~ Ny
2
nN K
A N (1.28)
Er —E,=KT1 Y
F Og(NA)

1.6 Current transport

It is important to point out that there is not a single transport mechanism, but many different ones; in this case, we are interested
just in drift and diffusion. We begin from the first. If we apply an electric field F' to our semiconductor, we will notice that the
carriers are going to be surely affected: in particular, holes will move in the same verse as F, electrons in the opposite.

5Generally, freeze-out regime begins at around 7" = 150 K

11



Velocity and electric field are linked together through the mobility p

Ty, = —pnF (1.29)

Vg, = +pplF’ (1.30)
If carriers were free, acceleration would be constant, but since it is not the case they have to face scattering, intended as the
collision among carriers and impurities; we can observe that mobility drops when the doping concentration increases, while
saturates due to phononic scattering when it decreases.

When temperature rises, phononic scattering gets stronger while impurity scattering is slightly less effective. Mobility is also
dependent on dimensionality; for example, in a 2D semiconductor there are more scattering centers because its surfaces are closer
to one another.

After mobility, we can introduce current density, defined as

-

Ty = —qniy, = +qnun, F (131)
jp = +qpig, = +qnupﬁ (1.32)

As we can see, both vectors are equiverse to F, so the total current density would be

J=J,+ J, = (qnun, + qpup)ﬁ =oF (1.33)
where o is the conductivity and is related to the resistivity through
1

p=— (1.34)
o

For design reasons, sheet resistance is also important, described as the ratio between resistivity and semiconductor thickness

L L
~PEW T MW

R (1.35)

12



Finally, if F' gets stronger, velocity saturates due to the scattering with optical phonons, which are highly energetic.

45|

Now let’s talk about the diffusion process; there aren’t external forces moving carriers in this case, thus they simply adjust
their position in the semiconductor according to their concentrations, going from high to low.

A ¢ M(X)

Current density is then

d

dx

dp
Jp = —aDp (1.37)

where D,, and D, are the diffusion coefficients, defined through Einstein’s relations

KT

Dy, = pn—
q

KT (1.38)

Dp = pp—

1.7 Electrostatic potential and band bending

Until now we have been considering semiconductors under thermodynamic equilibrium, but what if an external electrostatic
potential was applied?

13
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The semiconductor periodic potential is shifted, and so are its energy bands.

Bands bend downwards in the direction where ¢.x rises; electrons follow the same direction. It is useful to underline this
relation

E;
Pext(w) = —— (1.39)
q
dex
Fo(z) = — fx - (1.40)
For Quantum Physics laws we can say that
d(hk
—qFe = —<dt ) (1.41)

Overall analysis can be further optimized by introducing the effective mass approximation, so that we can actually remove the ext
pedices from the equations, leaving just

dvy,

hk = mgv, = —qF = mmﬁ (1.42)
Now if we were to combine 1.40 with Gauss law iF _
= -f (1.43)
dzx €si
we would obtain )
&2y p
- __F 1.44
dx? €s: (1.44)
which is commonly known as the Poisson equation. For a semiconductor, 1.44 can be generalized into
d2¢ q + _
@:_;(P_R‘FND_NA) (1.45)

14



To have a better idea about carriers concentrations dependence on ¢, we can rewrite 1.19 and 1.20 as

q(¢ — or)
n=ne KT (1.46)
q(¢r — ¢)
p—me KT (1.47)
where ¢ = ——— is the Fermi potential. We have just found out that n and p are strongly dependent on ¢.
q

1.8 Spatially variable doping concentration

In the last section we found out what’s the effect of an external voltage applied to the semiconductor, but how can we achieve such
a result?

Answer is very simple: we dope the semiconductor, but only in a certain region so that
n(x) = Np(x) (1.48)
We can, for example, have a doping concentration looking like a Heaviside function (step)

ND(x) :ND+ANDH(I) (1.49)

If 1.48 is true, even the band bending should look like a step, but it actually doesn’t since at x = 0, F' — +o0 while F' = 0
everywhere else. We must rely on the Poisson equation (in a condition where p is negligible and there are no acceptors and
ANp << N D):

d*¢(x) q

= — N —
dz? Esa( p—n)

o(z) = ¢ + A¢(x)

(1.50)

15



Adjusting 1.50 with 1.46 we have

(¢ —¢r)
n=ne KI =Np
. _ (1.51)
q(¢+ Ad — ¢p) q(¢ — ¢r) qAP qAP Aé
n=mne KT —ne KT eKT:NDeKT@ND<1+qKT>

thus

?A¢ :_q< }/—WJA¢+}[/+ANDH( )> _ @®>NpA¢ B qANDH(x)

dz? €s:

e KT €si

At this point, solution is trivial:
x

Ag(x) x eiE

KT
652']\_[ is the Debye length®. Band profile changes exponentially.
qa“Np

where Lp =

STEP CHMGE ON DoPING

D

SHoOTH cHAGE on MWD DIACRAM

1.9 Non-equilibrium conditions

Let’s rewrite the total current density, including both drift and diffusion contributions, for each carrier in a more compact way,
beginning from J,,:

q(¢ — ¢r)
dn d KT d —
‘]YL = qTL,UnF + ani = —qNplyp—— ¢ + qlby —— n;e KT =
dx dx q dz
= g2 4 En-e%i do _der\ _ _ . ¢ o (40 _dor) _ (1.52)
4 Mndx Uhtn qg KT \ dx dx 1 Mndac @tn dx dx
g, B
Hn dx
and thus dé
F
Jp = —aPlp - (1.53)
Remember that under thermodynamic equilibrium Fr is constant, so —(bF =0 = J, = J, = 0; net flowing carriers are null

as drift and diffusion contributions perfectly balance each other. In order to achieve some net processes we have to perturb the
equilibrium state by applying a voltage difference between the contacts”.

SUsually Lp ~ 10~ 9 m
7We are considering ideal contacts for this analysis

16
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If the perturbation is weak, carriers distribution follows the equilibrium statistics, meaning that electrons are close to the
bottom of £, and holes are close to the top of F,; quasi-Fermi levels Fr, and EF, are also introduced, so 1.19 and 1.20 have to
be rewritten as

Ep, — E;
n=ne KT (1.54)
E; — EF,
p=mne KT (1.55)
PAY ATTENTION TO THE PRODUCT
Er, — EF,
pn =nie KT (1.56)
Law of mass action is no longer valid! Also 1.52 and 1.53 present a big change as the gradient is not null
dE
Jn = —qnpi, —= dor, _ Ny — (1.57)
dx dx
dor, dEF,
Jp = —appp— = =Py (1.58)

Contacts force the quasi-Fermi levels to merge into the original Fermi level, while in the system they can change. A new problem
appears, as Poisson equation is no longer sufficient to study our system.

1.10 Continuity equation

When the system is perturbed, Poisson equation is not enough: we have to add equations for the quasi-Fermi levels

¢ = ¢(z)
Ep, = Ep,(7) (1.59)
EFp = EFp ((E)
We introduce the continuity equations
)

Sl > S(idst)

w

17



adl’ =

0Jn
We can simplify even further exploiting Taylor expansion J(z + dz,t) = J,(x,t) + ——dz so

In(x + dz,t)

o 2O
ot

dp

ot

¢ _
dx?

; + (G — R)dzx

ox

(G = R)e

(G = R)n

—(p—n+Nj—Ny)

(1.60)

(1.61)

We got everything we need to have. Now let’s assume we are in stationary conditions (nothing changes over time), the result is

interesting:

on 1 8Jn

— =0 - G-R)=0

ot q Or + )

dp 10J,

— =0 -—+(G—-R)=0

ot q Ox sl )=
therefore we can say that

On +Jy) _ 0 = Jn + Jpis constant
q ox

e, 4o | .
)s 3\ ;
| |
4_2___-4l F___S_ oﬁb

What if we were to increase the doping concentration of the majority carriers?

M I

| T Au

B

QMB

P
4 >
We now have some charge exposed, so an electric field is generated
¢ ¢

@_——(y n+Ng — )I/):——/AV An+ Np) =

Es.

18

(1.62)

(1.63)

(1.64)

(1.65)



Electrons move away from the material due to the involved electric field: the system is trying to reach thermodynamic
equilibrium (without diffusion)
on 1dJ,

1 oF
o= g de TG = ) 5o (1.66)

then

t
0A 1 ¢A A -
gan _ L dan _ _An o An(t) = An(0)e Pes (1.67)
3t g 65; pESi
We can define Tr = peg; as the dielectric relaxation time8. Equilibrium is restored very quickly. But what if we perturb the
minority carriers now?

"

- = — —

| 2l

Ay
|

Z

B TS

4 5 K

As before, we have an electric field pushing away holes, but since they are a minority, resistivity is higher and electrons
are attracted into the matierial because they are a majority. Now two steps are taken into account:

1. Process end when Ap ~ An; a quasi-neutral region is formed.
2. Excessive electrons and holes recombine.

Since process 2 is way faster than 1, we can skip directly to this in our analysis.

1.11 Shockley-Read-Hall theory

We can describe generation and ricombination processes through Shockey-Read-Hall theory for defect assisted processes

$Usually 7 ~ 1012 s

19
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If the defect is empty, it can either capture an electron @ or release a hole @ while if it is filled, it can either release an
electron @ or capture a hole @

R: (D+(3) (1.68)
a: @+®) (1.69)

Remember that direct jump through the band gap is very unlikely. Now it is time to find G-R rates:

1.
r1 = Np(1 — f)nogo,  [em 3571 (1.70)
where these are the empty defects in Si and this is the probability that an electron is captured c,,.
2.
rg = Nrfe, (1.71)
where e,, is the emission rate; unfortunately, we cannot say anything because free states are way more than electrons, but
if we assume thermodynamic equilibrium f is 1.6 and r; = r as there cannot be net processes, so
1 ¢ Er—Er Er—FE; Er —E;
en = - ; -nuyo, =e KT ne KT wyo, =nvmone KT (1.72)
Emission depends exponentially on £ — F; and so is energy gain, while energy loss does not.
3.
rg = Nrfpuyo, (1.73)
4.
E,— Er
ry = Np(1—"fe, - ep = njvmope KT (1.74)

Intheend R = r; —ry = r3 — ry —> % where .7 is the Fermi-Dirac statistics only when R = 0. Doing some calculations, we
eventually get

2
pn —n;

Er —E;
2n; cosh | ————
p+n+ 2n; cos ( KT >

R (1.75)

70

where 79 =

assuming o, = 0, = 0.
T Um0

1.12 Main dependences of R

First of all it is important to assess the sign of R: since the denumerator is always positive, we have to look at the numerator:
« pn =n?and Ep, = Ep,: R =0, no0 G/R;
« pn>n?and Ep, > Ep,: R > 0, netR;

« pn <nfand Ep, < Ep,: R<0,netG.
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since cosh is an even function, Fp can be either above or below F; without any difference. Now we consider the situation

where we have just @ and @

v //t_?_
E1"‘_‘j@
®

R 2

N
and then R = TPOmT pr as expected from before (net
p+n To(p+n)

ricombination does not depend on Er — E;). The drop after +1, 5 in the general formula is determined by the fact that Er is
very getting very close to E. where @ happens.

In this case R = r; = r3, therefore f =

" )
@g e -omilld o E

&
/7/4? o oo o) L% ——
What if we have just (2) and (4)?

S S A
@
Er

@ I
S SR

Uz
Er — E;
T2 cosh (TKT)

Quasi-neutral region with low level of injection is a common case:

As we can imagine R ~ —

{nnoJrAn (1.76)

p=7po+Ap
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where An = Ap << ng + po; we can now simplify 1.75:

R— (po + An)(ng + An) — n? B per + Anng + Anpy + An? — % _
Er — E; Er — E;
To |po + An + ng + An + 2n; cosh (KT) To |po + no + 2An + 2n,; cosh (KT)
(L.77)

_ An(po + ng +M) _M

ET _Ei Tn

QA7 + 2n; cosh | 2%
70 |Po + o + + 2n; cos ( T )

Er — E;
9 cosh | ———
po + no + 2n; cos < "T )

where 7,, = 19 m ; if Ep = E; and low injection is confirmed, 7,, =~ 7(°, otherwise it is not a
Po T 1o

constant. Finally we get

on 108} An -
- = — _— = T’I’L
5 o P = An(t) = An(0)e (1.78)

9High quality materials have a very long 7,
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Chapter 2

Diode (p-n junction)

2.1 Basics of the p-n junction

We enter into the topic of the p-n junction, one of the most important electronic components. Basically it is nothing more than
two semiconductor layers, respectively n-doped and p-doped, joined together. For this analysis, we will always assume complete
ionization, so p = q(p —n+ Np — Na).

E. LLdv ot LS L L s
e |
A N B A
[ __I EF ]
E\J ——...I E‘/
S s o s

M

P

Ei-Ep E=_E.

Pﬁ:’”ﬂ;m_e Ky ’ﬂx)\r}b=m-‘e v

E.-Er- KT@;@(%) Er-E.- VCTQB(%)

then we put them in contact, keeping in mind that £’ must be unique; we expect a band bending!.

11t is reasonable to assume charge neutrality at the extremes
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¢y 1s the built-in tension, a inner characteristic of the component? and it is found as

EW _ g™ KT NN
A = T log ‘22 D 2.1

E(") _ E(P)
d)BI =L q =F£ £

q

TE i

TE

‘We must exploit Poisson equation once again to seek for more informations about the bending; reasonably, carriers concentrations
in the middle region are close to none compared to the doping concentrations

therefore 1.44 is simplified as

d*¢ q
T _;(ND — Na) (2.2)

even though it is not valid in general.

2That would be the total voltage drop across the transition region
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2.2 Solution of the Poisson equation

Starting from 2.2 we can focus our analysis just on the depletion layer; considering charge density

T~
we can write for the n-region interval 0 < x < x,,:
Co_ a4y
dx? €

€s;
dz (In)
d
d( ¢) - L Npdz
42 (2) da o g
0
d¢ do q
and thus
do qNp
hutl B —z)=—-F 2.
dx €si (n —2) 2.3)
For the other side —x, < x < 0:
do qN 4
—| = =-F 2.4
dl' € (.'I/' + mp) ( )
T

Not very surprisingly we have just discovered that ' = F'(x): now its behavior can be represented (keep in mind that for Gauss

dF
law — = L we already know the slopes)
dzx €si
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Still not very surprisingly we acknowledge that no discontinuity is possibile as €y does not change, so when F' = F;,x

N N
uxn = M:cp = Npz, = Naz, (2.5)

Total charge on the two sides must be null still due to Gauss law. It is time to find the potential, simply by integrating 2.3 between

o(x) and ¢(zy,)

$(@) = ¢wn) = 5 (a0 —2)° (2:6)
and for the other side N
o) = o(—ap) + T2 (x + @) @7)

Total electrostatic potential is nothing else but the union between two parabulas: band bending is then parabolic.
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Depletion layer extension We are ready to compute the actual extension of the depletion layer; first we must assure that ¢ and
F are continous in z = 0
_qNp

) o aNa , _
d(xn) — ¢zp) = %, Tn + %, Ty = fu (2.8)

Npx, = Naz),

then we explicit z,, and z,,

(2.9)
o 2651 1 ND
= \/ q <NA + ND> (bBIN + Np
and eventually we sum the two terms
2¢5 [ 1 1
Wp =z, = — 4+ — 2.10
D =Tn+Tp \/q (NA+ND>¢BI ( )
2.3 Forward and reverse bias
We start this section with an interesting consideration: Wp is determined by the less doped region, in fact
2¢;
Wp =~ 2.11
D qNLow ¢BI ( )
also it is true that
Na
n=W
TP NG N
(2.12)
Np
=W
T PN, ND

Some values of Wp are reported in a table for the sake of better understanding the order of magnitude according to the doping
concentration

Niow [em™3] | Wp [nm]

10%6 300
10%7 100
10'8 30
10%0 10
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When Nygy >> Ny it is clear that the depletion layer is almost equal to the extension of the less doped region

¢y 1s the area of the triangle:

qNA 2
Op = % Ty
b qﬁb , (2.13)
" 2e¢q "
and of course
O = By + 6 = 5 (Nawy + Npa) (2.14)
When we have a n™ region, Fermi level is degenerate
|
3 Ay -3
Er
£ - — — — - | =
e l
E-./f —~ / f / - i ) E.,
[
¥ m'
Maxwell-Boltzmann cannot be used, so
bu=2C BTy (NA> (2.15)
2q q n;

this is called unilateral p-n junction.
Considering the contacts ideal, how does this all change if we apply a bias?
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First the case where V' > 0: bands flatten, bringing more carriers in the depletion layer. Carriers flow then becomes stronger
and current density increases.

Dx“ 8 |/ X ™)

Ve = “@ _
o

|
I

Instead, if V' < 0, minority carriers flow to the region where they are majority, reducing the current density. In the overall,
we can say that the diode is a rectifying device.

2.4 Qualitative behavior of £, and EFf,

Thermodynamic equilibrium is no more, so Fermi level is splitted as we have seen previously.
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Our goal once again is to simplify 1.59, always considering quasi-neutral regions outside the depletion layer with low injection

n

dE
(Ap = An << pp, + Nn, ). Assuming stationary conditions (G/R absent), we know that .J,, = nu, dF must be constant.
i

A~Ae. T
l N M
\ fj:r ﬁ.*br““?‘ M= m_+bug 55/

Bands are still behaving parabollica as if they were in thermodynamic equilibrium, but the depletion layer shrinks

2€; 1 1
Wp = \/ . (NA + ND) (e = V) (2.16)

Quasi-Fermi levels drops are necessary to have a unique Er at the contacts.

Symmetrically we can consider the reverse bias situation:
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2.5 Minority carriers diffusion in quasi-neutral regions

Let’s start this section commenting the forward biased band diagram.

If the gradient was clearly visible, electrons flow would be too high, but for now we assume E, perfectly flat so that we
know its relative position. Now we have to consider both depletion layer edges.

o T = —x,
p Ny
Er,~Er, V. A v e
pn:n?e KT :’HESKT — HZ%BKT :nPOBKT
e xr=u,
n = Np
ﬂ (2.18)
p:pnOeKT

Current increases exponentially; since quasi-neutral regions are constraining minority carriers current density, they have to be
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studied carefully with the continuity equations.

on 10J,

— =" G—-R
ot q Ox + )
dn

In ~ an%
An
G—R)=——
G-B)=-"
‘We substitute each member and get
0An 0%An B &
ot " Ox2 T

also known as the time-dependent diffusion equation. In stationary conditions that becomes

d2An An _dQAn An

dz2  D,7,  dz? _TELZO

where L., = v/ D,, T, is the diffusion length. Solution is straightforward
An(z) = AeTn + Be In
and considering the proper initial conditions
An(0) = np, (6% — 1) =A+B
Wp Wp
An(W,) = AeTn + Be Tn =0

that results in

_ Wp—=z Wp—=z sinh (Wp—x)
—e TIn Tn
An(x) = An(0) — 5 = An(0)—— L
eln —e In sinh (T:)
and thus in
dAn An(0) cosh <W£:T> qDpnyp, (e B _ 1)
i L,, sinh (T:) L,, tanh (‘2’:)

also for the p-region
qDppn, (6% - 1)
O =

Wy
Ly

L, tanh

VS

We conclude by saying that the total current density is obviously the sum of the two contributions

D, D v qv.
Jror = Jn(0) + J,(0) = 1nTpo + o[ ) (61% - 1) =Jy (ef% — 1)

Wn WP
L,, tanh (Tp) L, tanh (L—”

2.24 is known as the Shockley’s ideal diode equation.
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2.6 Wide-base and narrow-base diodes

From 2.24, the rectifying behavior of the diode appears very clearly: let’s confront the J — V' curves in both logarithmic and
linear scales

Jwr

51

Total current density depends on both doping concentrations: if they are very different, one term is dominant over the other
(in particular, less doped region is prevalent). Now here is a confront between two approximations for the diode according to the
depleted layer depth.

wp
' inthe ander, 0 s {fe Gune
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2.7 Spatial profiles for n, p, J,, J,

We studied the electrostatics, now we move onwards to the spatial profiles of carriers and current densities.

Savg ] .

! m(:::m‘fw ' ' I
°m
i

- g QURy, clhchows more Gy diffon., on H o QUR. 1
e by b by e

£

Belesna s mend Gecon 8ot Sy medk o cotad (cmndoag 6/R)
WWWJ%M " QR

This happens for forward bias; in reverse bias on the other hand

34




*p WAWWMM A OH-D&..E chu.chm.

x  dhois g0 1 o 05 B, O S 5 sy

2.8 Temperature dependence of the / — V' curve

Our starting point is still 2.24; first we would like to make some considerations about some orders of magnitude

Ny =10 em™3 — p, = 1250 em?/vs — 7, = 30 ps —» D,, = 32,5 em?/s — L,, = 311 pum
Np =10"em™® — p, =470 em®Jvs — 7, = 10 us — D), = 12,2 em’ /s — L, = 110 um

_ 4Dnmpy | 4DpPng

Wide-base: Jo =3,87 1072 A/em?

L, L,
4Dy, | qDppng -9
Narrow-base: Jo = + =107 A/em?
0 Wp Wn /cm
Now it is time to investigate .Jy dependence on T": we can surely say that
2
JO X ann/i W = aTvei%
NaL, tanh ( L’p)
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As we can see, those two lengths are very long; diodes are more likely to be narrow-base, thus G/R processes are weak in modern
technologies.

(2.25)



Therefore, always considering 2.24, we can safely say

_ KT Jror
Vv 1o
q < Jo >

dJo
av Klog<Jm>T+K/ ~Jogr VKT 1dhy
T q

dT q % J(? T q 70 dT
L Ee _E¢pp | pok
dJo —=T g A T Ee ~Jo dEe 1 Eq
Yo gyrte KT L 4 aTve KT _ 2 _dke 1
ar Ot e Rh g tralie (KT)? T | ar kT T RT

By inserting the third into the second we obtain

av._ V. KT 1

ar T ¢

KK B | K

V-8 Ky 1dEg
T KT dr | K12

— -—— 2.2
T q +q dT (2.26)

0

where the highlighted terms are smaller than 0.

.55

o I @RT

T ks o, S )

. ______“J‘WW( g On _

ng%%?

dv
If we consider that v = 3and V = 0,7 V we have that o7 = —1,9mV/Kk

2.9 High/low-current regimes

It is time we reconsider our ideal diode analysis by removing some of the approximations we have assumed; from now on we are
going to assert G/R processes inside the depletion layer, which are present for sure since Er, > Er
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In the ideal diode we would have the following scheme

l
A0 _
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{ | e
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while in a real one we are in front of two possibilities, which would be

37



I

 ReA diope

| [
{

1. Exiting carriers are constant

2. Entering carriers are constant

Just one is correct though.

Low-current regime To determine which is the one, we have to recall a consideration already computed previously: the
interface between the depletion layer and the quasi neutral region is a bottleneck for minority carriers, as they must obey
continuity equations. Consequentially, exiting flow has to remain constant as more carriers are requested from the region they

are a majority; therefore, @ is the correct choice and the recombination rate inside the depletion layer, where £ = E;, looks

like
nl2 (6% — 1)
= 2.27
To(p +n+ 2n;) ( )

where p = p(x) and n = n(z). In order to have a net recombination, V' > 0: we are searching for R, so we need to find
min{p, n}:

qV. qV
n?eiT gp—
min{p,n} = min{p + L } = p=n;e2KT =n (2.28)
p
Thus
n2etr n; v
R, = : = €37 (2.29)

and assuming that is constant inside the depletion layer we get some additional current density

%% v
To = qR Wp = T2 OKT (2.30)
27‘0
i W
IfV<0,R~ n—, so Jy. = VD ; we can safely conclude that
27’0 27’0
W, q
gror — WD (ezKVT - 1) 2.31)
27’0

Dependence on V' seems to be weaker.
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When T reaches higher values, J,, wins over the depletion layer contribution due to its dependence on n?: this is known as
the low-current regime.

High-current regime If V is very high, we must consider a high injection condition in the quasi neutral regions, so

n=ng+ An = An
p=po+Ap~Ap
1.21 then becomes
qV
pn = An? = n2e KT

and so
qV.

qV
An = n;e2KT — J o e2KT

Current density behavior resembles the one seen for low voltage; also parasitic resistance becomes relevant because Fr, doesn’t

have a quasi-flat behavior anymore (Jn = Ny an )
X

= 1
o __JV

2.10 Small signal model

Consider a simple diode biased with V" and .J as in figure.

v

What would happen if we slighlty change the voltage? First, we have to asses the small signal conductance per unit area

,oJ J
9 =9V =KL
q

(2.32)
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Then, if we increase the bias voltage by 6V, Wp shrinks.

This is a capacitive effect, therefore

dQ., d(¢Npx,) dxy, N4 dWp
Closs dv av 10Ty PN+ Np v

g \Na Np

Z%(l ) 255i< 1
e (e ) )

=V
Nas Np

T AV Weﬁ(l
4 Np

q

Esi

= WD

A second capacitive term is related to the quasi-neutral region: we can define a diffusion charge as

W, W,
o :/ gn(z)dx %/ qAn(z)dx

0 0

40
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Then we adjust the analysis for both wide-base and narrow-base cases.

e Wide-base:
W L,D,
Qun = / qAn(0)e” Tn dz = qAn(0) L, = J,(0)1, (2.35)
0 L,D,,
e Narrow-base: w )
P W, —x w, D, W, w.
= An(0)—2L dx = gAn(0)—L="—"L = J.(0)—L = J,(0)t 2.36
Qur= [ an(0) 25 = gn(0) 2 DR = T0) 35 = T (O 2.36)
where t,, is the transit time; to make sure that this is correct, first we find the diffusion velocity
D,,An(0 W, — D,
Jp = 2t n(0) = qAn(x)vg = ¢An(0) L xvdiﬁ' = Vaig = (2.37)

W, W, W, —

WP WP
t, = dz _ WP_$dac—,(Wp_$)2 Wp_ Wz? (2.38)
P Var D, N 2D, - 2D, ’
0 0 0

Those are both balance equations, as in the first we have just rewritten G/R processes in charge terms, while in the second we
have pointed out electrons travel time. Now, if we want to define a capacitance, we should consider

Cop = W _ =g't, f base diod 2.39

ar = = q'Tn (=g¢'t, for narrow-base diode) (2.39)

Our model in forward bias would then appear like a resistance in parallel with two capacitances.

then

i

=2 |
M
g

Under reverse bias though, Cp, would be dominant over the others.
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Chapter 3

M-S junction

3.1 Basics of the M-S junction

Metal-Semiconductor can be design to be either a rectifying device or an ohmic contact.

Rectifying device (Schottky diode) Ohmic contact (ideal contact)

- Relatively low-doped (N < 10'7 em™3) - Very high-doped (N > 109 em™3)

- Highly resistive - Lowly resistive (strong current flow with a small voltage drop)

- Proper work-function of the metal - Proper work-function of the metal

Let’s investigate the device behavior under thermodynamic equilibrium, separated materials first.

Eo (\/ACUL)M LGVGL)

.‘ T117( chokion off..

: .’%wmv&i)
‘W&LM xS c

""""" E?
()
EF R
A TR
|
[
M ‘\ PP &
NO Vormge bhops ; S ( ’W)
NO €ecmie Fletss \ E[;)—E £ zr)
l M- M, e N . "CT

For a Schottky diode, E%M) must be below EI(,S) in order to have a rectifying behavior. Now, if we put the materials in contact,
we sure notice a band bending which is going to be downwards because q¢gy does not change.
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DEPLETION LAYer
We can write a powerful definition for that barrier:
Ne
qPsn = Q(¢m - Xs) = q¢um + KT log N (3.1
D

We have been knowing g¢y, since 2.14, this time considering the Schottky diode as a unilateral p-n junction.

It is time to apply both forward and reverse bias. In the first case we notice that the total band bending decreases, E}S) is
almost flat in the quasi-neutral region and Wp shrinks.

43



In the second one, all is the opposite of course.

3.2 M-S junction as a Schottky diode

Here are presented a few models on how current flow works inside a Schottky diode.

3.2.1 Current transport: Schottky’s model

We want to study how current flows inside the device under forward bias. In this case, electrons flow is not limited by the region
where they would be minority carriers as if we had a p-n junction, because they are always a majority; this results in the absence of
the well-known bottleneck region, therefore we can safely say that this is a majority carriers device, where G/R processes have
no significant impact (N.B.: p-n junction is a minority carriers device). We have holes as well, but since they are concentrated in
the n-region, they are negligible.
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Flow constraint is localized entirely within the depletion layer because of the scattering, so

Jn = qnun F + anZ—Z = constant (3.2)
Assuming the following boundary conditions
n(Wp) = Np
E.— Ep qPrx

in the end we achieve the expected rectifying behavior

v
J,(V)=Jy | eKT —1| =Jsg (3.3)

but its prefactor is not the same from the p-n junction! In fact, this equation works fine just for low-mobility semiconductors,
while for high-mobility ones (Si, Ge, GaAs), Jy doesn’t show the correct dependencies on temperature and voltage. This is a
pure drift/diffusion model, also known as the Schottky’s model, and an explanation of why it is not correct for those kind of
semiconductors is needed. That happens because at the M-S interface we kept the condition that E}M) must coincide with Ef,_,
but in high-mobility semiconductors the electrons flow towards the metal is enormous, therefore thermodynamic equilibrium is
not assured to be restored as electrons concentration may increase as well; electrons flow through the interface, then, cannot be

described by drift/diffusion equation because that region is too narrow.

3.2.2 Current transport: Bethe’s model

We have seen how in Schottky’s model the interface is not handled well, so a new model is required. If we assume that only
electrons above the barrier can flow through metal, we are handling correctly the interface behavior while completely neglecting
the scattering inside the depletion layer: that is Bethe’s model, a pure thermionic one.
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Let’s recall some Quantum Physics.

E. 4
e
E= E,-_ + K" +
Emy, Zmy ("
—_— — s -
en V<;< Kx
L
Current density from the first available energy level can found as
(ko)f (kg ky, k.)dkydkydk.

We can switch from discrete summation to integration because energy levels are very tight. To simplify calculations we can
My

substitute
hky = mgv,
my
hk, = m,v,
my
dkz = ?d’l]z
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thus

o0 —+oo +oo
2 MMy M
Jsom = (2:)3 / / vmf(vz,vy,vz)%dvmdvydvz =
171- — 00 — 00

+oo +oo +oo
2

= _— Vg€ KT e ©2K1 ¢ 2KT ¢ 2KT dvzdvydvz

(2m)3 h

Vg —o0 —o0

+oo

v2 5
Mg v myvy

2(] _ Bc—Fp,

= —MyMym,e KT

h3

— 00

The three integrals result in

vpe  2KT d”x e~ 2KT d’UZ

+oo
ma? KT  mao?
'L’Ie 2KT d’UI = —e 2KT
My
Uy
+oo
_mzv? 2r KT
e~ 2KT du, =
my
— 00
and so A ) )
Tqmm \/m m Ec—Ep, mg Uy A/ Ty TN Ec—Ep, M U3
Js_sm = ﬂ$(KT)2€_ KT e~ 2kt = AN YV ET2e——gT "t " ek =
h3 mo mo
(3.4)
= AT o - s
mo
where A is the Richardson constant. After some Quantum Physics considerations we can rearrange the mass term
2my + 4/mim a(dpn+V) a(dpn+V)
Tsony = AT VP2 SR = Ar T2 TR (3.5)
mo
and similarly we can consider the electron flow from the metal to the semiconductor
a¢
Jyss = A*T2e™ & (3.6)
Total current density would be
ad \% v
Jror = Jsoons = Jaioss = AT RE (R —1) = Sy (F7 1) 37)
What about the scattering inside the depletion layer?
3.2.3 Current transport: Thermionic/diffusion model
We need to blend together the previous models: let’s start with a comparison.
Schottky model | Bethe model
- Pure drift/diffusion - Pure thermionic
- Transport in the depletion layer
- M-S interface
We must take the and mix them together to obtain the best suitable model possible. Let’s start considering that

all the electrons can cross the barrier.
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Let’s now assume that current density remains constant and that n(Wp) & Np; at the interface we get

1
— m *2
Js_p = A*T2e ECKLJ?“F”V_%' —xz = A]Vj; n(O)

L AT?

— Jm (n(0) — no) (3.8)
2 Nc
7 AT
M—S = 7Nc no
We finally arrive to the condition we were looking for:
In(0) = Jmy (3.9)

To sum it up, in Schottky’s model the bottleneck is represented by the depletion layer, while in Bethe’s one it is the interface
between the metal and the semiconductor.

HieH-MOBILITY
e

- > | EFA
< LOw.

e M‘:'B“"—i“ry

Now we put some numbers for the Si case (we use Bethe’s model), so

ad

Tn % Ty = AT R (eFr 1)
qd)BN = 0, 8leV
J07TH =5- 10_7"4/(:m2 >> Jo,pn
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The M-S junction has also a better frequency response.

3.2.4 Schottky effect

Equation 3.7 is good, but it still needs some adjustments due to Schottky effect, a pure electrostatic one. Let’s begin considering
a metal-vacuum interface, with a negative charge positioned in the vacuum; this charge would attract some positive charges on
the metal surface for electrostatic induction, causing a band bending of the vacuum level Ej.

E.
[ —
(e S/,
1t :
Er i l.
—— — —_— = - |
i ided |
I I

Analytically, we can come to this conclusion through the image charge method.

IMAGE CHARGE MemoD
Rumave e metal and f‘} a 0
Voo oo —
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| | |
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4meq (2x)2
1 g _ _do
" 16meq 22 dx
¢(+00) +oo
1 ¢
/ d¢ = / _16’/T60? v
() x
1 ¢ Feo
P(+00) — d(z) = lomeo |,

9(x) = d(+00) + ———
* > 167eg @

E
Remember that ¢ = ——0, SO
q

(3.10)

If we consider Ey(+00) = E(0) — ¢Fx we can further develop 3.10 as

Fo(x) = Eo(0) — gFa — —— 1 (3.11)

As we can see from the previous picture, E bends with a maximum in x,y; to find that, we have to compute the derivative

dEy 1 ¢ q
-0 F = — 3.12
0 - Tyax 167eoF ( )

dr q _1671'60?

All we are left to do is to find how much the band bending is:

q 1 ¢*\/16meF ¢F ¢>F ¢ F
E = Fy(0) — qF — = Fp(0) — — = Fy(0) — 3.13
0($MAX) 0( ) q 16meg F 167e \/a O( ) 167meq 167eg of ) 4meg ( )

It is trivial that

3F
qAPs = Z (3.14)
TEQ

Eventually we apply this result to the actual M-S junction.
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Current density prefactor depends also on the voltage now:

A (e% — 1) = Jomu(V) (e% _ 1) (3.15)

f%“lsﬂl

3.3 M-S junction as an ohmic contact

Our junction is now operating as an ohmic contact, which is a crucial aspect for every Integrated Circuit. As we have already
seen, current flow is limited by thermionic emission at the interface.
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This time, though, Wp is thinner due to high-level doping. Because of that, it is not impossible that electrons begin to travel
through the barrier by tunneling effect.

SKiTCH
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2
q°N,
E.(z) = 5 D 2

Si

(3.16)
T=exp|—-2 f (B~ B) (g; —E)

Developing the system we obtain

Wp
2m* ¢*Np 9 2m* ¢Np W%
T=exp|—2 2 o x?dr | =exp | -2 2 2. 2 =
0

(3.17)
2m* ¢*Np 1 2¢ 1 q(¢u — V)
= -9 s - - | = _A\vm V)
exp | =2y T T P s (e = V) | = e (- FRE
hv/ N,
where Ey, = Q7D; from Quantum Physics we know that current density is proportional to the transmission probability
4m/m*eg
(J xT),so
-1 _alp =)\ 1 atpl a9
pe = (w) x (e ) ) (3.18)
v V=0 V=0 q q

Since Ey, o< Np, contact resistivity decreases when the doping is very high.
Condback
[32eu] /

’

A real contact looks like a n™ region coupled with a metal.

53



3.4 Interface states

As we know, silicon has a lot of imperfections and impurities, especially on its border to the vacuum: spurious states are introduced
inside the energy gap, breaking potential periodicity.

- La
Oapoe Gl A { Ty =L =
R T T Sp ‘Lﬁ‘“’
T UR.Ious STAT‘ES
Doz Gllunore D %
t

N The surmiee (”E”"‘”— WHEW Expry )

s =

F-0

i

This is a huge problem, because now we have negative charges in the gap nullifying for Gauss law the band diagrams we have
considered until here.
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It is important to notice that the depletion layer grows when N, is very high.

What is the upper limit for £;,? If we consider N;; — +00, it is impossible that F;; > Er as it would result in the formation
of positive charges outside of the depletion layer, therefore E;; = Er is our limiting case!. Assuming then N;, constant in the

energy gap, it is important to find the charge on the interface.

|Qis| = ¢Nis(Er — Eis) = qNis {AEis — (E:(0) — EF)}

E.(0) — E. (W,
Qo = gNpWp :\/2€SinD (0) qc( D)

In order to have a perfect balance, |Q;s| = Qng must be imposed, so

9 [88~(50 - 57 = vy OB

When N;s =0, E.(0)=E.(Wp)
When N;s — +o00, FE.(0) = AE;

Everything makes perfect sense. We can even rewrite E.(0) in a more general form:

2
EC(O) — AE:. + esNp . (651ND> 2esNp (AEzs . Ec(WD)>

"N >N, >N,

INotice that flat band condition is compatible only if N;5 = 0
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When N, is very large, Er position is NOT set by the doping concentration, but only by NV, itself; this condition is called
Fermi level pinning.

If we apply these results to the proper M-S junction we would notice that q¢gy is modified, so bands suffer from a downwards
shift.

oo Gyt

Here is a tabular reporting some theoretical and actual values of g¢gy; we can clearly see the Fermi level pinning.

QO Al-nSi Au-nSi Pt-nSi
Theoretically | 0,05eV | 0,75eV | 1,25¢eV
Empirically | 0,81eV | 0,83¢eV | 0,9eV
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Chapter 4

MOS capacitor

4.1 Basics of the MOS capacitor

The MOS capacitor is the basic element for the CMOS technology; its structure consists in a gate material (typically a metal
or a highly doped polycrystalline/amorphous silicon, but not a monocrystalline silicon as S¢ atoms would bond just with the
oxide compromising spatial arrangement), which guarantees a high free-carriers density, a thin insulator (typically SiO2, which
allowed the birth of planar processes) and a base uniformly doped.

VA

T GATE

O t..

. ]

The insulator is introduced to provide a barrier blocking the carriers flow between metal and semiconductor; it is important to
underline that high-quality insulators have low spurious states and a high dielectric constant is needed to have a good coupling.

As always, we are interested in the elctrostatics: let’s see what is like when materials are separated under thermodynamic
equilibrium.
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Gauss law is fundamental to understand what happens in the O-S interface, where the relative dielectric constant changes: F’

is discontinuous, in fact
60)( EX

= ESiFS

. 4.1
F,=F ~3F @D
‘T
/| OF THAT Siope
!
|
e
Since there cannot be any charge inside of the oxide, V,,, must be linear.
I [
I
I
|
| |
[
|
I.
Total voltage drop on the the device is given by V; + V,, = ¢!, which is also the separation between E}M) and E%S).

ITypically ¢pr = 1 V'
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4.2 Gate bias

We have seen the device under thermodynamic equilibrium, now we apply a voltage to the gate and see what happens starting
from a generic Vg:

&F. sk
L:‘E'M VALID

In this case Vs + V,, = ¢y + Vig; if we were to put Vg = —¢y,, then we would have V + V,,, = 0, but since those voltages
must have the same sign Vs =V, = 0.

i)
Br .
E.
R <
_ -Ee
Ey
|
|
|
That is known as the flat band condition (Vi = — ¢y = Vig), where charge neutrality is total.

Now we go below Vip

Q]
E-

Positive charges are moved to the semiconductor surface: this is the accumulation regime.
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What if we went above Vppg?

At the silicon surface, electrons and holes are quite the same concentration, still neglegible in comparison to the doping
concentration; depletion and weak inversion regimes can be considered as a single one.
If we keep increasing the gate voltage

 VoxoE y [ P
P [V ]

MOS o fe ofpd dancs
Ehheotibion i B s hshock o) .
[ ’ can Be mo ol o 100 ehoheoshtc
: Wm%a«,‘fa Minaeﬁd,r.c 4%?9,1!&. |

4.3 Reformulation of the Poisson equation

We start in strong inversion regime, so we have a situation in the substrate like that:

At the silicon surface n > N4, so the ionized acceptors charge inside the depletion layer becomes less relevant. Due to the
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Poisson equation (assuming complete ionization), then

d2

= e Y N 42)
E,

$(z) = — ;x) 4.3)

We could solve this equation for every section of the MOS, but in the end it is enough to stop at the substrate. Introducing ¢ as
the potential in the bulk and A¢(x) as the potential difference between ¢ 5 and a random ¢(z) inside the depletion layer, we can
write

¢ =¢(r = +00) = ———— = ———log

Ei(x — +0) KT (NA>
q q

Uz

Ny ) (4.4)

We know that
Reference level
n = n; exp —FBia = n; exp a9
KT q KT
(4.5)
ng = n; exp q¢£
KT
thus A
L —exp (W) — n—mpexp (qu]> (4.6)
Same procedure can be applied for the holes, so
qA¢
_ _ 4.7
P = Po exp < KT ) (4.7)
Since the substrate is under thermodynamic equilibrium, 1.21 is still valid; for charge neutrality, then
po=no+Na = Na=po—ngp
without considering approximations. We can finally highlight the dependence of 4.2 on A¢:
PAS_a (LAY e (A9
da? e |10 KT 0 KT oo
and then its dependence on pg:
P’A¢ g gA¢\ n} gA¢ L
=—-= exp| ——= | — —exp|—= | — —+
dz? e [POP\TKT ) T 9 TP\ ET ) TP
Finally, considering that pg =~ N4, we get
A6 q |y gA¢\  n? GAO\ i “8)
=—-= exp| —=—= | — exp | —= | — - .
dz? o | AP\TRT ) T NP\ KT AT N,

2Pedices *0’ stands for "’in the bulk”
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4.4 Calculation of (), as a function of V

We now want to demonstrate that there is some charge () laying on the semiconductor surface. Starting point is, of course, 4.8;
let’s integrate

[}

_dA¢

g

dx dz KT ) Ny KT N
dA¢ A¢

dag\? ¢ qA¢ KT\ n? qA¢\ (KT n?
(o) = lNA oo (5 ) (0) - wew () (57) - s 0

2 2 9 B
RLLE %NA exp (—M> KT KT ng <£7A¢> + NoAG — %A¢>
A

dA¢(i (qub> = _4 [NAexp( qA(b) g exp <M> —Na+ g

A

q NA q NA KT

g\ n? wd 4A0)\ | adé  n? gAd]
KT KT N% KT

Finally, we obtain

1/
dA¢ 2KTN4 qA¢ 7ANY) n? qA¢ qA¢

o AR it ) IR S L ki R = —F(A 4,

da e |7P ( kT ) " kKT T TN \OP\®ET ) T RT (A9)  49)
I
Defining Fy, = F(V5) and Qs = —ey Fs, we arrive to the conclusion that
1/
B avi\ | Vs n; e\ 4V

Qs = £1/2¢,KT N4 exp( KT) e Lt T (exp (KT o1 (4.10)

We don’t know the electric field as a function of x, but we got the total charge in the substrate given V; for whatever regime.

4.5 @Q,— V,curve

It is time to represent how Qs changes in the different regimes; first we want to break up 4.10:

1/

qVs qVs n? qVs qVs
s = \/2¢,KTN - L P (A A
@ Caft 24 eXp( KT) TR T e (e\l’ <AT KT

* Holes (accumulation regime)
* Impurities (depletion/weak inversion regime)

* Electrons (strong inversion regime)
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Then, for each regime it is possible to approximate Q)s; let’s start from the accumulation regime (V, < 0):

Q. ~ /25 KT N4 exp < qvs )

KT

Continuing with the flat band (V, = 0), it is trivial that

Q. =0
Now we consider depletion/weak inversion regime (0 < V < 2|¢p|):

/ Vs
Qs =~ — 2€SiM{NA)%.{ = —qNsWp

Note that

2 2 ﬂ27 log <NA> 2 2
n; exp 72|¢5]| _ i exp q n; ni (Na\™ _ 1
N3 KT

N2 BT N2

Weax EUEEE.[(_}_I:J_ STRONG |N ERSIOA
vi=(del
-

Finally, the strong inversion regime (V, >> 2|dp]|):

i V.
2( S‘I{TANYJ,,\ L 0Xp (j ,; !
Na 2K

Vo2 le|
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4.12)

(4.13)

(4.14)
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Eventually we get these results.

z&lﬂ,)*
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4.6 Dependence of V; and (), on V;

We have seen that Qs = Q4(V;), although we are unable to find ¢(z) for every working regime. Starting from this very important
relation

VG+¢BI = ‘/5+Voz
4 (4.16)
VG_VFB:VS+VOCD

and rewriting V. as

Vom = Foattoz = EZ?stoac = 7@8 tox = — QS (417)
(O 0X CO:E
we arrve at the system
Qs = Qs(‘/s)
(V. (4.18)
VG—VFB:VS—QC( ) = f(Vs)

where Vj is the only unknown term; we have to find V; (V) and Q; (V) for each regime.

Accumulation regime We start from 4.11 and put it inside 4.18, so we get

/2 ‘KTN Vg IRRELEVANT

VG_VFB:_%GXP <—;I(T) +}/54 (419)
oxr
Doing some math, final result is
2KT Coue(Vep — Vi)

Vs ~ — 1 4.20
© [ V2e.KTN4 (420
Qs = Cor(Vrp — Vi) 4.21)

Vs dependence on Vi is logarithmic, so it is very weak; i.e., if we consider ¢,, = 3 nm and N4 = 107 em—3

Vee —Vo=1V = V,=-190mV
VFB—VG:2;V = Vo =-=225mV

Just a small bending is needed, because hole concentration already increases exponentially.
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Depletion/weak inversion regime We can refer to () as the charge in the depletion layer, so

Qs =— V 2e5qNaVs = Qo

(4.22)
V2€e4qN AV
Vo — Vg =V, + Y0AD
COQC
If we were to remove the approximation that the charge in the inversion layer is negligible, though, we would get
1/3 1/3
qVs n; qVs qVs n; qVs \ KT | 1aviox
s = —2es KTN : = —/2exKTN 1 : =
@ BN\ T T N O (KT) RN T NP NP\ KT ) O,
MO S RTNAy L (14 " () KT 2 gNaVi—y | 2eslNa gl e (22 = =
- SEETAN R P TN P\ KT ) qvn | T VAT T e N TP\ KT ) T

= QDEP + QINV

There is an inversion charge growing exponentially with V;, something that will be useful for the subthreshold currents study.
From the previous equations, finally, it is clear that V; has a linear dependence on Vi, while () has a root dependence.

Threshold voltage We may want to identify another characteristc point, i.e. the threshold trigger to strong inversion V7.
Since we are in-between weak inversion and strong inversion, Vs = 2|¢ g/, therefore we can rewrite 4.18 as

AV 2€sinA2|¢B| —V

Ve = Vrp +2|¢5| + G (4.24)
Strong inversion regime For 4.14, it is true that
n; q2|¢s|
= — 4.25
Ny xp ( 2KT (4.25)

so if we combine this with 4.15 we obtain

Qs ~ —/2egKTN 4 exp (‘W_MBD) (4.26)

2KT

Starting from 4.18 again, it is easy to demonstrate

2KT Cou (Vo — Vg — Vs3)
V2 1 ~ 2 4.27
Qs Q—’J—Cow(VG _VFB _2|¢B|) (428)
Q]NV = Qs - QDEP = _Cow(VG —Vrp — 2|¢B|) + 2€SinA2|¢)B| = _Co;c(VG - VT) (4.29)

VERy weAl

DEPENDENTE CiueaR

Derenpence

LINEAR,
Deremvence

3We treat this like it was a given datum
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Note that Wp, in strong inversion regime does not increase significantly, so

4.7 Small signal model

As we have seen previously, () is not linearly dependent on Vi, so we can define just a small signal capacitance

Thus we can rewrite 4.18 as

26 1
Wp,. = —2—2
D . N 98|

_ dQs

Ca = dvg

=Cc (V)

dVa dVs

1
A—Q.) _ d—Q.) " Co

I
1 1 1

Ce G O

(4.30)

431

(4.32)

where C is the substrate capacitance. Gate capacitance can be represented as the series of substrate and oxide capacitances

(CG < Oog;).

Let’s study how C'¢ changes according to gate bias.

Accumulation regime () is of course 4.11; we can find the substrate capacitance

Vs
= —\/2¢,KTN 4 exp (- Q‘IKT) (—2;T> -

Cs =

d(_Qs)
dVs

_ CVox(VvFB - VG)

2KT
If Vg — Vg >> T, then Cy >> C,, and Cg — C,p.

- 1

2KT/q

(4.33)

A small voltage modulation is enough to provoke a large charge rearrangement; modulation is negligible in the substrate, so

the MOS acts like a metal plate capacitor.
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Flat band Approaching the flat band region, Q)5 # 0 yet, therefore

1/ 9
- qVs qVs TAYLOR qVs 1 (qVs qVs _
Qs = \/2egKTNy exp( KT> + KT 1 ="\2esKTNy4 |1 KT + s\ &7 + KT 1
4.34)
1 qu ESiNAq2
— /Y. KTNA | ——— — V.
Peu TN A KT KT
and so C
C, = d(— ESiNAq2 Csi Csi (4.35)

Esi o
€si R /ESiKT/quA Lp

where Lp is the Debye length, the rearrangement extension of the carriers over which they screen electric fields perturbations.
Given that typically e, = 11.7¢q, €, = 3.9¢p, Lp =~ 10 nm and tox ~ 1 nm, C and C,,, are comparable.

KT

Depletion/weak inversion regime We are only considering the charge present in the depletion layer, so

Qs = Qow = —qNsWp = — vV 2e5qgN AV (4.36)
€si
Co=——=Chp» Cos 4.37
W (Vo) << Cog (4.37)
Finally we get

Ca = Cou (4.38)

Trvaes oo

€siqN A

Strong inversion regime Last, we start from 4.15 and immediately find C; as

C. Qs|  Cou(Va — Vep —2[0B])
s 2KT/q - 2KT/q

(4.39)

2KT
As before, if Vo — Veg >> ——,then Cs >> C,, and Cg — C,,.
q
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Now we build the C' — V curve:

|

! Lay

| e NEGLIGI BLE
|

|

7 Vi g

Vs

Note that when Vg = Vi, Cg is already rising: small signal voltage can significantly increase the inversion layer charge
(Cs = 2Chp).

Eventually, starting from the curve it is possible to find Q) just by integrating:

Va
Qs(Va) = —/ CadVg (4.40)

Vip

Every analysis we made has been performed under thermodynamic equilibrium in the substrate, even with the small signal;
we have nevere mentioned time either, making this the quasi-static C' — V' curve.

4.8 (C — V curve under low and high frequencies

This aforementioned lack of time dependence, though, may be considered quite contradictory as a perturbation is needed to
determine a change of charge. We are finally introducing time into the equations.
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Accumulation regime Here positive charges are reallocated through the ground contact, as it is shown in the picture.

VASVAD),
. s

Wémcd‘ A

- odelie Hona
I%Mug‘b&%ﬁ) JK&/SVGC,@’
\

Most common small signal is sin(¢); only charges in the substrate are modulated in a very short time (Dielectric Relaxation
Time). Throughout our analysis, we are always considering time constants for §Vz larger than DRT: charges are modulated so
fast it looks like we are still under thermodynamic equilibrium, making no difference at all.

Depletion/weak inversion regime In this case, we have to modulate the width of the depletion layer to adjust the charges; as
before, all is happening so quickly that electrostatics is not perturbed.

Vo + SV ()
[
s

]

[1]

W= = =

ng ﬂmw

Strong inversion regime Small signal affects only the charges in the inversion layer: this time, electrons cannot be taken by
the contact, thus we have to rely only on G/R processes.

Ve +8Vi(3)
[
S S

WveRsion — —— —— ——
CAYER CHARGe
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From the p — n junction we know that Jpr, ~ %WD; starting from this, we can define our G/R time constant:
70

N N
to = @l _ ANAWD ) Na (4.41)
Jpr,  (fmif2re) W5 n;
0V must change with a time constant larger than t¢ (fyma < for)> Otherwise G/R processes fail their purpose. If that happens,

we enter the high-frequency regime as opposed to the low-frequency regime: we are de facto modulating the depletion layer
Esi

Cs = .

( W )

max

Ve +8Veft)
[
S /

Here we can see the main difference betweem the two regimes.

7A
L ow-FREQuENCY REGIME HIGH-TREQUENCY ReGIME

Now focus on the high-frequency regime with §Vz > 0: since we are increasing the band bending, JV is significant. Ef,,
then, must move downwards to keep the electron concentration constant.

Voe
Z

+
Ve > &

(CY)
Cr
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In this case, Er, < EF,, so we have net generation processes. Non-equilibrium is mantained as E'r,, keeps moving according
to 0V: G/R processes keep alternating. On the contrary, in the low-frequency regime, after a lot of time Vz was increased,
electrons are stored in the silicon surface moving the bands upwards, thus thermodynamic equilibrium is restored.

4.9 Deep-depletion condition

Now we want to know what happens when a large signal is applied. This can be splitted into three segments:

o . Vi >Vr
o \© [ 8
— t

Immediately after the step increase of the voltage (@), we don’t have a step increase of the electrons, as we have to wait for
generation processes; total charge does change, but not because of electrons, that is thanks to depletion layer charges. This brings
us to a huge band bending while reaching the deep-depletion condition.

Vo

' ION- EQuiLiag) y

Now we want to study what happens if we apply a small signal right after @

Vo-or

We start from a big disequilibrium; in addition to that we have the small signal keeping the perturbation alive and a depletion
layer which is even bigger than Wp,_ .
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Capacitance value is decreasing too!
Cy = — (4.42)

[ NP B -5 | ! [ V=T REFIM~

4.10 Basics of the nMOS capacitor with ring
According to the last considerations, the onset of the high-frequency regime is just some tens/hundreds of hertz; obviously, for

our purpose, this is not acceptable. We must find a way to reduce electron concentration quicklier than G/R processes: the nMOS
capacitor with ring is introduced.

ANA
I
o

That is a normal MOS capacitor surrounded entirely by a n*-region: we now have a 2D device.
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6@5 = 6@17 + 5Qn

which affects also the C' — V curve.
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N

We don’t have to wait for G/R processes anymore as electrons are taken directly from the nt-region. Time constant, in fact,

is the transit time to move them from said region to the substrate. This determines a splitting in the total substrate charge
(4.43)

(4.44)

(4.45)



4.11 Impact of the ring bias on the electrostatics

We now discuss the changing in the band diagrams (both vertical and horizontal sections) according to the applied Vi and Vg,
starting from thermodynamic equilibrium.

VA v ZIUAIT Y

An’

Now we consider strong inversion regime.

It is time to apply a Vg > 0 not to forward-bias the p — n junction (Vg = 0).

& '

Since electron concentration is negligible, there is no changing in the bands for @ Last case is the most interesting:
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Pay attention to the fact that the nMOS is NOT at the onset of strong inversion: since F, — EF, is very large, electron
concentration is still smaller than doping concentration. We then need to find a value V. which allows the strong inversion regime
to trigger.

As we can see, Vs = 2|¢ | + Vg; we have also reached deep-depletion condition, this time is stationary though.

4.12 Dependence of V, on V;/Vp

Starting point is 4.24, where we can assume Vi = 0; if Vi > 0, then

V265qNa (25| + Vi) N V2esaNa2l05]  v/2e:aNa2lps] _

Vi = Vip +2|¢5| + Vi
T e + ‘()B| + R + COI O{).’I' CO(E

(4.46)

V2e5qN 4

= Vi Vit =5

(/21051 + Vi — v/2165]]
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Let’s see in detail what’s the band bending situation.
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If we were to calculate Qpy:
Qle = Qs - QDEP = _Cow(VG - VFB - 2|¢)B| - VR) - QDEP = _Coac(VG - V’_Zl“) (447)

At a certain point V. = Vg,, so V; will eventually stop increasing because Qv = 0: we enter depletion/weak inversion regime.
C — V curve would look like this:
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Decreasing trend is prolonged along with V..

4.13 Impact of fixed oxide charge and of interface states on the silicon/oxide inter-
face

Until now we have been considering S¢Oz as a perfect insulator, but now it is time to introduce its defects. First we study the
spurious charge (J,., which can be either positive or negative.

81”"‘"0“" ag“fgfl_fé _wfaf/odaﬁ_@ :
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Band slope changes at x, where the charge is located; flat band condition can be partially restored by moving E}M) downwards
whereas charge doesn’t change with gate voltage.

By studying the elctrostatics where the slope has increased we can say

Qov _ AVe _ Avgz—M:—% (4.48)

on x on CIG

where C,, is the capacitance between the gate and x; AV{; is maximum when the charge is exactly at the interface.
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We can also rewrite AV; as a general law:

tox
d
AVg = / ZPxT (4.49)
60}(
0

Now let’s take a look at the interface states impact, beginning from strong inversion regime.

As usual, we have to adjust the band diagram, as there should be a downwards shift.

Qis _ Qis

tOZl) -
€0 Cou

AVg = — (4.50)

In accumulation regime we have a different scenario:

o Wilod Q‘S
o WM. Q.

: 4 >
VFB | \/r lé

Interface states give a different contribution to the capacitance according to the frequency of the device; all of this is valid for
nMOS transistors too.
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4.14 Polysilicon gate

Polysilicon gate played a very important role in the history of the MOS as it introduced the possibility to use self-aligned processes
on the silicon wafer; let’s start from the beginning, by seeing how we can integrate a MOS capacitor in a ring.
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Nothing assures we have a perfect alignment between the n"-region and the gate stack: in fact, there are always some
misplacements leading to poor performances.

-
+
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We surely need a better method.
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A major issue with this technique is that, since for every process dopants are activated through a high-temperature treatment,
the gate (typically Al) actually melts. That is why we need to introduce a polysilicon gate, something that also caused the birth

of the scaling process for the MOS. First of all, we want the polysilicon to work as a metal, therefore it must have a large doping
concentration.
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For a p-doped substrate, the best solution is to use a n* gate, while for a n-doped substrate it is of course the opposite.
There are also two additional advantages in using a polysilicon gate:
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1. Had we used a metal, we would have to choose a specific one for both devices, while polysilicon is universal,

2. Metal is less stable than polysilicon, because it has a lot of impurities.

Then why in the last 15 years was polysilicon replaced with metals (TiM, TaM)?

Main reason is that, no matter its beneficial aspects, polysilicon is still not a metal, so its free carriers concentration is not
comparable to a metal one. Also, it has not the screening capability of a metal: a voltage drop V}, is needed to screen the electric
fields coming from the oxide.

f o p@&wajefaga%%
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This additional voltage drop also introduces a capacitance in series with C's and C,,:

VG_VFB:‘/S—FVU:E“F‘/;)

il
Ve _ v, 1 dV,
d(—Qs)  d(—Qs)  Cop  d(—Qs) (4.51)
il

o Wil metad
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Chapter 5

MOS transistor

5.1 Basics of the MOS transistor

This is probably the most important device; as the MOS capacitor, we are considering a perfect Si05 insulator and an ideal metal,
but this time the n*-regions are independent.

\ —

Lonnel S

P-Du.e- (Woccaomﬂl) W ! m*

|
B

This is of course a bidimensional device with four terminals. Let’s polarize our transistor by applying these bias voltages:
Vs =0, Vgs <V, Vps >0, Vs = 0.

N o YA
5— ) (IG \Ag)e’
S/
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We mainly focus on the channel region, the most important one; since Vs < Vi, we are working in the depletion/weak
inversion regime, so the electron concentration in the channel region is very low. That part of the transistor then works as a
bottleneck, determining a small current to flow. In order to get a larger current we may want to increase Vzg: current can be in fact
controlled by the gate terminal (so can be the electrostatics in the channel region), making the MOS a Field Effect Transistor.
In this case, electrons are the most important carriers (unipolar transistor). Now let’s do some useful approximations.

G

| A
7Y

4

<

L p- b I(w%)
B

Starting point is of course the 2D Poisson equation:

26 26 g P
22 aiyg__;(p_n—"_ND_NA) G.0)

¢ = o(x,y)
If we assume to have a long-channel MOSFET we can actually introdutce the gradual channel approximation
F,<<F, (5.2)

meaning that the horizontal electrostatics contribution is negligible compared to the vertical one (quasi 1D electrostatics).

Ve _’_f\z— —

Viy) = ——= (5.3)

where V (y) is the separation between the two quasi-Fermi levels.
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5.2 Electrostatics in the channel region

Electrostatic analysis is the same as in the MOS capacitor, but this time the substrate is not under thermodynamic equilibrium.

__'éﬁ_-‘ ‘
7_,' P‘*"—'M |

LY
X
o&'
X\r

4.6 and 4.7 are still valid, but this time

Er — F
pong = nexp | 22 ZEn ) —pZexp (4L
KT KT

Let’s consider the onset for strong inversion (n = N4) at x = 0:

n=N *n’z ex Vs ex —ﬂ
AT N, P KT ) P\ T KRT

Vi =2l¢p|+V

Following the same steps we did in the last chapter, we eventually get

and then

Q. = £/2¢, KT N4

qVs qVs n? —av ( Vs ) qVs
exp( KT)+KT 1—|—Ni € erkT —1 *T

just to arrive at
1/2

Qs ~ =y 2eKT'Ny

= Qs(‘/mv)

qV; nz2 Q(Vs B V)
KT ~ N2 P ( KT

5.3 Subthreshold and Onstate regimes

Beginning from last statement we can say

QS(V;’ V) = QDEP(VS) V) + QINV(Vsa V)

Assuming we are working in depletion/weak inversion regime it is true that

QDEP =V 2€sinAV;

eSiq]\]Aﬂ 7%2 ox Q(VS*V)
oV, ¢ N2 P\ KT

QINV = -
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(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)



Since electron concentration is negligible for the electrostatics, V # Vi (y), thus there is no band bending from source to drain.

That is the subthreshold regime. Now we move to the strong inversion regime, where we actually don’t have any expression
for QDEP and QINV'

2¢;

Without any approximation, only in the subthreshold regime we can say that Wp = Vs and so
A

QDEP = _qNAWD =V 2€SinAV; (512)

For this purpose we introduce the charge sheet approximation, which consists in neglecting the inversion layer width.
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X

Thanks to this, 5.11 is valid, and so we arrive at Qv = Qs + Qpr- This time V = Vi (y), therefore we get a significant band
bending along with E'r_ .

{= l'q’gj'l" V

That is the onset regime.

5.4 Continuity equation in the channel

Drain bias shifts Fr, downwards: in this case V' dependence is very important, so

Ve =Vi(Vgs, V)
Qs =Qs(Vas, V) (5.13)
QINV = Q[NV(VGSa V)

Poisson equation is not enough because of the non-equilibrium (¢ and E', are unknown): continuity equation is needed.

dEp,
dy

dV (y)

= —qn(z, y)unTy = Jn(z,9) (5.14)

JIn = npin

We assume stationary conditions: Vg and Vpg constant and no G/R processes.
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Jy, is constant in the transport direction, so J,, = J,,(x):

tinv tinv tiny
dv dv Vv
g=-W Jn(x)de = —W —qnpty,—dr = =W, — —qndr = —p, WQuw——
b o dy dy o d

That is the differential form for the current; we also want the integral form, thus

L Vbs
/ Ipsdy = / - /’LHWQINVdV
0 0

4

Vbs
IpsL = _/JnW QledV
0

Vbs
w
_/inf / QINV(V)dV
0

All we are left to find is Qv as a funtion of V.

5.5 Ohmic/parabolic regime

Assuming we are in the onstate regime, let’s first regroup the most important equations:

Qs = Qs(vsv V)
Vas — Vrp = Q
. VDSox
Nn le
Qs = _Coz(VGS - VFB - Vs)

We would get the inversion layer charge to be

QINV = _Cox(VGS - VFB - 2|¢B| - V) + \/265inA(2|¢B| + V) = QINV(V)

Two cases are to be considered: Vpg << 2|¢p| and Vpg < 2|¢p|. We start from the first:

Qv = —Coz | (Vas—Vrp —2[05]) — = —Cox(Vas—Vr)

As we can see Qny # Quv(V), thus it is constant along the channel.
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5.16 is then v
w7 144
]DS = _Mnf _Cow(VGS - VT)dV = ,uncozrf(VGS - VT)VDS (519)
0

A linear proportionality exists between /s and Vpg; the channel shows then a resistive behavior.

—1

Rey = 0Ips - 1 _ ol (5.20)
aVDS W N

Mncomf(VGS - VT)

T
Vis

Vhs

Charge is not modified: this is the ohmic regime.
Now we talk about the second case, beginning from rearranging Qyy:

V TAYLOR

2|pn|

Qv = —Cor(Vas — Ve — 2|¢B| = V) + V/2e5qNa2|pp| /1 +

1 Vv
"2 Coe(Vas — Vg — 2|65| — V) 4+ /2e5¢Na2|ép| (1 + ) =
22[¢p]

V2€e5qNa2|0g| 2¢5qNa2|dp| V (5.21)
— —Cy, — Vip — 2p| - V — - _
Coz | Vas — Vrp —2|¢5| =V c. 12[65))2 Con

= _Coz VGS - VFB - 2‘¢)B| - Sq—A|¢B| — V(l + )

Coz COI

= _Coz(VGS — VT — mV) = _Coa;(VGS — Vj/«)

The factor m for now does not retain any physical meaning: it is just a characteristic of the device!. What is truly interesting,
though, is the fact that @),y decreases when approaching the drain.

!t is interesting to note that V./, = Vi + mV just like for the MOS capacitor with ring it was V., = Vi + Vg
T
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Eventually 5.16 changes as

Vbs
W W V3
Ips = —Hn / ~Cox(Vgs —Vr —mV)dV = Mncoxf (Vas — Vr)Vps — m%s (5.22)
0
Ves — V- W m (V)2
A squared term appears: we get a parabolic behavior with vertexes located in (Vgg = %; IHs = MncowLTn(?DS)> .

| oo
N
L Pekd
S o e
SRR o A
Vis

on NO Sense

When Vpg increases, current increases less because charge in the inversion layer becomes fewer (Rgy; 1); clearly all of this
actually makes sense until Vpg < V3 is true.

5.6 Saturation regime

We want to know what happens when Vpg > V3 let’s start from Qy:

- Qv

I — :'.':1: N AREA To Re SURTRACTED

s_‘_;;. \/ L—)Im ulec%7 MOPE(MT'%"“‘QM)

Qwv * & \{rl> VGS

SAT
\/Y < VGS T \m 2“13(. WI:} Qlwa,uaagﬂ \WQLM' \és > \/ns J afl:@q_, OLM(’+
= Ruv- & 02"‘3‘1 | CURRAUT SATwRATES

\/—r'-s \/65
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At the source side we have still thermodynamic equilibrium.
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At the drain side E'r, is shifted downwards by ¢Vps and band bending in the oxide decreases. At the same time, depletion
layer grows while inversion layer shrinks. Local threshold voltage rises too, like

Vi = Vo +mVps (5.23)

until at a certain point V., = Vg and Qv = 0: drain loses strong inversion condition. This is the pinch-off condition.

Vor

We can conclude that V3 is the maximum voltage drop possible between drain and source; in saturation, drain loses control
over channel electrostatics.
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5.7 Band diagram along the channel in the onstate regime

We have seen that at the drain we get into weak inversion regime; it is time to refine the analysis, starting from V' dependency on

y (we integrate the current for a general V).

W mV?
Ips = //fnCox? (Vas = Vr)V — > (5.24)
At the drain y = L and that becomes 5.22, so
Vas — Vr Vas — Ve \? 2y (Vs — Vr Yo
= = - - | — = 2
V =V(y) - \/( - T - Vbs + LVDS (5.25)
which can be simplified for small Vpg as
Vi
Viy) =22 (5.26)

| S
.E - 1 : L. W@W@ VIORERS cerar
‘ Az

— |
|
| \1—\ Cb”s_r o
Consrant

All of this is valid under gradual channel approximation; in saturation

regime under these conditions, though, F,, >> F, thus
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5.8 Body effect

We now discuss the case where the bulk for some reason is not grounded anymore.
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Total charge on the surface is therefore affected as well:

Qs = _Coa:(VGS - VBS - VFB - ‘/S)

and so is the inversion layer charge:

Quv = Qs — Qo = _Co:c(VGS —Ves — Vip — 2|¢B‘ - V) + \/QESinA(2|¢B| + V)

Considering just the ohmic regime, we can then rewrite 5.28

Quv ~ —Cou(Vos — Vas — Vrp — 2|¢8| + Vas) + /265¢Na(2|¢5| — Vas) =

V265N A(2|¢5| — VBs)
C()IL'

= _Co:v <VGS_VFB’ - 2‘05" - = _Coa:(VGS_VT)

Threshold voltage has increased!

Va

T T oA

We can introduce a sensitivity parameter:

dVr V2€5qN4 1 1 2e5qN 4 1 Cher

d(*VBS) Ves=0 B Com 5\/2|¢B| _VBS Ves=0 Co.t \/4‘2|¢B| N Corc

Optimal case is m = 1.

5.9 Small signal model

At last we arrived at the small signal model for the MOS transistor; this time two terminals are attached to a signals.
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I |
Vass SV
_\F/;SJ‘SV[.-)&"

Let’s begin by introducing just a gate voltage swing (6Vpgs = 0); we need the small signal transconductance

nCoz—VDs, ohmic regime
dlps a L £
Gm = = (5.31)
Was Vbs W Vas — Vrp . .
pnCog — —"—, saturation regime
L m
being the current
mVEQ, g . .
,uncoa:f (Vas = Vr)Vps — 5 | ohmic regime
Ips = (5.32)
ﬂnC’ogcK (Ves — Vr) ) saturation regime
L 2m
8~ A | d
| |
9
i
| I
| | \/
[ [ s
/
| |
| II'
I _ ' ' —_—
%
Vs ——= >
Second parameter is the small signal output conductance
w . .
1 Olps ,unC'wf [(VGS - Vr)— mVDs] , ohmic regime
go=—= = (5.33)
Vas

To 8VDS

0, saturation regime
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Current is dependent on the time-derivative of the voltage applied to the terminals, so we have also some capacitive
contributions (intrinsic capacitances come from the inversion layer). First we need the total charge in the inversion layer, not just
the charge per area, so

Vbs e
W/ QINV dy =W Qle( )Jdv
0

This can be known by recalling 5.15:
ﬁ __Hn W Qv

= 5.34
1% IDS ( )
Eventually
Vbs 9 Vbs
W
W/ QINV Hn? S gy — BV / [~ Cou(Vas — Vi —mV)2dV =
Ips  Jy
.1V
pnC2 W2 [ (Vs = Ve —mV)3 7" pnC2W2 [ (Vos = V) (Vas — Ve — mVis)®
- Ips 3m . - Ips 3m 3m
Under strong inversion, we get this final result:
2m?V3g +3(Vas — Vr)? —3mVps(Vas — Vr)
= ~WLCo3 £ (5.35)
< 2(Vgs — Vr —mVps)
In the ohmic regime that becomes
Qc ~ _WLCO(E(VGS - VT) (536)
while in saturation
Qc~ -WLCy: = (VGS —Vr) (5.37)
due to pinch-off. Now we can find the gate capacitance
0Q. ) m2V3g
Co= |- =WLC,,; (5.38)
¢ < WVas ) v, . 32(Vas — Vi) — mVps]?
and the drain capacitance
9Q. ) 2 (Vas = Vr)*
Cp=|- = -WLCy; |1— 5.39
b < OVps 3 2(Vas — Vi) — mVpg]? -39
Furthermore
Ce=Cas+Cap
(5.40)

Cp =Cgp
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—

I

Ca=WLC,, =Cgs + Cap

Once again, in the ohmic regime

1
1 - Cas =Cap =-WLC,, (5.41)
Cp = 5WLCo: = Cap ?
i
while in saturation
2
Co==-WLC,, 2
3 — CGD = 0, CGS = *WLC(M (5.42)
_ 3
Cp=0
+
_‘ye’ mt
o 24
Last parameter to study is the electron transit time
, _/Ldy_an_anaVGs_cc 543
")y va Olps  0VasOlps  gm '
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We actually don’t know what is the drift velocity, so we had to rewrite the equation as the inversion charge disappearing because
of the current. As usual, first we see what is like in the ohmic regime

2
b = WLV?;“ = LV (5.44)
:U/nCo:vaDS Hn VDS
and then in saturation
B 2/sW LC,, B 2L2 (5.45)
" WVas —Vr = 3p, V3% '
/Ufn Cor - -
L m
+TQ A i '
| I
' |
\ |
! |
| | I
|
\1 | \
I | :
I.I | \‘ \
! | I \ \/
\ ! ! N 65
1..-———4-—‘—'—'4 — >
\/ SAT l{s
Ds

There is a quadratic dependence on the distance. In order to decrease i, finally, we must increase the mobility; this is a very
important goal because travel time is strictly related to frequency response.

Im 1
f— pr— 5.46
1= S Cas + Can) ~ 2rin (5.46)

Parasitic elementrs strongly limit frequency response. Let’s now spend a few extra words for the saturation regime.

L
LA

et gy,

Ts- T..

V — /ST
Considering that AL = %’ where F), is the electric field at the drain, and AL << L, we can write
p
o AL o Vpg — V3L
Ips = I% (1 + L) =IY% (1 + F,,LDS> (5.47)
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This translates into an actual output resistance

-1
m_(‘”DS> BL_Ya (548)

oVos) T Ipk T

where V4 is the Early voltage.

5.10 Subthreshold operations

In this section we go deeper into the subthreshold regime, so Vizs < Vr and all the channel is in weak inversion (electrons are
irrelevant). Also, Vs # V;(y) so we get the same band bending in every cross-section (F, = 0).

Vis ¢ Ve

\/ns >

X
From 4.23 we know )
6siq]\fA KT n; Q(VS - V)
V)=- —_— —_ 5.4
QINV( ) 2V, q N,% eXP( KT (5.49)
thus when we look for the current
VDS VDS
w W [esqNa KT n? qVs qV
I = —Hn—F V d = HUn — ? —_ _ d =
ps ==k | @ (V)AV = pin oy [ =50 g N3OP\KT) |, xp | op | WV
(5.50)
_ W [eaNa (KTN? 02 (qVe\ | (Vs
TV v, g ) NP\ ET PATKT
Nevertheless, we want the dependence to be on Vg, not Vs, so
s V2€e5qN AV
VGS*VFB:VS*Q z‘/;iQDEP:‘/S+ €sigiVA
Cow Co:v Co:v
1 1
For Taylor Vs =~ +/2|¢5| + = —— (Vs — 2|¢5|), then
2\/2|6B
2e5qN 42 2¢qNa 1 (Vs —2
Vos = Vig 4V, 4 V2Na 95 L V26ad al( [9B]) _
Cox Co:c 2 \/2|¢B|
(5.51)
2¢5qN 42 Coe
— View + 200n] + VLA (v, oo (14 5 ) = Vit (v~ 2o
and finally
Vas — Vi
Vi = 205 + (5.52)

Since Vs = Vi, Vs = 2|¢p|. Alternatively, we could have avoided all calculations just by considering the small signal model:

Cox WVas Ves — Vr
— =2|¢p| + —=— =2|¢p| + ———— 5.53
Coz + Copp @5 Chw 5 m ( )

1
T o

Vas +6Vas = Vs = 2|¢p| + 6Vas

98



This works because physically !/m is the voltage partition over the substrate (if m = 1, all the gate voltage drops over the
depletion layer; gate has then maximum control over the substrate electrostatics). Now let’s get back to 5.50 and substitute 5.52

inside it; final result looks like
w KT\? Vas — V; Vi
IDS:,U/nCoa:f(m—l) (q ) exp <Q(::T)> 1 —exp (—q DS)

This is the subthreshold current; what is important is the double exponential dependence (even though the second one can be
discarded if Vpg >> KT /q). Now let’s take a look at the electrostatics in the channel region:

(5.54)

-

Eeu b oo —
| T~

B & f;(\Z;\s |
@»&m:ﬁuﬁg

Even if ', drops it doesn’t matter: we have a pure diffusion current.

tiny tiNny tiny
d d AQmny
Ips=W Jp(z)de = —W an—ndac =WD,— —qndx = WD, @ (5.55)
0 0 dy dy 0 dy

The derivative must be constant, so QQyyy is a linear function of the position.

Ips = —wp, @ =0 EQ‘NV(y =D (5.56)

Taking a closer look to the charge in the two positions:

B €sqNa KT n? qVs
Qle(O) = 2‘/5 q N;21 €xXp KT

= QINV(O) - QINV(L) X 6% (1 - eqY(DTS> (557)

esqNa KT n? q(Vs — Vps)
L = — — 2 —eee
@n(L) 2V, ¢ N? eXp KT
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Current increases exponentially with Vizg!

E”s 1 I TRAAE_CEA_%CTEQTSTJCS
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T Der
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| >

We can finally define the SubThreshold Slope:

-1
ST — [alogwle} KT

Ves

To have a good device, this must be as steep as possible2.

w s

Wﬁ,.‘_ -4 _‘S_]é”""”“l/
T = Rddaduw

As always, if we enter in low-current regime, G/R processes must be considered.

2At300K, £L log(10) = 60 mV faec
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5.11 Impact of different parameters on the transcharacteristics

We now see in detail how drain voltage, temperature, residual oxide charge and interface states affect our model. Let’s start with
VD S

\/os%v:r |
Vs > &

=77 7 (\/bs 5 »_671)

Here V. = Vr + mVpgs = Vgs; when Vs = Vg we enter ohmic regime.
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Subthreshold current on the other hand is independent from Vpg (when Vpgs > KT/qg), but it is greatly affected by the
temperature.
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If we were to quantify this impact:

dVr

dVp _ 1dEg  dép|  VZeqNal 1 diép| _ 1dEg  dlés| (| 20w\ _ 1dEg d|¢B|(2m_ )
T 2¢ dT ' dT Con  2|op| dT 2¢ dT ' dT Cos 2¢ dT ' dT
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From 4.4 we can say

d K. (N KT pe —Nidni K. (N KT 1 dn;
98] _ Ko (Ma) KL o 2Adns Ky (Na) KT Ldn (559
dT q N g N pt dT ¢ N q n; dT
then
aver K N.N, 3 m—1dEqg

Threshold voltage decreases as temperature rises. Also mobility lowers with temperature. Here is an example:

Ny =106 ¢m—3 AV
m=1.1 ar
Ny =108 ¢m—3 AV
—L—_o7 mV [
m=1.3 dT

Talking about spurious charges in the oxide, all they do is provoking a rigid shift of the transcharacteristics according to their

sign.

&s

S
N

This can actually be engineerable in order to create flash memory cells.
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Very briefly we now cover the interface states:

ﬂaﬁ’ﬁ

Last but not least, we see what happens when we change ¢, and N4:

Gp

VA= Vess zlcf?a’+ _*’@“‘—f"_e\

R | I 7 A&#&L
_,_i L—‘/T =

5.12 Short-channel regime

Why would we want to reduce channel length?

t o< L? transit time improves quadratically
Ips x T drain current increases (5.61)
CexWL intrinsic capacitance gets smaller

All of this allows us to build way faster logic circuits with higher currents discharging smaller capacitances.
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Enhanced performances and cheaper devices are other pros. Nevertheless, if we reduce just L leaving untouched every other
parameter we note an actual worsening of the performances; that’s because we have entered short-channel regime. First, take a
step back and consider once again the bidimensional electrostatics in the channel, starting from a long-channel:

{usé \[" . m + j Fiat . ' at

Now here is a short-channel:
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We are forced to solve the 2D Poisson equation; additionally, for the same V; s we have a higher electron concentration than
in the long-channel, so Vzg must be reduced (V' < V°).

Ve 1

SHoeT-chmmer
EFFeECT

v

What if we apply Vpg > 0?
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Output resistance is reduced by DIBL as well; regarding the subthreshold regime, instead

%ahfns A

! ' —

w""a’”f%“fw;“‘k Inscjoe;malolzfa..a]m,_\{s
s Forenbl ully o ot

irose 6 pofon Vo

fl_ —Vr > \(S

Vo reduction is described as

24t
Wp

L
AVp = [\/¢BI(¢B[ +Vps) —0.4- 2|¢B|} exp <27r> (5.62)

(WD + 3)

max

In order to have a good length for the channel we must follow

AVy <100mV : L>2(Wp,. +3t.) (5.63)

max

If the gate is closer to the substrate, it has a better control over the electrostatics. With high doping concentration, also, we have
steeper transitions at the n™-regions, but the gate has a worse control.

5.13 Velocity saturation

Velocity is proportional to the electric field, but from a certain F' onwards it saturates because of the optical phonons: this is the

velocity saturation.
. .
/&3 ﬂ 4 i

?
Ao 1-
%
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- paFy  if Fy << Foy
vy = Herl'y = (5.64)
- ( F, ) paFor  if Fy >> Fyy

FSAT

where (. is the mobility in the channel, not in the bulk, and n is a parameter dependent on the technology, in particular

n=1 for pMOS

(5.65)
n=2 for nMOS
|
\ ’\
— Chx é ﬂl
’
o (Ut G Q0 doit,)
. — - ~ -
We can also define a vertical electric field (carrier/surface interaction) like
1
- QDEP + §Q[NV
Fo=——""="— (5.66)

€si

which strongly affects the mobility.
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We are ready to compute the current.

dV
/’Leffdi
Ips = _,UnWQINv = _,UnWQINv = _UdWQINv = _WWQINV
1+~
dy Fou
dv 1 dVv
Ins (142~ = W
DS( + dy FSAT) M dy Qunv
Ips av
I == [ - W A
bs [ Fy  MVC } dy
L Vbs I
/ IDde = / |: FI?S - ,u’cﬂ'WQINV:|
0 0 SAT

Ips Vps
IpsL = — Vbs — / ,LLCHWQINVdV
0

F‘SAT

(5.67)

Numerator is the same for the long-channel MOSFET; note that when L is very small the denominator becomes way more relevant.

Assuming quasi-1D electrostatics, we can say

Vbs w mV?2
w DS
_,U’efff L/(: _Cow(VGS - VT - mV)dV /J/e'fcoxf (VGS n VT)VDS N 2
1 1
14 Ybs 14 /08
L F‘SAT L FSAT
2 (Vos — Vi)
dlps -0 — VST m Gs T
Vps bs 1y flyoYes Vel 1
m L Fy
We can distinguish long-channel and short-channel cases:
¢ LONG-CHANNEL:
o Ves —Vr
e Quly=L) =0
- 2 - nwlY = =

JSAT, — MeffCOwE (VGS VT)

bs L 2m

¢ SHORT-CHANNEL.:
Vs < Vas —Vr
W (VGS _ VT)2 — va(y = L) 7é 0

JsAT Clop—
N 7 om

Current saturates early because of vg,r, SO we still have strong-inversion condition at the drain.
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In other terms, current becomes constant because v, = v, at the drain.

SAT

I I3
Ips = —va(y = LWQw(y=L) == Ipk=—vuaWQu(y=1L) 5.72)

QINV = *Ooac(VGS —Vr — mVSAT)

Pinch-off condition and velocity saturation are mutually exclusive: one or the other is reached according to channel length.

Cj)w;bfwmia&jegﬂu %gﬂ z
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Vis- Vi
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Tos = e WCs (1o
w Mad- &MMMO’KV&S o L — o (‘/«.\/“VT)

Qwv(‘/:e)

AT%QOG?WQM_Q am)&wmi ”“”WM(%OML

In order to limit F},, we should intervene on VpS.
Hot electrons As we have seen, vy, is the maximum drift velocity (scattering), not the maximum in absolute. Electrons, in

fact, can reach even v >> v, thanks to the very high kinetic energies made possibile by the band bending; these are called hot
electrons and constitute a problem for reliability (spurious state creation, oxide charging, etc...).
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5.14 Constant-field scaling

Short-channel regime has detrimental effects, unless we correctly rescale every parameter. Here are presented the constant-field
scaling rules by Dennard: vertical and horizontal electric field ratio should not change in rescaling, while avoiding velocity
saturation (do not increase electric fields at all).

I ~ . 1

T .
\/ﬁs -

v Vs
== s¥ &
el =

> 3 Y
S  Tw
WV %-
All the dimensions and all the voltages have been scaled by 1/k.
,38111 _ % - G%NA — gf;z - gji - éNg (5.73)

where N’y = kN 4; doping has increased by k. Let’s see how parameters have changed (RED: reduced by k; BLUE: increased
by k):

¢ Electric fields

V
F=— 1 74
T (5.74)
* Carrier velocity
vg —> 1 (5.75)
* Capacitances
1
Co=CouWL — T (5.76)
 Current in the onstate regime
w 1

Ips = 1,Cor— Vs — Vps — — 7
DS = K L( GS ) DS 2

\/ 265-qN A 1
Vpm Y~ — — ——
Co:l: \/E
Everything would be fine if we were able to scale , but since it is related to the energy gap, we can’t; also, position of
dopants is relevant, thus we choose a non-uniform doping concentration in the substrate.

(5.77)

¢ Transit-time )
L 1
. 5.78
Vos  k G-78)

tr =
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* SubThreshold Slope
KT C
STS = e log(10) (1 + c) —1 (5.79)

ox

This can actually be a problem because we are decreasing Vi without scaling the STS.

' |

* Minimum length condition
L= 2( + 3t():13)

S (5.80)
Prax =\ 70" Ny k

L approaches the second member while the first is smaller just by !/k: that’s no good at all!

Now let’s consider circuit performances:

* Delay of logic gates

cv 1
= — - 5.81
"~ Ips k -850
We get faster circuits.
* Power dissipation
1
P=VIips — w2 (5.82)
* Density of power dissipation
VI
= 1 .
P=r7 — (5.83)
* Integration density (components per unit area)
1
I=— k2 .84
WL (5:84)

At a first approach, everything looks fine, but we still have some issues for bidimensional electrostatics and offstate power
dissipation.

5.15 Generalized scaling

There is always a balance between pros and cons; Dennard’s rules are good but present some flaws, so here are introduced the
generalized scaling rules by Baccaram: we want to avoid moving towards bidimensionality at all costs, so we pay with a little
increase of the electric fields. All dimensions are scaled by 1/k, while all the voltages by «/k (1 < a < k); for o = 1 we get
back to the constant-field scaling, while for « = k£ we have constant voltages. Doping concentrations are also increased by «ok;
as before let’s jump into details.

¢ Electric fields
— « (5.85)
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e Carrier velocity

o long-channel
Vg —> (5.86)
1 velocity saturation
* Capacitances
1
Ce=CouWL — % (5.87)
 Current in the onstate regime
a?
W k
Ips = Nncozz:f(VGS = Vr)Vps — (5.88)
o
k
¢ Transit-time )
2 ak
b = (5.89)
h MnVDS 1
k
* Delay of logic gates
1
cv ak
0 (5.90)
Ips 1
k
» Power dissipation
al
k2
P=Vips — 591
a?
k2
* Density of power dissipation
3
VI @
— 92
P=wr — {az (5:92)
* Integration density (components per unit area)
1
I=— —k? 5.93
WL (93

We have many problems concerning power dissipation, even though we fixed the minimum length condition; in fact, for « = k

1
Wp,. —~ = L>2(Wp

A + 3toy) (5.94)

max

Both sets of rules are valid and offer some good trade-offs. Doping concentration, then, must be increased anyway because of the
parasitic resistances.

- v v
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Same thing for polysilicon gates:
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5.16 Dielectric imperfections

Scaling process constantly requires %, reduction; this worsens the oxide insulation as electrical conductivity goes up.

Electrons tend to move from the substrate to the gate, but are normally blocked by the SiO5 barrier. Said barrier is finite,
though, therefore if E,—- > 3.18 eV the electron can actually jump to the gate (high Vg, high Vpg). At T = 300 K, these
energy values are hardly reached, but still higher temperatures and hot electrons may cause some problems (channel hot electron

injection).
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We get static power dissipation due to the gate leakage current.
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Tunneling We focus our attention just on the tunneling effect.

()

We have, of course, to recall some Quantum Physics, as we did for module 3.

2 ¢ ‘K"‘ t ¢
E. Ec+£(x+£__"'+’2‘(a

>

'

As usual, we consider just the energies on the right branch of the parabula. Let’s start with the discrete tunneling current
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density

and immediately putting it into a continuous space.

1 +oo +oo +oo
JTUN,I = 3/ / / %Um(kr)f(kxv kyv kz)T(Ez)dkxdkydkz
21 0 —oo —oo
L

After a few calculations similar to last time, we eventually get

+oo
4./ 2 KT o
T = q(4/mymy + 2my) / T(E,)log <1+€_EKTEF)dEI
0

2m2h3

V2m* (E. — E,
T(E,) = exp 2/ m(ﬁ‘ )
0

We can exploit some approximations:

(gl G

Dot funesl,
(hapszochl) lace..r)

For Fowler-Nordheim we get

B
Jron = AFfm exp <— o >

' (4y/mymy + 2my)

- 1672h(qp — Ep)m*

4+/2m* 3
B= — Ep)*?
3hq (¢ — EF)

(5.95)

(5.96)

(5.97)

(5.98)

(5.99)

where this is the barrier height. We have just discovered that there is an exponential dependence on the electric field in the oxide.
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We introduce now the Fowler-Nordheim condition:

Fotor = 3.1V S F, == (5.100)
When ¢, decreases, there is an exponential increment in Jyy (barrier also changes with Fy,,).

High-K insulators A possible solution to avoid any leakage current to the gate is the introduction of high-K insulators.

€ux

Coar = Eﬂ == eﬂ - CHK - tHK = 7tox > toac (5101)
tox tuk ox
&

ST Tye Shke

e

>

T
o Py g
MM‘QZ?

There is a major drawback though; it is true that we suffer less from tunneling, but high-K materials have a lower barrier and
more defect, so process-wise SiOs is better.

E,zot’w‘ S0, -
= Dhw i QEDJ% % avoid Bareious shob
U god Lgh-iC mateial s HEQ,
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5.17 Design rules

As the final section, a bunch of good design rules are presented. In general, scaling rules alone are not enough, so we need to

define and/or quantify a few more parameters:
e Optimal SubThreshold Slope
KT
STS = — log(10)m < 85 mV Jgee —> m < 1.4
q
With m so quantified, we can relate oxide thickness and maximum depletion width.

Cow Es; tox 3lox
m=1+ — =1+ - — =~ 1+
Coq; WDmax €ox Dax

<14 =ty <0.13Wp

max

* Maximum threshold voltage shift

wL
AV — <100 mV
TP ( 2(WDmax + 3tow)> B "
N\
L W
L 2> 2Wpyyuy + 3tox) = tos < 5 = %
L depends on both t,,, and Wp,
* Maximum electric field in the oxide (reliability requirement)

For = VDD SFOH;aX:>t0m 2 @

tow Fggax

All these requirements must be satisfied simultaneously, so

max min L VDD L max
Lo > (i — 20 > Frmax = Vpp < Q—OFO;”
ox

Vpp and L may seem independent, but they are not. We can condense all of this in a useful graphic.

{Bx /l\ Sce STS

\ 1; ReuvasiniT ¢

] Z——

D74

Hax

I I P

(5.102)

(5.103)

(5.104)

(5.105)

(5.106)

Even Vr requirements must be satisfied to have a good device, even though it is not easy to mediate among all the parameters.
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We ran out of design interval for Vp in the MOSFET; it is time to jump to another device, this time tridimensional: the
FINFET.
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Gate overlaps the pillar on three sides: it has a better electrostatic control over the substrate.
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Moore’s law This is not a proper physical law, it is more like an empiric statement. Complexity (integration density) of the
Integrated Circuits doubles every two years, therefore a device minimum technology-related channel length shrinks with /2
proportionality. In the last years, though, this law has been mended as the time to create a new model has become longer than
two years.

Finally, it is a concern of ours to show how the atomistic nature of the dopants actually affects our analysis.
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Chapter 6

Bipolar transistor (BJT)

6.1 Basics of the BJT

Even though this technology is older than the MOSFET, for some appplications (e.g. high-gain circuits) it is still preferred. The
most important structure for this device is the vertical npn junction.
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If the p-region is narrow there are no recombinations, so we have a net flow of electrons from the emitter to the collector.
There is also a hole flow from the base to the emitter, which is not wanted, but unavoidable. Thus we can define
1
B =< ~100 (6.1)
Ip
and we want it to be as high as possible; to achieve that, doping concentration in the emitter must be higher than the one in the
base (unilateral p — n junction) and electrons injected in the base must not recombine (Wg < 100 nm), otherwise we would
have just an emitter-base current. Furthermore, only if the two p — n junctions interact we have a transistor. Side parts of the base
are p-doped to avoid horizontal current. Finally, doping concentration in the base region must be non-constant.

In this device, the bottleneck region for the current is the quasi-neutral base region.
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What about the electric field?

E; - EF, ya
p = n; exp KT = E; — Ep, = KT'log

dp
dp 1dE;  1dEg KTp/de/ _ KT 1ldp

= —— F:_i_f —
¢ q:> dr q dx dx q p }yf/ q pdz

. dEF
To be fair 7 L £ 0 exactly:
T

J, dEF, :>dEpp_Ji_ Jo
P dr puy  Bpup
But considering these typical numbers
Jo = 10° A/cm2
Na =108 em™3 1dEp
— ——2 =40 V/cm — Wpr =100 nm — AVB,EFP =04mV
B =100 q dx
pp = 150 em? /v

we can say that its contribution is negligible. Now we define the electron current density as

KT 1d d
=qnunq L 4D,

dn
qnp +q dr q dr

dx

and we consider it for low-injection and high-injection regimes. For the first

KT 1 dNB dn dn
J = n=—__ —4 Dni = nF Dni
=qnp p Nf dr +4q dr qnpinto +q dr
where Fj is the built-in electric field; then for the second
KT 1 dn dn dn
VT hin= = q wdx +a dx ¢ dx

This is a pure diffusion process (Webster effect).
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6.2 Calculation of /.

Now we investigate the collector current in both low-level and high-level of injection. Let’s start from the first.

Low-level of injection We already solved the Poisson equation for this:
d
JIn = an—n = constant
dz

n(Wgs)

Wg
/ Jpdr = qD,,dn
0
n(0) (6.8)
JnWg = qDy [n(Wp) — n(0)]
5T+ n(0)
— n
Jp = —qDp B
q Wp
The actual current would be
o= Apy, = Apanie ©T_ Apqni sves 6.9)
T e NEWy ~  Gs ‘

where Ag is the collector area and G g is the Gummel number of the base. Keep in mind that W is the width of the quasi-neutral
base region, not the actual physical width; this is called prototype transistor.

LINEAR
PRoFILE

|
|
o Wa >

High-level of injection This time it is not a pure diffusion current.

d KT1d d D, | d d D, d
In = qnp F + an£ = qnun—f—p + an—n =4 nZP +p—n =1 (p) = constant
dx q pdx dx dx dx p dr
Wa ) pn(We)
In dr = d(pn
/0 aD. (pn)
pn(0)
(6.10)
We 0 4VBE
o | Pde= puETT — pn(0) = —n2e "R
o 4Dn
o 4VBE
Jn nvlve =
B
p
dx
I qDy,
Thus the current is
Agqnie RT qn? avpp
Iec=—F//—"——=Ap e KT (6.11)
Wg GB
f F»
0 Dn



which is the same as before, except for the Gummel number being an integral.
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Band-gap narrowing This effect happens when the doping concentration is high.
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Of course we don’t want that to happen, so we add different Ge concentrations to the Si-substrate (SiGe) to voluntarily
reduce the band-gap at x = Wp.
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| Er | % Q%d-
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| Ee = EF",+PCT@3(_E:)
“e
()
pn = n; exp
te KT
(6.12)

2 _EGfAEG B _E AFE o AFEq
n; = N.N, exp( KT > = N.N, exp( KT) ex < KT > n; exp( KT )



Therefore the current density becomes

pn
2 d n2 2 4
dF n: o ns
Jn = nu”i = n/unKT fe_\ “e/ = an, e — <pn> = constant
X

d pn  dx p dx \n}
mn
L(WB)
Wg i,
mn
/ Jp—Ld = a2 (6.13)
0 annie n nie
0
ni( )
e
e
Jp = — W
B
p
dx
u[ qDpn3
and so the current ) )
Io = Aggn; B Apgn; B 6.14)
Wg 2 Gg
i P
n? D
0 ie n

6.3 Calculation of /3

We want the base current to be the smallest possible; in this case, bottleneck region is constituted by the quasi-neutral emitter
region.

_u(éerw.,@’

First we consider a shallow emitter, where the quasi-neutral region is very short. In this case we just repeat the calculations
already done in the previous section (this time for J,,) and get

2 2
Iy = PPN e AP g 6.15)
0 nf n 2
5 ——dx
-Wg T, qDP
Also, under low-level of injection
Gy~ TNy (6.16)
E R E .
ny D,

If instead we have a deep emitter (wide emitter), we should consider also G/R processes; let’s take a simple case (low-injection,
N }33 constant and no A E) as an exemple:

qDppn eq;}%ﬁ Apqn? aVBE Apqn? avpp
Jp=—"" = Ip = : ¢RI = Le 7Y 6.17)
Wg NEL, Wg Ge
L,tanh | — ZD7TP panh | —=
Ly Dy Ly

Gummel number is the one that keeps changing. Now let’s spend some word for 5: as we know, this parameter should be as high
as possible; let’s rewrite 6.1 as

_ Apgn? oe  Gp __Gr

GB AEqn?qu# GB

B

(6.18)
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Thus we need Gg > G p; to make it so, doping concentration is the most important parameter to play with. If we then add the
band gap narrowing into the equation, it is useful to compare the two Gummel numbers.

fo n? n
Gg = —t———dx
—Wg (ni) qDp
E (6.19)
G _fWB i P dx
. (ng) qDyp
/B

Reduction of G is stronger than G when A E; is present, so 3 decreases with band-gap narrowing

By

6.4 High/low-current regimes

It is time to look at the edges of our I — Vg curve; first we start with the low-current regime.
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In the high-current regime, then, parasitic resistances do have a role as current increases less. Other than this, high-injection
in base quasi-neutral region (majority carriers increase) provokes the same effect. For 6.19, it is clear that

1
I -
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That is known as the modulation of the base conductivity. Furthermore, a third effect also appears and it is typical of the BJT: the
Kirk effect (base-widening effect).

M

We assume that electrons move under velocity saturation, so

Jp = qnugy = J. = n =

J c NC
~ YD
q,USAT

(6.20)

n increases along with J, untile it becomes comparable with the doping concentration, then there is no depletion layer anymore.
This happens because of the two interactive p — n junctions.

Vo is Ay yone
L)_AC”M“‘“’“%M

SRR =

In comparison we have

and so
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% 7“‘
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Which is the limit?
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6.5 Io— Vog curve

Here is presented the most important curve for the BJT.

Vee = VBe — Ve (6.23)

First we consider Vo = 0: the two junctions are under forward bias, so holes must be considered. As a consequence of that, we
have a small negative I~ which can be easily considered as null.

After that, I increases exponentially with Ve until Ve is below Vg by at least £7 /4. This is when Vo = VY, and we
enter forward active regime.
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We can easily find V4 with this procedure: first we look at the drawing and see

100 mV Io
Va+ ‘//% = 610/3VCE (624)

then we do some calculations

2
n<D,, av
an; "e S

Ic=A
c EfoEB

6[0 - AEqn?DneQ‘I/(ij _L 8WB o _Iic 8WB
8VCE N NE Wg 8VCE N WB 8VCE

8WB 8WB 81‘17 qu Cgpc

Wep  OVep  OVepaNE  aNF

Combining all of these produces
Vi = gNBWg - Q;‘;/
AT ToBC T (OBC

DEP DEP

(6.25)
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If we plug these numbers

Wgr =100 nm
NE =108 cm=3 = V=40V (6.26)

N§ =2-10' em~3

6.6 Small signal model

Alas, we have arrived at the end. Of course, what is left to be done is the small signal model for the BJT.

L
— > et g %E
e + SV
Here are the parameters we need:
* Small signal transconductance
dlc > Ic
m = | —— = 6.27)
g (aVBE ver  KT/q (
¢ Input resistance
ol \
r,rz( 5 ) _ b (6.28)
aVvBE Ver 9m
* Qutput resistance
1 ol vV,
o — :< C) _Va (6.29)
90 oVee )y, o

* Small signal capacitances
CTF = CDB;pE + CDIFF

(6.30)
CM = ngc
C
%
What is exactly Qp,? It is the diffusion charge stored in the device and can be defined as
Qo = QB+ Qr +Qpc + UBE (6.31)

Let’s study in details each charge:
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 Extra charge in quasi-neutral base region

Qp = Icty (6.32)
Wi
=3 D (6.33)

 Extra charge coming from the minority carriera in quasi-neutral emitter region
Ic
QE :IBTp = ?Tp :IctE (634)

» Free charge from the depletion layer between base and collector regions

BC BC 4 e whe
QBC = qnWD AE = QWD AEQ = I v = ICth (635)
SAT SAT
* Diffusion charge from the depletion layer between base and emitter (N0 vsar)
Qe = Icty: (6.36)
Now let’s rewrite 6.31
QD[FF = IC(tB + tg + toe + tBE) =Icm: (6.37)

where the last time constant is the forward transit time. Trivially, we know the diffusion capacitance because

0
Comr = < Q) = g (6.38)
At this point, we can obtain the cut-off frequency:
Im 9m Im
= = 6.39
= 90+ C) T 2 (CBF + OB ¥ Co) ~ 27(CBF + OB + g0 €

We can also play a little with the last equation and get

1 ) BE BC KT
J— Tr(CDEP + CDEP ) 22 v o (640)
Ir Ic q

- - = ol Pa~rVir 0EEnANT e . (R A N

Lastly, here are some considerations about the BJT structure: since it is a vertical device, the width of its most important parts
results from counter-implantations of .S4.
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Part 111

Simulation labs
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Lab 1

Step 5: Analysis of the simulation results in Matlab

The file with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab
for a detailed analysis of the dependence of the electrostatics of the investigated silicon region on the
periodicity of the sine wave modulating the doping concentration. Students are kindly invited to try to
perform this analysis on their own, reproducing the figures reported in this section (anyway, who is still not
familiar with Matlab may find the sequence of commands used to generate the reported figures at the end
of this section).

Fig.1 shows the profile of the conduction band edge E. along the investigated silicon region as resulting from
the numerical simulations performed in Comsol Multiphysics, in the case of a number of periods of the sine
wave modulating the doping concentration Nper=2 (blue curve) and Nper=300 (green curve). In the former
case, the period of the sine wave modulating the doping concentration equals 1um and clearly appears from
the periodicity of the E. profile in the material. In this regard, note also that the vertical shift of E. over the
space in the case of Nper=2 reveals that the electron concentration follows (at least partially) the change of
the donor doping concentration (remember that the sine wave for the doping concentration starts with its
positive branch at x=0 in the project and that a downward shift of E. may only result in the growth of the
electron concentration in the presence of a constant Fermi level Ef). In the case of Nper=300, instead, the
period of the sine wave modulating the doping concentration equals about 6.7nm, but no evidence of that
appears from the E. profile in Fig.1. More in general, the E. profile in this latter case does not provide any
evidence at all of the change of the doping concentration over the space. In fact, E. is almost flat all over the
silicon region, meaning that the electron concentration is almost constant.

17
0.18 . . i 1145 210
Nper=2
0.16 P
E. o - 1.1
0.14 f~————" ——
012 5 1.05
- 5
o %' Blue: Nper=2 s
3 N = -
% 008t Green: Nper=300 % 1
by 3
0.06 <
8 0.95
0.04
0.02 1 09}
EF Blue: electrons
L e Red: donors
| | | 0.85 I | |
0 500 1000 1500 2000 0 500 1000 1500 2000
x-coordinate [nm] x-coordinate [nm]
Fig.1: Simulation results for E. as a function of the position in the | Fig.2: Simulation results for the electron concentration as a
investigated silicon region in the case of Nper=2 and 300. The | function of the position in the case of Nper=2. The donor doping
Fermi level Er is also shown. concentration is also shown.

To go into more details with the analysis of the simulation results, Fig.2, Fig.3 and Fig.4 compare the electron
concentration profile with the doping concentration profile in the case of Nper=2, 34 and 180, respectively.
In the first case (Fig.2), the electron concentration almost equals the doping concentration, following its
change over the space. In the second case (Fig.3), instead, a sine wave modulation of the electron
concentration in phase with the modulation of the doping concentration clearly appears, but the amplitude
of the former is significantly less than that of the latter. In the third case (Fig.4), finally, the modulation of the
electron concentration over the space is almost negligible (the same is true also for larger values of Nper).
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Fig.3: Simulation results for the electron concentration as a
function of the position in the case of Nper=34. The donor doping
concentration is also shown.

Fig.4: Simulation results for the electron concentration as a
function of the position in the case of Nper=180. The donor
doping concentration is also shown.
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Fig.5: Simulation results for the amplitude of the sine wave
modulating the electron concentration as a function of one fourth
of the spatial period of the sine wave modulating the doping

Fig.6: Simulation results for the amplitude of the sine wave
modulating the electron concentration normalized by dNy as a
function of one fourth of the spatial period of the sine wave

concentration. modulating the doping concentration in the case of

dNy=0.1x10"cm3 and 0.5x10cm3.

Figs.2-4 revealed that a sine wave modulation of the donor doping concentration gives rise to an in-phase
sine wave modulation of the electron concentration, with the amplitude of the latter depending on Nper.
More specifically, the amplitude of the modulation of the electron concentration approaches the amplitude
of the modulation of the doping concentration when Nper is low and decreases down to zero when Nper is
high. For the sake of accuracy, it is now important to point out that the amplitude of the modulation of the
electron concentration is actually dependent on the periodicity of the sine wave modulating the doping
concentration, with the quantitative trend with Nper being just the consequence of that dependence in the
presence of a constant length of the silicon region Ltot (students can easily verify this point by repeating the
simulations in Comsol Multiphysics with different values of Ltot). The amplitude of the modulation of the
electron concentration is then reported in Fig.5 as a function of the periodicity of the sine wave modulating
the doping concentration, with the latter quantified in terms of quarter of period of the wave (the reason for
taking the quarter of period of the wave and not the full period will be discussed later). The curve clearly
shows that the transition of the amplitude of the modulation of the electron concentration from the value
corresponding to the amplitude of the modulation of the doping concentration to zero occurs, roughly, over
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the interval from 100nm to a few nm. Almost in the middle of this interval, there is the value of the Debye
length corresponding to silicon with average donor doping concentration Ny=10"cm, which is about 13nm.
This proves that, for the majority carrier concentration and the electrostatics in a semiconductor material to
follow a change of the doping concentration, the latter change must occur over a distance much longer than
the Debye length. If that is not the case, the majority carrier concentration significantly deviates from the
doping concentration.

%10"°

N

-3.

Ampl. of the sine wave for the elec. conc. [cm™]
EN

=)

@

Blue: Nd=1e17cm™
Green: Nd=5e17cm™
Mag.: Nd=1e18cm™ |

Debye 3
length dNd=0.1e17cm”

10° 10 102
Quarter of period of the sine wave [nm]

Fig.7: Simulation results for the amplitude of the sine wave
modulating the electron concentration as a function of one fourth
of the spatial period of the sine wave modulating the doping
concentration in the case of Ny=107cm™, 5x10cm3, 10%cm’3.

The reason why the quarter of period and not the full period of the sine wave modulating the doping
concentration has been considered along the horizontal axis of Fig.5 can now be easily understood starting
from the previous general discussion on the role of the Debye length. First of all, it is worth noting that,
irrespective of Nper and the amplitude of the modulation of the doping concentration dNg, the electron
concentration equals the average doping concentration Ny at the points where the sine wave modulating the
doping concentration is zero (see Figs.2-4). That is due to the fact that i) the sine wave gives rise to a
symmetrical modulation of the doping concentration around Ny and ii) the doping concentration is not
altered at those points with respect to the case of no modulation of the doping concentration (i.e., dN4=0).
Given that the electron concentration equals Ny at the points where the sine wave modulating the doping
concentration is zero, the quarter of period of the sine wave represents the distance over which the electron
concentration should change to follow the change of the doping concentration. That is, then, roughly the
distance to be compared with the Debye length (a more accurate analysis, however, leads to a slightly
different definition of the characteristic length to be compared with the Debye length, see *). In particular,
if that distance is much longer than the Debye length, the electron concentration can follow the doping
concentration over the space (Fig.2) and the amplitude of the modulation of the former concentration almost
equals that of the latter (see what happens in Fig.5 above 100nm). If, instead, that distance is comparable or
shorter than the Debye length, the electron concentration cannot follow the doping concentration over the
space (Figs.3-4). In this latter case, the electron concentration changes more slowly, trying to catch the
change of the doping concentration over a distance of a few Debye lengths. Due to the periodic nature of the
modulation of the doping concentration over the space considered in the project, however, that slow change
of the electron concentration turns into a reduction of the amplitude of the modulation of this latter
concentration. This point can be easily understood by considering two adjacent quarter of periods of the sine
wave making the doping concentration grow from Ny to Ng+dNy and then decrease from Ng+dNg to Ng. Over
the first quarter of period, the electron concentration tends to grow from Ny to Na+dNgy, but to achieve that
change a distance of a few Debye lengths would be needed. As a consequence, the increase of the electron
concentration at the end of the first quarter of period of the sine wave is smaller than dN,. During the second
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quarter of period, then, the electron concentration tends to decrease back to N4, because that is what the
doping concentration does. As a results, the electron concentration peaks at the same position of the doping
concentration, but the amplitude of the peak of the former concentration is smaller than the amplitude of
the peak of the latter. In the case the quarter of period of the sine wave of the doping concentration is much
shorter than the Debye length, moreover, the peak is not significantly higher than N4, meaning that the
electron concentration remains nearly constant over the space (see what happens in Fig.5 for quarter of
periods shorter than a few nm).

To further prove that the capability of the majority carrier concentration to follow the change of the doping
concentration depends on the periodicity of the sine wave and not on other parameters, the simulations
performed in Comsol Multiphysics have been repeated with dN,=0.5x10"cm. Fig.6 shows that the increase
of the amplitude of the modulation of the doping concentration does not affect at all the previous
conclusions. This confirms that it is not the amplitude but the periodicity of the modulation of the doping
concentration to be relevant for the results. Finally, Fig.7 shows what obtained by repeating the Comsol
Multiphysics simulations with different values of Ny equal to 10Ycm?, 5x10¥cm™ and 10%cm’
(dNg=0.1x10cm™3). As clearly appearing from the figure, the curve representing the amplitude of the
modulation of the electron concentration displays a leftward shift with the growth of Ng, as expected from
the corresponding reduction of the Debye length. This represents a further proof of the previous physical
picture for the change of the majority carrier concentration over the space.

* Interested students may try to demonstrate that the characteristic length of the sine wave modulation of the doping
concentration to be compared with the Debye length is actually the period of the sine wave divided by 27, i.e.,
Ltot/Nper/2 . Coming to that result is not difficult and requires just to set a sine wave modulation of the donor and
electron  concentrations in  the  Poisson  equation, so  Nd=Nd+dNd*sin(2z*Nper/Ltot*x)  and
n=Nd+dn*sin(2 7*Nper/Ltot*x) and to formulate the electrostatic potential ¢ as a function of n. From the resulting
equation, assuming dNd and dn to be small, the following expression for dn can be easily calculated:

dNd

Ldn * Nper * 27r)2
Ltot

dn =

1+

From the previous formula, the comparison between the Debye length Ldn and Ltot/Nper/2 ris clearly evident. Besides,
the formula allows to reproduce the trends for the amplitude of the modulation of the electron concentration obtained
from the simulations performed in Comsol Multiphysics and shown in Figs.5-7. By plotting dn as a function of
Ltot/Nper/2r, the Debye length corresponds to the characteristics length at which dn=dNd/2, as also evident from the
previous formula for dn.
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Lab 2

Step 5: Comparison between the numerical and the analytical results in Matlab

The file with the electrostatic results generated by Comsol Multiphysics can now be easily loaded into Matlab
for a comparison with the analytical results obtained during lessons (see the notes on “The p-n junction”).
Students are kindly invited to try to perform the comparison on their own, reproducing the figures reported
in this section (anyway, who is still not familiar with Matlab may find the sequence of commands used to
generate the reported figures at the end of the analysis).

Fig.1 shows the band diagram of the investigated p-n junction as resulting from the numerical simulations
performed in Comsol Multiphysics (blue curves) and from the analytical formulas obtained during lessons
(green curves). The edges -x, and +x, of the depletion layer obtained from the analytical calculations are also
highlighted and the Fermi level Er is shown as a horizontal red dashed line. As clearly appearing from the
figure, the numerical and the analytical results are quite similar, with just a slightly smoother transition of
the bands at the edges of the depletion layer in the former case. This confirms the validity of the
approximations done in the theoretical analysis of device electrostatics. To be more quantitative in the
comparison, Fig.2 shows the discrepancy between the numerical and the analytical results, i.e., the difference
between the value of the conduction band edge E. (or valence band edge E,) resulting from the former and
the latter, as a function of the position along the x-axis. This discrepancy can be considered to be the error
on the band diagram (or the electrostatic potential) coming from the approximations involved in the
analytical calculations performed during lessons. The figure reveals that the error is always less than the
thermal energy kT, i.e., it is small, and peaks close to the edges of the depletion layer. The fact that the error
reaches its highest values at the edges of the depletion layer can be explained by considering that there the
depletion approximation assumes an abrupt transition of the majority carrier concentration from the doping
value to zero. As will be pointed out in the next discussions, that is not possible, since the majority carrier
concentration requires a few Debye lengths (Lp) to change.
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Fig.1: Comparison between the numerical and the analytical
results for the electrostatics of the investigated p-n junction
under thermodynamic equilibrium in terms of band diagram.

Fig.2: Error on the energy bands of the p-n junction due to the
approximations involved in its theoretical analysis, as obtained
from the comparison of the numerical and analytical results in

Fig.1. The error is calculated as E. from numerical simulations
minus E. from analytical formulas.

Fig.3 extends the comparison between the numerical and the analytical results to the electric field (F) profile
inthe device. Even with this metric, the discrepancy between the results is relatively small and consists mainly
in a smoother transition of the F at the edges of the depletion layer in the numerical case. Fig.4 shows that
well inside the depletion layer the relative error on F is less then 10%, confirming again the validity of the
analytical investigations performed during lessons. Only close to the edges of the depletion layer the relative
error steeply rises, because the analytical studies assume that F goes to zero at +x, and -x,. That makes the
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relative error reach 100% at those points. Anyway, the low value of F at the edges with respect to the central
regions of the depletion layer makes the error not relevant for device operation.
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Fig.3: Comparison between the numerical and the analytical
results for the electrostatics of the investigated p-n junction
under thermodynamic equilibrium in terms of electric field.

Fig.4: Relative error on F in the p-n junction due to the
approximations involved in its theoretical analysis, as obtained
from the comparison of the numerical and analytical results of
Fig.3. The relative error is calculated as the absolute value of the
difference between F from numerical simulations and from
analytical formulas, normalized by F from numerical simulations.

Fig.5 shows that even the profiles for the electron and hole concentrations predicted by the numerical and
analytical results are in quite good agreement. This is a direct consequence of the agreement between the
results in term of band diagram in Fig.1. Fig.6 shows that the relative error on the concentrations is the
highest close to the edges of the depletion layer, where it can reach 100% (this corresponds to an analytical
carrier concentration that is twice the carrier concentration coming from numerical simulations). Well inside
the depletion layer and in the side regions of the device, instead, the error is significantly smaller.
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Fig.5: Comparison between the numerical and the analytical
results for the electrostatics of the investigated p-n junction
under thermodynamic equilibrium in terms of carrier
concentration.

Fig.6: Relative error on the carrier concentration in the p-n
junction due to the approximations involved in its theoretical
analysis, as obtained from the comparison of the numerical and
analytical results in Fig.5. The relative error is calculated as the
absolute value of the difference between the carrier
concentration from numerical simulations and from analytical
formulas, normalized by the carrier concentration from numerical
simulations.
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In order to complete the comparison between the numerical and the analytical results for the electrostatics
of the investigated p-n junction under thermodynamic equilibrium, it is worth noting that the carrier
concentration profiles considered in Figs.5-6 for the analytical case are those coming from the band diagram
in Fig.1 and not those corresponding to the depletion approximation. The latter, in fact, would predict a
majority carrier concentration equal to the doping concentration in the side regions of the device that are
under charge neutrality conditions and an electron and hole concentration equal to zero in the depletion
layer. Such a behavior for the carrier concentations misses that majority carriers require a few Debye lengths
Lp to change, as highlighted in Fig.7. In this figure, the hole concentration at the edge of the depletion layer
on the p side of the junction and the electron concentration at the edge of the depletion layer on the n side
of the junction are shown to change from the value corresponding to the doping concentration to one tenth
of that value in an interval equal to nearly 4L, centered at -x, and +x,, respectively. That means that the
change of the majority carrier concentration at the edges of the depletion layer is smoother than what
predicted by the depletion approximation and that is the reason why even the band diagram and the F
profiles obtained from numerical simulations in Figs.1-3 are slightly smoother than the analytical predictions
at those points. The accuracy of the analytical results is, anyway, rather good because the smoother majority
carrier profile does not significantly modify the total charge Qqe, exposed in the depletion layer. This charge
equals 1.57x107C/cm? when calculated with the analytical formula and 1.54x107C/cm? when calculated from
the spatial integration on each side of the device of the majority carrier profile obtained from the numerical
simulations. The error on this charge is then just equal to 2.4%. Such a low error reveals that the depletion
approximation makes the profile of the charge exposed in the device more abrupt at the depletion layer
edges, but the total amount of charge exposed is not affected by it and that is the reason why it allows to
reproduce rather well the band diagram and F profile in the device.
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Fig.7: Same as in Fig.5, but zooming the y-axis in a range close to
the values of the doping concentration.

To further challenge the validity of the analytical results for the electrostatics of a p-n junction, students are
kindly invited to extend this analysis by going back to Comsol Multiphysics and addressing the case of
different doping concentrations (to do that, change the value of the global parameters Na and Nd in the
project). In so doing, it should become clear that the errors coming from the approximations involved in the
analytical results are always rather low, unless a unilateral junction with a very large difference (a factor 500
or more) in the doping concentration of the n and p regions is considered. The reasons why in this latter case
the approximation errors grow are left to the students’ physical insight. Besides, the impact of the Maxwell-
Boltmann approximation on the results could also be investigated by changing the field Carrier Statistics
under the tree Model Properties in the Settings window for Semiconductor.
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Lab 3

Step 6: Analysis of the results in Matlab and comparison with the analytical results

A. Results from Study 1

By loading into Matlab the file with the results from Study 1 generated by Comsol Multiphysics, the impact
of tauO (carrier lifetime or characteristic time constant of the generation/recombination processes) on the
operation of a p-n junction under bias can be explored. Besides, the numerical results obtained from the
accurate solution of the Poisson and continuity equations in the device can be compared with the predictions
of the ideal diode analysis (see the notes on “The p-n junction”) to check the accuracy of the assumptions
and approximations involved in the latter. Students are kindly invited to try to perform some analyses and
comparisons on their own, reproducing also the figures reported in this section (the sequence of Matlab
commands used to generate the reported figures is, anyway, provided at the end of this section).

Fig.1 shows the band diagram of the investigated p-n junction as resulting from the numerical simulations
performed in Comsol Multiphysics and as obtained from the analytical formulas coming from the ideal diode
analysis under the same working conditions set in Study 1, i.e., forward bias V=0.6V and temperature T=300K.
In the figure, the quasi-Fermi level for electrons (Er,) and holes (Eg,) are reported for all of the explored tau0
values, while the conduction band edge (E.) and valence band edge (E,) are shown just for a single value of
the parameter. Note, in fact, that the ideal diode analysis predicts no dependence of the band profile on tau0
and numerical results nicely confirm this conclusion. The latter point is proved in Fig.2 by the fact that the
discrepancy between the numerical and the analytical results for the band profile does not show any
significant dependence on tau0. In addition to that, Fig.2 also demonstrates that the analytical calculations
provide a rather good description of device electrostatics. Similarly to the case of thermodynamic
equilibrium, in fact, the discrepancy between the numerical and the analytical results is always less than the
thermal energy kT, i.e., small. This proves the validity of all of the arguments and approximations used at the
beginning of the ideal diode analysis to come to the band profile of the p-n junction under bias.
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Fig.1: Comparison between the numerical and the analytical
results for the band diagram of the investigated p-n junction
under forward bias, with V=0.6V. The results for E, and Eg, are
reported for all of the explored values of tau0.

Fig.2: Error on the energy bands of the p-n junction due to the
approximations involved in its theoretical analysis, as obtained
from the comparison of the numerical and analytical results in
Fig.1. The error is calculated as E. from numerical simulations

minus E. from analytical formulas, for all of the explored values of
tauO.

While the impact of tau0 on E. and E, is negligible, that on Er, and Eg, is relevant and clear from Fig.1. In
particular, the change of tau0 in the explored range from 10”s to 2x10"3s results in a significant change of
the behavior of the quasi-Fermi level of minority carriers in the quasi-neutral regions of the device. Since the
analytical results for Er, and Eg, closely match the simulation results, we can get back to the ideal diode
analysis to easily explain the observed trends. Focusing on what happens in the quasi-neutral p region, for
instance, we can say that with tau0=10°s and 10”s, the diffusion length L, of electrons (minority carriers in
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that region) equals, respectively, 139um and 1.39um. Those lengths are significantly longer than the width
of the quasi-neutral p region, making the device work as a narrow-base device. That means that the electron
concentration is expected to follow a linear profile and Ef, is expected to drop logarithmically from 0OeV in
the figure down to -0.6eV when moving from the depletion layer edge -x, to the contact of the p region.
When, instead, tau0 is reduced to 10%%s and 2x10%3s, L, decreases down to 44nm and 19nm. These lengths
are shorter than the width of the quasi-neutral p region, meaning that the device assumes a wide-base
behavior for those values of tau0. As a consequence, the electron concentration is expected to decrease
exponentially and Eg, is expected to drop linearly from OeV down to Er, when moving from -x, into the quasi-
neutral p region. The slope of the linear Er, trend, moreover, is expected to be equal to kT/L,, meaning that
the drop of Er, is expected to get steeper for shorter L, and, in turn, tau0. For tau0 equal to 10, finally, an
intermediate behavior between the case of narrow-base and wide-base is obtained, since L,=139nm is
comparable to the width of the quasi-neutral p region. Similar arguments can be used to explain the behavior
of Eg, in the quasi-neutral n region.
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Fig.3: Error on the quasi-Fermi levels of the p-n junction due to | Fig.4: Derivative of Er, and Eg, over the space, as resulting from
the approximations involved in its theoretical analysis, as | numerical simulations for all of the explored values of tau0.
obtained from the comparison of the numerical and analytical
results in Fig.1. The error is calculated as Ef from numerical
simulations minus Er from analytical formulas, for all of the
explored values of tauO.

In order to compare in detail the predictions of the ideal diode analysis with the numerical results obtained
through Comsol Multiphysics in terms of quasi-Fermi levels, Fig.3 shows the discrepancy between them
extracted from the Er, and Ef, curves reported in Fig.1. For all of the explored values of tau0 but 2x10%%s, the
discrepancy is relatively small. In this regard, note that the peaks of the curves appearing close to the contacts
of the p and n regions are likely due to inaccuracies of the numerical simulations in resolving the steep change
of the quasi-Fermi level of minority carriers with the selected mesh for the discretization of the x-axis (this is
completely negligible from the standpoint of the overall accuracy of the simulations, since the minority
carrier concentration at those points is by orders of magnitude smaller than at the edges of the depletion
layer). With this in mind, the peaks of the curves close to the contacts in Fig.3 are properly not a consequence
of errors coming from the assumptions and approximations involved in the ideal diode analysis and the latter
can be considered quite good even from the standpoint of the resulting quasi-Fermi levels. The only case for
which a relevant discrepancy between numerical and analytical results appears (far from the contacts) in
Fig.1 is that of tau0=2x10"%s. In that case, the behavior of Ef, and E, predicted by the ideal diode analysis is
affected by errors that are comparable or even higher than kT. The reasons for that are related to the quite
short diffusion length of minority carriers in the quasi-neutral regions of the device, as it will be better
discussed later.
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Although the ideal diode analysis provides a careful description of the behavior of Eg, and Erp in the band
diagram of Fig.1 (with the previously mentioned exception of the case with tau0=2x103s), that analysis
cannot be used to explore the weak change of the quasi-Fermi levels in the depletion layer of the device. In
that analysis, in fact, Er, is considered to be perfectly flat from the contact of the n region to -x, and Eg, is
considered to be perfectly flat from the contact of the p region to +x, (unless second-order corrections are
added in the analysis). The numerical results, instead, can be used to highlight even the very small changes
of the quasi-Fermi levels in those regions. To that aim, Fig.4 shows the spatial derivative of Er, and Eg, as a
function of the position inside the device. Focusing on electrons and E¢, (the discussion can easily be extended
to the case of holes and Eg), an increase by orders of magnitude of the curves appears when moving from
the quasi-neutral n region to the quasi-neutral p region. That is required to assure the continuity of the
electron current density J, in the presence of an electron concentration decreasing by orders of magnitude
in the same direction. Besides, since the reduction of tau0 gives rise to an increase of J, (the reasons for that
are left to the students’ physical insight), an increase of the derivative of Eg, is observed almost all over the
device in Fig.4 when tau0 is changed from 10°s to 2x10%%s.
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Fig.5: Same as in Fig.4, but zoomed closed to the depletion layer. | Fig.6: Concentration of the minority carriers over the space, for
all of the explored values of tau0.

To better visualize what happens to the derivative of Eg, and Eg, close to the depletion layer of the p-n
junction, a zoomed version of Fig.4 is provided in Fig.5. From this latter figure, the derivative of Ez, and Er,
clearly displays a large drop when moving into the depletion layer from, respectively, the quasi-neutral p
region and the quasi-neutral n region. That is due to the combined action of the band bending in the depletion
layer on the carrier concentration and of the need to keep the continuity of J, and justifies the approximation
made in the ideal diode analysis that inside the depletion layer Eg, and Eg, are constant in the band diagram.
Again, the only case in which that approximation is not so good, since the drop of the derivative of E, and
Er, entering the depletion layer is not so strong, is that of tau0=2x10"%s.

To complete the analysis, Fig.6 shows (on a linear y-scale) the behavior of the minority carrier concentration
in the quasi-neutral regions of the p-n junction. As previously mentioned, for tau0=10°s and 10, the device
behaves as a narrow-base diode and the minority carrier concentration drops linearly when moving from the
edges of the depletion layer to the contacts. When, instead, tau0=10"%s and 2x10*%s, the device reaches a
wide-base behavior, with the minority carrier concentration dropping exponentially when entering the quasi-
neutral regions from the depletion layer. For tau0=10"!s, an intermediate behavior is obtained. In the figure,
a very good agreement between the numerical and the analytical results clearly appears for all the tau0
values, with the exception, again, of the case with tau0=2x10"3s. In this latter case, the curve for the minority
carrier concentration coming from numerical simulations is significantly shifted towards the depletion layer
with respect to that predicted by the ideal diode analysis, meaning that a stronger drop of the carrier
concentration occurs inside the depletion layer. That is in agreement with the fact that, in the case of
tau0=2x10"s, the quasi-Fermi levels display a nonnegligible drop inside the depletion layer in Fig.1. This
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effect can be explained by considering that tau0=2x10"3s is so short that the minority carrier diffusion length
in the quasi-neutral regions is comparable to the Debye length in those regions. Since the bands require
about a couple of Debye lengths inside the quasi-neutral regions to become fully flat starting from -x, and
+X, (see the discussions in the “Simulation Lab #2 — The p-n junction under thermodynamic equilibrium”), that
means that, when tau0=2x10"3s, the drop of the minority carrier concentration in the quasi-neutral regions
occurs over an interval of the x-axis where a small band bending still exists and affects carrier transport. Due
to that, the ideal diode analysis is for tau0=2x10"3s not as accurate as for the other tau0 values. However, it
is worth remarking that values of tau0 shorter than 107s, and in particular so short to provide a diffusion
length of minority carriers comparable with the Debye length of the quasi-neutral regions, are unphysical.
These values were considered in this Lab just to explore the case of a wide-base diode without increasing the
width of the p and n regions, because that increase would have made difficult the clear visualization of the
band profile and of the behavior of the quasi-Fermi levels in the device given the width of the depletion layer.
Besides, in so doing, the ideal diode analysis was challenged with some extreme choice of device parameters
and the overall accuracy encountered in these cases represents a general proof of its validity.

For some further investigations, students may try to repeat the analyses for different T or changing FWp and
FWhn (paying attention, in this latter case, to mesh discretization if large changes of device width are
introduced). Besides, the case of reverse bias may be explored, trying to understand why some differences
appearing in the quasi-Fermi level behavior are in the end irrelevant from the standpoint of device current.

B. Results from Study 2

By loading into Matlab the file with the results from Study 2 generated by Comsol Multiphysics, the J-V
characteristics of the investigated p-n junction can be studied as a function of T, comparing the results with
the theoretical analyses performed during lessons. Again, students are kindly invited to try to reproduce the
analyses and figures reported below on their own (the sequence of Matlab commands used to generate the
reported figures is, anyway, provided at the end of this section).

Fig.7 shows the J-V curve of the p-n junction resulting from numerical simulations at T=200K, 300K, 400K and
500K. Focusing, first, on the curve at T=300K, it is easy to recognize all the main features of the J-V
dependence discussed during lessons. First of all, the curve displays a rectifying behavior, with J growing
exponentially under forward bias and just weakly under reverse bias. Under forward bias, moreover, the
growth of J with V displays an ideal slope of 60mV/dec in the intermediate J regime (marked as 1 in the figure,
see the red dashed line). In the low J regime (marked as 2 in the figure, see the green dashed line), instead,
the slope of the curve becomes equal to #100mV/dec, which is not far from the expected 120mV/dec trend
coming from the recombination processes in the depletion layer of the device. The discrepancy can be easily
attributed to the fact that the contribution coming from the recombination processes is not fully dominant
over the ideal diode behavior in the low J regime at T=300K, since the low current bump in the J-V curve
arising from it appears only in a narrow voltage interval close to V=0. In the high J regime above ~10%A/cm?,
finally, the J-V curve flattens with respect to the ideal diode behavior, as expected from high-injection and
series resistance in the quasi-neutral regions.

The impact of T on J when the latter is dominated by the ideal diode behavior is clearly the one expected
from the analyses perfomed during lessons, with the height and the slope of the curve in mV/dec growing
when T is increased. Fig.8 shows that the value of V needed to have a constant J=10?°A/cm? decreases almost
linearly with the growth of T, with a sensitivity coefficient equal to about -1.9mV/K.

From the standpoint of the impact of the generation/recombination processes in the depletion layer on the
J-V curves, Fig.7 shows that reducing T from 300K to 200K makes the low current tail due to these processes
far more evident, while incresing Tto 400K and 500K makes it disappear. This is expected due to the different
T activation of the contributions to J coming from the ideal diode behavior and from the
generation/recombination processes in the depletion layer. In order to explore this activation with close
attention, Fig.9 shows the value of J corresponding to V=-500mV as a function of 1/kT in a semilogarithmic
plot, which is typically referred to as an Arrhenius plot. The data points in the plot clearly reveal that in the
low T regime, the sensitivity of J to T is weaker than in the high T regime. Quantitatively, the data points in
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the two regimes can be fit by assuming an exponential behavior J o exp(-Eo/kT), where E, is called the
activation energy for J, leading to Ex~1.3eV at high T and Ex~0.6€eV at low T. The Ex values in the high and low
T regimes would in principle be equal to, respectively, the energy gap Eg of silicon and Eg/2 if J were only
affected by the T dependence coming from the exponential term exp(-Ec/2kT) in the expression of the
intrinsic carrier concentration n;. Due to the additional dependences on T coming from the effective density
of states, the diffusion coefficients (note, in this regard, that the T dependence of carrier mobility was not
accounted for in the project) and Eg itself, some deviations of E4 from Eg and Eg/2 are obtained.
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Fig.8: Simulation results for the value of V needed to have
J=10°A/cm2, as a function of T.

Fig.7: Simulated J-V characteristic of the p-n junction, for different
T. The red and green dashed-lines are a fit of the medium and low
current trends at T=300K.

Fig.10 compares, finally, the simulation results with the analytical results obtained during lessons,
considering only the low and medium J regimes in the latter case. The analytical results for J coming from the
ideal diode analysis display a very good agreement with the simulation results in the intermediate J regime
for all T, further confirming the validity of the approximations and assumptions involved in the analysis. The
contribution to J coming from the generation/recombination processes in the depletion layer, instead,
appears to be overestimated by the analytical results. However, that is not unexpected, since one of the
hypotheses of the analysis performed during lessons to assess the contribution to J coming from the
generation/recombination processes in the depletion layer is that the rate of these processes equals its
maximum value all over the depletion layer.
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Lab 4

Step 7: Analysis of the simulation results in Matlab

A. Results from Study 1

The files with the simulation results from Study 1 generated by Comsol Multiphysics can now be easily loaded
into Matlab to investigate the dependence of device operation on electron mobility in the semiconductor
(elec_mob). Students are kindly invited to try to perform the investigation on their own, reproducing the
figures reported in this section (anyway, who is still not familiar with Matlab may find the sequence of
commands used to generate the reported figures at the end of the analysis).

Fig.1 shows the band diagram of the investigated M-S junction as resulting from the numerical simulations
performed in Comsol Multiphysics, in the case of forward bias with voltage V=+405mV and for all the
explored values of elec_mob. In agreement with the analyses presented during lessons, the bending of the
conduction band edge (E.) and of the valence band edge (E,) creates a depletion layer at the surface of the S
(width Wd=~56nm). The band bending is not affected by current transport and is, therefore, independent of
electron mobility (students can easily verify this point on their own by inspecting the simulation results). The
profile of the quasi-Fermi level for electrons (Er), instead, significantly changes among the explored values
of elec_mob. In particular, while the forward bias applied to the device gives rise, in general, to a decrease of
Er, moving from the edge of the quasi-neutral region to the surface of the S, the total drop and the value of
Een at the S surface are significantly affected by elec_mob. This latter dependence can be better appreciated
with the zoomed version of the band diagram reported in Fig.2. In the case of elec_mob equal to 10*cm?/V/s
and 10°cm?/V/s, Er is almost flat all over the depletion layer. This is due to the fact that, for such high values
of elec_mob, the bottleneck for electron transport is not the drift/diffusion of carriers through the depletion
layer but their thermionic emission at the M-S interface. As studied during lessons, when that happens, the
continuity of the electron flow requires maximizing the thermionic emission and, in turn, the electron
concentration at the S surface. To achieve that and to reduce the drift/diffusion of carriers through the
depletion layer down to the levels set by thermionic emission, Eg, stays almost flat between the quasi-neutral
region and the surface of the S. When elec_mob is reduced, however, the constraints of drift/diffusion to
electron transport become more relevant. As a consequence, the continuity of the electron flow requires to
enhance the latter mechanism and to decrease thermionic emission at the M-S interface. That is obtained
with a more relevant drop of Eg, along the depletion layer, so that the gradient of Eg, (driving the
drift/diffusion process) in that region is enhanced and the electron concentration at the S surface (driving
thermionic emission) is reduced. Fig.2 shows that the Eg, drop is still negligible in the case of
elec_mob=10°cm?/V/s, but becomes extremely relevant in the case elec_mob is equal to or smaller than
10'cm?/V/s. In this latter case, the quite low electron mobility makes the drift/diffusion of electrons through
the depletion layer the bottleneck for carrier transport, with a negligible role played by thermionic emission
atthe M-S interface. When elec_mob=103cm?/V/s (which is a rather unrealistic value of electron mobility for
a semiconductor material), finally, Er, approaches the energy corresponding to the Fermi level in the metal.
As a final remark, note that the drop of Er, occurs quite close to the S surface, since the electron concentration
reaches there its lowest values in the presence of the parabolic band bending of the depletion layer. As
appearing from Fig.2, carefully investigating the drop of Eg, requires then to use a very tight discretization
mesh close to the S surface in the numerical simulations.

Fig.3 shows the simulated current density vs. voltage (J-V) characteristics of the investigated M-S junction for
all the explored values of elec_mob. The curves reveal that, in any case, the device features a rectifying
behavior, with the current increasing exponentially by 60mV/dec under forward bias and remaining nearly
constant under reverse bias. Besides, similarly to the case of Eg,, the dependence of J on elec_mob highlights
that two possible working regimes exist for the device. The first is when electron mobility is high. In that case,
J assumes its highest value and is almost independent of elec_mob. From what studied during lessons, that
is expected, since in the case electron mobility is high, carrier transport is limited by thermionic emission at
the M-S interface and drift/diffusion through the depletion layer does not significantly constrain it. The
second regime is when electron mobility is low. In that case, the reduction of elec_mob results in a
proportional reduction of J, which then decreases below the value reached in the high electron mobility
regime. Again, that is expected from what studied during lessons, since carrier drift/diffusion through the
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depletion layer represents the bottleneck for current transport in the case electron mobility is low. The two
regimes can be better appreciated in Fig.4, where the reverse saturation current density at V=-405mV is
reported as a function of elec_mob along with the predictions coming from the Bethe and Schottky models.
The figure shows that the transition from the high to the low electron mobility regime occurs when this
parameter decreases below a few tens of cm?/V/s and that the Bethe model and the Schottky model provide
a rather accurate description of device behavior in the former and latter regimes, respectively.

0.6 T T T T T T T T
i 1
1 '
1 '
0.4 - ' 1
\l’\
1 '
L | ' E . electron -
02 | c \ mobility
1 1
0 1 ' 1
- e, v
= | : = - ]
Q,-02 - I ' 1 2,
3 | em ! ) ]
é 04 F---- ! ! 1 L%
1 1 - 1
06 1 . 1
1 1 7
'
08 r ' ' 4
1 I 1
1 '
1
-1r 1 1 (= 4
1 1 v
1 Wy
12 . I I I I I ; I
-10 0 10 20 30 40 50 60 70 5 10
x-coordinate [nm] x-coordinate [nm]
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B. Results from Study 2

Fig.5 shows the simulated J-V characteristics of the investigated M-S junction as a function of temperature T.
Results are for elec_mob=800cm?/V/s, i.e., the case of silicon with donor doping concentration Ng=10cm3.
As discussed with the analysis of the results from Study 1, for such a high value of elec_mob electron transport
is limited by thermionic emission at the M-S interface and the Bethe model provides accurate predictions for
J. Similarly to the case of the p-n junction, the increase of T results in the growth not only of the slope of the
J-V curve under forward bias in mV/dec but also of the reverse saturation current density of the device. To
explore this latter dependence, the reverse saturation current density at V=-405mV is reported in Fig.6 as a
function of 1/kT (Arrhenius plot), with kT being the thermal energy. The nice alignment of the data points
along a straight line in the figure allows to say that the dependence of the reverse saturation current density
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on T can be reproduced with an exponential relation. That relation is typically written as J «cexp(-Ea/kT), with
Ex that is called the activation energy for the current. From the fit of the data points in Fig.6, Ea~0.85eV can
be extracted. In this regard, there are a few points that is worth highlighting. The first is that, from the Bethe
model, the reverse saturation current density is expected to be proportional to T?*exp(-q@s./kT), where q¢gn
is the barrier height at the M-S interface. As a consequence, Ex should be slightly higher than q¢s, (slightly
higher due to the T? prefactor in the previous formula), as confirmed by the results of Fig.6. The second is
that, being E, close to g¢ss, the T dependence of the reverse saturation current density of a M-S junction is
typically weaker than that of a p-n junction when the latter is dominated by the ideal diode behavior (Ea
slightly higher than Es is obtained in that case for the p-n junction). The last is that the
generation/recombination processes in the semicondutor were neglected in the Comsol Multiphysics project
and, thus, their possible impact on the results in Figs.5-6 is not accounted for. Due to the high reverse
saturation current density of the device at room temperature, however, that impact is not expected to
appear but at very very low T.
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Lab 5

Step 5: Analysis of the numerical results in Matlab

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab
for a detailed analysis of the electrostatics of the investigated MOS capacitor. Students are kindly invited to
try to perform the analysis on their own, reproducing the figures reported in this section (anyway, who is still
not familiar with Matlab may find the sequence of commands used to generate the reported figures at the
end of the analysis).

Fig.1 shows the band diagram of the investigated MOS capacitor as resulting from the numerical simulations
performed in Comsol Multiphysics in the presence of a gate voltage Vs=1.5V. Although the band profile in
the oxide is not directly provided by Comsol Multiphysics, it can be easily determined given that i) there the
bands are linear (no oxide charge) and ii) the total voltage drop over the material Vox=Fox*tox=Fs* &/ €ox *tox CaN
be easily calculated from the simulation results (Fo is the electric field in the oxide, F; is the electric field at
the silicon surface and &;, & are the dielectric constants of silicon and the oxide, respectively; consider that
no interface states are present at the silicon/oxide surface in the simulations). In Fig.1, the energy gap and
the electron affinity of SiO, were assumed for the oxide layer.

Since V=1.5V is much higher than the device threshold-voltage Vr=0.53V, the band diagram of Fig.1 is that
of a strong-inversion condition. In particular, a depletion layer where the negative charge of ionized acceptors
is exposed is present in the substrate, with width Wy=52nm. The voltage drop Vs=1.08V over this layer is
slightly higher than 2/ ¢s/=0.94V, where ¢z is the electrostatic potential in the bulk region. The electron
concentration in the inversion layer, moreover, is relevant for device electrostatics, being higher than the
doping concentration N,. This is clearly highlighted in Fig.2, where the spatial profile of the electron
concentration resulting from the numerical simulations is shown. Note that this profile cannot be accurately
determined via analytical calculations, since calculations do not allow to come to the electrostatic potential
and the band diagram as a function of the position in the substrate under strong-inversion. Fig.2 shows that
the electron concentration peaks at the silicon surface and rapidly decreases going deeper in the substrate.
More specifically, the width over which the electron concentration is higher than the doping concentration
is /3nm. That width, which is in general less than 5nm, can be considered as the thickness of the inversion
layer. In this regard, it is worth mentioning that, due to the strong confinement of electrons in the potential
well created by the oxide and the band bending close to the silicon surface, quantum-mechanical effects
typically affect the profile of the electron concentration in the inversion layer of an MOS device. As a result
of electron confinement, the peak of the electron concentration is not at the silicon/oxide interface but few
nm deep into silicon. Even the thickness of the inversion layer changes a bit when quantum-mechanical
effects are accounted for, remaining, anyway, less than 5nm.
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in the case of Vg=1.5V. investigated MOS capacitor in the case of Vs=1.5V.
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Fig.3 shows the electric field profile in the substrate of the MOS capacitor. Due to the strong-inversion
condition in the device and the large electron concentration at the silicon surface, the profile is not a pure
triangular profile. A pure triangular profile is what would result in the substrate under a depletion or weak-
inversion condition (students can verify this point by repeating the analysis for a Vs<V7), due to the fact that
the constant charge density of ionized acceptors in the depletion layer would in that case be the only relevant
charge density for device electrostatics. Under the strong-inversion condition considered in Figs.1-3, instead,
the charge density coming from electrons close to the silicon surface is comparable or even higher than the
charge density from ionized acceptors in the depletion layer. As a result, the slope of the electric field profile
(which is proportional to the charge density exposed in each point of the substrate) grows from -gN,/&;; to a
much higher value entering the inversion layer, as clearly appearing from Fig.3 (g is the elementary charge).
That growth results in a steep increase of the electric field across the thickness of the inversion layer and in
an additional contribution to Vi with respect to the case in which only the depletion-layer charge were
present over the width W, (remember that the area under the electric field profile corresponds to V).
However, as evident from Fig.3, the latter contribution to Vs is very small, since the inversion layer thickness
is very narrow. That leads to the so-called charge-sheet approximation (which will be better discussed in the
analysis of the MOS transistor), which consists in neglecting the thickness of the inversion layer and the
additional voltage drop over it with respect to the voltage drop over the depletion layer. As a result of this
approximation, the electron charge in the inversion layer is considered to be a sheet of charge at the silicon
surface (hence the name of the approximation) and the width of the depletion layer is calculated as
Wa=sqrt(2&i/q/N.*Vs). Note, in this regard, that the latter formula for Wy would be valid in principle only in
the presence of a pure triangular profile for the electric field in the substrate, i.e., in the depletion and weak-
inversion regimes. Thanks to the charge-sheet approximation, it can be used to calculate Wy and, in turn, the
depletion layer charge Qqep even in the strong-inversion regime (see the red dashed line in Fig.3). From the
numerical results, it is easy to realize that the involved approximation error is rather small, since the total
depletion layer charge calculated through the formula Qgep=-gNaWy=-4.2x107C/cm? is quite close to that
resulting from the integration over the substrate of the difference between the acceptor and the hole charge
densities, which equals -4.09x107C/cm?. The approximation error on Quep is then just ~3%.
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Fig.3: Simulated profile for the electric field in the substrate of the | Fig.4: Simulated V; and Vo as a function of V.
investigated MOS capacitor, in the case of Vs=1.5V. The linear
behavior in the depletion layer calculated after the charge-sheet
approximation is also shown.

Fig.4 shows the simulation results for the depedence of V; (blue curve) and V,x (red curve) on Vs. While Vs is
directly provided by Comsol Multiphysics, Vox has been extracted from the simulation results as -Qs/Cox, With
Q; being the substrate charge and C,x the oxide capacitance. The behavior of V; as a function of V; reflects
what obtained with simple arguments and analytical calculations during lessons. In particular, Vs becomes
weakly negative below the flat-band voltage Vr=-0.98V and weakly increases above 2/¢@s[=0.94V above
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Vr=0.53V, displaying a trend that can be approximated as parabolic first and as linear later in-between these
two voltages. The Vi, trend, instead, can be easily related to the Qs vs. Vs dependence, which is shown in
absolute value in Fig.5. As studied during lessons, Qs (and then V,,) grows almost linearly in the accumulation
and strong-inversion regimes, while a square root dependence is reached in-between V5 and Vr (close to V7,
however, a linear approximation of the Vo, vs. Vs dependence introduces just a small error, see Fig.4).
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Fig.5: Simulated [Qs/ as a function of Vs. Fig.6: Simulated quasi-static C-V curve of the investigated MOS
capacitor, in the case state occupancy in the band diagram is
calculated following the Fermi-Dirac statistics or its Maxwell-
Boltzmann approximation.

To complete the analysis of the stationary electrostatics of the investigated MOS capacitor, Fig.6 shows the
quasi-static capacitance-voltage (C-V) curve of the device. This curve was obtained by calculating the small-
signal gate capacitance Cs=-dQ;/dV; from the simulated Qs vs. Vi relation. As studied during lessons, this
methodology to extract Cg is based on the assumption that the device follows a path of stationary conditions
(or thermodynamic equilibrium conditions in the substrate in the presence of an ideal insulator) when Vg is
slightly modified to evaluate Ce. In practical assessments of the C-V curve, that is a reasonable approximation
only when the small-signal adopted to evaluate Cs is a low-frequency signal and, for that reason, the C-V
curve reported in Fig.6 is also called a low-frequency C-V curve.

The results in Fig.6 provide a careful and comprehensive description of the Cs vs. Vi dependence, without
the need for the regional approximations adopted in the calculations performed during lessons. Besides, by
repeating the simulations performed in Comsol Multiphysics using the Fermi-Dirac statistics instead of its
default Maxwell-Boltzmann approximation (that can be done by modifying the field Carrier Statistics under
the tree Model Properties in the Settings window for Semiconductor), the impact of the latter on the quasi-
static C-V curve can be easily studied. In particular, the curve obtained under the Fermi-Dirac statistics (red
curve in Fig.6) displays a slower increase towards Cox in the accumulation and strong-inversion regimes than
the curve obtained under the Maxwell-Boltzmann approximation (blue curve in Fig.6). No relevant difference
between the results appears, instead, in the depletion and weak-inversion regimes. This can be explained by
considering that it is only in the accumulation and strong-inversion regimes that the Fermi level Er is quite
close either to the conduction band edge E. or to the valence band edge E, at the silicon surface, which is the
condition making the Maxwell-Boltzmann approximation fairly inaccurate. The fact that the Fermi-Dirac
statistics predicts a weaker growth of Cs towards Cox in these regimes, then, is due to the weaker dependence
of Qs on E-E. at the silicon surface and, in turn, on Vs resulting from that statistics with respect to the
Maxwell-Boltzmann case. From that, a smaller substrate capacitance Cs; and Cg result in the Fermi-Dirac case.

To further investigate the stationary electrostatics of an MOS capacitor, students are kindly invited to repeat
the previous analysis for different doping concentrations N, and different oxide thicknesses tox, exploring the
change of the shape of the quasi-static C-V curve as a function of these latter parameters.

17

165




Lab 6

Step 5: Analysis of the numerical results in Matlab

In order to investigate the transient behavior of the MOS capacitor, students are asked to run the Comsol
Multiphysics simulations for different values of temperature T and of the duration of the gate voltage ramp
dt_ramp. In particular, the following combinations of the two parameters will be considered here: T=300K
and dt_ramp equal to 0.01s, 0.1s, 1s and 10s; dt_ramp=0.1s and T equal to 300K, 325K, 350K, 375K, 400K and
500K. Note that the Comsol Multiphysics project was not created to process all these cases together because
some of them may take up to 10 minutes on a high-performance PC and may be prohibitively long on low-
performance hardware; by running the cases independently, students may skip some of them if they take
more than 15 minutes on their PC (another option is to reduce the number of elements of the mesh
discretizing the x-axis from 500 to 100, thing that gives rise to negligible changes in most of the results that
will be presented here). After exporting the simulation results for each combination of T and dt_ramp, the
files can be easily loaded into Matlab for a detailed analysis of the time evolution of the electrostatics of the
investigated MOS capacitor. Students are kindly invited to try to perform the analysis on their own,
reproducing the figures reported in this section (anyway, who is still not familiar with Matlab may find the
sequence of commands used to generate the reported figures at the end of the analysis).

Fig.1 shows the band diagram of the investigated MOS capacitor as resulting from the numerical simulations
performed in Comsol Multiphysics in the case of T=300K and dt_ramp=0.1s. Results refer to the time instant
t=dt_ramp=0.1s and provide, therefore, a picture of the electrostatic condition of the device when the gate
voltage ramp reaches its maximum value Vs=+3V. The separation between the quasi-Fermi level for electrons
Ern and the quasi-Fermi level for holes Eg, reveals that a relevant nonequilibrium condition is present in the
substrate at that stage of the transient. That is, however, expected from what studied during lessons. Note,
in fact, that dt_ramp=0.1s is shorter than the typical timescale of seconds over which the generation
processes take place in the substrate of an MOS capacitor at room temperature. That means that the
generation processes are not able to create all the electrons needed to keep the substrate close to
thermodynamic equilibrium as Vs grows from -3V to +3V. More specifically, it is when Vi rises above the
device threshold voltage Vrthat the lack of a sufficient amount of electron generation plays a relevant role
for the evolution of device electrostatics. For Vs higher than V7, in fact, the electron concentration would be
relevant for the electrostatics if the substrate were under thermodynamic equilibrium. With a limited amount
of carrier generation during the gate voltage ramp, the electron concentration in the inversion layer remains
below the values corresponding to thermodynamic equilibrium of the substrate and, due to that, the
evolution of device electrostatics must rely more on the depletion layer charge. That means that the charge
in the depletion layer, and then the depletion layer width Wy, must increase above their values in the
presence of thermodynamic equilibrium to compensate for the lack of electrons close to the silicon surface.
As a consequence, W, grows above the maximum depletion layer width W "*=sqrt(2&;/q/Na*2| ¢g/) and the
voltage drop over the substrate Vi grows above 2/ ¢s/ (¢s is the bulk potential, &iis the dielectric constant of
silicon and g is the elementary charge). These effects are clearly evident from Fig.1, where the band bending
in the substrate corresponds to Vs2+3V. The strong band bending in the substrate together with the need to
keep the electron concentration in the inversion layer lower than that under thermodynamic equilibrium in
the material give rise, finally, to the downward shift of Er, close to the silicon surface that makes evident
substrate nonequilibrium.

From the simulation results of Fig.1 it is possible to see that Er, and Eg, do not stay flat all over the depletion
layer of the MOS capacitor, as typically assumed in the theoretical analyses of device behavior studied during
lessons. The correct spatial profiles of Er, and Eg, are the outcome of the combination of carrier generation
and transport throughout the depletion layer and cannot be easily determined with analytical calculations.
However, the assumption that these levels remain flat all over the depletion layer does not introduce any
meaningful error in the analysis of device electrostatics. Note, in fact, that the downward bending of Er,
moving from the bulk region to the silicon surface does not affect the conclusion that the hole concentration
is much less than the doping concentration all over the depletion layer. In a similar way, the upward bending
of Er, from the silicon surface to the edge of the depletion layer is absolutely irrelevant for device
electrostatics, since it is only close to the silicon surface that the electron concentration is high enough to
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play arole (it is just the distance of Er, from the conduction band edge Ec at the silicon surface that determines
the electron concentration in the inversion layer, not the spatial profile by which Eg, reaches its vertical
position at the surface). For these reasons, the analysis of the MOS capacitor (but also of the MOS transistor)
can neglect the Eg, and Eg, evolutions over the depletion layer, considering them to be flat.
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Fig.1: Simulated band diagram for the investigated MOS capacitor | Fig.2: Simulated time evolution of the electron concentration at
in the case of dt_ramp=0.1s, T=300K and t=0.1s (so, when Vs | the silicon surface, for different dt_ramp and T=300K.
reaches +3V).

Since the nonequilibrium condition created in the substrate by the gate voltage ramp triggers carrier
generation (see the relative vertical position of Eg, and Er, in Fig.1), the electrostatics of the MOS capacitor
keeps evolving in the stretch of time following the instant at which Vi reaches its maximum value equal to
+3V, even though during that stretch of time Vi stays constant. More specifically, substrate nonequilibrium
is just a transient condition that vanishes over time due to the increase of the electron concentration in the
inversion layer resulting from carrier generation in the material. In order to study the transient evolution of
subtrate electrostatics, then, the electron concentration at the silicon surface was considered. That
concentration is shown as a funtion of time in Fig.2 for dt_ramp=0.01s, 0.1s, 1s and 10s, with T=300K. Results
reveal that, irrespective of the value of dt_ramp, the electron concentration reaches its stationary value
(which can be easily calculated by means of the Comsol Multiphysics project developed for the “Simulation
Lab #5 — Stationary electrostatics of the MOS capacitor”) in about 100s. The reduction of dt_ramp, on the
other hand, gives rise to a reduction of the electron concentration at the instant at which Vs reaches +3V.
With dt_ramp equal to 10s and 1s, that concentration is about, respectively, 10¥cm? and 10*®cm™. That
means that, with such long ramp durations, the generation processes are able to create a strong-inversion
condition in the MOS capacitor during the ramp itself (remember that the acceptor doping concentration of
the substrate is N,=5x10cm®), even though the electron concentration in the inversion layer remains below
the stationary value. In the case of dt_ramp=0.1s and 0.01s, instead, the electron concentration when the
ramp reaches Vs=+3V equals about 10cm™ and 10%°cm, respectively. In these latter cases, then, the
generation processes can give rise just to a weak-inversion condition in the MOS capacitor during the gate
voltage ramp and the deep-depletion established in the substrate when Vi reaches +3V is then stronger than
in the cases of longer dt_ramp.

By using the simulation results for the substrate charge Q; and the gate voltage Vi as a function of time
obtained for the dt_ramp cases considered in Fig.2 (T=300K), the capacitance-voltage (C-V) curves of Fig.3
can be extracted. The small-signal capacitance Cs of the MOS capacitor has been calculated by exploiting the
variations of Qs and Vs during the gate voltage ramp, i.e., Ce=-dQs/dV; (in this regard, consider that the
discretization of Vs and Q; during the ramp is tight enough to accurately calculate the previous derivative as
a function of Vi by numerical techniques). In the case of dt_ramp=0.01s and 0.1s, the Cs results are almost
overlapped and reproduce the deep-depletion C-V curve of the MOS capacitor. As previously discussed, in
fact, for short dt_ramp the electrostatics in the device during the gate voltage ramp is dominated by the
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depletion layer charge, since just a weak-inversion condition can be established by the generation processes
in the substrate. For dt_ramp=1s and 10s, instead, a nonnegligible generation of electrons during the gate
voltage ramp occurs and, as a result, the electrostatics in the device is not determined just by the depletion-
layer charge but also by a partial contribution of the inversion layer charge. As a consequence, the C-V curves
corresponding to these cases are a bit higher than the deep-depletion curve obtained for shorter dt_ramp in
the interval Ve>Vr.
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Fig.4 shows the simulated time evolution of the electron concentration at the silicon surface in the case of
dt_ramp=0.1s and T ranging from 300K to 500K. Results reveal that the transient condition of the substrate
induced by the gate voltage ramp vanishes earlier at higher T. In particular, at T=500K the electron
concentration at the silicon surface equals its stationary value already at the instant when V; reaches +3V
(this is clearly evident when looking at the transients on a linear plot, see Fig.5), meaning that in that case a
thermodynamic equilibrium condition is preserved in the substrate even during the gate voltage ramp. In
order to quantitatively investigate the accelaration of the recovery of stationary electrostatics in the
substrate with T, the time needed at Vs=+3V to reach a constant electron concentration at the silicon surface
equal to 5x10cm3 is reported as a function of 1/kT in Fig.6 (Arrhenius plot, kT is the thermal energy). In the

19

168




figure, only the data points for T=300K, 325K, 350K and 375K were considered, since for T=400K and 500K a
significant growth of the electron concentration already occurs during the gate voltage ramp (see Fig.5) and
that results in a significantly different initial condition for the electrostatics in the substrate at the end of the
ramp with respect to the other cases. A clear exponential acceleration of the recovery of the stationary
condition in the substrate appears from Fig.6 when T increases. That exponential acceleration can be
quantified by assuming an exponential dependence exp(Es/kT) for the data points in the figure, with E,
representing the so-called activation energy of the recovery process. Starting from the slope of the points in
the figure, Ea~0.65eV can be extracted.

The exponential acceleration of the recovery of the stationary condition in the substrate with T can be easily
explained by considering the T dependence of carrier generation in the substrate. From what studied during
lessons, the time constant for the generation processes in the substrate of an MOS capacitor can be written
as =21*NJ/n;, where 1o is the characteristic time of the generation/recombination processes and n; is the
intrinsic carrier concentration. Fig.6 shows that 75 follows the same T activation of the previously discussed
time needed to reach a constant electron concentration at the silicon surface (the quantitative vertical
agreement between the two trends in the figure slightly depends on the value of the electron concentration
selected to extract the recovery time from the simulation results). This result proves that it is the temperature
activation of 75 (arising from n;) that determines the temperature activation of the recovery of stationary
electrostatics in the device.
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CG [Ffem“]
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-3 -2 -1 0 1 2

w

Fig.7: C-V curve of the investigated MOS capacitor as extracted
from the simulated Qs vs. Vg relation for dt_ramp=0.1s and
different T.

To complete the analysis, Fig.7 shows the C-V curves obtained from the simulation results corresponding to
the cases considered in Figs.4-6. Due to the faster carrier generation in the substrate at higher T, a relevant
change in the behavior of the curves appears for Vs>Vr. Over that interval, in fact, Cs decreases with the
increase of Vi at T=300K, 325K and 350K, following the previously discussed deep-depletion curve of the
MOS capacitor. At T=375K and 400K, instead, Cs increases with Vs over that interval, due to a more relevant
role played by the growth of the electron concentration in the inversion layer on device electrostatics during
the gate voltage ramp. At T=500K, finally, the Cs behavior maps the low-frequency C-V curve of the capacitor,
since carrier generation is so strong to keep the substrate close to thermodynamic equilibrium even during
the gate voltage ramp.

For some further investigations, students may plot the band diagram of the MOS capacitor at different times
during the gate voltage ramp and during the stretch of time over which V; stays constant at +3V, at different
T. In so doing, the dependence of the electrostatics of the device on holes and electrons in the substrate can
be better understood, along with the change of the total charge in the substrate over time and the change
of the voltage drop over the substrate and over the oxide.

20

169



Lab 7

Step 5: Analysis of the numerical results in Matlab

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab
for a detailed analysis of the electrostatics and of current transport in the investigated MOS transistor,
addressing the impact of the drain voltage Vps on its ON-state behavior. Students are kindly invited to try to
perform the analysis on their own, reproducing the figures reported in this section (anyway, who is still not
familiar with Matlab may find the sequence of commands used to generate the reported figures at the end
of the analysis).

Fig.1 shows the simulated drain current (/ps) vs. Vps characteristics of the investigated MOS transistor
corresponding to an applied gate voltage Vs equal to 0.5V, 0.75V, 1V, 1.25V and 1.5V. For all of the selected
Ves values, the typical ON-state trend of /ps with Vps featuring the ohmic, parabolic and saturation regimes
clearly appears. As studied during lessons, the three regimes hold, respectively, for low, intermediate and
high Vps. In the ohmic regime, Ips grows almost linearly with Vps. In the parabolic regime, the Ips increase with
Vps becomes markedly less-than-linear, following a parabola with the concavity directed downwards. In the
saturation regime, finally, Ips becomes weakly dependent on Vps. From these results, it is possible to come to
the conclusion that the threshold-voltage Vr of the investigated device is less than 0.5V. This conclusion is
confirmed by the formula Vr=Ves+2 | @[ +sqrt(2&i*qNa*2 [ ¢s[)/Cox, Which leads to Vr20.3V (Ves is the flat-band
voltage, ¢s the electrostatic potential in the bulk region, &; the dielectric constant of silicon, g the elementary
charge, Nq the substrate doping concentration and Cox the oxide capacitance per unit area). As a final remark
about Fig.1, students are kindly invited to pay attention to the y-axis scale showing the /ps values. First of all,
Ips has been reported normalized to the width W of the transistor expressed in um (pay attention that
W=1um was assumed in the Comsol Multiphysics project), which is a quite common way to show the /ps
values. After this normalization, Ips spans the typical range from a few hundreds of ©A/um to few mA/um. In
this regard, it is worth mentioning that the scaling path followed by the CMOS technology over the years has
resulted in the growth of the maximum W-normalized ON-state /ps of MOS transistors (for the minimum value
of the device channel length L of the technology). That was due to the impossibility to stick to the constant-
field scaling rules, which would have maintained the maximum W-normalized Ips constant, and to the need
to introduce some generalized-scaling steps along technology evolution.
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Fig.1: Simulated /ps-Vps curves of the investigated MOS transistor, | Fig.2: Comparison between the Ips-Vps curves resulting from
for different values of Vgsranging from 0.5V to 1.5V. numerical simulations and from the analytical formulas derived
during lessons.

Fig.2 compares the Ips-Vps curves resulting from numerical simulations with the predictions of the analytical
formulas derived during lessons, i.e., Ips=1mCoxW/L*[(Vss-V1) *Vps-mVps?/2] in the ohmic and parabolic regimes
and  Ips=Ips =1 CoxW/L*(Vss-V7)?/2m in the saturation regime (u, is the electron mobility and
M=1+Caep/Cox=1.17, with Cgep being the minimum depletion-layer capacitance in the substrate corresponding
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to a value of the surface potential Vs=2/¢g/). Although a rough general agreement between the two sets of
curves appears from the figure, it is clearly evident that the analytical formulas overestimate Ips with respect
to what obtained from numerical simulations. In order to understand the reasons for that, it is worth starting
from the ohmic and parabolic regimes and considering that the investigated device can be safely assumed to
be a long-channel MOS transistor, since L=300nm is significantly longer than the critical length
2(W "™ +3tox)~83nm separating the long-channel from the short-channel regime (W,™™ is the maximum
depletion-layer width corresponding to V=2 ¢s/ and t, is the oxide thickness). The long-channel nature of
the device allows to safely say that the gradual-channel approximation adopted to come to the analytical
expression for Ips in the ohmic and parabolic regimes is valid. The origin of the mismatch between the
analytical and the simulation results in these regimes, then, is to be attributed to some other approximation
done after it. In this regard, recalling the steps taken during lessons to come to the analytical expression for
Ips, it is possible to identify three major approximations following the gradual-channel approximation. The
first is the charge-sheet approximation, which allows to calculate the inversion charge Qi, at each point in
the channel even under strong-inversion as Qin=-Cox*(Ves-Ves-Vs)+sqrt(2&i*qNa*Vs), where the square-root
term represents the absolute value of the depletion-layer charge Que, (remember that Qi and Quep are
charges per unit area). The second is the regional approximation V=2 @g[+V, with V representing the quasi-
Fermi potential for electrons. The third is that V is smaller than 2/¢g/, even though it is not completely
negligible with respect to it. After these three approximations, the expression Qin=-Cox*(Vss-Vr-mV) was
obtained and, from it, Ips was calculated. Among the three, the second approximation is by far the roughest
and is mainly responsible for the mismatch between the analytical and the simulation results in the ohmic
and parabolic regimes in Fig.2.

In order to understand the role of the approximation Vs=2[ ¢s/+V on device electrostatics, we may focus our
attention on the ohmic regime. In that regime, Vps is so small that V is negligible with respect to 2/ ¢s/, making
the previously mentioned third approximation surely appropriate. Setting Vs=2[¢s/, then, the relations
Quep=Quep™™=-5qrt(2&i*qNa*2 [ ¢z ) and Qinv=-Cox*(Vss-V1) can be obtained. Although these results provide, of
course, the most elementary description of what happens to Qi,v and Quep in an MOS device entering strong-
inversion, they do not account for some important details related to device behavior near V7. In particular,
saying that Qi is zero when Vgs=V7 and then linearly grows when Vs increases above Vr misses a careful
description of what happens to that charge close to V7. A more accurate description of device physics should
consider that for Vss<Vr both Qiny and the change of Qiny arising from a slight change of Vs are negligible with
respect to Qqep and to its change. When Vgs=V7, instead, Qiny is still small and negligible with respect to Quep,
but its change arising from a slight change of Vs becomes equal to the change of Q4. (remember, in fact,
that when Ves=Vr the total substrate capacitance Cs of the MOS system is twice the value of the depletion-
layer capacitance Caep, meaning that the capacitance of the depletion layer and of the inversion layer are
equal). For Vgs higher than V7, then, device electrostatics is significantly affected by Qi,, and by its change
with Vis and that is what makes the device work in the strong-inversion regime (pay attention on that Qi is
not required to be dominant over Qqe, for that). Since Qi is exponentially related to Vs, moreover, the growth
of Vss above Vrrapidly makes the inversion-layer capacitance much larger than not only the depletion-layer
capacitance but also the oxide capacitance Co. That means, first of all, that the change of Qi following a
slight change of Vs becomes much stronger than the change of Qqep, Which can then be neglected. Then, that
also means that the change of Qi» becomes equal to the product between Co,x and the amplitude of the Vss
variation, since the latter drops mainly over the oxide. From the standpoint of the Vs vs. Vs relation, this
phenomenology makes V; first deviate from the almost linear trend with Vs observed under weak-inversion
as soon as Vs rises above Vrand then strongly flatten, reaching almost a saturation, when Vgsis well above
V7. Itis only when Vs flattens, in particular, that the change of Qqe, vanishes and Qj»y becomes linearly related
to Vis. Therefore, some hints about how much Vss must be increased above V7 to achieve those conditions
can be derived by looking at the Vs vs. Vs curve (see the notes on the MOS capacitor to accurately visualize
that curve). From the inspection of that curve, Vs must increase by few kT/q above 2/ ¢s/ before reaching a
true saturation (kT/q is the thermal voltage). kT/q is, in fact, the characteristic voltage ruling the exponential
dependence of Qi and, in turn, the inversion-layer capacitance, on V;. By increasing Vs by few kT/q above
2|/ ¢g/, and then Vgs by a similar amount above V7, the inversion-layer capacitance grows from the value
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corresponding to the depletion-layer capacitance to a value much larger than it, giving rise to Vs and Quep
saturation and to a linear dependence of Qi 0n Vs.

From the previous picture, it should be clear that assuming Vs=2/¢g/, Quep=Quep™™ and Qinv=-Cox*(Viss-Vr)
under strong-inversion represents a rough approximation, since it corresponds to considering the inversion-
layer capacitance to abruptly increase from a value much lower than Cgep and Cox to a value much higher than
them at Vss=Vr. That misses that the increase of the inversion-layer capacitance with V is fast but, anyway,
gradual and that an increase of V; above 2/ ¢/ by few kT/q is needed to make that capacitance much larger
than Cgep and Cox. In turn, that misses that an increase of Vss above Vr by few kT/q is needed to make Vs
saturate, to make the small-signal gate capacitance approach C,x and to make Qj, reach a linear dependence
on VGS-

Getting back to the mismatch between the simulation and the analytical results for /ps in the ohmic and
parabolic regimes in Fig.2, it is easy to understand that one of the reasons why the formula
Ips=pnCoxW/L*[(Vs-V7) *Vips-mVips?/2] overestimates the correct Ips coming from simulations is that it
underestimates the value of Vss needed to achieve a linear growth of Qi, with Vss. In order to prove this
conclusion, the value of Vrused in the formula for Ips was slightly increased by 80mV to take into account the
need to increase Vss and V; by few kT/q to make the inversion-layer capacitance much larger than Cyep, and
Cox and, then, reach Vi saturation and a linear dependence of Qiny on Vss. These Vr-corrected curves are
reported in Fig.3 and display a fairly good agreement with the simulation results in the ohmic and parabolic
regimes. As a final remark, it is worth pointing out that the increase by 80mV of the V7 value to be adopted
in the formulas for Ips to reach such a good agreement with the simulation results is relevant because the Vr
of the investigated MOS transistor is just about 300mV. In the case of devices with a much higher V7 and
working, in turn, with much higher overdrives (Vss-V7), the correction to be introduced on the V7 value to
account for the finite inversion-layer capacitance is typically negligible.
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Fig.3: Comparison between the /Ips-Vps curves resulting from
numerical simulations and from the analytical formulas derived
during lessons, increasing V7 by 80mV.

The residual mismatch between the simulation and the analytical results appearing in Fig.3 close to the edge
between the parabolic and the saturation regimes can be attributed to both the gradual-channel
approximation and the assumption that V and, in turn, Vps are much smaller than 2/¢gs/. The latter
assumption, in fact, is not so accurate at the edge of the parabolic regime, where Vps is rather large. The
gradual-channel approximation, on the other hand, cannot provide a careful description of device
electrostatics approaching and entering the saturation regime, as discussed during lessons. That is due to the
strongly-bidimensional electrostatics in the channel when Vps approaches the value leading to saturation. In
particular, the simplified electrostatic analysis based on the gradual-channel approximation misses the
channel-length modulation effect, which is responsible for the weak increase of Ips in the saturation regime
(in Fig.3, in fact, the theoretical Ips*** was considered to be perfectly flat under saturation). That effect can be
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clearly appreciated from the simulation results for the electron concentration reported in Fig.4. In order to
partially correct this approximation, the Early voltage Vi=L*F,, where F, is an effective electric field between
the position of the pinch-off point in the channel and the drain, was extracted in Fig.5. That was done by
extrapolating the linear trend observed in the simulated /ps curves under saturation down to the horizontal
axis, obtaining from the intersection V4215V (the curve at Vss=1.5V was not considered in the extraction since
a too narrow Vps interval is available for it in the saturation regime, leading to a relevant error in the
extrapolation). As studied during lessons, V4 can be used to calculate the output resistance of the device in
the saturation regime (going from 24kQ to 740kQ for the explored Vss values in our case) and to correct the
analytical Ips formulas. In order to obtain a gradual increase of Ips due to the channel-length modulation effect
when approaching and entering the saturation regime, the correction is typically introduced by multiplying
Ips by (1+Vps/V4) both in the parabolic and in the saturation regime (during lessons, the corrective term
1+(Vps-Vos™)/Va was introduced only for Ips in the saturation regime, leading to a discontinuity of the
derivative of the Ips-Vps relation at the edge between the parabolic and the saturation regime). This latter
correction partially improves the agreement between the calculated and the simulated /ps-Vps curves at high
Vps (students can easily verify this point). To further improve the correctness of the formulas for Ips, these
are modified and made more complex in the compact models adopted by circuit simulators. However, the
simple expressions studied so far are typically enough for some first order back-of-the-envelope calculations
related to circuit operation.

Vd5=0.9 V, Vgs=1V. Surface: Log of electron concentration (1)

Vds=1.2V, Vgs=1V Surface: Log of electron concentration (1)

390 305 400 nm

Fig.4: Simulation results for the electron concentration at the drain side of the channel of the
investigated MOS transistor, in the case of Vss=1V and Vps equal to, from top to bottom, 0.9V,
1.2V and 1.5V. In the last case, note that the pick of the electron concentration close to the
drain junction is not at the silicon surface but a few nm inside the substrate.
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Fig.5: Extraction of the Early voltage V4 of the investigated MOS
transistor via the linear extrapolation of the simulated /ps trend in
saturation down to the horizontal axis.

To complete the analysis of the operation of the investigated MOS transistor, Fig.6 shows the simulated
conduction band edge (E) and Eg, profiles at the channel surface in the source-to-drain direction, in the case
of Vss=1V and for increasing Vps from 0V to 1.5V. As discussed during lessons, for low Vps equal to 0.1V and
0.3V (ohmic regime), the band bending in the horizontal direction is almost linear and so is the bending of
the quasi-Fermi level for electrons Eg,. For higher Vps equal to 0.5V, 0.7V and 0.9V (parabolic regime), then,
the reduction of Q;, moving from the source side to the drain side of the channel (see Fig.7) results in a
stronger band bending and Eg, drop close to the drain. For Vps equal to 1.2V and 1.5V (saturation regime),
finally, a very steep band bending and drop of Er, appear close to the drain, while far from the drain the
bands and Er, keep a profile that is independent of Vps. This latter piece of evidence clearly demonstrates
that in the saturation regime the drain loses control of the electrostatics in the channel, but for the channel-
length modulation effect. Fig.8 shows the complete band diagram of the device for each Vps condition.
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Fig.6: Simulation results for the E. and Eg, profiles along the | Fig.7: Simulation results for the electron concentration at the
channel of the MOS transistor, in the case of Vss=1V and for | surface of the MOS transistor, in the case of V=1V and for
increasing Vps from OV to 1.5V. increasing Vps from 0V to 1.5V.
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As a final result related to device electrostatics, Fig.9 shows the hole concentration profile in the substrate
at Ves=1V and Vps=1.5V. The width of the depletion layer at the source side and its increase moving to the
drain side of the channel can be clearly appreciated.
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Fig.9: Simulation results for the hole concentration in the MOS transistor in the case of Vgs=1V
and V05=1.5V.
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Lab 8

Step 4: Analysis of the numerical results in Matlab

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab
for a detailed analysis of the electrostatics and of current transport in the investigated MOS transistor,
addressing the impact of the gate voltage Vs on both its subthreshold and ON-state behavior. Students are
kindly invited to try to perform the analysis on their own, reproducing the figures reported in this section
(anyway, who is still not familiar with Matlab may find the sequence of commands used to generate the
reported figures at the end of the analysis).

Fig.1 shows the simulated drain current Ips, source current /s and substrate current /s,» of the investigated
MOS transistor as a function of Vgs, in the case of drain voltage Vps=0.1V and temperature T=300K. The
semilogarithmic plot reveals the typical shape of the Ips — Vs transcharacteristics (blue curve) studied during
lessons and featuring: i) a very-low current regime where Ips is nearly constant and equal to /s, (magenta
curve), due to carrier generation in the channel-region and at the drain-bulk junction of the device producing
electrons gathered by the drain contact and holes gathered by the bulk contact; ii) an intermediate current
regime where Ipsgrows exponentially with Vs due to electron diffusion from source to drain at the channel
surface, corresponding to the weak-inversion regime of the MOS device; iii) a high-current regime above the
threshold-voltage V720.3V where the dependence of Ips on Vs turns into a power-law dependence (then
flattening in the plot), due to the onset of strong-inversion in the channel. In this regard, it is worth pointing
out that the current level corresponding to the generation processes in the substrate is very low at room
temperature in the presence of a low Vps=0.1V. That means that, under those conditions, it may be difficult
to detect it experimentally, being typically overwhelmed by measurement noise (of course, that level may
be more easily detected by increasing T or Vps). Besides, it is also worth recalling that the generation current
flows between the drain and bulk contacts of the device and does not affect Is. As a consequence, differently
from Ips, Is preserves the exponential trend corresponding to the subthreshold regime down to Ves values
approaching the flat-band voltage V52-0.99V (see the red curve in Fig.1). For such low Vgs values, the
dependence of the surface potential Vs in the channel region on Vgs weakens, turning from linear to parabolic
and then to logarithmic. That weakens the dependence of the inversion charge in the channel on Vgs as well,
resulting in Ips flattening.
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Fig.1: Simulated Ips, Is and I of the investigated MOS transistor | Fig.2: Simulated Ips of the investigated MOS transistor as a
as a function of Vs, for Vps=0.1V and T=300K. function of Vgs, for Vps=0.1V and T=300K. The Ips from the
analytical formula studied during lessons and valid in the
subthreshold regime is also shown.

Fig.2 shows a comparison between the predictions of the analytical formula derived during lessons for /ps in
the subthreshold regime Ips=mCoxW/L*(m-1)*(kT/q)?*exp[q(Ves-V7)/(mkT)] and the simulated Ips — Vs
transcharacteristics (u» is the electron mobility, Cox is the oxide capacitance, W and L are the channel width
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and length, m=1+Cgep/Cox, Caep is the depletion-layer capacitance evaluated for Vi=2/¢s/, ¢s is the bulk
potential, kT is the thermal energy, g is the elementary charge). Although a rough agreement between the
analytical and the numerical /ps values appears from the figure, some nonnegligible differences between
them are also evident. In particular, the analytical Ips is a bit lower than the simulated one and, moreover,
displays a stronger growth with Vs, corresponding to a smaller subthreshold slope in mV/dec. Recalling that
the subthreshold slope is just STS=kT/q*In(10)*m, the mismatch between its analytical and numerical value
can only be the result of inaccuracies in the assessment of m. These may arise from the depletion
approximation and from some nonnegligible bidimensional electrostatic effects coming from the source and
drain regions, both slightly affecting the value of Caep. The lower Ips, on the other hand, may be attributed to
slight inaccuracies in Vr estimation and to a shorter “effective” channel length of the device. To understand
this latter point, Fig.3 shows the band diagram of the device in the source-to-drain direction at the substrate
surface in the case of Vss=0.2V, i.e., less than Vr, T=300K and Vps=1V (1V and not 0.1V was assumed for Vps
to better visualize the profile of the quasi-Fermi level for electrons Eg,). Since L is longer than the critical
length 2(W "*+3to.x)~83nm separating the long-channel from the short-channel regime (W, is the
maximum depletion-layer width corresponding to Vi=2/¢s/ and to is the oxide thickness), as expected from
what discussed during lessons, the investigated MOS transistor can be safely considered to be a long-channel
device and there is a wide region of the channel where the bands are flat and the electrostatics is mainly
controlled by the vertical action of the gate. However, Fig.3 also highlights that the length of the transition
regions at the sides of the channel, where the electrostatics is significantly affected by the presence of the
source and drain n* junctions, is not completely negligible with respect to L (in other words, L is not “much”
longer than 2(W4"*+3t,)). This leads to defining a so-called “effective” channel length that is slightly
different from L. In this analysis, however, this correction is not introduced and only a slight change of Vris
taken into account to correct the mismatch between the Ips values of Fig.2. Fig.4 shows that, by slightly
increasing m from its analytical value equal to 1.17 to 1.21 and by reducing V7 by 20mV with respect to its
analytical value (this latter correction will be better validated in the “Simulation Lab#9 — Scaling the channel
length of an MOS transistor”), the Ips predicted by the analytical formula for the subthreshold regime of the
MOS transistor can nicely fit the simulation results. In this regard, it is worth pointing out that circuit
simulators rely on compact models for the electrical characteristics of the adopted electron devices that may
be based on simple expressions such as those studied for the /Ips of an MOS transistor in the subthreshold
and in the ON-state regimes, but the parameters involved in those expressions are typically calibrated against
simulation results and experimental data for the devices, to have them accurately reproduce device behavior.
In addition, further dependences of the parameters in the formulas for the electrical characteristics are
introduced to account for additional physical effects that were not considered in a first-order analysis of the
devices.
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Fig.3: Simulated band diagram of the investigated MOS transistor | Fig.4: Same as in Fig.2, but with the analytical results calculated
at the substrate surface in the source-to-drain direction, for | after slightly correcting m and Vr.
V6s=0.2V, Vps=1V and T=300K.
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Fig.5: Simulated Ips of the investigated MOS transistor as a | Fig.6: Simulated Ec profile at the substrate surface in the source-
function of Vs, for Vps=0.1V, 0.5V, 1V and 1.5V, with T=300K. to-drain direction in the case of Vps=0.1V, 0.5V, 1V and 1.5V, with
VGS=0.2V and T=300K.

Fig.5 shows the Ips — Vs transcharacteristics of the investigated MOS transistor for different Vps ranging from
0.1Vto 1.5V. As expected from the long-channel nature of the device, the increase of Vps does not affect the
subthreshold current (pay attention on that the minimum Vps=0.1V is larger than kT/q). That can be easily
explained by the fact that the flat part of the band diagram in the source-to-drain direction is not affected by
Vps, as shown in Fig.6. The increase of Vps, on the other hand, slightly enlarges the transition region of the
bands close to the drain side of the channel, strongly increasing the band bending there. In the ON-state
regime, instead, Ips is significantly impacted by the change of Vps. That is yet visible in Fig.5 but can be better
appreciated in Fig.7, where a linear scale for Ips is adopted. As studied during lessons, on a linear scale, Ips
starts to grow above Vrapproximately following, first, the quadratic trend with Vs of the saturation regime
Ips=lps*®=p1,CoxW/L*(Vss-V1)*/2m; when Vgs rises above Vr+mVps, then, the linear trend with Vs of the
ohmic/parabolic regimes Ips=1mCoxW/L*[(Vss-V1) *Vps-mVps?/2] appears. From Fig.7, it is clear that, for each
Vps, the linear trend detaches from the quadratic curve as its tangent at the Vs value determining the
transition from the saturation regime to the ohmic/parabolic regimes. In this regard, it is worth pointing out
that considering V+mVps for the latter Vs value and using the analytical expression for Ips in the saturation
regime are, of course, approximations. Remember, in fact, that not only the saturation regime but also the
onset of saturation cannot be carefully described by the gradual-channel approximation adopted to come to
the formulas for Ips. The channel-length modulation effect impacting Ips approaching and entering saturation,
for instance, cannot be described following a gradual-channel approximation analysis. Besides, the formulas
for Ips were obtained under the hypothesis that Vps is smaller than 2/ ¢s/ and that introduces some errors
even in the ohmic/parabolic regimes at high Vps. Another important point worth mentioning is that the value
of Vrto be used in the formulas for Ips must be increased a little bit with respect to what predicted by the
analytical definition of threshold-voltage of an MOS system. As discussed in the “Simulation Lab#7 — Long-
channel MOS transistor in the ON-state: impact of Vps”, this is due to the gradual (and not abrupt) increase
of the inversion-layer capacitance entering strong-inversion, which results in a linear growth of the inversion
charge Qi With Vs only a few kT/qg above V7. In order to prove this point, Fig.8 shows the extrapolation down
to the horizontal axis of the linear part of the simulated transcharacteristic of the device for Vps=0.1V. Since
the linear part of the curve corresponds to the ohmic/parabolic regimes and Vps is low, the gradual-channel
approximation and the hypothesis that Vps is smaller than 2/ ¢g/ are surely valid. That allows to use the
analytical formula for Ips and say that the intercept of the linear extrapolation with the voltage axis should
correspond to Vr+mVps/2 and from that the V7 value may be extracted. From the simulation results of Fig.8,
Vr20.37V can be obtained, which is about 70mV higher than the analytical value V720.3V. This is in reasonable
agreement with the V7 correction by 80mV adopted in the “Simulation Lab#7 — Long-channel MOS transistor
in the ON-state: impact of Vps” to reproduce with the analytical formula for Ips the simulated /ps-Vps curves of
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the device in the ohmic/parabolic regimes. To better formalize the need for this correction when addressing
the formulas for Ips in the ON-state of an MOS transistor, Vris sometimes called Vou in the formulas.
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Fig.7: Same as in Fig.5, but with a linear scale for /ps.

Fig.8: Extrapolation of the linear part of the Ips-Vss
transcharacteristics for Vps=0.1V (T=300K) to extract device Vr.
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Fig.9: Simulated Ips of the investigated MOS transistor as a
function of Vs, for Vps=0.1V and T=300K, 350K and 400K.

Fig.10: Same as in Fig.9, but with a linear scale for /ps.

To complete the analysis of the transcharacteristics of the investigated MOS transistor, Figs.9-10 show its
dependence on T. The semilogarithmic plot of Fig.9 clearly highlights three major changes induced by the
increase of T: i) the growth of the baseline arising from the carrier generation processes in the substrate,
since these are thermally activated; ii) the degradation of the STS (more mV/dec), due to the kT/q term in its
definition; and iii) the reduction of V7, due to the change of ¢ and of the energy gap Eg of silicon with T (in
that, the change of the effective density of states for the valence band and the conduction band N, and N,,
and of the intrinsic carrier concentration n; are also involved). From the linear plot of Fig.10, on the other
hand, the change of device transconductance clearly appears. That arises from the degradation of electron
mobility. Note that the previous changes with T make /Ips increase in the subthreshold regime and slightly
above V7, while they make Ips decrease deep in the ON-state.
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Experimental labs
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REPORT LAB 1 ELECTRON DEVICES

Andreea Colpos, Sofia Cano Castro, Mattia Marinoni, 30th November 2022

Introduction and aim

For this laboratory three high-voltage transistors (after changing the working table because of
electromagnetic noise) were employed, each one with its own dimensions (see next table); our goal was to
measure every output resistance of every device at different gate voltages. For this experiment, we used
the following values of Vg : [1, 1.25, 1.5, 1.75] [V].

Device name W [um] L [um]
#2 10 10
#3 0.5 0.6
#4 10 0.6

First thing we did was calculating the flat band voltage Vig, knowing that it is equal to —¢p,, and
immediately after the threshold voltage V7, the capacitance of the oxide C,, and the one of the depletion
layer Cgep (tox = 10.5nm, Ny = 2-107cm™3).

if- 2 9%,
[
i E,
- [ee
e b - Ee
AU :
s
Fig.1: Band diagram and Fermi's levels
E N,
(tm +=4£+KTn (n—“) - q¢m)
VFB = - L =-098V
q
\ 2€5;qgN,2
Vo = Vi + 2|¢5] _|_Slq—a|¢3| =096V
COX
€ox uF
Cox =—=0.328—
% tox cm?

o ZESina2|¢B|=0121 uF
dep 4(2|p5))? T em2

After performing a total of 12 measurements (4 for each device), we imported the data on Matlab and
we’ve plotted the I-V curves of the different measurements. Then in a single plot we grouped, for each
device, the curves obtained with the different gate voltages applied, so it would be easier showing how
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they change. Obtained results are supported by the analytical formulas we encountered during theoretical
classes, such as the one for the current in saturation regime

mVjis

w
Ips = UnCoyx <T) [(VGS = Vr)Vps —

Ca
wherem =1+ C—e” = 1.37, a recurrent value.
ox

Knowing that

= (azf;gf )'
0~ 6VD5 sat

VDS>VDS
all left to do was just writing a proper Matlab code to elaborate the experimental data.

Plots and results

We managed to obtain the output resistances for every device at the different Vgs by exploiting
the polyfit and polyval functions in Matlab; here is a table summarizing what we got:

Device number Vgs To

#2 1V 14.8 MQ
#2 1.25V 7.2 MQ
#2 1.5V 4 MQ

#2 1.75V 2.6 MQ
#3 1V 2.7 MQ
#3 1.25V 1 MQ

#3 1.5V 568.5 kQ
#3 1.75V 399.6 kQ
#4 1V 313.7 kQ
#4 1.25V 87.6 kQ
#4 1.5V 42.8 kQ
#4 1.75V 29.2 kQ

As we can see, the resistance decreases by moving through the saturation regime, this is reasonable and
compatible with the plots in fact, what is happening in the device is the following: while Vgs increases, the
slope of the I-V plot increases, so the resistance that is the reverse of the slope, decreases at higher and
higher values of Vgs, so when Vgs will be at the highest value considered (1.75 [V]), 1, will be at the lowest
value. For all 3 devices we can observe this fact and the Vgs in the plots, increase from the bottom to the
top.
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REPORT LAB 2 ELECTRON DEVICES

Andreea Colpos, Sofia Cano Castro, Mattia Marinoni

Introduction and aim

For this laboratory three low-voltage transistors were employed, each one with its own dimensions (next
table); our goal was to measure the STS (SubThreshold Slope) and the DIBL (Drain Induced Barrier
Lowering) of each device. For this experiment we used 4 different voltages for V¢ : [0.25, 0.5, 0.75, 1] [V].

Device number W([um] L[um]
#3 1 0.085
#H4 10 0.085
#5 1 0.095

The devices have all the N,= 1.5 - 108 [cm ™3] and same t,, = 2.2 [nm]. We proceeded to calculate the
threshold voltage, C,x and Cyep-

\/2€5;qN, 2
siqiVa |¢B| =043 [V]

Vr =Vpg + 2|¢pp| + C
ox

Cox = 222 = 0.157 [£L]

tox cm?
265:qNa2lbs] WF
C = |[————— =0.354[—
aep / 121p5])? Lem?]

After performing a total of 12 measurements, we imported the data on Matlab and we’ve plotted the
Ips-Ves curves of the different measurements. Then in a single plot we grouped, for each device, the curves
obtained with the different drain voltages applied, so it would be easier showing how they change.
Obtained results are supported by the analytical formulas we encountered during theoretical classes, such
as the one for the current in the subthreshold regime:

w kT\? q(VGS_VT) —q(¥Rs)
Ips = pnCox (T) (m—1) (?) e’ mkT [1 —e kT ]

Cq . . L
wherem =1+ C—e” = 1.22, a recurrent value. The term in blue could be neglected in our analysis since we
ox

have a Vds large enough in every case. Theoretically, the expected STS can be calculated as

__ (dlogyy Ids -1 _ _ kT _ mv
STS = (—6Vcs ) =[.1= Tin(10)m = 732 5

Plots and results

When we plotted the line in the logarithmic scale, by using the funcion polyfit, Matlab gave as a result the
slope of the line ( that is the STS). These are the diagrams for device #5; in the graphs, from the bottom to
the top, Vpg increases.
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Considering values only in the subthreshold regime we see the obtained fitted line (dotted) which showed a

value STS = 85.4 ;n—;, comparable to the theoretical one.
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The following table shows the intersections between a constant current, arbitrarily chosen as Ips = 25 n4,
and the plots presented before.

Vps [V] Vis [V]
1 0.216
0.75 0.227
0.50 0.24
0.25 0.251
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Here we can observe how the curves (and consequentially the threshold voltage) shift from right to left, by
changing Vps. That is due to the fact that, when the channel is too short like in this case (L = 95 nm),
electrostatics in the horizontal direction becomes relevant (if not overwhelming over the vertical one), thus
the gradual channel approximation is no longer valid. If V¢ keeps growing, then, the gate-drain band
transition becomes so tight that we start to see a peak moving closer to the source and getting
progressively lower, incrementing the electrons in the channel; at a certain point, electron concentration
becomes so high that the nMOS device is turned on even in subthreshold regime (subthreshold leakage
current). Finally, in order to find the shift for the threshold voltage, we have to calculate the difference
between the V¢ values listed previously; results are reported in the following table.

AVps [V] |AVZ|[V]
0.5-0.25 0.011
0.75—-0.5 0.013

1-0.75 0.011

In this report, we considered only one device (#5) because for the other devices, unfortunately the data
from the experiments result to be seriously distorted (the difference between the maximum and the
minimum current values was of very few nA) so also the data imported for the elaboration in Matlab were
wrong. We elaborated the graphs equally, in the following we present a graph showing the described
situation for device #4.
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