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Chapter 1

Semiconductor generalities

1.1 Energy GAP
For this course we are considering just semiconductors made of Si, an element located in the IV group of the periodic table and thus
presenting the configuration 3s2 3p2 on its most external orbital. We already know that electrons in periodic potentials present
quantified levels of energy, so their conduction properties can be easily represented through the band diagrams. In particular,
we want to focus our study in particular on the Energy GAP, which is the most important energy level in semiconductors as
electrical and optical properties depend on that. The energy GAP can be described as the distance between the conductive band
Ec, a band completely devoid of electrons, and the valence band Ev , a band filled entirely with electrons (both considerations are
taken at T = 300K). To sum it up

Ec − Ev = EG

For semiconductors in general EG ≈ 1 eV , while in other materials, like insulators or metals, it is either higher or lower,
determining the conductability of said material (close to none for insulators, very high for metals).

Semiconductors on the other hand have a particular behavior referring to conductability, because their energy GAP depends
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on the temperature according to this relation
EG(T ) = EG(0)−

αT 2

β + T

∂EG

∂T

∣∣∣∣∣
T=300K

=
−2αT (β + T ) + αT 2

(β + T 2)

∣∣∣∣∣
T=300K

= −2, 6 · 10−4 eV/K

(1.1)

As we can see, the GAP decreases when temperature rises, improving electronic jumps as they now require less energy to be
performed. For Si in particular we have these values:

EG(0) = 1, 169 eV

α = 4, 9 · 10−4 eV

K
=⇒ EG(300K) = 1, 12 eV

β = 655 K

(1.2)

It is also important to remember that missing electrons can be considered as positive-charged carriers: the holes.

1.2 Density of states
We want to obtain a description of the energy dispersion relation approximated to the edges; first we are going to consider the
conduction band, therefore

E − Ec =
ℏ2k2x
2mx

+
ℏ2k2y
2my

+
ℏ2k2z
2mz

(1.3)

where E is a generic energy state.

As we can see, this is the equation of an ellissoid; if we were to find the axis intersections then we would simply reverse the
ellissoid equation and get

k̄x = ±
√

2mx(E − Ec)

ℏ2
; k̄y = ±

√
2my(E − Ec)

ℏ2
; k̄z = ±

√
2mz(E − Ec)

ℏ2
(1.4)

5



Effective mass for Si As we have already noticed, we can define different values for the mass according to the direction we are
currently heading to.1For Si, looking at the ellissoid function, we can distinguish a transvert mass from a longitudinal mass:

mx = mz = 0, 19m0 = mt

my = 0, 98m0 = ml

(1.5)

Now let’s consider the discretization of the k-space.

We can define a volume
4

3
πk̄xk̄yk̄z =

4

3
π

√
8mxmymz

ℏ3
(E − Ec)

3/2

and a number of points

N =
V(
2π
L

)3 1

L3
=

4

3
π

√
8mxmymz

h3

We then want to see how everything changes according to a small energy variation

dN

dE
= 2π

√
8mxmymz

h3

√
E − Ec

Eventually we obtain the density of states for the conductive band as

gc(E) =
dN

dE
2gDEG

Si
=⇒ gc(E) =

48π

h3

√
2mtml

√
E − Ec

Same procedure can be easily repeated for the desnity of states in the valence band, thus

gv(E) =
8π

ℏ3

(√
2m3

hh +
√

2m3
lh

)√
Ev − E

where mhh and mlh are heavy hole and light hole masses.

1.3 Fermi-Dirac statistics
Under thermodynamic equilibrium it is easy to compute band occupation as we are in a perfectly balanced situation (no net
processes are involved). Statistically, that is described through the Fermi-Dirac distribution

f(E) =
1

1 + exp

(
E − EF

KT

) (1.6)

defined as the probability that the generic state E is occupied by electrons; EF is the Fermi level, which represents the last filled
level.

As we can see, KT determines the transition smoothness, in particular ifE−EF >> KT we can use the Maxwell-Boltzmann
approximation

f(E) ≈ exp

(
−E − EF

KT

)
(1.7)

1Remember that the effective mass in Quantum Physics is related to the energy levels like m∗ =
ℏ2

∂2E

∂k2
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Same reasoning can be repeated for the holes, this time considering the non-occupations of the energy levels though, so

1− f(E) =
1

1 + exp

(
−E − EF

KT

) (1.8)

Now we have all the ingredients to find the carriers concentrations, and we do it like that

n =

∫ +∞

Ec

gc(E)f(E)dE (1.9)

Electron concentration for Si Substituting the values we found before for the density of states we get

n =

∫ +∞

Ec

48π

h3

√
2m2

tml

√
E − Ec

1

1 + exp

(
E − EF

KT

)dE (1.10)

with some semplifications, such as
E − Ec

KT
= x and

EF − Ec

KT
= η resulting in dE = KTdx and x− η =

E − EF

KT
, we get

n =
48π

h3

√
2m2

tml

∫ +∞

0

√
x
√
KT

1 + ex−ηKTdx
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and rearranging further the equation

n =
48π

h3

√
2m2

tml(KT )
3/2

√
π

2

2√
π

∫ +∞

0

√
x

1 + ex−η
= NcF1/2(η) (1.11)

where Nc is the effective density of states and F1/2(η) is the Fermi-Dirac integral, which summarizes the information about EF

position with respect to the conduction band. If x− η >> 1, then

F1/2(η) ≈ exp

(
−Ec − EF

KT

)
(1.12)

for Maxwell-Boltzmann2. Therefore

n = Nce
−
Ec − EF

KT (1.13)

For the valence band, same procedure is repeated

p =

∫ Ev

−∞
gv(E)(1− f(E))dE = NvF1/2(η) (1.14)

so

p = Nve

Ev − EF

KT (1.15)

Now we are left to see what is the position of EF in the band diagram.

1.4 Intrinsic Si
Let’s see what happens when Ec − EF << KT or EF is even higher than Ec:

We would get that, using Maxwell-Boltzmann approximation, the occupation probability is well over 1, which doesn’t make
any sense. That’s because, in a logarithmic scale, Maxwell-Boltzmann statistics is a straight line, while the Fermi-Dirac one has
a more like parabolic behavior

2Only valid if Ec − EF >> 3KT
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Now we want to find exactly where EF is on the band diagram. First we have to make a very important assumption: the
semiconductor is intrinsic, meaning that every Si atom occupies the position it is expected to have in the lattice, so

p = n (1.16)

Everything is perfectly balanced; we can develop 1.16 even further:

Nce
−
Ec − EF

KT = Nve

Ev − EF

KT

Nc

Nv
= e

Ec − EF

KT e

Ev − EF

KT = e

Ec + Ev − 2EF

KT

thus obtaining

EF =
Ec + Ev

2
−KT log

(
Nc

Nv

)
= Ei (1.17)

where Ei is known as the intrinsic Fermi level; doing the calculations would result more or less in EF ≈ EG

2
. We can also mix

1.16 with 1.17:

n = Nce
−
Ec − Ei

KT = Nce
−
Ec − Ec/2 − Ev/2 + KT/2 log

(
Nc/Nv

)
KT = Nce

−
Ec − Ev

2KT e
−
1

2
log

Nc

Nv


=

= Nce
−

EG

2KT e
log

Nc

Nv

1/2

=
√
NcNve

−
EG

2KT = p = ni

(1.18)

where ni is called intrinsic concentration3 (highlighted terms are strongly dependent on temperature). We can rearrange 1.18 to
get

n = Nce
−
Ec − EF − Ei + Ei

KT = Nce
−
Ec − Ei

KT e

EF − Ei

KT

which is resulting in

n = nie

EF − Ei

KT (1.19)

p = nie

Ei − EF

KT (1.20)

That confirms what we have been doing since in intrinsic semiconductors Ei = EF so n = p = ni. We can extend this concept
by introducing the law of mass action

n2
i = pn (1.21)

which is going to come in handy in the next sections.

1.5 Extrinsic Si
Intrinsic Si is a perfect crystal, but it can be doped with either donors (V group) or acceptors (III group) in order to increase
respectively n and p concentrations.

3For Si, ni(300K) = 1, 45 · 10−10 cm−3
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The question we are asked is always the same: where is EF ? Beginning from a n-doped semicondutor, it is reasonable to
assume that n ̸= p no more, but it would have been increased by n = p+N+

D due to the introduced donor level.

As usual, Fermi-Dirac statistics can be exploited

NcF1/2(η) = Nve

Ev − EF

KT +ND
1

1 + 2 exp

(
−ED − EF

KT

) (1.22)

where the term highlighted in red is the probability 1− f(E) that ED is not occupied by electrons and the factor 2 is introduce to
take into account spin degeneracy. If we assume that ED −EF >> KT , then 1.22 can be greatly simplified as EF would be so
below ED that this would be completely devoid of carriers (complete ionization), thus 1 − f(E) ≈ 1 and Maxwell-Boltzmann
would be appliable. On the overall, we obtain

Nce
−
Ec − EF

KT = Ap+ND =⇒ Ec − EF = KT log

(
Nc

ND

)
(1.23)

Note that p at T = 300K is negligible as p << ni. Eventually we can write

n ≈ ND (1.24)

p ≈ n2
i

ND
(1.25)

EF goes upwards when ND increases; if ND is very high, a degeneracy occurs as EF ≈ ED and Maxwell-Boltzmann is no
longer valid. In this case, we have a n+-doped semiconductor.

Temperature dependence Empirically, it is observable that whenever T rises, Ec − EF actually increases; that’s beacause it
is true that the occupation probability is getting higher, but n is forced to be constant, therefore EF must recede unitl it comes
very close to Ei. Hole concentration must be revisited as well. In fact p is no longer neglibile, but becomes even dominant

over ND: we enter intrinsic regime4.
n = p+��ND ≈ p = ni (1.26)

On the contrary, whenever T falls, Ec − EF keeps shrinking. At a certain point, EF becomes so close to ED that we are not in
complete ionization anymore, meaning that not every donor is ionized

n = Ap+N+
D ≈ N+

D < ND (1.27)

4Generally, intrinsic regime begins around T = 600K
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We enter freeze-out regime5.

All those informations are summarized in the Arrhenius plot

Note that for a p-doped semiconductor it is the same
p ≈ NA

n ≈ n2
i

NA

EF − Ev = KT log

(
Nv

NA

) (1.28)

1.6 Current transport
It is important to point out that there is not a single transport mechanism, but many different ones; in this case, we are interested
just in drift and diffusion. We begin from the first. If we apply an electric field F⃗ to our semiconductor, we will notice that the
carriers are going to be surely affected: in particular, holes will move in the same verse as F⃗ , electrons in the opposite.

5Generally, freeze-out regime begins at around T = 150K
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Velocity and electric field are linked together through the mobility µ

v⃗dn = −µnF⃗ (1.29)

v⃗dp
= +µpF⃗ (1.30)

If carriers were free, acceleration would be constant, but since it is not the case they have to face scattering, intended as the
collision among carriers and impurities; we can observe that mobility drops when the doping concentration increases, while
saturates due to phononic scattering when it decreases.

When temperature rises, phononic scattering gets stronger while impurity scattering is slightly less effective. Mobility is also
dependent on dimensionality; for example, in a 2D semiconductor there are more scattering centers because its surfaces are closer
to one another.

After mobility, we can introduce current density, defined as

J⃗n = −qnv⃗dn
= +qnµnF⃗ (1.31)

J⃗p = +qpv⃗dp
= +qnµpF⃗ (1.32)

As we can see, both vectors are equiverse to F⃗ , so the total current density would be

J⃗ = J⃗n + J⃗p = (qnµn + qpµp)F⃗ = σF⃗ (1.33)

where σ is the conductivity and is related to the resistivity through

ρ =
1

σ
(1.34)

For design reasons, sheet resistance is also important, described as the ratio between resistivity and semiconductor thickness

R = ρ
L

HW
= ρSH

L

W
(1.35)
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Finally, if F gets stronger, velocity saturates due to the scattering with optical phonons, which are highly energetic.

Now let’s talk about the diffusion process; there aren’t external forces moving carriers in this case, thus they simply adjust
their position in the semiconductor according to their concentrations, going from high to low.

Current density is then

Jn = +qDn
dn

dx
(1.36)

Jp = −qDp
dp

dx
(1.37)

where Dn and Dp are the diffusion coefficients, defined through Einstein’s relations
Dn = µn

KT

q

Dp = µp
KT

q

(1.38)

1.7 Electrostatic potential and band bending
Until now we have been considering semiconductors under thermodynamic equilibrium, but what if an external electrostatic
potential was applied?
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The semiconductor periodic potential is shifted, and so are its energy bands.

Bands bend downwards in the direction where ϕext rises; electrons follow the same direction. It is useful to underline this
relation

ϕext(x) = −Ei

q
(1.39)

Fext(x) = −dϕext

dx
(1.40)

For Quantum Physics laws we can say that

−qFext =
d(ℏk)
dt

(1.41)

Overall analysis can be further optimized by introducing the effective mass approximation, so that we can actually remove the ext
pedices from the equations, leaving just

ℏk = mxvx =⇒ −qF = mx
dvx
dt

(1.42)

Now if we were to combine 1.40 with Gauss law
dF

dx
=

ρ̃

ϵSi

(1.43)

we would obtain
d2ϕ

dx2
= − ρ̃

ϵSi

(1.44)

which is commonly known as the Poisson equation. For a semiconductor, 1.44 can be generalized into

d2ϕ

dx2
= − q

ϵSi

(p− n+N+
D −N−

A ) (1.45)
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To have a better idea about carriers concentrations dependence on ϕ, we can rewrite 1.19 and 1.20 as

n = nie

q(ϕ− ϕF )

KT (1.46)

p = nie

q(ϕF − ϕ)

KT (1.47)

where ϕF = −EF

q
is the Fermi potential. We have just found out that n and p are strongly dependent on ϕ.

1.8 Spatially variable doping concentration
In the last section we found out what’s the effect of an external voltage applied to the semiconductor, but how can we achieve such
a result?

Answer is very simple: we dope the semiconductor, but only in a certain region so that

n(x) ≈ ND(x) (1.48)

We can, for example, have a doping concentration looking like a Heaviside function (step)

ND(x) = N̄D +∆NDH(x) (1.49)

If 1.48 is true, even the band bending should look like a step, but it actually doesn’t since at x = 0, F → +∞ while F = 0
everywhere else. We must rely on the Poisson equation (in a condition where p is negligible and there are no acceptors and
∆ND << N̄D): 

d2ϕ(x)

dx2
= − q

ϵSi

(ND − n)

ϕ(x) = ϕ̄+∆ϕ(x)

(1.50)
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Adjusting 1.50 with 1.46 we have
n = nie

q(ϕ̄− ϕF )

KT = N̄D

n = nie

q(ϕ̄+∆ϕ− ϕF )

KT = nie

q(ϕ̄− ϕF )

KT e

q∆ϕ

KT = N̄De

q∆ϕ

KT ≈ N̄D

(
1 +

q∆ϕ

KT

) (1.51)

thus
d2∆ϕ

dx2
= − q

ϵSi

(
−�

�̄ND − qN̄D

KT
∆ϕ+�

�̄ND +∆NDH(x)

)
=

q2N̄D∆ϕ

ϵSiKT
− q∆ND

ϵSi

H(x)

At this point, solution is trivial:

∆ϕ(x) ∝ e
±

x

LD

where LD =

√
ϵSiKT

q2N̄D
is the Debye length6. Band profile changes exponentially.

1.9 Non-equilibrium conditions
Let’s rewrite the total current density, including both drift and diffusion contributions, for each carrier in a more compact way,
beginning from Jn:

Jn = qnµnF + qDn
dn

dx
= −qnµn

dϕ

dx
+ qµn

KT

q

d

dx

nie

q(ϕ− ϕF )

KT

 =

= −qnµn
dϕ

dx
+ qµn

KT

q
nie

q(ϕ− ϕF )

KT
q

KT

(
dϕ

dx
− dϕF

dx

)
= −qnµn

dϕ

dx
+ qnµn

(
dϕ

dx
− dϕF

dx

)
=

= −qnµn
dϕF

dx

(1.52)

and thus
Jp = −qpµp

dϕF

dx
(1.53)

Remember that under thermodynamic equilibrium EF is constant, so
dϕF

dx
= 0 ⇒ Jn = Jp = 0; net flowing carriers are null

as drift and diffusion contributions perfectly balance each other. In order to achieve some net processes we have to perturb the
equilibrium state by applying a voltage difference between the contacts7.

6Usually LD ∼ 10−9 m
7We are considering ideal contacts for this analysis
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If the perturbation is weak, carriers distribution follows the equilibrium statistics, meaning that electrons are close to the
bottom of Ec and holes are close to the top of Ev; quasi-Fermi levels EFn

and EFp
are also introduced, so 1.19 and 1.20 have to

be rewritten as

n = nie

EFn − Ei

KT (1.54)

p = nie

Ei − EFp

KT (1.55)

PAY ATTENTION TO THE PRODUCT

pn = n2
i e

EFn − EFp

KT (1.56)
Law of mass action is no longer valid! Also 1.52 and 1.53 present a big change as the gradient is not null

Jn = −qnµn
dϕFn

dx
= nµn

dEFn

dx
(1.57)

Jp = −qpµp

dϕFp

dx
= pµp

dEFp

dx
(1.58)

Contacts force the quasi-Fermi levels to merge into the original Fermi level, while in the system they can change. A new problem
appears, as Poisson equation is no longer sufficient to study our system.

1.10 Continuity equation
When the system is perturbed, Poisson equation is not enough: we have to add equations for the quasi-Fermi levels

ϕ = ϕ(x)

EFn = EFn(x)

EFp = EFp(x)

(1.59)

We introduce the continuity equations
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∂n

∂t
dx = −Jn(x, t)

q
+

Jn(x+ dx, t)

t
+ (G−R)dx (1.60)

We can simplify even further exploiting Taylor expansion J(x+ dx, t) ≈ Jn(x, t) +
∂Jn
∂x

dx so

∂n

∂t
=

1

q

∂Jn
∂x

+ (G−R)e

∂p

∂t
= −1

q

∂Jp
∂x

+ (G−R)h

d2ϕ

dx2
= − q

ϵSi

(p− n+N+
D −N−

A )

(1.61)

We got everything we need to have. Now let’s assume we are in stationary conditions (nothing changes over time), the result is
interesting:

∂n

∂t
= 0 =⇒ 1

q

∂Jn
∂x

+ (G−R) = 0 (1.62)

∂p

∂t
= 0 =⇒ 1

q

∂Jp
∂x

+ (G−R) = 0 (1.63)

therefore we can say that
1

q

∂(Jn + Jp)

∂x
= 0 =⇒ Jn + Jpis constant (1.64)

What if we were to increase the doping concentration of the majority carriers?

We now have some charge exposed, so an electric field is generated

d2ϕ

dx2
= − q

ϵSi

(
�p− n+N�+

D −�
�N−
A

)
= − q

ϵSi

(���−ND −∆n+��ND ) =
q

ϵSi

∆n = −dF

dx
(1.65)
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Electrons move away from the material due to the involved electric field: the system is trying to reach thermodynamic
equilibrium (without diffusion)

∂n

∂t
=

1

q

dJn
dx

+����(G−R) =
1

q
(qnµn)

∂F

∂x
(1.66)

then

∂∆n

∂t
= −1

�q
σ �
q∆n

ϵSi

= −∆n

ρϵSi

=⇒ ∆n(t) = ∆n(0)e
−

t

ρϵSi (1.67)

We can define τR = ρϵSi as the dielectric relaxation time8. Equilibrium is restored very quickly. But what if we perturb the
minority carriers now?

As before, we have an electric field pushing away holes, but since they are a minority, resistivity is higher and electrons
are attracted into the matierial because they are a majority. Now two steps are taken into account:

1. Process end when ∆p ≈ ∆n; a quasi-neutral region is formed.

2. Excessive electrons and holes recombine.

Since process 2 is way faster than 1, we can skip directly to this in our analysis.

1.11 Shockley-Read-Hall theory
We can describe generation and ricombination processes through Shockey-Read-Hall theory for defect assisted processes

8Usually τR ≈ 10−12 s
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If the defect is empty, it can either capture an electron 1 or release a hole 4 , while if it is filled, it can either release an
electron 2 or capture a hole 3 .

R : 1 + 3 (1.68)

G : 2 + 4 (1.69)

Remember that direct jump through the band gap is very unlikely. Now it is time to find G-R rates:

1.
r1 = NT (1− f)nvTHσn [cm−3s−1] (1.70)

where these are the empty defects in Si and this is the probability that an electron is captured cn.

2.
r2 = NT fen (1.71)

where en is the emission rate; unfortunately, we cannot say anything because free states are way more than electrons, but
if we assume thermodynamic equilibrium f is 1.6 and r1 = r2 as there cannot be net processes, so

en =
1− f

f
nvTHσn = e

ET − EF

KT nie

EF − Ei

KT vTHσn = nivTHσne

ET − Ei

KT (1.72)

Emission depends exponentially on ET − Ei and so is energy gain, while energy loss does not.

3.
r3 = NT fpvTHσp (1.73)

4.

r4 = NT (1− f)ep =⇒ ep = nivTHσpe

Ei − ET

KT (1.74)

In the end R = r1 − r2 = r3 − r4 −→ F where F is the Fermi-Dirac statistics only when R = 0. Doing some calculations, we
eventually get

R =
pn− n2

i

τ0

[
p+ n+ 2ni cosh

(
ET − Ei

KT

)] (1.75)

where τ0 =
1

NT vTHσ
assuming σn = σp = σ.

1.12 Main dependences of R
First of all it is important to assess the sign of R: since the denumerator is always positive, we have to look at the numerator:

• pn = n2
i and EFn = EFp : R = 0, no G/R;

• pn > n2
i and EFn

> EFp
: R > 0, net R;

• pn < n2
i and EFn

< EFp
: R < 0, net G.
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since cosh is an even function, ET can be either above or below Ei without any difference. Now we consider the situation
where we have just 1 and 3

In this case R = r1 = r3, therefore f =
n

p+ n
and then R =

NT pnvTHσ

p+ n
=

pn

τ0(p+ n)
as expected from before (net

ricombination does not depend on ET − Ei). The drop after ±1, 5 in the general formula is determined by the fact that ET is
very getting very close to Ec where 2 happens.

What if we have just 2 and 4 ?

As we can imagine R ≈ − ni

τ02 cosh

(
ET − Ei

KT

)
Quasi-neutral region with low level of injection is a common case:{

n = n0 +∆n

p = p0 +∆p
(1.76)
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where ∆n = ∆p << n0 + p0; we can now simplify 1.75:

R =
(p0 +∆n)(n0 +∆n)− n2

i

τ0

[
p0 +∆n+ n0 +∆n+ 2ni cosh

(
ET − Ei

KT

)] =
���p0n0 +∆nn0 +∆np0 +∆n2 −��n

2
i

τ0

[
p0 + n0 + 2∆n+ 2ni cosh

(
ET − Ei

KT

)] =

=
∆n(p0 + n0 +��∆n)

τ0

[
p0 + n0 +���2∆n + 2ni cosh

(
ET − Ei

KT

)] =
∆n

τn

(1.77)

where τn = τ0

p0 + n0 + 2ni cosh

(
ET − Ei

KT

)
p0 + n0

; if ET = Ei and low injection is confirmed, τn ≈ τ09, otherwise it is not a

constant. Finally we get

∂n

∂t
=

�
�
�1

q

∂Jn
∂x

− ∆n

τn
=⇒ ∆n(t) = ∆n(0)e

−
t

τn (1.78)

9High quality materials have a very long τn
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Chapter 2

Diode (p-n junction)

2.1 Basics of the p-n junction
We enter into the topic of the p-n junction, one of the most important electronic components. Basically it is nothing more than
two semiconductor layers, respectively n-doped and p-doped, joined together. For this analysis, we will always assume complete
ionization, so ρ̃ = q(p− n+ND −NA).

It is vital to underline that mobility is affected by the total doping level. First we are considering the two layers separatedly

then we put them in contact, keeping in mind that EF must be unique; we expect a band bending1.

1It is reasonable to assume charge neutrality at the extremes
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ϕBI is the built-in tension, a inner characteristic of the component2 and it is found as

ϕBI =
E

(p)
i − E

(n)
i

q

∣∣∣∣∣
TE

=
E

(n)
F − E

(p)
F

q

∣∣∣∣∣
TE

=
KT

q
log

(
NAND

n2
i

)
(2.1)

We must exploit Poisson equation once again to seek for more informations about the bending; reasonably, carriers concentrations
in the middle region are close to none compared to the doping concentrations

therefore 1.44 is simplified as
d2ϕ

dx2
≈ − q

ϵSi

(ND −NA) (2.2)

even though it is not valid in general.

2That would be the total voltage drop across the transition region
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2.2 Solution of the Poisson equation
Starting from 2.2 we can focus our analysis just on the depletion layer; considering charge density

we can write for the n-region interval 0 ≤ x ≤ xn:

d2ϕ

dx2
= − q

ϵSi

ND

d

dx

(
dϕ

dx

)
= − q

ϵSi

ND

d

(
dϕ

dx

)
= − q

ϵSi

NDdx∫ dϕ
dx (xn)

dϕ
dx (x)

d

(
dϕ

dx

)
=

∫
xn

x

− q

ϵSi

NDdx

�
�
�
�7
0

dϕ

dx

∣∣∣∣∣
xn

− dϕ

dx

∣∣∣∣∣
x

= − q

ϵSi

ND(xn − x)

and thus
dϕ

dx

∣∣∣∣∣
x

=
qND

ϵSi

(xn − x) = −F (2.3)

For the other side −xp ≤ x ≤ 0:
dϕ

dx

∣∣∣∣∣
x

=
qNA

ϵSi

(x+ xp) = −F (2.4)

Not very surprisingly we have just discovered that F = F (x): now its behavior can be represented (keep in mind that for Gauss

law
dF

dx
=

ρ̃

ϵSi

we already know the slopes)
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Still not very surprisingly we acknowledge that no discontinuity is possibile as ϵSi does not change, so when F = FMAX

�qND

��ϵSi

xn = �qNA

��ϵSi

xp =⇒ NDxn = NAxp (2.5)

Total charge on the two sides must be null still due to Gauss law. It is time to find the potential, simply by integrating 2.3 between
ϕ(x) and ϕ(xn)

ϕ(x) = ϕ(xn)−
qND

2ϵSi

(xn − x)2 (2.6)

and for the other side
ϕ(x) = ϕ(−xp) +

qNA

2ϵSi

(x+ xp)
2 (2.7)

Total electrostatic potential is nothing else but the union between two parabulas: band bending is then parabolic.
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Depletion layer extension We are ready to compute the actual extension of the depletion layer; first we must assure that ϕ and
F are continous in x = 0 ϕ(xn)− ϕ(xp) =

qND

2ϵSi

x2
n +

qNA

2ϵSi

x2
p = ϕBI

NDxn = NAxp

(2.8)

then we explicit xn and xp 
xn =

√
2ϵSi

q

(
1

NA
+

1

ND

)
ϕBI

NA

NA +ND

xp =

√
2ϵSi

q

(
1

NA
+

1

ND

)
ϕBI

ND

NA +ND

(2.9)

and eventually we sum the two terms

WD = xn + xp =

√
2ϵSi

q

(
1

NA
+

1

ND

)
ϕBI (2.10)

2.3 Forward and reverse bias
We start this section with an interesting consideration: WD is determined by the less doped region, in fact

WD ≈
√

2ϵSi

qNLOW

ϕBI (2.11)

also it is true that 
xn = WD

NA

NA +ND

xp = WD
ND

NA +ND

(2.12)

Some values of WD are reported in a table for the sake of better understanding the order of magnitude according to the doping
concentration

NLOW [cm−3] WD [nm]
1016 300
1017 100
1018 30
1019 10
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When NHIGH >> NLOW it is clear that the depletion layer is almost equal to the extension of the less doped region

ϕBI is the area of the triangle: 
ϕp =

qNA

2ϵSi

x2
p

ϕn =
qND

2ϵSi

x2
n

(2.13)

and of course
ϕBI = ϕp + ϕn =

q

2ϵSi

(NAx
2
p +NDx2

n) (2.14)

When we have a n+ region, Fermi level is degenerate

Maxwell-Boltzmann cannot be used, so

ϕBI =
EG

2q
+

KT

q
log

(
NA

ni

)
(2.15)

this is called unilateral p-n junction.
Considering the contacts ideal, how does this all change if we apply a bias?
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First the case where V > 0: bands flatten, bringing more carriers in the depletion layer. Carriers flow then becomes stronger
and current density increases.

Instead, if V < 0, minority carriers flow to the region where they are majority, reducing the current density. In the overall,
we can say that the diode is a rectifying device.

2.4 Qualitative behavior of EFn
and EFp

Thermodynamic equilibrium is no more, so Fermi level is splitted as we have seen previously.
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Our goal once again is to simplify 1.59, always considering quasi-neutral regions outside the depletion layer with low injection

(∆p = ∆n << pn0
+ nn0

). Assuming stationary conditions (G/R absent), we know that Jn = nµn
dEFn

dx
must be constant.

Bands are still behaving parabollica as if they were in thermodynamic equilibrium, but the depletion layer shrinks

WD =

√
2ϵSi

q

(
1

NA
+

1

ND

)
(ϕBI − V ) (2.16)

Quasi-Fermi levels drops are necessary to have a unique EF at the contacts.

Symmetrically we can consider the reverse bias situation:
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2.5 Minority carriers diffusion in quasi-neutral regions
Let’s start this section commenting the forward biased band diagram.

If the gradient was clearly visible, electrons flow would be too high, but for now we assume EFn perfectly flat so that we
know its relative position. Now we have to consider both depletion layer edges.

• x = −xp: 
p ≈ NA

pn = n2
i e

EFn
− EFp

KT = n2
i e

qV

KT =⇒ n =
n2
i

NA
e

qV

KT = np0
e

qV

KT

(2.17)

• x = xn: 
n ≈ ND

p = pn0e

qV

KT
(2.18)

Current increases exponentially; since quasi-neutral regions are constraining minority carriers current density, they have to be
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studied carefully with the continuity equations. 

∂n

∂t
=

1

q

∂Jn
∂x

+ (G−R)

Jn ≈ qDn
dn

dx

(G−R) = −∆n

τn

We substitute each member and get
∂∆n

∂t
= Dn

∂2∆n

∂x2
− ∆n

τn
(2.19)

also known as the time-dependent diffusion equation. In stationary conditions that becomes

d2∆n

dx2
− ∆n

Dnτn
=

d2∆n

dx2
− ∆n

L2
n

= 0 (2.20)

where Ln =
√
Dnτn is the diffusion length. Solution is straightforward

∆n(x) = Ae
x

Ln +Be−
x

Ln

and considering the proper initial conditions

∆n(0) = np0

(
e

qV
KT − 1

)
= A+B

∆n(Wp) = Ae
Wp
Ln +Be−

Wp
Ln = 0

that results in

∆n(x) = ∆n(0)
−e−

Wp−x

Ln + e
Wp−x

Ln

e
Wp
Ln − e−

Wp
Ln

= ∆n(0)
sinh

(
Wp−x
Ln

)
sinh

(
Wp

Ln

) (2.21)

and thus in

Jn(0) = qDn
d∆n

dx
= −qDn

∆n(0) cosh
(

Wp−x
Ln

) ∣∣∣
x=0

Ln sinh
(

Wp

Ln

) =
qDnnp0

(
e

qV
KT − 1

)
Ln tanh

(
Wn

Lp

) (2.22)

also for the p-region

Jp(0) =
qDppn0

(
e

qV
KT − 1

)
Lp tanh

(
Wp

Ln

) (2.23)

We conclude by saying that the total current density is obviously the sum of the two contributions

JTOT = Jn(0) + Jp(0) =

 qDnnp0

Ln tanh
(

Wn

Lp

) +
qDppn0

Lp tanh
(

Wp

Ln

)
(e qV

KT − 1
)
= J0

(
e

qV
KT − 1

)
(2.24)

2.24 is known as the Shockley’s ideal diode equation.
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2.6 Wide-base and narrow-base diodes
From 2.24, the rectifying behavior of the diode appears very clearly: let’s confront the J − V curves in both logarithmic and
linear scales

Total current density depends on both doping concentrations: if they are very different, one term is dominant over the other
(in particular, less doped region is prevalent). Now here is a confront between two approximations for the diode according to the
depleted layer depth.
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2.7 Spatial profiles for n, p, Jn, Jp

We studied the electrostatics, now we move onwards to the spatial profiles of carriers and current densities.

This happens for forward bias; in reverse bias on the other hand
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If we consider a narrow-base diode, finally

2.8 Temperature dependence of the J − V curve
Our starting point is still 2.24; first we would like to make some considerations about some orders of magnitude

NA = 1016 cm−3 −→ µn = 1250 cm
2/V s −→ τn = 30 µs −→ Dn = 32, 5 cm

2/s −→ Ln = 311 µm

ND = 1017 cm−3 −→ µp = 470 cm
2/V s −→ τp = 10 µs −→ Dp = 12, 2 cm

2/s −→ Lp = 110 µm

As we can see, those two lengths are very long; diodes are more likely to be narrow-base, thus G/R processes are weak in modern
technologies.

Wide-base: J0 =
qDnnp0

Ln
+

qDppn0

Lp
= 3, 87 · 10−12 A/cm2

Narrow-base: J0 =
qDnnp0

Wp
+

qDppn0

Wn
= 10−9 A/cm2

Now it is time to investigate J0 dependence on T : we can surely say that

J0 ∝ qDnn
2
i

NALn tanh
(

Wp

Ln

) = aT γe−
EG
KT (2.25)
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Therefore, always considering 2.24, we can safely say

V =
KT

q
log

(
J̄TOT

J0

)

dV

dT
=

K

q
log

(
J̄TOT

J0

)
T

T
+

KT

q
��J0

�
�J̄TOT

−�
�J̄TOT

dJ0
dT

J �20

=
V

T
− KT

q

1

J0

dJ0
dT

dJ0
dT

= aγT γ−1e
−
EG

KT
T

T
+ aT γe

−
EG

KT
−EG

dT
KT + EGK

(KT )2
=

γJ0
T

+ J0

[
−dEG

dT

1

KT
+

EG

KT 2

]
By inserting the third into the second we obtain

dV

dT
=

V

T
− KT

q

1

��J0

[
γ��J0
T

− ��J0
KT

dEG

dT
+ ��J0EG

KT 2

]
=

V − EG

q

T
− Kγ

q
+

1

q

dEG

dT
(2.26)

where the highlighted terms are smaller than 0.

If we consider that γ = 3 and V = 0, 7 V we have that
dV

dT
= −1, 9 mV/K

2.9 High/low-current regimes
It is time we reconsider our ideal diode analysis by removing some of the approximations we have assumed; from now on we are
going to assert G/R processes inside the depletion layer, which are present for sure since EFn

> EFp
.
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In the ideal diode we would have the following scheme

while in a real one we are in front of two possibilities, which would be
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1. Exiting carriers are constant

2. Entering carriers are constant

Just one is correct though.

Low-current regime To determine which is the one, we have to recall a consideration already computed previously: the
interface between the depletion layer and the quasi neutral region is a bottleneck for minority carriers, as they must obey
continuity equations. Consequentially, exiting flow has to remain constant as more carriers are requested from the region they
are a majority; therefore, 1 is the correct choice and the recombination rate inside the depletion layer, where ET = Ei, looks
like

R =
n2
i

(
e

qV
KT − 1

)
τ0(p+ n+ 2ni)

(2.27)

where p = p(x) and n = n(x). In order to have a net recombination, V > 0: we are searching for Rmax, so we need to find
min{p, n}:

min{p, n} = min

{
p+

n2
i e

qV
KT

p

}
=⇒ p = nie

qV

2KT = n (2.28)

Thus

Rmax =
n2
i e

qV
KT

τ0

[
2nie

qV
KT +��2ni

] =
ni

2τ0
e

qV
2KT (2.29)

and assuming that is constant inside the depletion layer we get some additional current density

JDL = qRmaxWD =
qniWD

2τ0
e

qV

2KT (2.30)

If V < 0, R ≈ ni

2τ0
, so JDL =

qniWD

2τ0
; we can safely conclude that

J TOT
DL =

qniWD

2τ0

(
e

qV
2KT − 1

)
(2.31)

Dependence on V seems to be weaker.
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When T reaches higher values, JID wins over the depletion layer contribution due to its dependence on n2
i : this is known as

the low-current regime.

High-current regime If V is very high, we must consider a high injection condition in the quasi neutral regions, so

n = n0 +∆n ≈ ∆n

p = p0 +∆p ≈ ∆p

1.21 then becomes

pn = ∆n2
i = n2

i e

qV

KT

and so
∆n = nie

qV
2KT =⇒ J ∝ e

qV
2KT

Current density behavior resembles the one seen for low voltage; also parasitic resistance becomes relevant because EFn
doesn’t

have a quasi-flat behavior anymore
(
Jn = nµn

dEFn

dx

)
.

2.10 Small signal model
Consider a simple diode biased with V̄ and J̄ as in figure.

What would happen if we slighlty change the voltage? First, we have to asses the small signal conductance per unit area

g′ =
∂J

∂V
=

J
KT
q

(2.32)
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Then, if we increase the bias voltage by δV , WD shrinks.

This is a capacitive effect, therefore

CDEP = −dQn

dV
= −d(qNDxn)

dV
= −qND

dxn

dV
= −qND

NA

NA +ND

dWD

dV
=

= −q
1

1

NA
+

1

ND

√
2ϵSi

q

(
1

NA
+

1

ND

)
1

2

(
− 1√

ϕBI − V

)
= �q

�
����1

NA
+

1

ND

√√√√�2ϵSi

�q

(
���

��1

NA
+

1

ND

)
�2
√
ϕBI − V

√√√√�2ϵSi

�q

(
���

��1

NA
+

1

ND

)
√

2ϵSi

q

(
1

NA
+

1

ND

) =

=
ϵSi

WD
(2.33)

A second capacitive term is related to the quasi-neutral region: we can define a diffusion charge as

Qdiff =

∫ Wp

0

qn(x)dx ≈
∫ Wp

0

q∆n(x)dx (2.34)
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Then we adjust the analysis for both wide-base and narrow-base cases.

• Wide-base:

Qdiff =

∫ Wp

0

q∆n(0)e−
xn
Ln dx = q∆n(0)Ln

LnDn

LnDn
= Jn(0)τn (2.35)

• Narrow-base:

Qdiff =

∫ Wp

0

q∆n(0)
Wp − x

Wp
dx = q∆n(0)

Wp

2

DnWp

DnWp
= Jn(0)

W 2
p

2Dn
= Jn(0)tp (2.36)

where tp is the transit time; to make sure that this is correct, first we find the diffusion velocity

Jn =
qDn∆n(0)

Wp
= q∆n(x)vdiff = q∆n(0)

Wp − x

Wp
vdiff =⇒ vdiff =

Dn

Wp − x
(2.37)

then

tp =

∫
Wp

0

dx

vdiff

=

∫
Wp

0

Wp − x

Dn
dx = − (Wp − x)2

2Dn

∣∣∣∣∣
Wp

0

=
W 2

p

2Dn
(2.38)

Those are both balance equations, as in the first we have just rewritten G/R processes in charge terms, while in the second we
have pointed out electrons travel time. Now, if we want to define a capacitance, we should consider

Cdiff =
dQdiff

dV
= g′τn (= g′tp for narrow-base diode) (2.39)

Our model in forward bias would then appear like a resistance in parallel with two capacitances.

Under reverse bias though, CDEP would be dominant over the others.
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Chapter 3

M-S junction

3.1 Basics of the M-S junction
Metal-Semiconductor can be design to be either a rectifying device or an ohmic contact.

Rectifying device (Schottky diode) Ohmic contact (ideal contact)

- Relatively low-doped (N < 1017 cm−3) - Very high-doped (N > 1019 cm−3)

- Highly resistive - Lowly resistive (strong current flow with a small voltage drop)

- Proper work-function of the metal - Proper work-function of the metal

Let’s investigate the device behavior under thermodynamic equilibrium, separated materials first.

For a Schottky diode, E(M)
F must be below E

(S)
F in order to have a rectifying behavior. Now, if we put the materials in contact,

we sure notice a band bending which is going to be downwards because qϕBN does not change.
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We can write a powerful definition for that barrier:

qϕBN = q(ϕm − χs) = qϕBI +KT log

(
Nc

ND

)
(3.1)

We have been knowing qϕBI since 2.14, this time considering the Schottky diode as a unilateral p-n junction.

It is time to apply both forward and reverse bias. In the first case we notice that the total band bending decreases, E(S)
F is

almost flat in the quasi-neutral region and WD shrinks.
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In the second one, all is the opposite of course.

3.2 M-S junction as a Schottky diode
Here are presented a few models on how current flow works inside a Schottky diode.

3.2.1 Current transport: Schottky’s model
We want to study how current flows inside the device under forward bias. In this case, electrons flow is not limited by the region
where they would be minority carriers as if we had a p-n junction, because they are always a majority; this results in the absence of
the well-known bottleneck region, therefore we can safely say that this is a majority carriers device, where G/R processes have
no significant impact (N.B.: p-n junction is a minority carriers device). We have holes as well, but since they are concentrated in
the n-region, they are negligible.
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Flow constraint is localized entirely within the depletion layer because of the scattering, so

Jn = qnµnF + qDn
dn

dx
= constant (3.2)

Assuming the following boundary conditions
n(WD) = ND

n(0) = Nce
−
Ec − EF

KT = e
−
qϕBN

KT

in the end we achieve the expected rectifying behavior

Jn(V ) = J0

e

qV

KT − 1

 = JS (3.3)

but its prefactor is not the same from the p-n junction! In fact, this equation works fine just for low-mobility semiconductors,
while for high-mobility ones (Si, Ge, GaAs), J0 doesn’t show the correct dependencies on temperature and voltage. This is a
pure drift/diffusion model, also known as the Schottky’s model, and an explanation of why it is not correct for those kind of
semiconductors is needed. That happens because at the M-S interface we kept the condition that E(M)

F must coincide with EFn
,

but in high-mobility semiconductors the electrons flow towards the metal is enormous, therefore thermodynamic equilibrium is
not assured to be restored as electrons concentration may increase as well; electrons flow through the interface, then, cannot be
described by drift/diffusion equation because that region is too narrow.

3.2.2 Current transport: Bethe’s model
We have seen how in Schottky’s model the interface is not handled well, so a new model is required. If we assume that only
electrons above the barrier can flow through metal, we are handling correctly the interface behavior while completely neglecting
the scattering inside the depletion layer: that is Bethe’s model, a pure thermionic one.
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Let’s recall some Quantum Physics.

Current density from the first available energy level can found as

JS→M =
∑

kx>k̄x

2q

L3
vx(kx)f(kx, ky, kz) =

1(
2π
L

)3
∫

+∞

k̄x

∫
+∞

−∞

∫
+∞

−∞

2q

L3
vx(kx)f(kx, ky, kz)dkxdkydkz

We can switch from discrete summation to integration because energy levels are very tight. To simplify calculations we can
substitute 

ℏkx = mxvx

ℏky = myvy

ℏkz = mzvz

=⇒



dkx =
mx

ℏ
dvx

dky =
my

ℏ
dvy

dkz =
mz

ℏ
dvz
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thus

JS→M =
2q

(2π)3

∫
+∞

v̄x

∫
+∞

−∞

∫
+∞

−∞

vxf(vx, vy, vz)
mxmymz

ℏ
dvxdvydvz =

=
2q

(2π)3
mxmymz

ℏ

∫
+∞

v̄x

∫
+∞

−∞

∫
+∞

−∞

vxe
−

Ec−EFn
KT e−

mxv2
x

2KT e−
myv2

y
2KT e−

mzv2
z

2KT dvxdvydvz =

=
2q

h3
mxmymze

−
Ec−EFn

KT

∫
+∞

v̄x

vxe
−mxv2

x
2KT dvx

∫
+∞

−∞

e−
myv2

y
2KT dvy

∫
+∞

−∞

e−
mzv2

z
2KT dvz

The three integrals result in ∫
+∞

v̄x

vxe
−mxv2

x
2KT dvx =

KT

mx
e−

mxv̄2
x

2KT

∫
+∞

−∞

e−
myv2

y
2KT dvy =

√
2πKT

my∫
+∞

−∞

e−
mzv2

z
2KT dvz =

√
2πKT

mz

and so
JS→M =

4πqm0

h3

√
mymz

m0
(KT )2e−

Ec−EFn
KT e−

mxv̄2
x

2KT = A

√
mymz

m0
T 2e−

Ec−EFn
KT e−

mxv̄2
x

2KT =

= A

√
mymz

m0
T 2e−

q(ϕBN+V )

KT

(3.4)

where A is the Richardson constant. After some Quantum Physics considerations we can rearrange the mass term

JS→M = A
2mt + 4

√
mtml

m0
T 2e−

q(ϕBN+V )

KT = A∗T 2e−
q(ϕBN+V )

KT (3.5)

and similarly we can consider the electron flow from the metal to the semiconductor

JM→S = A∗T 2e−
qϕBN
KT (3.6)

Total current density would be

JTOT = JS→M − JM→S = A∗T 2e−
qϕBN
KT

(
e

qV
KT − 1

)
= J0,TH

(
e

qV
KT − 1

)
(3.7)

What about the scattering inside the depletion layer?

3.2.3 Current transport: Thermionic/diffusion model
We need to blend together the previous models: let’s start with a comparison.

Schottky model Bethe model
- Pure drift/diffusion - Pure thermionic

- Transport in the depletion layer - Transport in the depletion layer
- M-S interface - M-S interface

We must take the best aspects and mix them together to obtain the best suitable model possible. Let’s start considering that
all the electrons can cross the barrier.
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Let’s now assume that current density remains constant and that n(WD) ≈ ND; at the interface we get
JS→M = A∗T 2e−

Ec−EFn
KT ��

��*
1

e−
mxv2

x
2KT

Nc

Nc
=

A∗T 2

Nc
n(0)

JM→S =
A∗T 2

Nc
n0

=⇒ JTH =
A∗T 2

Nc

(
n(0)− n0

)
(3.8)

We finally arrive to the condition we were looking for:

Jn(0) = JTH (3.9)

To sum it up, in Schottky’s model the bottleneck is represented by the depletion layer, while in Bethe’s one it is the interface
between the metal and the semiconductor.

Now we put some numbers for the Si case (we use Bethe’s model), so

Jn ≈ JTH = A∗T 2e−
qϕBN
KT

(
e

qV
KT − 1

)
qϕBN = 0, 81 eV

J0,TH = 5 · 10−7A/cm2 >> J0,pn
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The M-S junction has also a better frequency response.

3.2.4 Schottky effect
Equation 3.7 is good, but it still needs some adjustments due to Schottky effect, a pure electrostatic one. Let’s begin considering
a metal-vacuum interface, with a negative charge positioned in the vacuum; this charge would attract some positive charges on
the metal surface for electrostatic induction, causing a band bending of the vacuum level E0.

Analytically, we can come to this conclusion through the image charge method.
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−qF =
1

4πϵ0

−q2

(2x)2

F =
1

16πϵ0

q

x2
= −dϕ

dx∫
ϕ(+∞)

ϕ(x)

dϕ =

∫
+∞

x

− 1

16πϵ0

q

x2
dx

ϕ(+∞)− ϕ(x) =
1

16πϵ0

q

x

∣∣∣∣+∞

x

ϕ(x) = ϕ(+∞) +
1

16πϵ0

q

x

Remember that ϕ = −E0

q
, so

E0(x) = E0(+∞)− 1

16πϵ0

q2

x
(3.10)

If we consider E0(+∞) = E0(0)− qFx we can further develop 3.10 as

E0(x) = E0(0)− qFx− 1

16πϵ0

q2

x
(3.11)

As we can see from the previous picture, E0 bends with a maximum in xMAX; to find that, we have to compute the derivative

dE0

dx
= −qF − 1

16πϵ0

q2

x2
= 0 =⇒ xMAX =

√
q

16πϵ0F
(3.12)

All we are left to do is to find how much the band bending is:

E0(xMAX) = E0(0)− qF

√
q

16πϵ0F
− 1

16πϵ0

q2
√
16πϵ0F√
q

= E0(0)−

√
q3F

16πϵ0
−

√
q3F

16πϵ0
= E0(0)−

√
q3F

4πϵ0
(3.13)

It is trivial that

q∆ϕBN =

√
q3F

4πϵ0
(3.14)

Eventually we apply this result to the actual M-S junction.
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Current density prefactor depends also on the voltage now:

JTH = A∗T 2e−
q(ϕBN−∆ϕBN)

KT

(
e

qV
KT − 1

)
= Ĵ0,TH(V )

(
e

qV
KT − 1

)
(3.15)

3.3 M-S junction as an ohmic contact
Our junction is now operating as an ohmic contact, which is a crucial aspect for every Integrated Circuit. As we have already
seen, current flow is limited by thermionic emission at the interface.
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This time, though, WD is thinner due to high-level doping. Because of that, it is not impossible that electrons begin to travel
through the barrier by tunneling effect.

We can calculate tunneling probability exploiting WKB approximation and considering E = EFn
= 0 as our reference level.
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

Ec(x) =
q2ND

2ϵSi

x2

T = exp

−2

∫ √
2m∗(Ec − E)

ℏ2

 (3.16)

Developing the system we obtain

T = exp

−2

∫
WD

0

√
2m∗

ℏ2
q2ND

2ϵSi

x2dx

 = exp

−2

√
2m∗

ℏ2
q2ND

2ϵSi

W 2
D

2

 =

= exp

−2

√
2m∗

ℏ2
q2ND

2ϵSi

1

2

2ϵSi

q

1

ND
(ϕBI − V )

 = exp

(
−q(ϕBI − V )

E00

)
(3.17)

where E00 =
qh

√
ND

4π
√
m∗ϵSi

; from Quantum Physics we know that current density is proportional to the transmission probability

(J ∝ T ), so

ρc =

(
∂J

∂V

)−1 ∣∣∣∣
V=0

∝
(
e
− q(ϕBI−V )

E00

)−1 ∣∣∣∣
V=0

=
E00

q
e

qϕBI
E00 =

E00

q
e

qϕBN
E00 (3.18)

Since E00 ∝ ND, contact resistivity decreases when the doping is very high.

A real contact looks like a n+ region coupled with a metal.
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3.4 Interface states
As we know, silicon has a lot of imperfections and impurities, especially on its border to the vacuum: spurious states are introduced
inside the energy gap, breaking potential periodicity.

This is a huge problem, because now we have negative charges in the gap nullifying for Gauss law the band diagrams we have
considered until here.

To fix this, bands must inevitably move upwards creating a depletion layer.
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It is important to notice that the depletion layer grows when Nis is very high.

What is the upper limit for Eis? If we consider Nis → +∞, it is impossible that Eis > EF as it would result in the formation
of positive charges outside of the depletion layer, therefore Eis = EF is our limiting case1. Assuming then Nis constant in the
energy gap, it is important to find the charge on the interface.

|Qis| = qNis(EF − Eis) = qNis

[
∆Eis − (Ec(0)− EF )

]
(3.19)

QDEP = qNDWD =

√
2ϵSiqND

Ec(0)− Ec(WD)

q
(3.20)

In order to have a perfect balance, |Qis| = QDEP must be imposed, so

qNis

[
∆Eis−(Ec(0)−��*0

EF )
]
=

√
2ϵSiqND

Ec(0)− Ec(WD)

q

When Nis = 0, Ec(0) = Ec(WD)

When Nis → +∞, Ec(0) ≈ ∆Eis

(3.21)

Everything makes perfect sense. We can even rewrite Ec(0) in a more general form:

Ec(0) = ∆Eis +
ϵSiND

q2N2
is

−

√√√√( ϵSiND

q2N2
is

)2

+
2ϵSiND

q2N2
is

(
∆Eis − Ec(WD)

)
(3.22)

1Notice that flat band condition is compatible only if Nis = 0
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When Nis is very large, EF position is NOT set by the doping concentration, but only by Nis itself; this condition is called
Fermi level pinning.

If we apply these results to the proper M-S junction we would notice that qϕBN is modified, so bands suffer from a downwards
shift.

Here is a tabular reporting some theoretical and actual values of qϕBN; we can clearly see the Fermi level pinning.

qϕBN Al-nSi Au-nSi Pt-nSi
Theoretically 0, 05 eV 0, 75 eV 1, 25 eV
Empirically 0, 81 eV 0, 83 eV 0, 9 eV
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Chapter 4

MOS capacitor

4.1 Basics of the MOS capacitor
The MOS capacitor is the basic element for the CMOS technology; its structure consists in a gate material (typically a metal
or a highly doped polycrystalline/amorphous silicon, but not a monocrystalline silicon as Si atoms would bond just with the
oxide compromising spatial arrangement), which guarantees a high free-carriers density, a thin insulator (typically SiO2, which
allowed the birth of planar processes) and a base uniformly doped.

The insulator is introduced to provide a barrier blocking the carriers flow between metal and semiconductor; it is important to
underline that high-quality insulators have low spurious states and a high dielectric constant is needed to have a good coupling.

As always, we are interested in the elctrostatics: let’s see what is like when materials are separated under thermodynamic
equilibrium.
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Gauss law is fundamental to understand what happens in the O-S interface, where the relative dielectric constant changes: F
is discontinuous, in fact

ϵoxFox = ϵSiFS

Fox =
ϵSi

ϵox

FS ≈ 3FS

(4.1)

Since there cannot be any charge inside of the oxide, Vox must be linear.

Total voltage drop on the the device is given by Vs + Vox = ϕBI 1, which is also the separation between E
(M)
F and E

(S)
F .

1Typically ϕBI ≈ 1 V
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4.2 Gate bias
We have seen the device under thermodynamic equilibrium, now we apply a voltage to the gate and see what happens starting
from a generic VG:

In this case Vs + Vox = ϕBI + VG; if we were to put VG = −ϕBI, then we would have Vs + Vox = 0, but since those voltages
must have the same sign Vs = Vox = 0.

That is known as the flat band condition (VG = −ϕBI = VFB), where charge neutrality is total.
Now we go below VFB

Positive charges are moved to the semiconductor surface: this is the accumulation regime.
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What if we went above VFB?

At the silicon surface, electrons and holes are quite the same concentration, still neglegible in comparison to the doping
concentration; depletion and weak inversion regimes can be considered as a single one.

If we keep increasing the gate voltage

4.3 Reformulation of the Poisson equation
We start in strong inversion regime, so we have a situation in the substrate like that:

At the silicon surface n > NA, so the ionized acceptors charge inside the depletion layer becomes less relevant. Due to the
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Poisson equation (assuming complete ionization), then

d2ϕ

dx2
= − q

ϵSi

(p− n+�
�N+
D −N�−

A ) (4.2)

ϕ(x) = −Ei(x)

q
(4.3)

We could solve this equation for every section of the MOS, but in the end it is enough to stop at the substrate. Introducing ϕB as
the potential in the bulk and ∆ϕ(x) as the potential difference between ϕB and a random ϕ(x) inside the depletion layer, we can
write 

ϕB = ϕ(x → +∞) = −Ei(x → +∞)

q
= −KT

q
log

(
NA

ni

)
p02 = nie

Ei − EF

KT = NA ⇒ Ei = KT log

(
NA

ni

)
∆ϕ(x) = ϕ(x)− ϕB

(4.4)

We know that

n = ni exp

��* Reference level
EF − Ei

KT

q

q

 = ni exp

(
qϕ

KT

)

n0 = ni exp

(
qϕB

KT

) (4.5)

thus
n

n0
= exp

(
q(ϕ− ϕB)

KT

)
=⇒ n = n0 exp

(
q∆ϕ

KT

)
(4.6)

Same procedure can be applied for the holes, so

p = p0 exp

(
−q∆ϕ

KT

)
(4.7)

Since the substrate is under thermodynamic equilibrium, 1.21 is still valid; for charge neutrality, then

p0 = n0 +NA ⇒ NA = p0 − n0

without considering approximations. We can finally highlight the dependence of 4.2 on ∆ϕ:

d2∆ϕ

dx2
= − q

ϵSi

[
p0 exp

(
−q∆ϕ

KT

)
− n0 exp

(
q∆ϕ

KT

)
− p0 + n0

]

and then its dependence on p0:

d2∆ϕ

dx2
= − q

ϵSi

[
p0 exp

(
−q∆ϕ

KT

)
− n2

i

p0
exp

(
q∆ϕ

KT

)
− p0 +

n2
i

p0

]

Finally, considering that p0 ≈ NA, we get

d2∆ϕ

dx2
= − q

ϵSi

[
NA exp

(
−q∆ϕ

KT

)
− n2

i

NA
exp

(
q∆ϕ

KT

)
−NA +

n2
i

NA

]
(4.8)

2Pedices ’0’ stands for ”in the bulk”
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4.4 Calculation of Qs as a function of Vs

We now want to demonstrate that there is some charge Qs laying on the semiconductor surface. Starting point is, of course, 4.8;
let’s integrate ∫

0

d∆ϕ

dx

d∆ϕ

dx
d

(
d∆ϕ

dx

)
=

∫
0

∆ϕ

− q

ϵSi

[
NA exp

(
−q∆ϕ

KT

)
− n2

i

NA
exp

(
q∆ϕ

KT

)
−NA +

n2
i

NA

]
��dx

d∆ϕ

��dx

−1

2

(
d∆ϕ

dx

)2

= − q

ϵSi

[
NA exp

(
−q∆ϕ

KT

)(
−KT

q

)
− n2

i

NA
exp

(
q∆ϕ

KT

)(
KT

q

)
−NA∆ϕ+

n2
i

NA
∆ϕ

]0
∆ϕ(

d∆ϕ

dx

)2

=
2q

ϵSi

[
−KT

q
NA +

KT

q
NA exp

(
−q∆ϕ

KT

)
− KT

q

n2
i

NA
+

KT

q

n2
i

NA
exp

(
q∆ϕ

KT

)
+NA∆ϕ− n2

i

NA
∆ϕ

]
(
d∆ϕ

dx

)2

=
2q

ϵSi

KT

q
NA

[
−1 + exp

(
−q∆ϕ

KT

)
− n2

i

N2
A

+
n2
i

N2
A

exp

(
q∆ϕ

KT

)
+

q∆ϕ

KT
− n2

i

N2
A

q∆ϕ

KT

]

Finally, we obtain

d∆ϕ

dx
= ±

√
2KTNA

ϵSi

exp(−q∆ϕ

KT

)
+

q∆ϕ

KT
− 1 +

n2
i

N2
A

(
exp

(
q∆ϕ

KT

)
− q∆ϕ

KT
− 1

)1/2

= −F (∆ϕ) (4.9)

Defining Fs = F (Vs) and Qs = −ϵSiFs, we arrive to the conclusion that

Qs = ±
√
2ϵSiKTNA

exp(− qVs

KT

)
+

qVs

KT
− 1 +

n2
i

N2
A

(
exp

(
qVs

KT

)
− qVs

KT
− 1

)1/2

(4.10)

We don’t know the electric field as a function of x, but we got the total charge in the substrate given Vs for whatever regime.

4.5 Qs − Vs curve
It is time to represent how Qs changes in the different regimes; first we want to break up 4.10:

Qs =
√

2ϵSiKTNA

exp(− qVs

KT

)
+

qVs

KT
− 1 +

n2
i

N2
A

(
exp

(
qVs

KT

)
− qVs

KT
− 1

)1/2

• Holes (accumulation regime)

• Impurities (depletion/weak inversion regime)

• Electrons (strong inversion regime)
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Then, for each regime it is possible to approximate Qs; let’s start from the accumulation regime (Vs < 0):

Qs ≈
√
2ϵSiKTNA exp

(
− qVs

KT

)
(4.11)

Continuing with the flat band (Vs = 0), it is trivial that

Qs = 0 (4.12)

Now we consider depletion/weak inversion regime (0 < Vs < 2|ϕB |):

Qs ≈ −
√
2ϵSi��KT NA

qVs

��KT
= −qNAWD (4.13)

Note that

n2
i

N2
A

exp

(
q2|ϕB |
KT

)
=

n2
i

N2
A

exp

�q2
��KT

�q
log

(
NA

ni

)
��KT

 =
n2
i

N2
A

(
NA

ni

)2

= 1 (4.14)

Finally, the strong inversion regime (Vs >> 2|ϕB |):

Qs ≈ −
√
2ϵSiKTNA

ni

NA
exp

(
qVs

2KT

)
(4.15)
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Eventually we get these results.

4.6 Dependence of Vs and Qs on VG

We have seen that Qs = Qs(Vs), although we are unable to find ϕ(x) for every working regime. Starting from this very important
relation

VG + ϕBI = Vs + Vox

⇓

VG − VFB = Vs + Vox

(4.16)

and rewriting Vox as

Vox = Foxtox =
ϵSi

ϵox

Fstox = −Qs

ϵox

tox = − Qs

Cox
(4.17)

we arrve at the system 
Qs = Qs(Vs)

VG − VFB = Vs −
Qs(Vs)

Cox
= f(Vs)

(4.18)

where Vs is the only unknown term; we have to find Vs(VG) and Qs(VG) for each regime.

Accumulation regime We start from 4.11 and put it inside 4.18, so we get

VG − VFB = −
√
2ϵSiKTNA

Cox
exp

(
− qVs

KT

)
+���

IRRELEVANT

Vs (4.19)

Doing some math, final result is

Vs ≈ −2KT

q
log

[
Cox(VFB − VG)√

2ϵSiKTNA

]
(4.20)

Qs ≈ Cox(VFB − VG) (4.21)

Vs dependence on VG is logarithmic, so it is very weak; i.e., if we consider tox = 3 nm and NA = 1017 cm−3

VFB − VG = 1;V ⇒ Vs = −190 mV

VFB − VG = 2;V ⇒ Vs = −225 mV

Just a small bending is needed, because hole concentration already increases exponentially.
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Depletion/weak inversion regime We can refer to Qs as the charge in the depletion layer, so

Qs = −
√

2ϵSiqNAVs = QDEP

VG − VFB = Vs +

√
2ϵSiqNAVs

Cox

(4.22)

If we were to remove the approximation that the charge in the inversion layer is negligible, though, we would get

Qs = −
√

2ϵSiKTNA

[
qVs

KT
+

n2
i

N2
A

exp

(
qVs

KT

)]1/2

= −
√
2ϵSiKTNA

√
qVs

KT

[
1 +

n2
i

N2
A

exp

(
qVs

KT

)
KT

qVs

]1/2

TAYLOR
=

TAYLOR
= −

√
2ϵSiKTNA

√
qVs

KT

[
1 +

1

2

n2
i

N2
A

exp

(
qVs

KT

)
KT

qVs

]
= −

√
2ϵSiqNAVs−

√
2ϵSiNA

qVs
KT

1

2

n2
i

N2
A

exp

(
qVs

KT

)
=

= QDEP +QINV

(4.23)

There is an inversion charge growing exponentially with Vs, something that will be useful for the subthreshold currents study.
From the previous equations, finally, it is clear that Vs has a linear dependence on VG, while Qs has a root dependence.

Threshold voltage We may want to identify another characteristc point, i.e. the threshold trigger to strong inversion VT .
Since we are in-between weak inversion and strong inversion, Vs = 2|ϕB |, therefore we can rewrite 4.18 as

VG = VFB + 2|ϕB |+
√
2ϵSiqNA2|ϕB |

Cox
= VT (4.24)

Strong inversion regime For 4.14, it is true that

ni

NA
= exp

(
−q2|ϕB |

2KT

)
(4.25)

so if we combine this with 4.15 we obtain

Qs ≈ −
√

2ϵSiKTNA exp

(
q(Vs − 2|ϕB |)

2KT

)
(4.26)

Starting from 4.18 again, it is easy to demonstrate

Vs ≈ 2|ϕB |+
2KT

q
log

[
Cox(VG − VFB − Vs 3)√

2ϵSiKTNA

]
≈ 2|ϕB | (4.27)

Qs ≈− Cox(VG − VFB − 2|ϕB |) (4.28)

QINV = Qs −QDEP = −Cox(VG − VFB − 2|ϕB |) +
√
2ϵSiqNA2|ϕB | = −Cox(VG − VT ) (4.29)

3We treat this like it was a given datum
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Note that WD in strong inversion regime does not increase significantly, so

WDmax
=

√
2ϵSi

q

1

NA
2|ϕB | (4.30)

4.7 Small signal model
As we have seen previously, Qs is not linearly dependent on VG, so we can define just a small signal capacitance

CG =
dQs

dVG
= CG(VG) (4.31)

Thus we can rewrite 4.18 as
dVG

d(−Qs)
=

dVs

d(−Qs)
+

1

Cox

⇓

1

CG
=

1

Cs
+

1

Cox

(4.32)

where Cs is the substrate capacitance. Gate capacitance can be represented as the series of substrate and oxide capacitances
(CG < Cox).

Let’s study how CG changes according to gate bias.

Accumulation regime Qs is of course 4.11; we can find the substrate capacitance

Cs =
d(−Qs)

dVs
= −

√
2ϵSiKTNA exp

(
− qVs

2KT

)(
− q

2KT

)
=

Qs

2KT/q
=

Cox(VFB − VG)
2KT/q

(4.33)

If VFB − VG >>
2KT

q
, then Cs >> Cox and CG → Cox.

A small voltage modulation is enough to provoke a large charge rearrangement; modulation is negligible in the substrate, so
the MOS acts like a metal plate capacitor.
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Flat band Approaching the flat band region, Qs ̸= 0 yet, therefore

Qs =
√

2ϵSiKTNA

[
exp

(
− qVs

KT

)
+

qVs

KT
− 1

]1/2

TAYLOR
=
√
2ϵSiKTNA

[
1− qVs

KT
+

1

2

(
qVs

KT

)2

+
qVs

KT
− 1

]
=

=
√
�2ϵSiKTNA

[
1

��
√
2

qVs

KT

]
=

√
ϵSiNAq

2

KT
Vs

(4.34)

and so Cs

Cs =
d(−Qs)

dVs
=

√
ϵSiNAq

2

KT

√
ϵSi

ϵSi

=
ϵSi√

ϵSiKT/q2NA

=
ϵSi

LD
(4.35)

where LD is the Debye length, the rearrangement extension of the carriers over which they screen electric fields perturbations.
Given that typically ϵSi = 11.7ϵ0, ϵox = 3.9ϵ0, LD ≈ 10 nm and tox ≈ 1 nm, Cs and Cox are comparable.

Depletion/weak inversion regime We are only considering the charge present in the depletion layer, so

Qs ≈ QDEP = −qNAWD = −
√
2ϵSiqNAVs (4.36)

Cs =
ϵSi

WD(Vs)
= CDEP << Cox (4.37)

Finally we get

CG =
Cox√

1 + 2C2
ox

VG − VFB

ϵSiqNA

(4.38)

Strong inversion regime Last, we start from 4.15 and immediately find Cs as

Cs =
|Qs|
2KT/q

=
Cox(VG − VFB − 2|ϕB |)

2KT/q
(4.39)

As before, if VG − VFB >>
2KT

q
, then Cs >> Cox and CG → Cox.
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Now we build the C − V curve:

Note that when VG = VT , CG is already rising: small signal voltage can significantly increase the inversion layer charge
(Cs = 2CDEP).

Eventually, starting from the curve it is possible to find Qs just by integrating:

Qs(VG) = −

∫
VG

VFB

CGdVG (4.40)

Every analysis we made has been performed under thermodynamic equilibrium in the substrate, even with the small signal;
we have nevere mentioned time either, making this the quasi-static C − V curve.

4.8 C − V curve under low and high frequencies
This aforementioned lack of time dependence, though, may be considered quite contradictory as a perturbation is needed to
determine a change of charge. We are finally introducing time into the equations.
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Accumulation regime Here positive charges are reallocated through the ground contact, as it is shown in the picture.

Most common small signal is sin(t); only charges in the substrate are modulated in a very short time (Dielectric Relaxation
Time). Throughout our analysis, we are always considering time constants for δVG larger than DRT: charges are modulated so
fast it looks like we are still under thermodynamic equilibrium, making no difference at all.

Depletion/weak inversion regime In this case, we have to modulate the width of the depletion layer to adjust the charges; as
before, all is happening so quickly that electrostatics is not perturbed.

Strong inversion regime Small signal affects only the charges in the inversion layer: this time, electrons cannot be taken by
the contact, thus we have to rely only on G/R processes.
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From the p− n junction we know that JDL ≈ qni

2τ0
WD; starting from this, we can define our G/R time constant:

tG =
|QDEP|
JDL

= �qNA��WD

(�qni/2τ0)��WD
= 2τ0

NA

ni
≈ 1 s (4.41)

δVG must change with a time constant larger than tG (fsignal < fG/R), otherwise G/R processes fail their purpose. If that happens,
we enter the high-frequency regime as opposed to the low-frequency regime: we are de facto modulating the depletion layer
(Cs =

ϵSi

WDmax

).

Here we can see the main difference betweem the two regimes.

Now focus on the high-frequency regime with δVG > 0: since we are increasing the band bending, δVs is significant. EFn ,
then, must move downwards to keep the electron concentration constant.
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In this case, EFn < EFp , so we have net generation processes. Non-equilibrium is mantained as EFn keeps moving according
to δVG: G/R processes keep alternating. On the contrary, in the low-frequency regime, after a lot of time VG was increased,
electrons are stored in the silicon surface moving the bands upwards, thus thermodynamic equilibrium is restored.

4.9 Deep-depletion condition
Now we want to know what happens when a large signal is applied. This can be splitted into three segments:

Immediately after the step increase of the voltage ( 2 ), we don’t have a step increase of the electrons, as we have to wait for
generation processes; total charge does change, but not because of electrons, that is thanks to depletion layer charges. This brings
us to a huge band bending while reaching the deep-depletion condition.

Approaching 3 , depletion layer narrows down as charge is relocated in the inversion layer.

Now we want to study what happens if we apply a small signal right after 2 .

We start from a big disequilibrium; in addition to that we have the small signal keeping the perturbation alive and a depletion
layer which is even bigger than WDmax

.

71



Capacitance value is decreasing too!
Cs =

ϵSi

WD

(4.42)

4.10 Basics of the nMOS capacitor with ring
According to the last considerations, the onset of the high-frequency regime is just some tens/hundreds of hertz; obviously, for
our purpose, this is not acceptable. We must find a way to reduce electron concentration quicklier than G/R processes: the nMOS
capacitor with ring is introduced.

That is a normal MOS capacitor surrounded entirely by a n+-region: we now have a 2D device.
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We don’t have to wait for G/R processes anymore as electrons are taken directly from the n+-region. Time constant, in fact,
is the transit time to move them from said region to the substrate. This determines a splitting in the total substrate charge

δQs = δQp + δQn (4.43)

which affects also the C − V curve.

Thus CG can be considered as the parallel of Cn and Cp:

δQs

δVs
=

δQn

δVs
+

δQp

δVs
(4.44)

CG =
Cox(Cn + Cp)

Cox + Cn + Cp
=

CoxCn

Cox + Cn + Cp
+

CoxCp

Cox + Cn + Cp
=

δQn

δVG
+

δQp

δVG
(4.45)
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4.11 Impact of the ring bias on the electrostatics
We now discuss the changing in the band diagrams (both vertical and horizontal sections) according to the applied VG and VR,
starting from thermodynamic equilibrium.

Now we consider strong inversion regime.

It is time to apply a VR > 0 not to forward-bias the p− n junction (VG = 0).

Since electron concentration is negligible, there is no changing in the bands for 1 . Last case is the most interesting:
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Pay attention to the fact that the nMOS is NOT at the onset of strong inversion: since Ec − EFn is very large, electron
concentration is still smaller than doping concentration. We then need to find a value V ′

T which allows the strong inversion regime
to trigger.

As we can see, Vs = 2|ϕB |+ VR; we have also reached deep-depletion condition, this time is stationary though.

4.12 Dependence of Vs on VG/VR

Starting point is 4.24, where we can assume VR = 0; if VR > 0, then

V ′
T = VFB + 2|ϕB |+ VR +

√
2ϵSiqNA(2|ϕB |+ VR)

Cox
+

√
2ϵSiqNA2|ϕB |

Cox
−
√

2ϵSiqNA2|ϕB |
Cox

=

= VT + VR +

√
2ϵSiqNA

Cox

[√
2|ϕB |+ VR −

√
2|ϕB |

] (4.46)
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Let’s see in detail what’s the band bending situation.

If we were to calculate QINV:

QINV = Qs −QDEP = −Cox(VG − VFB − 2|ϕB | − VR)−QDEP = −Cox(VG − V ′
T ) (4.47)

At a certain point V ′
T = V G2

, so Vs will eventually stop increasing because QINV = 0: we enter depletion/weak inversion regime.
C − V curve would look like this:
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Decreasing trend is prolonged along with V ′
T .

4.13 Impact of fixed oxide charge and of interface states on the silicon/oxide inter-
face

Until now we have been considering SiO2 as a perfect insulator, but now it is time to introduce its defects. First we study the
spurious charge Qox, which can be either positive or negative.

Band slope changes at x, where the charge is located; flat band condition can be partially restored by moving E
(M)
F downwards

whereas charge doesn’t change with gate voltage.

By studying the elctrostatics where the slope has increased we can say

Qox

ϵox

= −∆VG

x
= F ′ =⇒ ∆VG = −Qoxx

ϵox

= −Qox

CxG

(4.48)

where CxG
is the capacitance between the gate and x; ∆VG is maximum when the charge is exactly at the interface.
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We can also rewrite ∆VG as a general law:

∆VG =

∫
tox

0

xρoxdx

ϵox

(4.49)

Now let’s take a look at the interface states impact, beginning from strong inversion regime.

As usual, we have to adjust the band diagram, as there should be a downwards shift.

∆VG = −Qis

ϵox

tox = −Qis

Cox
(4.50)

In accumulation regime we have a different scenario:

Qis switches sign depending on the working regime.

Interface states give a different contribution to the capacitance according to the frequency of the device; all of this is valid for
nMOS transistors too.
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4.14 Polysilicon gate
Polysilicon gate played a very important role in the history of the MOS as it introduced the possibility to use self-aligned processes
on the silicon wafer; let’s start from the beginning, by seeing how we can integrate a MOS capacitor in a ring.

Nothing assures we have a perfect alignment between the n+-region and the gate stack: in fact, there are always some
misplacements leading to poor performances.

We surely need a better method.

A major issue with this technique is that, since for every process dopants are activated through a high-temperature treatment,
the gate (typically Al) actually melts. That is why we need to introduce a polysilicon gate, something that also caused the birth
of the scaling process for the MOS. First of all, we want the polysilicon to work as a metal, therefore it must have a large doping
concentration.

For a p-doped substrate, the best solution is to use a n+ gate, while for a n-doped substrate it is of course the opposite.
There are also two additional advantages in using a polysilicon gate:

79



1. Had we used a metal, we would have to choose a specific one for both devices, while polysilicon is universal;

2. Metal is less stable than polysilicon, because it has a lot of impurities.

Then why in the last 15 years was polysilicon replaced with metals (TiM, TaM)?
Main reason is that, no matter its beneficial aspects, polysilicon is still not a metal, so its free carriers concentration is not

comparable to a metal one. Also, it has not the screening capability of a metal: a voltage drop Vp is needed to screen the electric
fields coming from the oxide.

This additional voltage drop also introduces a capacitance in series with Cs and Cox:

VG − VFB = Vs + Vox + Vp

⇓

dVG

d(−Qs)
=

dVs

d(−Qs)
+

1

Cox
+

dVp

d(−Qs)

⇓

1

CG
=

1

Cs
+

1

Cox
+

1

Cp

(4.51)
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Chapter 5

MOS transistor

5.1 Basics of the MOS transistor
This is probably the most important device; as the MOS capacitor, we are considering a perfect SiO2 insulator and an ideal metal,
but this time the n+-regions are independent.

This is of course a bidimensional device with four terminals. Let’s polarize our transistor by applying these bias voltages:
VS = 0, VGS < VT , VDS > 0, VBS = 0.

81



We mainly focus on the channel region, the most important one; since VGS < VT , we are working in the depletion/weak
inversion regime, so the electron concentration in the channel region is very low. That part of the transistor then works as a
bottleneck, determining a small current to flow. In order to get a larger current we may want to increase VGS : current can be in fact
controlled by the gate terminal (so can be the electrostatics in the channel region), making the MOS a Field Effect Transistor.
In this case, electrons are the most important carriers (unipolar transistor). Now let’s do some useful approximations.

Starting point is of course the 2D Poisson equation:
∂2ϕ

∂x2
+

∂2ϕ

∂y2
= − q

ϵSi

(p− n+N+
D −N−

A )

ϕ = ϕ(x, y)

(5.1)

If we assume to have a long-channel MOSFET we can actually introdutce the gradual channel approximation

Fy << Fx (5.2)

meaning that the horizontal electrostatics contribution is negligible compared to the vertical one (quasi 1D electrostatics).

Moving through the cross-section, EFn changes according to the position, so

V (y) = −EFn

q
(5.3)

where V (y) is the separation between the two quasi-Fermi levels.
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5.2 Electrostatics in the channel region
Electrostatic analysis is the same as in the MOS capacitor, but this time the substrate is not under thermodynamic equilibrium.

4.6 and 4.7 are still valid, but this time

p0n0 = n2
i exp

(
EFn

− EFp

KT

)
= n2

i exp

(
− qV

KT

)
(5.4)

Let’s consider the onset for strong inversion (n = NA) at x = 0:

n = NA =
n2
i

NA
exp

(
qVs

KT

)
exp

(
− qV

KT

)
⇓

N2
A

n2
i

=exp

(
qVs

KT

)
exp

(
− qV

KT

)
⇓

exp

(
q2|ϕB |
KT

)
= exp

(
qVs

KT

)
exp

(
− qV

KT

)
⇓

Vs = 2|ϕB |+ V

(5.5)

Following the same steps we did in the last chapter, we eventually get

d2∆ϕ

dx2
= − q

ϵSi

[
NA exp

(
−q∆ϕ

KT

)
− n2

i

NA
exp

(
q∆ϕ

KT

)
exp

(
− qV

KT

)
−NA +

n2
i

NA

]
(5.6)

and then

Qs = ±
√
2ϵSiKTNA

[
exp

(
− qVs

KT

)
+

qVs

KT
− 1 +

n2
i

N2
A

(
e−

qV
KT

(
e

qVs
KT − 1

)
− qVs

KT

)]1/2

(5.7)

just to arrive at

Qs ≈ −
√
2ϵSiKTNA

[
qVs

KT
+

n2
i

N2
A

exp

(
q(Vs − V )

KT

)]1/2

= Qs(Vs, V ) (5.8)

5.3 Subthreshold and Onstate regimes
Beginning from last statement we can say

Qs(Vs, V ) = QDEP(Vs, V ) +QINV(Vs, V ) (5.9)

Assuming we are working in depletion/weak inversion regime it is true that

QDEP = −
√
2ϵSiqNAVs (5.10)

QINV = −
√

ϵSiqNA

2Vs

KT

q

n2
i

N2
A

exp

(
q(Vs − V )

KT

)
(5.11)
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Since electron concentration is negligible for the electrostatics, Vs ̸= Vs(y), thus there is no band bending from source to drain.

That is the subthreshold regime. Now we move to the strong inversion regime, where we actually don’t have any expression
for QDEP and QINV.

Without any approximation, only in the subthreshold regime we can say that WD =

√
2ϵSi

qNA
Vs and so

QDEP = −qNAWD = −
√
2ϵSiqNAVs (5.12)

For this purpose we introduce the charge sheet approximation, which consists in neglecting the inversion layer width.
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Thanks to this, 5.11 is valid, and so we arrive at QINV = Qs +QDEP. This time Vs = Vs(y), therefore we get a significant band
bending along with EFn .

That is the onset regime.

5.4 Continuity equation in the channel
Drain bias shifts EFn downwards: in this case V dependence is very important, so

Vs = Vs(VGS , V )

Qs = Qs(VGS , V )

QINV = QINV(VGS , V )

(5.13)

Poisson equation is not enough because of the non-equilibrium (ϕ and EFn
are unknown): continuity equation is needed.

Jn = nµn
dEFn

dy
= −qn(x, y)µn

dV (y)

dy
= Jn(x, y) (5.14)

We assume stationary conditions: VGS and VDS constant and no G/R processes.
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Jn is constant in the transport direction, so Jn = Jn(x):

IDS = −W

∫ tINV

0

Jn(x)dx = −W

∫ tINV

0

−qnµn
dV

dy
dx = −Wµn

dV

dy

∫ tINV

0

−qndx = −µnWQINV
dV

dy
(5.15)

That is the differential form for the current; we also want the integral form, thus∫ L

0

IDSdy =

∫ VDS

0

− µnWQINVdV

⇓

IDSL = −µnW

∫ VDS

0

QINVdV

⇓

IDS = −µn
W

L

∫ VDS

0

QINV(V )dV

(5.16)

All we are left to find is QINV as a funtion of V .

5.5 Ohmic/parabolic regime
Assuming we are in the onstate regime, let’s first regroup the most important equations:

Qs = Qs(Vs, V )

VGS − VFB = Vs −
Qs

Cox

IDS = −µn
W

L

∫
VDS

0
QINV(V )dV

Vs ≈ 2|ϕB |+ V

Qs = −Cox(VGS − VFB − Vs)

We would get the inversion layer charge to be

QINV = −Cox(VGS − VFB − 2|ϕB | − V ) +
√
2ϵSiqNA(2|ϕB |+ V ) = QINV(V ) (5.17)

Two cases are to be considered: VDS << 2|ϕB | and VDS < 2|ϕB |. We start from the first:

QINV = −Cox

[
(VGS−VFB − 2|ϕB |)−

√
2ϵSiqNA2|ϕB |

Cox

]
= −Cox(VGS−VT ) (5.18)

As we can see QINV ̸= QINV(V ), thus it is constant along the channel.
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5.16 is then

IDS = −µn
W

L

∫ VDS

0

−Cox(VGS − VT )dV = µnCox
W

L
(VGS − VT )VDS (5.19)

A linear proportionality exists between IDS and VDS ; the channel shows then a resistive behavior.

RCH =

(
∂IDS

∂VDS

)−1

=
1

µnCox
W

L
(VGS − VT )

= ρCH
SH

L

W
(5.20)

Charge is not modified: this is the ohmic regime.
Now we talk about the second case, beginning from rearranging QINV:

QINV = −Cox(VGS − VFB − 2|ϕB | − V ) +
√
2ϵSiqNA2|ϕB |

√
1 +

V

2|ϕB |
TAYLOR
=

TAYLOR
= −Cox(VGS − VFB − 2|ϕB | − V ) +

√
2ϵSiqNA2|ϕB |

(
1 +

1

2

V

2|ϕB |

)
=

= −Cox

VGS − VFB − 2|ϕB | − V −
√
2ϵSiqNA2|ϕB |

Cox
−

√
2ϵSiqNA2|ϕB |
4(2|ϕB |)2

V

Cox

 =

= −Cox

[
VGS − VFB − 2|ϕB | −

√
2ϵSiqNA2|ϕB |

Cox
− V

(
1 +

CDEP

Cox

)]
=

= −Cox(VGS − VT −mV ) = −Cox(VGS − V ′
T )

(5.21)

The factor m for now does not retain any physical meaning: it is just a characteristic of the device1. What is truly interesting,
though, is the fact that QINV decreases when approaching the drain.

1It is interesting to note that V ′
T = VT +mV just like for the MOS capacitor with ring it was V ′

T = VT + VR
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Eventually 5.16 changes as

IDS = −µn
W

L

∫ VDS

0

−Cox(VGS − VT −mV )dV = µnCox
W

L

[
(VGS − VT )VDS −m

V 2
DS

2

]
(5.22)

A squared term appears: we get a parabolic behavior with vertexes located in

(
V SAT
DS =

VGS − VT

m
; ISAT

DS = µnCox
W

L

m(V SAT
DS)

2

2

)
.

When VDS increases, current increases less because charge in the inversion layer becomes fewer (RCH ↑); clearly all of this
actually makes sense until VDS ≤ V SAT

DS is true.

5.6 Saturation regime
We want to know what happens when VDS > V SAT

DS ; let’s start from QINV:
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Let’s see in detail what happens to the electrostatics along the channel:

At the source side we have still thermodynamic equilibrium.
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At the drain side EFn
is shifted downwards by qVDS and band bending in the oxide decreases. At the same time, depletion

layer grows while inversion layer shrinks. Local threshold voltage rises too, like

V ′
T = VT +mVDS (5.23)

until at a certain point V ′
T = VGS and QINV = 0: drain loses strong inversion condition. This is the pinch-off condition.

We can conclude that V SAT
DS is the maximum voltage drop possible between drain and source; in saturation, drain loses control

over channel electrostatics.
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5.7 Band diagram along the channel in the onstate regime
We have seen that at the drain we get into weak inversion regime; it is time to refine the analysis, starting from V dependency on
y (we integrate the current for a general V ).

IDS = µnCox
W

y

[
(VGS − VT )V − mV 2

2

]
(5.24)

At the drain y = L and that becomes 5.22, so

V = V (y) =
VGS − VT

m
−

√(
VGS − VT

m

)2

− 2y

L

(
VGS − VT

m

)
VDS +

y

L
V 2
DS (5.25)

which can be simplified for small VDS as

V (y) =
VDS

L
y (5.26)

Considering that Vs = 2|ϕB |+ V , we can say that bands do shift linearly.

If we consistently increase VDS , since IDS must be kept constant and QINV is reducing until pinch-off (QINV = 0), EFn
is no

longer linearly decreasing when approaching the drain. All of this is valid under gradual channel approximation; in saturation
regime under these conditions, though, Fy >> Fx, thus
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Maximum electron concentration is no longer on the surface.

5.8 Body effect
We now discuss the case where the bulk for some reason is not grounded anymore.
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Total charge on the surface is therefore affected as well:

Qs = −Cox(VGS − VBS − VFB − Vs) (5.27)

and so is the inversion layer charge:

QINV = Qs −QDEP = −Cox(VGS − VBS − VFB − 2|ϕB | − V ) +
√
2ϵSiqNA(2|ϕB |+ V ) (5.28)

Considering just the ohmic regime, we can then rewrite 5.28

QINV ≈ −Cox(VGS − VBS − VFB − 2|ϕB |+ VBS) +
√

2ϵSiqNA(2|ϕB | − VBS) =

= −Cox

(
VGS−VFB − 2|ϕB | −

√
2ϵSiqNA(2|ϕB | − VBS)

Cox

)
= −Cox(VGS−VT )

(5.29)

Threshold voltage has increased!

We can introduce a sensitivity parameter:

dVT

d(−VBS)

∣∣∣∣
VBS=0

=

√
2ϵSiqNA

Cox

1

2

1√
2|ϕB | − VBS

∣∣∣∣
VBS=0

√
2ϵSiqNA

Cox

1√
4 · 2|ϕB |

=
CDEP

Cox
= m− 1 (5.30)

Optimal case is m = 1.

5.9 Small signal model
At last we arrived at the small signal model for the MOS transistor; this time two terminals are attached to a signals.
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Let’s begin by introducing just a gate voltage swing (δVDS = 0); we need the small signal transconductance

gm =

(
∂IDS

∂VGS

)
VDS

=


µnCox

W

L
VDS , ohmic regime

µnCox
W

L

VGS − VT

m
, saturation regime

(5.31)

being the current

IDS =


µnCox

W

L

[
(VGS − VT )VDS − mV 2

DS

2

]
, ohmic regime

µnCox
W

L

(VGS − VT )
2

2m
, saturation regime

(5.32)

Second parameter is the small signal output conductance

g0 =
1

r0
=

(
∂IDS

∂VDS

)
VGS

=


µnCox

W

L

[
(VGS − VT )−mVDS

]
, ohmic regime

0, saturation regime
(5.33)
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Current is dependent on the time-derivative of the voltage applied to the terminals, so we have also some capacitive
contributions (intrinsic capacitances come from the inversion layer). First we need the total charge in the inversion layer, not just
the charge per area, so

Qc = W

∫ L

0

QINV(y)dy = W

∫ VDS

0

QINV(y)
dy

dV
dV

This can be known by recalling 5.15:
dy

dV
= −µnWQINV

IDS
(5.34)

Eventually

Qc = W

∫ VDS

0

−µnWQ2
INV

IDS
dV = −µnW

2

IDS

∫ VDS

0

[−Cox(VGS − VT −mV )]2dV =

=
µnC

2
oxW

2

IDS

[
(VGS − VT −mV )3

3m

]VDS

0

=
µnC

2
oxW

2

IDS

[
(VGS − VT )

3

3m
− (VGS − VT −mVDS)

3

3m

]

Under strong inversion, we get this final result:

Qc = −WLCox
2

3

m2V 2
DS + 3(VGS − VT )

2 − 3mVDS(VGS − VT )

2(VGS − VT −mVDS)
(5.35)

In the ohmic regime that becomes
Qc ≈ −WLCox(VGS − VT ) (5.36)

while in saturation
Qc ≈ −WLCox

2

3
(VGS − VT ) (5.37)

due to pinch-off. Now we can find the gate capacitance

CG =

(
− ∂Qc

∂VGS

)
VDS

= WLCox

[
1− m2V 2

DS

3[2(VGS − VT )−mVDS ]2

]
(5.38)

and the drain capacitance

CD =

(
− ∂Qc

∂VDS

)
VGS

=
2

3
WLCox

[
1− (VGS − VT )

2

[2(VGS − VT )−mVDS ]2

]
(5.39)

Furthermore CG = CGS + CGD

CD = CGD

(5.40)
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Once again, in the ohmic regime
CG = WLCox = CGS + CGD

CD =
1

2
WLCox = CGD

=⇒ CGS = CGD =
1

2
WLCox (5.41)

while in saturation CG =
2

3
WLCox

CD = 0
=⇒ CGD = 0, CGS =

2

3
WLCox (5.42)

Last parameter to study is the electron transit time

tTR =

∫ L

0

dy

vd
=

∂Qc

∂IDS
=

∂Qc

∂VGS

∂VGS

∂IDS
=

CG

gm
(5.43)
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We actually don’t know what is the drift velocity, so we had to rewrite the equation as the inversion charge disappearing because
of the current. As usual, first we see what is like in the ohmic regime

tTR =
WLCox

µnCox
W

L
VDS

=
L2

µnVDS
(5.44)

and then in saturation
tTR =

2/3WLCox

µnCox
W

L

VGS − VT

m

=
2L2

3µnV
SAT
DS

(5.45)

There is a quadratic dependence on the distance. In order to decrease tTR, finally, we must increase the mobility; this is a very
important goal because travel time is strictly related to frequency response.

fT =
gm

2π(CGS + CGD)
=

1

2πtTR

(5.46)

Parasitic elementrs strongly limit frequency response. Let’s now spend a few extra words for the saturation regime.

Considering that ∆L =
VDS − V SAT

DS

Fp
, where Fp is the electric field at the drain, and ∆L << L, we can write

IDS = ISAT
DS

(
1 +

∆L

L

)
= ISAT

DS

(
1 +

VDS − V SAT
DS

FpL

)
(5.47)
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This translates into an actual output resistance

r0 =

(
∂IDS

∂VDS

)−1

=
FpL

ISAT
DS

=
VA

ISAT
DS

(5.48)

where VA is the Early voltage.

5.10 Subthreshold operations
In this section we go deeper into the subthreshold regime, so VGS < VT and all the channel is in weak inversion (electrons are
irrelevant). Also, Vs ̸= Vs(y) so we get the same band bending in every cross-section (Fy = 0).

From 4.23 we know

QINV(V ) = −
√

ϵSiqNA

2Vs

KT

q

n2
i

N2
A

exp

(
q(Vs − V )

KT

)
(5.49)

thus when we look for the current

IDS = −µn
W

L

∫ VDS

0

QINV(V )dV = µn
W

L

√
ϵSiqNA

2Vs

KT

q

n2
i

N2
A

exp

(
qVs

KT

)∫ VDS

0

− exp

(
qV

KT

)
dV =

= µn
W

L

√
ϵSiqNA

2Vs

(
KT

q

)2
n2
i

N2
A

exp

(
qVs

KT

)[
1− exp

(
−qVDS

KT

)] (5.50)

Nevertheless, we want the dependence to be on VGS , not Vs, so

VGS − VFB = Vs −
Qs

Cox
≈ Vs −

QDEP

Cox
= Vs +

√
2ϵSiqNAVs

Cox

For Taylor
√
Vs ≈

√
2|ϕB |+

1

2

1√
2|ϕB |

(Vs − 2|ϕB |), then

VGS = VFB + Vs +

√
2ϵSiqNA2|ϕB |

Cox
+

√
2ϵSiqNA

Cox

1

2

(Vs − 2|ϕB |)√
2|ϕB |

=

= VFB + 2|ϕB |+
√
2ϵSiqNA2|ϕB |

Cox
+ (Vs − 2|ϕB |)

(
1 +

CDEP

Cox

)
= VT + (Vs − 2|ϕB |)m

(5.51)

and finally

Vs = 2|ϕB |+
VGS − VT

m
(5.52)

Since VGS ≈ VT , Vs ≈ 2|ϕB |. Alternatively, we could have avoided all calculations just by considering the small signal model:

VGS + δVGS = Vs = 2|ϕB |+ δVGS
Cox

Cox + CDEP

= 2|ϕB |+
δVGS

1 +
CDEP

Cox

= 2|ϕB |+
VGS − VT

m
(5.53)
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This works because physically 1/m is the voltage partition over the substrate (if m = 1, all the gate voltage drops over the
depletion layer; gate has then maximum control over the substrate electrostatics). Now let’s get back to 5.50 and substitute 5.52
inside it; final result looks like

IDS = µnCox
W

L
(m− 1)

(
KT

q

)2

exp

(
q(VGS − VT )

mKT

)[
1− exp

(
−qVDS

KT

)]
(5.54)

This is the subthreshold current; what is important is the double exponential dependence (even though the second one can be
discarded if VDS >> KT/q). Now let’s take a look at the electrostatics in the channel region:

Even if EFn drops it doesn’t matter: we have a pure diffusion current.

IDS = W

∫
tINV

0

Jn(x)dx = −W

∫
tINV

0

qDn
dn

dy
dx = WDn

d

dy

∫
tINV

0

−qndx = WDn
dQINV

dy
(5.55)

The derivative must be constant, so QINV is a linear function of the position.

IDS = −WDn
QINV(y = 0)−QINV(y = L)

L
(5.56)

Taking a closer look to the charge in the two positions:
QINV(0) = −

√
ϵSiqNA

2Vs

KT

q

n2
i

N2
A

exp

(
qVs

KT

)

QINV(L) = −
√

ϵSiqNA

2Vs

KT

q

n2
i

N2
A

exp

(
q(Vs − VDS)

KT

) =⇒ QINV(0)−QINV(L) ∝ e
qVs
KT

(
1− e

qVDS
KT

)
(5.57)
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Current increases exponentially with VGS!

We can finally define the SubThreshold Slope:

STS =

[
∂ log10 IDS

∂VGS

]−1

=
KT

q
log(10)m (5.58)

To have a good device, this must be as steep as possible2.

As always, if we enter in low-current regime, G/R processes must be considered.

2At 300K, KT
q

log(10) = 60 mV/dec
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5.11 Impact of different parameters on the transcharacteristics
We now see in detail how drain voltage, temperature, residual oxide charge and interface states affect our model. Let’s start with
VDS :

Here V ′
T = VT +mVDS = V GS ; when VGS = V GS we enter ohmic regime.
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Subthreshold current on the other hand is independent from VDS (when VDS > KT/q), but it is greatly affected by the
temperature.

If we were to quantify this impact:

dVT

dT
= − 1

2q

dEG

dT
+

d|ϕB |
dT

+

√
2ϵSiqNA

Cox

1

2

1

|ϕB |
d|ϕB |
dT

= − 1

2q

dEG

dT
+

d|ϕB |
dT

(
1 +

2CDEP

Cox

)
= − 1

2q

dEG

dT
+

d|ϕB |
dT

(2m− 1)
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From 4.4 we can say

d|ϕB |
dT

=
K

q
log

(
NA

ni

)
+

KT

q
��ni

��NA

−��NA

n�2i

dni

dT
=

K

q
log

(
NA

ni

)
− KT

q

1

ni

dni

dT
(5.59)

then
dVT

dT
= −(2m− 1)

K

q

log(√
NcNv

NA

)
+

3

2

+
m− 1

q

dEG

dT
< 0 (5.60)

Threshold voltage decreases as temperature rises. Also mobility lowers with temperature. Here is an example:NA = 1016 cm−3

m = 1.1
=⇒ dVT

dT
= −1 mV/K

NA = 1018 cm−3

m = 1.3
=⇒ dVT

dT
= −0.7 mV/K

Talking about spurious charges in the oxide, all they do is provoking a rigid shift of the transcharacteristics according to their
sign.

This can actually be engineerable in order to create flash memory cells.
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Very briefly we now cover the interface states:

Last but not least, we see what happens when we change tox and NA:

5.12 Short-channel regime
Why would we want to reduce channel length?

tTR ∝ L2 transit time improves quadratically

IDS ∝ W

L
drain current increases

CG ∝ WL intrinsic capacitance gets smaller

(5.61)

All of this allows us to build way faster logic circuits with higher currents discharging smaller capacitances.
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Enhanced performances and cheaper devices are other pros. Nevertheless, if we reduce just L leaving untouched every other
parameter we note an actual worsening of the performances; that’s because we have entered short-channel regime. First, take a
step back and consider once again the bidimensional electrostatics in the channel, starting from a long-channel:

Now here is a short-channel:

We are forced to solve the 2D Poisson equation; additionally, for the same VGS we have a higher electron concentration than
in the long-channel, so VGS must be reduced (V SH

T < V LO
T ).

What if we apply VDS > 0?
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Output resistance is reduced by DIBL as well; regarding the subthreshold regime, instead

VT reduction is described as

∆VT =
24tox

WDmax

[√
ϕBI(ϕBI + VDS)− 0.4 · 2|ϕB |

]
exp

(
− πL

2(WDmax
+ 3tox)

)
(5.62)

In order to have a good length for the channel we must follow

∆VT < 100 mV : L > 2(WDmax + 3tox) (5.63)

If the gate is closer to the substrate, it has a better control over the electrostatics. With high doping concentration, also, we have
steeper transitions at the n+-regions, but the gate has a worse control.

5.13 Velocity saturation
Velocity is proportional to the electric field, but from a certain F onwards it saturates because of the optical phonons: this is the
velocity saturation.

106



vd =
µeffFy[

1 +

(
Fy

FSAT

)n
]1/n

=


µeffFy if Fy << FSAT

µeffFSAT if Fy >> FSAT

(5.64)

where µeff is the mobility in the channel, not in the bulk, and n is a parameter dependent on the technology, in particular
n = 1 for pMOS

n = 2 for nMOS
(5.65)

We can also define a vertical electric field (carrier/surface interaction) like

Feff =
QDEP +

1

2
QINV

ϵSi

(5.66)

which strongly affects the mobility.
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We are ready to compute the current.

IDS = −µnWQINV
dV

dy
= −µnWQINV(−Fy) = −vdWQINV = −

µeff
dV

dy

1 +
dV

dy

1

FSAT

WQINV

IDS

(
1 +

dV

dy

1

FSAT

)
= −µeff

dV

dy
WQINV

IDS =

[
−IDS

FSAT

− µeffWQINV

]
dV

dy

∫ L

0

IDSdy =

∫ VDS

0

[
−IDS

FSAT

− µeffWQINV

]

IDSL = −IDS

FSAT

VDS −
∫ VDS

0

µeffWQINVdV

IDS =

−µeff
W

L

∫
VDS

0
QINVdV

1 +
VDS

L

1

FSAT

(5.67)

Numerator is the same for the long-channel MOSFET; note that when L is very small the denominator becomes way more relevant.
Assuming quasi-1D electrostatics, we can say

IDS =

−µeff
W

L

∫
VDS

0
−Cox(VGS − VT −mV )dV

1 +
VDS

L

1

FSAT

=

µeffCox
W

L

[
(VGS − VT )VDS − mV 2

DS

2

]
1 +

VDS

L

1

FSAT

(5.68)

∂IDS

∂VDS
= 0 =⇒ V SAT

DS =

2

m
(VGS − VT )

1 +

√
1 + 2

VGS − VT

m

1

L

1

FSAT

(5.69)

We can distinguish long-channel and short-channel cases:

• LONG-CHANNEL: 
V SAT
DS =

VGS − VT

m

ISAT
DS = µeffCox

W

L

(VGS − VT )
2

2m

=⇒ QINV(y = L) = 0 (5.70)

• SHORT-CHANNEL: 
V SAT
DS <

VGS − VT

m

ISAT
DS < µeffCox

W

L

(VGS − VT )
2

2m

=⇒ QINV(y = L) ̸= 0 (5.71)

Current saturates early because of vSAT, so we still have strong-inversion condition at the drain.
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In other terms, current becomes constant because vd = vSAT at the drain.

IDS = −vd(y = L)WQINV(y = L)
IDS=ISAT

DS======⇒ ISAT
DS = −vSATWQINV(y = L)

QINV = −Cox(VGS − VT −mV SAT
DS)

(5.72)

Pinch-off condition and velocity saturation are mutually exclusive: one or the other is reached according to channel length.

In order to limit Fy , we should intervene on VDS.

Hot electrons As we have seen, vSAT is the maximum drift velocity (scattering), not the maximum in absolute. Electrons, in
fact, can reach even v >> vSAT thanks to the very high kinetic energies made possibile by the band bending; these are called hot
electrons and constitute a problem for reliability (spurious state creation, oxide charging, etc...).
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5.14 Constant-field scaling
Short-channel regime has detrimental effects, unless we correctly rescale every parameter. Here are presented the constant-field
scaling rules by Dennard: vertical and horizontal electric field ratio should not change in rescaling, while avoiding velocity
saturation (do not increase electric fields at all).

All the dimensions and all the voltages have been scaled by 1/k.

−∂Fx

∂x
− ∂Fy

∂y
=

q

ϵSi

NA =⇒ − ∂Fx

∂x/k
− ∂Fy

∂y/k
=

q

ϵSi

N ′
A (5.73)

where N ′
A = kNA; doping has increased by k. Let’s see how parameters have changed (RED: reduced by k; BLUE: increased

by k):

• Electric fields
F =

V

L
−→ 1 (5.74)

• Carrier velocity
vd −→ 1 (5.75)

• Capacitances
CG = CoxWL −→ 1

k
(5.76)

• Current in the onstate regime

IDS = µnCox
W

L
(VGS − VT )VDS −→ 1

k
??

VT ≈
√
2ϵSiqNA2|ϕB |

Cox
−→ 1√

k

(5.77)

Everything would be fine if we were able to scale 2|ϕB |, but since it is related to the energy gap, we can’t; also, position of
dopants is relevant, thus we choose a non-uniform doping concentration in the substrate.

• Transit-time
tTR =

L2

µnVDS
−→ 1

k
(5.78)
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• SubThreshold Slope

STS =
KT

q
log(10)

(
1 +

CDEP

Cox

)
−→ 1 (5.79)

This can actually be a problem because we are decreasing VT without scaling the STS.

• Minimum length condition
L = 2(WDmax

+ 3tox)

WDmax
=

√
2ϵSi

q

1

NA
2|ϕB | −→

√
1

k

(5.80)

L approaches the second member while the first is smaller just by 1/k: that’s no good at all!

Now let’s consider circuit performances:

• Delay of logic gates

τ =
CV

IDS
−→ 1

k
(5.81)

We get faster circuits.

• Power dissipation
P = V IDS −→ 1

k2
(5.82)

• Density of power dissipation

p =
V I

WL
−→ 1 (5.83)

• Integration density (components per unit area)
I =

1

WL
−→ k2 (5.84)

At a first approach, everything looks fine, but we still have some issues for bidimensional electrostatics and offstate power
dissipation.

5.15 Generalized scaling
There is always a balance between pros and cons; Dennard’s rules are good but present some flaws, so here are introduced the
generalized scaling rules by Baccaram: we want to avoid moving towards bidimensionality at all costs, so we pay with a little
increase of the electric fields. All dimensions are scaled by 1/k, while all the voltages by α/k (1 ≤ α ≤ k); for α = 1 we get
back to the constant-field scaling, while for α = k we have constant voltages. Doping concentrations are also increased by αk;
as before let’s jump into details.

• Electric fields
F =

V

L
−→ α (5.85)
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• Carrier velocity

vd −→

α long-channel

1 velocity saturation
(5.86)

• Capacitances
CG = CoxWL −→ 1

k
(5.87)

• Current in the onstate regime

IDS = µnCox
W

L
(VGS − VT )VDS −→


α2

k

α

k

(5.88)

• Transit-time

tTR =
L2

µnVDS
−→


1

αk

1

k

(5.89)

• Delay of logic gates

τ =
CV

IDS
−→


1

αk

1

k

(5.90)

• Power dissipation

P = V IDS −→


α3

k2

α2

k2

(5.91)

• Density of power dissipation

p =
V I

WL
−→

α3

α2
(5.92)

• Integration density (components per unit area)
I =

1

WL
−→ k2 (5.93)

We have many problems concerning power dissipation, even though we fixed the minimum length condition; in fact, for α = k

WDmax −→ 1

k
=⇒ L > 2(WDmax + 3tox) (5.94)

Both sets of rules are valid and offer some good trade-offs. Doping concentration, then, must be increased anyway because of the
parasitic resistances.

Same thing for polysilicon gates:
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5.16 Dielectric imperfections
Scaling process constantly requires tox reduction; this worsens the oxide insulation as electrical conductivity goes up.

Electrons tend to move from the substrate to the gate, but are normally blocked by the SiO2 barrier. Said barrier is finite,
though, therefore if Ee− > 3.18 eV the electron can actually jump to the gate (high VGS , high VDS). At T = 300 K, these
energy values are hardly reached, but still higher temperatures and hot electrons may cause some problems (channel hot electron
injection).

We get static power dissipation due to the gate leakage current.
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Tunneling We focus our attention just on the tunneling effect.

We have, of course, to recall some Quantum Physics, as we did for module 3.

As usual, we consider just the energies on the right branch of the parabula. Let’s start with the discrete tunneling current
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density
JTUN,1 =

∑
kx>0

q

L3
vx(kx)f(kx, ky, kz)T (Ex) (5.95)

and immediately putting it into a continuous space.

JTUN,1 =
1(

2π

L

)3

∫
+∞

0

∫
+∞

−∞

∫
+∞

−∞

q

L3
vx(kx)f(kx, ky, kz)T (Ex)dkxdkydkz (5.96)

After a few calculations similar to last time, we eventually get

JTUN =
q(4

√
mtml + 2mt)KT

2π2ℏ3

∫
+∞

0

T (Ex) log
(
1 + e−

Ex−EF
KT

)
dEx (5.97)

T (Ex) = exp

−2

∫
x̄

0

√
2m∗(Ec − Ex)

ℏ
dx

 (5.98)

We can exploit some approximations:

For Fowler-Nordheim we get

JTUN = AF 2
ox exp

(
− B

Fox

)

A =
q2(4

√
mtml + 2mt)

16π2ℏ(qϕ− EF )m∗

B =
4
√
2m∗

3ℏq
(qϕ− EF )

3/2

(5.99)

where this is the barrier height. We have just discovered that there is an exponential dependence on the electric field in the oxide.
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We introduce now the Fowler-Nordheim condition:

Foxtox = 3.1 eV =⇒ Fox =
3.1 eV

tox
(5.100)

When tox decreases, there is an exponential increment in JTUN (barrier also changes with Fox).

High-K insulators A possible solution to avoid any leakage current to the gate is the introduction of high-K insulators.

Cox =
ϵox
tox

=
ϵHK

tHK

= CHK =⇒ tHK =
ϵHK

ϵox
tox > tox (5.101)

There is a major drawback though; it is true that we suffer less from tunneling, but high-K materials have a lower barrier and
more defect, so process-wise SiO2 is better.
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5.17 Design rules
As the final section, a bunch of good design rules are presented. In general, scaling rules alone are not enough, so we need to
define and/or quantify a few more parameters:

• Optimal SubThreshold Slope

STS =
KT

q
log(10)m ≤ 85 mV/dec −→ m ≤ 1.4 (5.102)

With m so quantified, we can relate oxide thickness and maximum depletion width.

m = 1 +
CDEP

Cox
= 1 +

ϵSi

WDmax

tox
ϵox

≈ 1 +
3tox

WDmax

≤ 1.4 =⇒ tox ≤ 0.13WDmax (5.103)

• Maximum threshold voltage shift

∆V SCE
T ∝ exp

(
− πL

2(WDmax
+ 3tox)

)
≤ 100 mV

↘

L ≥ 2(WDmax
+ 3tox) =⇒ tox ≤ L

6
− WDmax

3

(5.104)

L depends on both tox and WDmax

• Maximum electric field in the oxide (reliability requirement)

Fox =
VDD

tox
≤ Fmax

ox =⇒ tox ≥ VDD

Fmax
ox

(5.105)

All these requirements must be satisfied simultaneously, so

tmax
ox > tmin

ox =⇒ L

20
>

VDD

Fmax
ox

=⇒ VDD <
L

20
Fmax
ox (5.106)

VDD and L may seem independent, but they are not. We can condense all of this in a useful graphic.

Even VT requirements must be satisfied to have a good device, even though it is not easy to mediate among all the parameters.
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We ran out of design interval for VT in the MOSFET; it is time to jump to another device, this time tridimensional: the
FINFET.

Gate overlaps the pillar on three sides: it has a better electrostatic control over the substrate.
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Moore’s law This is not a proper physical law, it is more like an empiric statement. Complexity (integration density) of the
Integrated Circuits doubles every two years, therefore a device minimum technology-related channel length shrinks with

√
2

proportionality. In the last years, though, this law has been mended as the time to create a new model has become longer than
two years.

Finally, it is a concern of ours to show how the atomistic nature of the dopants actually affects our analysis.
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Chapter 6

Bipolar transistor (BJT)

6.1 Basics of the BJT
Even though this technology is older than the MOSFET, for some appplications (e.g. high-gain circuits) it is still preferred. The
most important structure for this device is the vertical npn junction.

If the p-region is narrow there are no recombinations, so we have a net flow of electrons from the emitter to the collector.
There is also a hole flow from the base to the emitter, which is not wanted, but unavoidable. Thus we can define

β =
IC
IB

≈ 100 (6.1)

and we want it to be as high as possible; to achieve that, doping concentration in the emitter must be higher than the one in the
base (unilateral p − n junction) and electrons injected in the base must not recombine (WB < 100 nm), otherwise we would
have just an emitter-base current. Furthermore, only if the two p−n junctions interact we have a transistor. Side parts of the base
are p+-doped to avoid horizontal current. Finally, doping concentration in the base region must be non-constant.

In this device, the bottleneck region for the current is the quasi-neutral base region.
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Let’s see in detail the bands in the base region:

What about the electric field?

p = ni exp

(
Ei − EFp

KT

)
=⇒ Ei − EFp

= KT log

(
p

ni

)

ϕ = −Ei

q
=⇒ F = −dϕ

dx
=

1

q

dEi

dx
=

�
�
��1

q

dEFp

dx
+

KT

q
��ni

p

dp

dx�
�ni

��n
2
i

=
KT

q

1

p

dp

dx

(6.2)

To be fair
dEFp

dx
̸= 0 exactly:

Jp = pµp

dEFp

dx
=⇒

dEFp

dx
=

JB
pµp

=
JC
βpµp

(6.3)

But considering these typical numbers

JC = 105 A/cm2

NA = 1018 cm−3

β = 100

µp = 150 cm2/V s

=⇒ 1

q

dEFp

dx
= 40 V/cm =⇒ WB = 100 nm =⇒ ∆VB,EFp

= 0.4 mV (6.4)

we can say that its contribution is negligible. Now we define the electron current density as

Jn = qnµnF + qDn
dn

dx
= qnµn

KT

q

1

p

dp

dx
+ qDn

dn

dx
(6.5)

and we consider it for low-injection and high-injection regimes. For the first

Jn = qnµn
KT

q

1

NB
A

dNB
A

dx
+ qDn

dn

dx
= qnµnF0 + qDn

dn

dx
(6.6)

where F0 is the built-in electric field; then for the second

Jn ≈ q�n µn
KT

q

1

�n

dn

dx
+ qDn

dn

dx
= 2qDn

dn

dx
(6.7)

This is a pure diffusion process (Webster effect).
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6.2 Calculation of IC
Now we investigate the collector current in both low-level and high-level of injection. Let’s start from the first.

Low-level of injection We already solved the Poisson equation for this:

Jn = qDn
dn

dx
= constant

∫ WB

0

Jndx =

∫
n(WB)

n(0)

qDndn

JnWB = qDn

[
n(WB)− n(0)

]

Jn = −qDn
�����: 0
−n(WB) + n(0)

WB

(6.8)

The actual current would be

IC = −AEJn =
AEqn

2
i e

qVBE
KT

NB
AWB

Dn

=
AEqn

2
i

GB
e

qVBE
KT (6.9)

where AE is the collector area and GB is the Gummel number of the base. Keep in mind that WB is the width of the quasi-neutral
base region, not the actual physical width; this is called prototype transistor.

High-level of injection This time it is not a pure diffusion current.

Jn = qnµnF + qDn
dn

dx
= qnµn

KT

q

1

p

dp

dx
+ qDn

dn

dx
=

qDn

p

[
n
dp

dx
+ p

dn

dx

]
=

qDn

p

d(pn)

dx
= constant

∫ WB

0

Jn
p

qDn
dx =

∫
pn(WB)

pn(0)

d(pn)

Jn

∫ WB

0

p

qDn
dx = �����:0

px(WB) − pn(0) = −n2
i e

qVBE
KT

Jn = − n2
i e

qVBE
KT∫

WB

0

p

qDn
dx

(6.10)

Thus the current is

IC =
AEqn

2
i e

qVBE
KT∫

WB

0

p

Dn
dx

= AE
qn2

i

GB
e

qVBE
KT (6.11)
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which is the same as before, except for the Gummel number being an integral.

Band-gap narrowing This effect happens when the doping concentration is high.

Of course we don’t want that to happen, so we add different Ge concentrations to the Si-substrate (SiGe) to voluntarily
reduce the band-gap at x = WB .

pn = n2
ie exp

(
EFn

− EFp

KT

)

n2
ie = NcNv exp

(
−EG −∆EG

KT

)
= NcNv exp

(
− EG

KT

)
exp

(
∆EG

KT

)
= n2

i exp

(
∆EG

KT

) (6.12)
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Therefore the current density becomes

Jn = nµn
dEFn

dx
= nµnKT

n2
ie

pn

d

(
pn

n2
ie

)
dx

= qDn

n2
ie

p

d

dx

(
pn

n2
ie

)
= constant

∫ WB

0

Jn
p

qDnn2
ie

dx =

∫ pn

nie

(WB)

pn

n2
ie

(0)

d

(
pn

n2
ie

)

Jn = − e
qVBE
KT∫

WB

0

p

qDnn2
ie

dx

(6.13)

and so the current
IC =

AEqn
2
i∫

WB

0

n2
i

n2
ie

p

Dn
dx

e
qVBE
KT =

AEqn
2
i

GB
e

qVBE
KT (6.14)

6.3 Calculation of IB
We want the base current to be the smallest possible; in this case, bottleneck region is constituted by the quasi-neutral emitter
region.

First we consider a shallow emitter, where the quasi-neutral region is very short. In this case we just repeat the calculations
already done in the previous section (this time for Jp) and get

IB =
AEqn

2
i∫

0

−WE

n2
i

n2
ie

n

qDp
dx

e
qVBE
KT =

AEqn
2
i

GE
e

qVBE
KT (6.15)

Also, under low-level of injection

GE ≈ n2
i

n2
ie

NE
D

Dp
WE (6.16)

If instead we have a deep emitter (wide emitter), we should consider also G/R processes; let’s take a simple case (low-injection,
NE

D constant and no ∆EG) as an exemple:

Jp =
qDppn0

e
qVBE
KT

Lp tanh

(
WE

Lp

) =⇒ IB =
AEqn

2
i

NE
DLp

Dp
tanh

(
WE

Lp

)e
qVBE
KT =

AEqn
2
i

GE
e

qVBE
KT (6.17)

Gummel number is the one that keeps changing. Now let’s spend some word for β: as we know, this parameter should be as high
as possible; let’s rewrite 6.1 as

β =
AEqn

2
i

GB
e

qVBE
KT

GE

AEqn2
i e

qVBE
KT

=
GE

GB
(6.18)
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Thus we need GE > GB ; to make it so, doping concentration is the most important parameter to play with. If we then add the
band gap narrowing into the equation, it is useful to compare the two Gummel numbers.

GE =

∫
0

−WE

n2
i(

n2
ie

)
E

n

qDp
dx

GB =

∫
WB

0

n2
i(

n2
ie

)
B

p

qDn
dx

(6.19)

Reduction of GE is stronger than GB when ∆EG is present, so β decreases with band-gap narrowing.

6.4 High/low-current regimes
It is time to look at the edges of our IC − VBE curve; first we start with the low-current regime.

In the high-current regime, then, parasitic resistances do have a role as current increases less. Other than this, high-injection
in base quasi-neutral region (majority carriers increase) provokes the same effect. For 6.19, it is clear that

IC ∝ 1

GB
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That is known as the modulation of the base conductivity. Furthermore, a third effect also appears and it is typical of the BJT: the
Kirk effect (base-widening effect).

We assume that electrons move under velocity saturation, so

Jn = qnvSAT = Jc =⇒ n =
Jc
qvSAT

≈ NC
D (6.20)

n increases along with Jc untile it becomes comparable with the doping concentration, then there is no depletion layer anymore.
This happens because of the two interactive p− n junctions.

In comparison we have

NB
A xp0

= NC
Dxn0

∆ϕ =
qNC

D

2ϵSi

x2
n0

+
qNB

A

2ϵSi

x2
p0

⇐⇒

(NB
A + n)xp = (NC

D − n)xn

∆ϕ =
q(NC

D − n)

2ϵSi

x2
n +

q(NB
A + n)

2ϵSi

x2
p

(6.21)

and so 
xn = xn0

√
1 + n/NB

A

1− n/NC
D

≈ xn0√
1 + n/NC

D

> xn0

xp = xp0

√
1− n/NC

D

1 + n/NB
A

≈ xp0

√
1− n

NC
D

< xp0

(6.22)
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Which is the limit?

6.5 IC − VCE curve
Here is presented the most important curve for the BJT.

VCE = VBE − VBC (6.23)

First we consider VCE = 0: the two junctions are under forward bias, so holes must be considered. As a consequence of that, we
have a small negative IC which can be easily considered as null.

After that, IC increases exponentially with VCE until VBC is below VBE by at least KT/q. This is when VCE = V SAT
CE and we

enter forward active regime.
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We do want to work in this regime. Also, Early effect is present as well.

We can easily find VA with this procedure: first we look at the drawing and see

VA +���*
100 mV

V SAT
CE =

IC
∂IC/∂VCE

(6.24)

then we do some calculations

IC = AE
qn2

iDn

NB
AEB

e
qVBE
KT

∂IC
∂VCE

=
AEqn

2
iDn

NE
A

e
qVBE
KT

(
− 1

W 2
B

)
∂WB

∂VCE
= − IC

WB

∂WB

∂VCE

∂WB

∂VCE
=

∂WB

∂VCB
= − ∂xp

∂VCB

qNB
A

qNB
A

= −CBC
DEP

qNB
A

Combining all of these produces

VA =
qNB

AWB

CBC
DEP

=
QV

p

CBC
DEP

(6.25)
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If we plug these numbers 
WB = 100 nm

NB
A = 1018 cm−3

NC
D = 2 · 1016 cm−3

=⇒ VA = 40 V (6.26)

6.6 Small signal model
Alas, we have arrived at the end. Of course, what is left to be done is the small signal model for the BJT.

Here are the parameters we need:

• Small signal transconductance

gm =

(
∂IC
∂VBE

)
VCE

=
IC

KT/q
(6.27)

• Input resistance

rπ =

(
∂IB
∂VBE

)−1

VCE

=
β

gm
(6.28)

• Output resistance

r0 =
1

g0
=

(
∂IC
∂VCE

)
VBE

=
VA

IC
(6.29)

• Small signal capacitances Cπ = CBE
DEP + CDIFF

Cµ = CBC
DEP

(6.30)

What is exactly QDIFF? It is the diffusion charge stored in the device and can be defined as

QDIFF = QB +QE +QBC +QBE (6.31)

Let’s study in details each charge:
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• Extra charge in quasi-neutral base region

QB = ICtB (6.32)

tB =
W 2

B

2Dn
(6.33)

• Extra charge coming from the minority carriera in quasi-neutral emitter region

QE = IBτp =
IC
β
τp = ICtE (6.34)

• Free charge from the depletion layer between base and collector regions

QBC = qnWBC
D AE = �qW

BC
D AE

Jc

�qvSAT

= IC
WBC

D

vSAT

= ICtBC (6.35)

• Diffusion charge from the depletion layer between base and emitter (no vSAT)

QBE = ICtBE (6.36)

Now let’s rewrite 6.31
QDIFF = IC(tB + tE + tBC + tBE) = ICτF (6.37)

where the last time constant is the forward transit time. Trivially, we know the diffusion capacitance because

CDIFF =

(
∂QDIFF

∂VBE

)
VCE

= gmτF (6.38)

At this point, we can obtain the cut-off frequency:

fT =
gm

2π(Cπ + Cµ)
=

gm
2π(CBE

DEP + CBC
DEP + CDIFF)

=
gm

2π(CBE
DEP + CBC

DEP + gmτF)
(6.39)

We can also play a little with the last equation and get

1

fT
=

2π(CBE
DEP + CBC

DEP )

IC

KT

q
+ 2πτF (6.40)

Lastly, here are some considerations about the BJT structure: since it is a vertical device, the width of its most important parts
results from counter-implantations of Si.
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Simulation labs
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Lab 1

13 
 

Step 5: Analysis of the simulation results in Matlab 

The file with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab 
for a detailed analysis of the dependence of the electrostatics of the investigated silicon region on the 
periodicity of the sine wave modulating the doping concentration. Students are kindly invited to try to 
perform this analysis on their own, reproducing the figures reported in this section (anyway, who is still not 
familiar with Matlab may find the sequence of commands used to generate the reported figures at the end 
of this section). 

Fig.1 shows the profile of the conduction band edge Ec along the investigated silicon region as resulting from 
the numerical simulations performed in Comsol Multiphysics, in the case of a number of periods of the sine 
wave modulating the doping concentration Nper=2 (blue curve) and Nper=300 (green curve). In the former 
case, the period of the sine wave modulating the doping concentration equals 1µm and clearly appears from 
the periodicity of the Ec profile in the material. In this regard, note also that the vertical shift of Ec over the 
space in the case of Nper=2 reveals that the electron concentration follows (at least partially) the change of 
the donor doping concentration (remember that the sine wave for the doping concentration starts with its 
positive branch at x=0 in the project and that a downward shift of Ec may only result in the growth of the 
electron concentration in the presence of a constant Fermi level EF). In the case of Nper=300, instead, the 
period of the sine wave modulating the doping concentration equals about 6.7nm, but no evidence of that 
appears from the Ec profile in Fig.1. More in general, the Ec profile in this latter case does not provide any 
evidence at all of the change of the doping concentration over the space. In fact, Ec is almost flat all over the 
silicon region, meaning that the electron concentration is almost constant. 
 

  
Fig.1: Simulation results for Ec as a function of the position in the 
investigated silicon region in the case of Nper=2 and 300. The 
Fermi level EF is also shown. 

Fig.2: Simulation results for the electron concentration as a 
function of the position in the case of Nper=2. The donor doping 
concentration is also shown. 

 

To go into more details with the analysis of the simulation results, Fig.2, Fig.3 and Fig.4 compare the electron 
concentration profile with the doping concentration profile in the case of Nper=2, 34 and 180, respectively. 
In the first case (Fig.2), the electron concentration almost equals the doping concentration, following its 
change over the space. In the second case (Fig.3), instead, a sine wave modulation of the electron 
concentration in phase with the modulation of the doping concentration clearly appears, but the amplitude 
of the former is significantly less than that of the latter. In the third case (Fig.4), finally, the modulation of the 
electron concentration over the space is almost negligible (the same is true also for larger values of Nper). 
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Fig.3: Simulation results for the electron concentration as a 
function of the position in the case of Nper=34. The donor doping 
concentration is also shown. 

Fig.4: Simulation results for the electron concentration as a 
function of the position in the case of Nper=180. The donor 
doping concentration is also shown. 

 

 

Figs.2-4 revealed that a sine wave modulation of the donor doping concentration gives rise to an in-phase 
sine wave modulation of the electron concentration, with the amplitude of the latter depending on Nper. 
More specifically, the amplitude of the modulation of the electron concentration approaches the amplitude 
of the modulation of the doping concentration when Nper is low and decreases down to zero when Nper is 
high. For the sake of accuracy, it is now important to point out that the amplitude of the modulation of the 
electron concentration is actually dependent on the periodicity of the sine wave modulating the doping 
concentration, with the quantitative trend with Nper being just the consequence of that dependence in the 
presence of a constant length of the silicon region Ltot (students can easily verify this point by repeating the 
simulations in Comsol Multiphysics with different values of Ltot). The amplitude of the modulation of the 
electron concentration is then reported in Fig.5 as a function of the periodicity of the sine wave modulating 
the doping concentration, with the latter quantified in terms of quarter of period of the wave (the reason for 
taking the quarter of period of the wave and not the full period will be discussed later). The curve clearly 
shows that the transition of the amplitude of the modulation of the electron concentration from the value 
corresponding to the amplitude of the modulation of the doping concentration to zero occurs, roughly, over 

  
Fig.5: Simulation results for the amplitude of the sine wave 
modulating the electron concentration as a function of one fourth 
of the spatial period of the sine wave modulating the doping 
concentration. 

Fig.6: Simulation results for the amplitude of the sine wave 
modulating the electron concentration normalized by dNd as a 
function of one fourth of the spatial period of the sine wave 
modulating the doping concentration in the case of 
dNd=0.1x1017cm-3 and 0.5x1017cm-3. 
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the interval from 100nm to a few nm. Almost in the middle of this interval, there is the value of the Debye 
length corresponding to silicon with average donor doping concentration Nd=1017cm-3, which is about 13nm. 
This proves that, for the majority carrier concentration and the electrostatics in a semiconductor material to 
follow a change of the doping concentration, the latter change must occur over a distance much longer than 
the Debye length. If that is not the case, the majority carrier concentration significantly deviates from the 
doping concentration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The reason why the quarter of period and not the full period of the sine wave modulating the doping 
concentration has been considered along the horizontal axis of Fig.5 can now be easily understood starting 
from the previous general discussion on the role of the Debye length. First of all, it is worth noting that, 
irrespective of Nper and the amplitude of the modulation of the doping concentration dNd, the electron 
concentration equals the average doping concentration Nd at the points where the sine wave modulating the 
doping concentration is zero (see Figs.2-4). That is due to the fact that i) the sine wave gives rise to a 
symmetrical modulation of the doping concentration around Nd and ii) the doping concentration is not 
altered at those points with respect to the case of no modulation of the doping concentration (i.e., dNd=0). 
Given that the electron concentration equals Nd at the points where the sine wave modulating the doping 
concentration is zero, the quarter of period of the sine wave represents the distance over which the electron 
concentration should change to follow the change of the doping concentration. That is, then, roughly the 
distance to be compared with the Debye length (a more accurate analysis, however, leads to a slightly 
different definition of the characteristic length to be compared with the Debye length, see *). In particular, 
if that distance is much longer than the Debye length, the electron concentration can follow the doping 
concentration over the space (Fig.2) and the amplitude of the modulation of the former concentration almost 
equals that of the latter (see what happens in Fig.5 above 100nm). If, instead, that distance is comparable or 
shorter than the Debye length, the electron concentration cannot follow the doping concentration over the 
space (Figs.3-4). In this latter case, the electron concentration changes more slowly, trying to catch the 
change of the doping concentration over a distance of a few Debye lengths. Due to the periodic nature of the 
modulation of the doping concentration over the space considered in the project, however, that slow change 
of the electron concentration turns into a reduction of the amplitude of the modulation of this latter 
concentration. This point can be easily understood by considering two adjacent quarter of periods of the sine 
wave making the doping concentration grow from Nd to Nd+dNd and then decrease from Nd+dNd to Nd. Over 
the first quarter of period, the electron concentration tends to grow from Nd to Nd+dNd, but to achieve that 
change a distance of a few Debye lengths would be needed. As a consequence, the increase of the electron 
concentration at the end of the first quarter of period of the sine wave is smaller than dNd. During the second 

 
Fig.7: Simulation results for the amplitude of the sine wave 
modulating the electron concentration as a function of one fourth 
of the spatial period of the sine wave modulating the doping 
concentration in the case of Nd=1017cm-3, 5x1017cm-3, 1018cm-3. 
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quarter of period, then, the electron concentration tends to decrease back to Nd, because that is what the 
doping concentration does. As a results, the electron concentration peaks at the same position of the doping 
concentration, but the amplitude of the peak of the former concentration is smaller than the amplitude of 
the peak of the latter. In the case the quarter of period of the sine wave of the doping concentration is much 
shorter than the Debye length, moreover, the peak is not significantly higher than Nd, meaning that the 
electron concentration remains nearly constant over the space (see what happens in Fig.5 for quarter of 
periods shorter than a few nm). 

To further prove that the capability of the majority carrier concentration to follow the change of the doping 
concentration depends on the periodicity of the sine wave and not on other parameters, the simulations 
performed in Comsol Multiphysics have been repeated with dNd=0.5x1017cm-3. Fig.6 shows that the increase 
of the amplitude of the modulation of the doping concentration does not affect at all the previous 
conclusions. This confirms that it is not the amplitude but the periodicity of the modulation of the doping 
concentration to be relevant for the results. Finally, Fig.7 shows what obtained by repeating the Comsol 
Multiphysics simulations with different values of Nd, equal to 1017cm-3, 5x1017cm-3 and 1018cm-3 
(dNd=0.1x1017cm-3). As clearly appearing from the figure, the curve representing the amplitude of the 
modulation of the electron concentration displays a leftward shift with the growth of Nd, as expected from 
the corresponding reduction of the Debye length. This represents a further proof of the previous physical 
picture for the change of the majority carrier concentration over the space. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

* Interested students may try to demonstrate that the characteristic length of the sine wave modulation of the doping 
concentration to be compared with the Debye length is actually the period of the sine wave divided by 2π, i.e., 
Ltot/Nper/2π. Coming to that result is not difficult and requires just to set a sine wave modulation of the donor and 
electron concentrations in the Poisson equation, so Nd=Ñd+dNd*sin(2π*Nper/Ltot*x) and 
n=Ñd+dn*sin(2π*Nper/Ltot*x) and to formulate the electrostatic potential φ as a function of n. From the resulting 
equation, assuming dNd and dn to be small, the following expression for dn can be easily calculated: 

𝑑𝑑𝑑𝑑 =
𝑑𝑑𝑑𝑑𝑑𝑑

1 + �𝐿𝐿𝐿𝐿𝐿𝐿 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 2π
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 �

2 

From the previous formula, the comparison between the Debye length Ldn and Ltot/Nper/2π is clearly evident. Besides, 
the formula allows to reproduce the trends for the amplitude of the modulation of the electron concentration obtained 
from the simulations performed in Comsol Multiphysics and shown in Figs.5-7. By plotting dn as a function of 
Ltot/Nper/2π, the Debye length corresponds to the characteristics length at which dn=dNd/2, as also evident from the 
previous formula for dn. 
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Step 5: Comparison between the numerical and the analytical results in Matlab 

The file with the electrostatic results generated by Comsol Multiphysics can now be easily loaded into Matlab 
for a comparison with the analytical results obtained during lessons (see the notes on “The p-n junction”). 
Students are kindly invited to try to perform the comparison on their own, reproducing the figures reported 
in this section (anyway, who is still not familiar with Matlab may find the sequence of commands used to 
generate the reported figures at the end of the analysis). 

Fig.1 shows the band diagram of the investigated p-n junction as resulting from the numerical simulations 
performed in Comsol Multiphysics (blue curves) and from the analytical formulas obtained during lessons 
(green curves). The edges -xp and +xn of the depletion layer obtained from the analytical calculations are also 
highlighted and the Fermi level EF is shown as a horizontal red dashed line. As clearly appearing from the 
figure, the numerical and the analytical results are quite similar, with just a slightly smoother transition of 
the bands at the edges of the depletion layer in the former case. This confirms the validity of the 
approximations done in the theoretical analysis of device electrostatics. To be more quantitative in the 
comparison, Fig.2 shows the discrepancy between the numerical and the analytical results, i.e., the difference 
between the value of the conduction band edge Ec (or valence band edge Ev) resulting from the former and 
the latter, as a function of the position along the x-axis. This discrepancy can be considered to be the error 
on the band diagram (or the electrostatic potential) coming from the approximations involved in the 
analytical calculations performed during lessons. The figure reveals that the error is always less than the 
thermal energy kT, i.e., it is small, and peaks close to the edges of the depletion layer. The fact that the error 
reaches its highest values at the edges of the depletion layer can be explained by considering that there the 
depletion approximation assumes an abrupt transition of the majority carrier concentration from the doping 
value to zero. As will be pointed out in the next discussions, that is not possible, since the majority carrier 
concentration requires a few Debye lengths (LD) to change. 
 

  
Fig.1: Comparison between the numerical and the analytical 
results for the electrostatics of the investigated p-n junction 
under thermodynamic equilibrium in terms of band diagram. 

Fig.2: Error on the energy bands of the p-n junction due to the 
approximations involved in its theoretical analysis, as obtained 
from the comparison of the numerical and analytical results in 
Fig.1. The error is calculated as Ec from numerical simulations 
minus Ec from analytical formulas. 

 

Fig.3 extends the comparison between the numerical and the analytical results to the electric field (F) profile 
in the device. Even with this metric, the discrepancy between the results is relatively small and consists mainly 
in a smoother transition of the F at the edges of the depletion layer in the numerical case. Fig.4 shows that 
well inside the depletion layer the relative error on F is less then 10%, confirming again the validity of the 
analytical investigations performed during lessons. Only close to the edges of the depletion layer the relative 
error steeply rises, because the analytical studies assume that F goes to zero at +xn and -xp. That makes the 
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relative error reach 100% at those points. Anyway, the low value of F at the edges with respect to the central 
regions of the depletion layer makes the error not relevant for device operation. 
 

  
Fig.3: Comparison between the numerical and the analytical 
results for the electrostatics of the investigated p-n junction 
under thermodynamic equilibrium in terms of electric field. 

Fig.4: Relative error on F in the p-n junction due to the 
approximations involved in its theoretical analysis, as obtained 
from the comparison of the numerical and analytical results of 
Fig.3. The relative error is calculated as the absolute value of the 
difference between F from numerical simulations and from 
analytical formulas, normalized by F from numerical simulations. 

 

Fig.5 shows that even the profiles for the electron and hole concentrations predicted by the numerical and 
analytical results are in quite good agreement. This is a direct consequence of the agreement between the 
results in term of band diagram in Fig.1. Fig.6 shows that the relative error on the concentrations is the 
highest close to the edges of the depletion layer, where it can reach 100% (this corresponds to an analytical 
carrier concentration that is twice the carrier concentration coming from numerical simulations). Well inside 
the depletion layer and in the side regions of the device, instead, the error is significantly smaller. 
 

  
Fig.5: Comparison between the numerical and the analytical 
results for the electrostatics of the investigated p-n junction 
under thermodynamic equilibrium in terms of carrier 
concentration. 

Fig.6: Relative error on the carrier concentration in the p-n 
junction due to the approximations involved in its theoretical 
analysis, as obtained from the comparison of the numerical and 
analytical results in Fig.5. The relative error is calculated as the 
absolute value of the difference between the carrier 
concentration from numerical simulations and from analytical 
formulas, normalized by the carrier concentration from numerical 
simulations. 
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In order to complete the comparison between the numerical and the analytical results for the electrostatics 
of the investigated p-n junction under thermodynamic equilibrium, it is worth noting that the carrier 
concentration profiles considered in Figs.5-6 for the analytical case are those coming from the band diagram 
in Fig.1 and not those corresponding to the depletion approximation. The latter, in fact, would predict a 
majority carrier concentration equal to the doping concentration in the side regions of the device that are 
under charge neutrality conditions and an electron and hole concentration equal to zero in the depletion 
layer. Such a behavior for the carrier concentations misses that majority carriers require a few Debye lengths 
LD to change, as highlighted in Fig.7. In this figure, the hole concentration at the edge of the depletion layer 
on the p side of the junction and the electron concentration at the edge of the depletion layer on the n side 
of the junction are shown to change from the value corresponding to the doping concentration to one tenth 
of that value in an interval equal to nearly 4LD centered at -xp and +xn, respectively. That means that the 
change of the majority carrier concentration at the edges of the depletion layer is smoother than what 
predicted by the depletion approximation and that is the reason why even the band diagram and the F 
profiles obtained from numerical simulations in Figs.1-3 are slightly smoother than the analytical predictions 
at those points. The accuracy of the analytical results is, anyway, rather good because the smoother majority 
carrier profile does not significantly modify the total charge Qdep exposed in the depletion layer. This charge 
equals 1.57x10-7C/cm2 when calculated with the analytical formula and 1.54x10-7C/cm2 when calculated from 
the spatial integration on each side of the device of the majority carrier profile obtained from the numerical 
simulations. The error on this charge is then just equal to 2.4%. Such a low error reveals that the depletion 
approximation makes the profile of the charge exposed in the device more abrupt at the depletion layer 
edges, but the total amount of charge exposed is not affected by it and that is the reason why it allows to 
reproduce rather well the band diagram and F profile in the device.  
 

 
Fig.7: Same as in Fig.5, but zooming the y-axis in a range close to 
the values of the doping concentration. 

 

To further challenge the validity of the analytical results for the electrostatics of a p-n junction, students are 
kindly invited to extend this analysis by going back to Comsol Multiphysics and addressing the case of 
different doping concentrations (to do that, change the value of the global parameters Na and Nd in the 
project). In so doing, it should become clear that the errors coming from the approximations involved in the  
analytical results are always rather low, unless a unilateral junction with a very large difference (a factor 500 
or more) in the doping concentration of the n and p regions is considered. The reasons why in this latter case 
the approximation errors grow are left to the students’ physical insight. Besides, the impact of the Maxwell-
Boltmann approximation on the results could also be investigated by changing the field Carrier Statistics 
under the tree Model Properties in the Settings window for Semiconductor. 
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Step 6: Analysis of the results in Matlab and comparison with the analytical results 

A. Results from Study 1 
By loading into Matlab the file with the results from Study 1 generated by Comsol Multiphysics, the impact 
of tau0 (carrier lifetime or characteristic time constant of the generation/recombination processes) on the 
operation of a p-n junction under bias can be explored. Besides, the numerical results obtained from the 
accurate solution of the Poisson and continuity equations in the device can be compared with the predictions 
of the ideal diode analysis (see the notes on “The p-n junction”) to check the accuracy of the assumptions 
and approximations involved in the latter. Students are kindly invited to try to perform some analyses and 
comparisons on their own, reproducing also the figures reported in this section (the sequence of Matlab 
commands used to generate the reported figures is, anyway, provided at the end of this section). 

Fig.1 shows the band diagram of the investigated p-n junction as resulting from the numerical simulations 
performed in Comsol Multiphysics and as obtained from the analytical formulas coming from the ideal diode 
analysis under the same working conditions set in Study 1, i.e., forward bias V=0.6V and temperature T=300K. 
In the figure, the quasi-Fermi level for electrons (EFn) and holes (EFp) are reported for all of the explored tau0 
values, while the conduction band edge (Ec) and valence band edge (Ev) are shown just for a single value of 
the parameter. Note, in fact, that the ideal diode analysis predicts no dependence of the band profile on tau0 
and numerical results nicely confirm this conclusion. The latter point is proved in Fig.2 by the fact that the 
discrepancy between the numerical and the analytical results for the band profile does not show any 
significant dependence on tau0. In addition to that, Fig.2 also demonstrates that the analytical calculations 
provide a rather good description of device electrostatics. Similarly to the case of thermodynamic 
equilibrium, in fact, the discrepancy between the numerical and the analytical results is always less than the 
thermal energy kT, i.e., small. This proves the validity of all of the arguments and approximations used at the 
beginning of the ideal diode analysis to come to the band profile of the p-n junction under bias.  
 

 

While the impact of tau0 on Ec and Ev is negligible, that on EFn and EFp is relevant and clear from Fig.1. In 
particular, the change of tau0 in the explored range from 10-5s to 2x10-13s results in a significant change of 
the behavior of the quasi-Fermi level of minority carriers in the quasi-neutral regions of the device. Since the 
analytical results for EFn and EFp closely match the simulation results, we can get back to the ideal diode 
analysis to easily explain the observed trends. Focusing on what happens in the quasi-neutral p region, for 
instance, we can say that with tau0=10-5s and 10-9s, the diffusion length Ln of electrons (minority carriers in 

  
Fig.1: Comparison between the numerical and the analytical 
results for the band diagram of the investigated p-n junction 
under forward bias, with V=0.6V. The results for EFn and EFp are 
reported for all of the explored values of tau0. 

Fig.2: Error on the energy bands of the p-n junction due to the 
approximations involved in its theoretical analysis, as obtained 
from the comparison of the numerical and analytical results in 
Fig.1. The error is calculated as Ec from numerical simulations 
minus Ec from analytical formulas, for all of the explored values of 
tau0. 
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that region) equals, respectively, 139µm and 1.39µm. Those lengths are significantly longer than the width 
of the quasi-neutral p region, making the device work as a narrow-base device. That means that the electron 
concentration is expected to follow a linear profile and EFn is expected to drop logarithmically from 0eV in 
the figure down to -0.6eV when moving from the depletion layer edge -xp to the contact of the p region. 
When, instead, tau0 is reduced to 10-12s and 2x10-13s, Ln decreases down to 44nm and 19nm. These lengths 
are shorter than the width of the quasi-neutral p region, meaning that the device assumes a wide-base 
behavior for those values of tau0. As a consequence, the electron concentration is expected to decrease 
exponentially and EFn is expected to drop linearly from 0eV down to EFp when moving from -xp into the quasi-
neutral p region. The slope of the linear EFn trend, moreover, is expected to be equal to kT/Ln, meaning that 
the drop of EFn is expected to get steeper for shorter Ln and, in turn, tau0. For tau0 equal to 10-11s, finally, an 
intermediate behavior between the case of narrow-base and wide-base is obtained, since Ln=139nm is 
comparable to the width of the quasi-neutral p region. Similar arguments can be used to explain the behavior 
of EFp in the quasi-neutral n region. 
 

 

In order to compare in detail the predictions of the ideal diode analysis with the numerical results obtained 
through Comsol Multiphysics in terms of quasi-Fermi levels, Fig.3 shows the discrepancy between them 
extracted from the EFn and EFp curves reported in Fig.1. For all of the explored values of tau0 but 2x10-13s, the 
discrepancy is relatively small. In this regard, note that the peaks of the curves appearing close to the contacts 
of the p and n regions are likely due to inaccuracies of the numerical simulations in resolving the steep change 
of the quasi-Fermi level of minority carriers with the selected mesh for the discretization of the x-axis (this is 
completely negligible from the standpoint of the overall accuracy of the simulations, since the minority 
carrier concentration at those points is by orders of magnitude smaller than at the edges of the depletion 
layer). With this in mind, the peaks of the curves close to the contacts in Fig.3 are properly not a consequence 
of errors coming from the assumptions and approximations involved in the ideal diode analysis and the latter 
can be considered quite good even from the standpoint of the resulting quasi-Fermi levels. The only case for 
which a relevant discrepancy between numerical and analytical results appears (far from the contacts) in 
Fig.1 is that of tau0=2x10-13s. In that case, the behavior of EFn and EFp predicted by the ideal diode analysis is 
affected by errors that are comparable or even higher than kT. The reasons for that are related to the quite 
short diffusion length of minority carriers in the quasi-neutral regions of the device, as it will be better 
discussed later. 

  
Fig.3: Error on the quasi-Fermi levels of the p-n junction due to 
the approximations involved in its theoretical analysis, as 
obtained from the comparison of the numerical and analytical 
results in Fig.1. The error is calculated as EF from numerical 
simulations minus EF from analytical formulas, for all of the 
explored values of tau0. 

Fig.4: Derivative of EFn and EFp over the space, as resulting from 
numerical simulations for all of the explored values of tau0. 
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Although the ideal diode analysis provides a careful description of the behavior of EFn and EFp in the band 
diagram of Fig.1 (with the previously mentioned exception of the case with tau0=2x10-13s), that analysis 
cannot be used to explore the weak change of the quasi-Fermi levels in the depletion layer of the device. In 
that analysis, in fact, EFn is considered to be perfectly flat from the contact of the n region to -xp and EFp is 
considered to be perfectly flat from the contact of the p region to +xn (unless second-order corrections are 
added in the analysis). The numerical results, instead, can be used to highlight even the very small changes 
of the quasi-Fermi levels in those regions. To that aim, Fig.4 shows the spatial derivative of EFn and EFp as a 
function of the position inside the device. Focusing on electrons and EFn (the discussion can easily be extended 
to the case of holes and EFp), an increase by orders of magnitude of the curves appears when moving from 
the quasi-neutral n region to the quasi-neutral p region. That is required to assure the continuity of the 
electron current density Jn in the presence of an electron concentration decreasing by orders of magnitude 
in the same direction. Besides, since the reduction of tau0 gives rise to an increase of Jn (the reasons for that 
are left to the students’ physical insight), an increase of the derivative of EFn is observed almost all over the 
device in Fig.4 when tau0 is changed from 10-5s to 2x10-13s.  
 

 

To better visualize what happens to the derivative of EFn and EFp close to the depletion layer of the p-n 
junction, a zoomed version of Fig.4 is provided in Fig.5. From this latter figure, the derivative of EFn and EFp 
clearly displays a large drop when moving into the depletion layer from, respectively, the quasi-neutral p 
region and the quasi-neutral n region. That is due to the combined action of the band bending in the depletion 
layer on the carrier concentration and of the need to keep the continuity of Jn and justifies the approximation 
made in the ideal diode analysis that inside the depletion layer EFn and EFp are constant in the band diagram. 
Again, the only case in which that approximation is not so good, since the drop of the derivative of EFn and 
EFp entering the depletion layer is not so strong, is that of tau0=2x10-13s. 

To complete the analysis, Fig.6 shows (on a linear y-scale) the behavior of the minority carrier concentration 
in the quasi-neutral regions of the p-n junction. As previously mentioned, for tau0=10-5s and 10-9s, the device 
behaves as a narrow-base diode and the minority carrier concentration drops linearly when moving from the 
edges of the depletion layer to the contacts. When, instead, tau0=10-12s and 2x10-13s, the device reaches a 
wide-base behavior, with the minority carrier concentration dropping exponentially when entering the quasi-
neutral regions from the depletion layer. For tau0=10-11s, an intermediate behavior is obtained. In the figure, 
a very good agreement between the numerical and the analytical results clearly appears for all the tau0 
values, with the exception, again, of the case with tau0=2x10-13s. In this latter case, the curve for the minority 
carrier concentration coming from numerical simulations is significantly shifted towards the depletion layer 
with respect to that predicted by the ideal diode analysis, meaning that a stronger drop of the carrier 
concentration occurs inside the depletion layer. That is in agreement with the fact that, in the case of 
tau0=2x10-13s, the quasi-Fermi levels display a nonnegligible drop inside the depletion layer in Fig.1. This 

  
Fig.5: Same as in Fig.4, but zoomed closed to the depletion layer. Fig.6: Concentration of the minority carriers over the space, for 

all of the explored values of tau0. 
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effect can be explained by considering that tau0=2x10-13s is so short that the minority carrier diffusion length 
in the quasi-neutral regions is comparable to the Debye length in those regions. Since the bands require 
about a couple of Debye lengths inside the quasi-neutral regions to become fully flat starting from -xp and 
+xn (see the discussions in the “Simulation Lab #2 – The p-n junction under thermodynamic equilibrium”), that 
means that, when tau0=2x10-13s, the drop of the minority carrier concentration in the quasi-neutral regions 
occurs over an interval of the x-axis where a small band bending still exists and affects carrier transport. Due 
to that, the ideal diode analysis is for tau0=2x10-13s not as accurate as for the other tau0 values. However, it 
is worth remarking that values of tau0 shorter than 10-9s, and in particular so short to provide a diffusion 
length of minority carriers comparable with the Debye length of the quasi-neutral regions, are unphysical. 
These values were considered in this Lab just to explore the case of a wide-base diode without increasing the 
width of the p and n regions, because that increase would have made difficult the clear visualization of the 
band profile and of the behavior of the quasi-Fermi levels in the device given the width of the depletion layer. 
Besides, in so doing, the ideal diode analysis was challenged with some extreme choice of device parameters 
and the overall accuracy encountered in these cases represents a general proof of its validity. 

For some further investigations, students may try to repeat the analyses for different T or changing FWp and 
FWn (paying attention, in this latter case, to mesh discretization if large changes of device width are 
introduced). Besides, the case of reverse bias may be explored, trying to understand why some differences 
appearing in the quasi-Fermi level behavior are in the end irrelevant from the standpoint of device current. 

 

B. Results from Study 2 
By loading into Matlab the file with the results from Study 2 generated by Comsol Multiphysics, the J-V 
characteristics of the investigated p-n junction can be studied as a function of T, comparing the results with 
the theoretical analyses performed during lessons. Again, students are kindly invited to try to reproduce the 
analyses and figures reported below on their own (the sequence of Matlab commands used to generate the 
reported figures is, anyway, provided at the end of this section). 

Fig.7 shows the J-V curve of the p-n junction resulting from numerical simulations at T=200K, 300K, 400K and 
500K. Focusing, first, on the curve at T=300K, it is easy to recognize all the main features of the J-V 
dependence discussed during lessons. First of all, the curve displays a rectifying behavior, with J growing 
exponentially under forward bias and just weakly under reverse bias. Under forward bias, moreover, the 
growth of J with V displays an ideal slope of 60mV/dec in the intermediate J regime (marked as 1 in the figure, 
see the red dashed line). In the low J regime (marked as 2 in the figure, see the green dashed line), instead, 
the slope of the curve becomes equal to ≈100mV/dec, which is not far from the expected 120mV/dec trend 
coming from the recombination processes in the depletion layer of the device. The discrepancy can be easily 
attributed to the fact that the contribution coming from the recombination processes is not fully dominant 
over the ideal diode behavior in the low J regime at T=300K, since the low current bump in the J-V curve 
arising from it appears only in a narrow voltage interval close to V=0. In the high J regime above ≈104A/cm2, 
finally, the J-V curve flattens with respect to the ideal diode behavior, as expected from high-injection and 
series resistance in the quasi-neutral regions. 

The impact of T on J when the latter is dominated by the ideal diode behavior is clearly the one expected 
from the analyses perfomed during lessons, with the height and the slope of the curve in mV/dec growing 
when T is increased. Fig.8 shows that the value of V needed to have a constant J=102A/cm2 decreases almost 
linearly with the growth of T, with a sensitivity coefficient equal to about -1.9mV/K.  

From the standpoint of the impact of the generation/recombination processes in the depletion layer on the 
J-V curves, Fig.7 shows that reducing T from 300K to 200K makes the low current tail due to these processes 
far more evident, while incresing T to 400K and 500K makes it disappear. This is expected due to the different 
T activation of the contributions to J coming from the ideal diode behavior and from the 
generation/recombination processes in the depletion layer. In order to explore this activation with close 
attention, Fig.9 shows the value of J corresponding to V=-500mV as a function of 1/kT in a semilogarithmic 
plot, which is typically referred to as an Arrhenius plot. The data points in the plot clearly reveal that in the 
low T regime, the sensitivity of J to T is weaker than in the high T regime. Quantitatively, the data points in 
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the two regimes can be fit by assuming an exponential behavior J ∝ exp(-EA/kT), where EA is called the 
activation energy for J, leading to EA≈1.3eV at high T and EA≈0.6eV at low T. The EA values in the high and low 
T regimes would in principle be equal to, respectively, the energy gap EG of silicon and EG/2 if J were only 
affected by the T dependence coming from the exponential term exp(-EG/2kT) in the expression of the 
intrinsic carrier concentration ni. Due to the additional dependences on T coming from the effective density 
of states, the diffusion coefficients (note, in this regard, that the T dependence of carrier mobility was not 
accounted for in the project) and EG itself, some deviations of EA from EG and EG/2 are obtained. 
 

 

Fig.10 compares, finally, the simulation results with the analytical results obtained during lessons, 
considering only the low and medium J regimes in the latter case. The analytical results for J coming from the 
ideal diode analysis display a very good agreement with the simulation results in the intermediate J regime 
for all T, further confirming the validity of the approximations and assumptions involved in the analysis. The 
contribution to J coming from the generation/recombination processes in the depletion layer, instead, 
appears to be overestimated by the analytical results. However, that is not unexpected, since one of the 
hypotheses of the analysis performed during lessons to assess the contribution to J coming from the 
generation/recombination processes in the depletion layer is that the rate of these processes equals its 
maximum value all over the depletion layer. 
  

  
Fig.9: Simulation results for J at V=-500mV as a function of 1/kT. 
The red and green dashed-lines are a fit of the low and high T 
trends, respectively. 

Fig.10: Comparison between the simulation results and the 
analytical results for the J-V characteristic of the p-n junction, for 
different T. 

  
Fig.7: Simulated J-V characteristic of the p-n junction, for different 
T. The red and green dashed-lines are a fit of the medium and low 
current trends at T=300K. 

Fig.8: Simulation results for the value of V needed to have 
J=102A/cm2, as a function of T. 
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Step 7: Analysis of the simulation results in Matlab 

A.  Results from Study 1 
The files with the simulation results from Study 1 generated by Comsol Multiphysics can now be easily loaded 
into Matlab to investigate the dependence of device operation on electron mobility in the semiconductor 
(elec_mob). Students are kindly invited to try to perform the investigation on their own, reproducing the 
figures reported in this section (anyway, who is still not familiar with Matlab may find the sequence of 
commands used to generate the reported figures at the end of the analysis). 

Fig.1 shows the band diagram of the investigated M-S junction as resulting from the numerical simulations 
performed in Comsol Multiphysics, in the case of forward bias with voltage V=+405mV and for all the 
explored values of elec_mob. In agreement with the analyses presented during lessons, the bending of the 
conduction band edge (Ec) and of the valence band edge (Ev) creates a depletion layer at the surface of the S 
(width Wd≈56nm). The band bending is not affected by current transport and is, therefore, independent of 
electron mobility (students can easily verify this point on their own by inspecting the simulation results). The 
profile of the quasi-Fermi level for electrons (EFn), instead, significantly changes among the explored values 
of elec_mob. In particular, while the forward bias applied to the device gives rise, in general, to a decrease of 
EFn moving from the edge of the quasi-neutral region to the surface of the S, the total drop and the value of 
EFn at the S surface are significantly affected by elec_mob. This latter dependence can be better appreciated 
with the zoomed version of the band diagram reported in Fig.2. In the case of elec_mob equal to 104cm2/V/s 
and 103cm2/V/s, EFn is almost flat all over the depletion layer. This is due to the fact that, for such high values 
of elec_mob, the bottleneck for electron transport is not the drift/diffusion of carriers through the depletion 
layer but their thermionic emission at the M-S interface. As studied during lessons, when that happens, the 
continuity of the electron flow requires maximizing the thermionic emission and, in turn, the electron 
concentration at the S surface. To achieve that and to reduce the drift/diffusion of carriers through the 
depletion layer down to the levels set by thermionic emission, EFn stays almost flat between the quasi-neutral 
region and the surface of the S. When elec_mob is reduced, however, the constraints of drift/diffusion to 
electron transport become more relevant. As a consequence, the continuity of the electron flow requires to 
enhance the latter mechanism and to decrease thermionic emission at the M-S interface. That is obtained 
with a more relevant drop of EFn along the depletion layer, so that the gradient of EFn (driving the 
drift/diffusion process) in that region is enhanced and the electron concentration at the S surface (driving 
thermionic emission) is reduced. Fig.2 shows that the EFn drop is still negligible in the case of 
elec_mob=102cm2/V/s, but becomes extremely relevant in the case elec_mob is equal to or smaller than 
101cm2/V/s. In this latter case, the quite low electron mobility makes the drift/diffusion of electrons through 
the depletion layer the bottleneck for carrier transport, with a negligible role played by thermionic emission 
at the M-S interface. When elec_mob=10-3cm2/V/s (which is a rather unrealistic value of electron mobility for 
a semiconductor material), finally, EFn approaches the energy corresponding to the Fermi level in the metal. 
As a final remark, note that the drop of EFn occurs quite close to the S surface, since the electron concentration 
reaches there its lowest values in the presence of the parabolic band bending of the depletion layer. As 
appearing from Fig.2, carefully investigating the drop of EFn requires then to use a very tight discretization 
mesh close to the S surface in the numerical simulations. 

Fig.3 shows the simulated current density vs. voltage (J-V) characteristics of the investigated M-S junction for 
all the explored values of elec_mob. The curves reveal that, in any case, the device features a rectifying 
behavior, with the current increasing exponentially by 60mV/dec under forward bias and remaining nearly 
constant under reverse bias. Besides, similarly to the case of EFn, the dependence of J on elec_mob highlights 
that two possible working regimes exist for the device. The first is when electron mobility is high. In that case, 
J assumes its highest value and is almost independent of elec_mob. From what studied during lessons, that 
is expected, since in the case electron mobility is high, carrier transport is limited by thermionic emission at 
the M-S interface and drift/diffusion through the depletion layer does not significantly constrain it. The 
second regime is when electron mobility is low. In that case, the reduction of elec_mob results in a 
proportional reduction of J, which then decreases below the value reached in the high electron mobility 
regime. Again, that is expected from what studied during lessons, since carrier drift/diffusion through the 
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depletion layer represents the bottleneck for current transport in the case electron mobility is low. The two 
regimes can be better appreciated in Fig.4, where the reverse saturation current density at V=-405mV is 
reported as a function of elec_mob along with the predictions coming from the Bethe and Schottky models. 
The figure shows that the transition from the high to the low electron mobility regime occurs when this 
parameter decreases below a few tens of cm2/V/s and that the Bethe model and the Schottky model provide 
a rather accurate description of device behavior in the former and latter regimes, respectively. 
 

  
Fig.1: Band diagram for the investigated M-S junction. The EFn 
profile is reported for all the investigated elec_mob values. 

Fig.2: Zoomed version of Fig.1, better highlighting the EFn profile. 

 

  
Fig.3: J-V characteristics of the investigated M-S junction. Results 
for all the explored values of elec_mob are reported. 

Fig.4: Simulated J at V=-405mV as a function of elec_mob and 
predictions from the Bethe and Schottky models. 

 

B.  Results from Study 2 
Fig.5 shows the simulated J-V characteristics of the investigated M-S junction as a function of temperature T. 
Results are for elec_mob=800cm2/V/s, i.e., the case of silicon with donor doping concentration Nd=1017cm-3. 
As discussed with the analysis of the results from Study 1, for such a high value of elec_mob electron transport 
is limited by thermionic emission at the M-S interface and the Bethe model provides accurate predictions for 
J. Similarly to the case of the p-n junction, the increase of T results in the growth not only of the slope of the 
J-V curve under forward bias in mV/dec but also of the reverse saturation current density of the device. To 
explore this latter dependence, the reverse saturation current density at V=-405mV is reported in Fig.6 as a 
function of 1/kT (Arrhenius plot), with kT being the thermal energy. The nice alignment of the data points 
along a straight line in the figure allows to say that the dependence of the reverse saturation current density 
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on T can be reproduced with an exponential relation. That relation is typically written as J ∝ exp(-EA/kT), with 
EA that is called the activation energy for the current. From the fit of the data points in Fig.6, EA≈0.85eV can 
be extracted. In this regard, there are a few points that is worth highlighting. The first is that, from the Bethe 
model, the reverse saturation current density is expected to be proportional to T2*exp(-qφBn/kT), where qφBn 
is the barrier height at the M-S interface. As a consequence, EA should be slightly higher than qφBn (slightly 
higher due to the T2 prefactor in the previous formula), as confirmed by the results of Fig.6. The second is 
that, being EA close to qφBn, the T dependence of the reverse saturation current density of a M-S junction is 
typically weaker than that of a p-n junction when the latter is dominated by the ideal diode behavior (EA 
slightly higher than EG is obtained in that case for the p-n junction). The last is that the 
generation/recombination processes in the semicondutor were neglected in the Comsol Multiphysics project 
and, thus, their possible impact on the results in Figs.5-6 is not accounted for. Due to the high reverse 
saturation current density of the device at room temperature, however, that impact is not expected to 
appear but at very very low T. 
 

  
Fig.5: J-V characteristics of the investigated M-S junction, for 
different T and elec_mob=800cm2/V/s. 

Fig.6: Simulated J at V=-405mV as a funciton of 1/kT. 
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Step 5: Analysis of the numerical results in Matlab 

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab 
for a detailed analysis of the electrostatics of the investigated MOS capacitor. Students are kindly invited to 
try to perform the analysis on their own, reproducing the figures reported in this section (anyway, who is still 
not familiar with Matlab may find the sequence of commands used to generate the reported figures at the 
end of the analysis). 

Fig.1 shows the band diagram of the investigated MOS capacitor as resulting from the numerical simulations 
performed in Comsol Multiphysics in the presence of a gate voltage VG=1.5V. Although the band profile in 
the oxide is not directly provided by Comsol Multiphysics, it can be easily determined given that i) there the 
bands are linear (no oxide charge) and ii) the total voltage drop over the material Vox=Fox*tox=Fs*εsi/εox*tox can 
be easily calculated from the simulation results (Fox is the electric field in the oxide, Fs is the electric field at 
the silicon surface and εsi ,εox are the dielectric constants of silicon and the oxide, respectively; consider that 
no interface states are present at the silicon/oxide surface in the simulations). In Fig.1, the energy gap and 
the electron affinity of SiO2 were assumed for the oxide layer. 

Since VG=1.5V is much higher than the device threshold-voltage VT=0.53V, the band diagram of Fig.1 is that 
of a strong-inversion condition. In particular, a depletion layer where the negative charge of ionized acceptors 
is exposed is present in the substrate, with width Wd≈52nm. The voltage drop Vs=1.08V over this layer is 
slightly higher than 2|φB|=0.94V, where φB is the electrostatic potential in the bulk region. The electron 
concentration in the inversion layer, moreover, is relevant for device electrostatics, being higher than the 
doping concentration Na. This is clearly highlighted in Fig.2, where the spatial profile of the electron 
concentration resulting from the numerical simulations is shown. Note that this profile cannot be accurately 
determined via analytical calculations, since calculations do not allow to come to the electrostatic potential 
and the band diagram as a function of the position in the substrate under strong-inversion. Fig.2 shows that 
the electron concentration peaks at the silicon surface and rapidly decreases going deeper in the substrate. 
More specifically, the width over which the electron concentration is higher than the doping concentration 
is ≈3nm. That width, which is in general less than 5nm, can be considered as the thickness of the inversion 
layer. In this regard, it is worth mentioning that, due to the strong confinement of electrons in the potential 
well created by the oxide and the band bending close to the silicon surface, quantum-mechanical effects 
typically affect the profile of the electron concentration in the inversion layer of an MOS device. As a result 
of electron confinement, the peak of the electron concentration is not at the silicon/oxide interface but few 
nm deep into silicon. Even the thickness of the inversion layer changes a bit when quantum-mechanical 
effects are accounted for, remaining, anyway, less than 5nm. 
 

  
Fig.1: Simulated band diagram for the investigated MOS capacitor 
in the case of VG=1.5V. 

Fig.2: Simulated profile for the electron concentration in the 
investigated MOS capacitor in the case of VG=1.5V. 
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Fig.3 shows the electric field profile in the substrate of the MOS capacitor. Due to the strong-inversion 
condition in the device and the large electron concentration at the silicon surface, the profile is not a pure 
triangular profile. A pure triangular profile is what would result in the substrate under a depletion or weak-
inversion condition (students can verify this point by repeating the analysis for a VG<VT), due to the fact that 
the constant charge density of ionized acceptors in the depletion layer would in that case be the only relevant 
charge density for device electrostatics. Under the strong-inversion condition considered in Figs.1-3, instead, 
the charge density coming from electrons close to the silicon surface is comparable or even higher than the 
charge density from ionized acceptors in the depletion layer. As a result, the slope of the electric field profile 
(which is proportional to the charge density exposed in each point of the substrate) grows from -qNa/εsi to a 
much higher value entering the inversion layer, as clearly appearing from Fig.3 (q is the elementary charge). 
That growth results in a steep increase of the electric field across the thickness of the inversion layer and in 
an additional contribution to Vs with respect to the case in which only the depletion-layer charge were 
present over the width Wd (remember that the area under the electric field profile corresponds to Vs). 
However, as evident from Fig.3, the latter contribution to Vs is very small, since the inversion layer thickness 
is very narrow. That leads to the so-called charge-sheet approximation (which will be better discussed in the 
analysis of the MOS transistor), which consists in neglecting the thickness of the inversion layer and the 
additional voltage drop over it with respect to the voltage drop over the depletion layer. As a result of this 
approximation, the electron charge in the inversion layer is considered to be a sheet of charge at the silicon 
surface (hence the name of the approximation) and the width of the depletion layer is calculated as 
Wd=sqrt(2εsi/q/Na*Vs). Note, in this regard, that the latter formula for Wd would be valid in principle only in 
the presence of a pure triangular profile for the electric field in the substrate, i.e., in the depletion and weak-
inversion regimes. Thanks to the charge-sheet approximation, it can be used to calculate Wd and, in turn, the 
depletion layer charge Qdep even in the strong-inversion regime (see the red dashed line in Fig.3). From the 
numerical results, it is easy to realize that the involved approximation error is rather small, since the total 
depletion layer charge calculated through the formula Qdep=-qNaWd=-4.2x10-7C/cm2 is quite close to that 
resulting from the integration over the substrate of the difference between the acceptor and the hole charge 
densities, which equals -4.09x10-7C/cm2. The approximation error on Qdep is then just ≈3%. 
 

  
Fig.3: Simulated profile for the electric field in the substrate of the 
investigated MOS capacitor, in the case of VG=1.5V. The linear 
behavior in the depletion layer calculated after the charge-sheet 
approximation is also shown. 

Fig.4: Simulated Vs and Vox as a function of VG. 

 

Fig.4 shows the simulation results for the depedence of Vs (blue curve) and Vox (red curve) on VG. While Vs is 
directly provided by Comsol Multiphysics, Vox has been extracted from the simulation results as -Qs/Cox, with 
Qs being the substrate charge and Cox the oxide capacitance. The behavior of Vs as a function of VG reflects 
what obtained with simple arguments and analytical calculations during lessons. In particular, Vs becomes 
weakly negative below the flat-band voltage VFB=-0.98V and weakly increases above 2|φB|=0.94V above 
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VT=0.53V, displaying a trend that can be approximated as parabolic first and as linear later in-between these 
two voltages. The Vox trend, instead, can be easily related to the Qs vs. VG dependence, which is shown in 
absolute value in Fig.5. As studied during lessons, Qs (and then Vox) grows almost linearly in the accumulation 
and strong-inversion regimes, while a square root dependence is reached in-between VFB and VT (close to VT, 
however, a linear approximation of the Vox vs. VG dependence introduces just a small error, see Fig.4). 
 

  
Fig.5: Simulated |Qs| as a function of VG. Fig.6: Simulated quasi-static C-V curve of the investigated MOS 

capacitor, in the case state occupancy in the band diagram is 
calculated following the Fermi-Dirac statistics or its Maxwell-
Boltzmann approximation. 

 

To complete the analysis of the stationary electrostatics of the investigated MOS capacitor, Fig.6 shows the 
quasi-static capacitance-voltage (C-V) curve of the device. This curve was obtained by calculating the small-
signal gate capacitance CG=-dQs /dVG from the simulated Qs vs. VG relation. As studied during lessons, this 
methodology to extract CG is based on the assumption that the device follows a path of stationary conditions 
(or thermodynamic equilibrium conditions in the substrate in the presence of an ideal insulator) when VG is 
slightly modified to evaluate CG. In practical assessments of the C-V curve, that is a reasonable approximation 
only when the small-signal adopted to evaluate CG is a low-frequency signal and, for that reason, the C-V 
curve reported in Fig.6 is also called a low-frequency C-V curve.  

The results in Fig.6 provide a careful and comprehensive description of the CG vs. VG dependence, without 
the need for the regional approximations adopted in the calculations performed during lessons. Besides, by 
repeating the simulations performed in Comsol Multiphysics using the Fermi-Dirac statistics instead of its 
default Maxwell-Boltzmann approximation (that can be done by modifying the field Carrier Statistics under 
the tree Model Properties in the Settings window for Semiconductor), the impact of the latter on the quasi-
static C-V curve can be easily studied. In particular, the curve obtained under the Fermi-Dirac statistics (red 
curve in Fig.6) displays a slower increase towards Cox in the accumulation and strong-inversion regimes than 
the curve obtained under the Maxwell-Boltzmann approximation (blue curve in Fig.6). No relevant difference 
between the results appears, instead, in the depletion and weak-inversion regimes. This can be explained by 
considering that it is only in the accumulation and strong-inversion regimes that the Fermi level EF is quite 
close either to the conduction band edge Ec or to the valence band edge Ev at the silicon surface, which is the 
condition making the Maxwell-Boltzmann approximation fairly inaccurate. The fact that the Fermi-Dirac 
statistics predicts a weaker growth of CG towards Cox in these regimes, then, is due to the weaker dependence 
of Qs on EF-Ec at the silicon surface and, in turn, on Vs resulting from that statistics with respect to the 
Maxwell-Boltzmann case. From that, a smaller substrate capacitance Cs and CG result in the Fermi-Dirac case. 

To further investigate the stationary electrostatics of an MOS capacitor, students are kindly invited to repeat 
the previous analysis for different doping concentrations Na and different oxide thicknesses tox, exploring the 
change of the shape of the quasi-static C-V curve as a function of these latter parameters. 
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Step 5: Analysis of the numerical results in Matlab 

In order to investigate the transient behavior of the MOS capacitor, students are asked to run the Comsol 
Multiphysics simulations for different values of temperature T and of the duration of the gate voltage ramp 
dt_ramp. In particular, the following combinations of the two parameters will be considered here: T=300K 
and dt_ramp equal to 0.01s, 0.1s, 1s and 10s; dt_ramp=0.1s and T equal to 300K, 325K, 350K, 375K, 400K and 
500K. Note that the Comsol Multiphysics project was not created to process all these cases together because 
some of them may take up to 10 minutes on a high-performance PC and may be prohibitively long on low-
performance hardware; by running the cases independently, students may skip some of them if they take 
more than 15 minutes on their PC (another option is to reduce the number of elements of the mesh 
discretizing the x-axis from 500 to 100, thing that gives rise to negligible changes in most of the results that 
will be presented here). After exporting the simulation results for each combination of T and dt_ramp, the 
files can be easily loaded into Matlab for a detailed analysis of the time evolution of the electrostatics of the 
investigated MOS capacitor. Students are kindly invited to try to perform the analysis on their own, 
reproducing the figures reported in this section (anyway, who is still not familiar with Matlab may find the 
sequence of commands used to generate the reported figures at the end of the analysis). 

Fig.1 shows the band diagram of the investigated MOS capacitor as resulting from the numerical simulations 
performed in Comsol Multiphysics in the case of T=300K and dt_ramp=0.1s. Results refer to the time instant 
t=dt_ramp=0.1s and provide, therefore, a picture of the electrostatic condition of the device when the gate 
voltage ramp reaches its maximum value VG=+3V. The separation between the quasi-Fermi level for electrons 
EFn and the quasi-Fermi level for holes EFp reveals that a relevant nonequilibrium condition is present in the 
substrate at that stage of the transient. That is, however, expected from what studied during lessons. Note, 
in fact, that dt_ramp=0.1s is shorter than the typical timescale of seconds over which the generation 
processes take place in the substrate of an MOS capacitor at room temperature. That means that the 
generation processes are not able to create all the electrons needed to keep the substrate close to 
thermodynamic equilibrium as VG grows from -3V to +3V. More specifically, it is when VG rises above the 
device threshold voltage VT that the lack of a sufficient amount of electron generation plays a relevant role 
for the evolution of device electrostatics. For VG higher than VT, in fact, the electron concentration would be 
relevant for the electrostatics if the substrate were under thermodynamic equilibrium. With a limited amount 
of carrier generation during the gate voltage ramp, the electron concentration in the inversion layer remains 
below the values corresponding to thermodynamic equilibrium of the substrate and, due to that, the 
evolution of device electrostatics must rely more on the depletion layer charge. That means that the charge 
in the depletion layer, and then the depletion layer width Wd, must increase above their values in the 
presence of thermodynamic equilibrium to compensate for the lack of electrons close to the silicon surface. 
As a consequence, Wd grows above the maximum depletion layer width Wd

max=sqrt(2εsi/q/Na*2|φB|) and the 
voltage drop over the substrate Vs grows above 2|φB| (φB is the bulk potential, εsi is the dielectric constant of 
silicon and q is the elementary charge). These effects are clearly evident from Fig.1, where the band bending 
in the substrate corresponds to Vs≈+3V. The strong band bending in the substrate together with the need to 
keep the electron concentration in the inversion layer lower than that under thermodynamic equilibrium in 
the material give rise, finally, to the downward shift of EFn close to the silicon surface that makes evident 
substrate nonequilibrium.  

From the simulation results of Fig.1 it is possible to see that EFn and EFp do not stay flat all over the depletion 
layer of the MOS capacitor, as typically assumed in the theoretical analyses of device behavior studied during 
lessons. The correct spatial profiles of EFn and EFp are the outcome of the combination of carrier generation 
and transport throughout the depletion layer and cannot be easily determined with analytical calculations. 
However, the assumption that these levels remain flat all over the depletion layer does not introduce any 
meaningful error in the analysis of device electrostatics. Note, in fact, that the downward bending of EFp 
moving from the bulk region to the silicon surface does not affect the conclusion that the hole concentration 
is much less than the doping concentration all over the depletion layer. In a similar way, the upward bending 
of EFn from the silicon surface to the edge of the depletion layer is absolutely irrelevant for device 
electrostatics, since it is only close to the silicon surface that the electron concentration is high enough to 
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play a role (it is just the distance of EFn from the conduction band edge EC at the silicon surface that determines 
the electron concentration in the inversion layer, not the spatial profile by which EFn reaches its vertical 
position at the surface). For these reasons, the analysis of the MOS capacitor (but also of the MOS transistor) 
can neglect the EFn and EFp evolutions over the depletion layer, considering them to be flat. 
 

  
Fig.1: Simulated band diagram for the investigated MOS capacitor 
in the case of dt_ramp=0.1s, T=300K and t=0.1s (so, when VG 

reaches +3V). 

Fig.2: Simulated time evolution of the electron concentration at 
the silicon surface, for different dt_ramp and T=300K. 

 

Since the nonequilibrium condition created in the substrate by the gate voltage ramp triggers carrier 
generation (see the relative vertical position of EFn and EFp in Fig.1), the electrostatics of the MOS capacitor 
keeps evolving in the stretch of time following the instant at which VG reaches its maximum value equal to 
+3V, even though during that stretch of time VG stays constant. More specifically, substrate nonequilibrium 
is just a transient condition that vanishes over time due to the increase of the electron concentration in the 
inversion layer resulting from carrier generation in the material. In order to study the transient evolution of 
subtrate electrostatics, then, the electron concentration at the silicon surface was considered. That 
concentration is shown as a funtion of time in Fig.2 for dt_ramp=0.01s, 0.1s, 1s and 10s, with T=300K. Results 
reveal that, irrespective of the value of dt_ramp, the electron concentration reaches its stationary value 
(which can be easily calculated by means of the Comsol Multiphysics project developed for the “Simulation 
Lab #5 – Stationary electrostatics of the MOS capacitor”) in about 100s. The reduction of dt_ramp, on the 
other hand, gives rise to a reduction of the electron concentration at the instant at which VG reaches +3V. 
With dt_ramp equal to 10s and 1s, that concentration is about, respectively, 1019cm-3 and 1018cm-3. That 
means that, with such long ramp durations, the generation processes are able to create a strong-inversion 
condition in the MOS capacitor during the ramp itself (remember that the acceptor doping concentration of 
the substrate is Na=5x1017cm-3), even though the electron concentration in the inversion layer remains below 
the stationary value. In the case of dt_ramp=0.1s and 0.01s, instead, the electron concentration when the 
ramp reaches VG=+3V equals about 1017cm-3 and 1016cm-3, respectively. In these latter cases, then, the 
generation processes can give rise just to a weak-inversion condition in the MOS capacitor during the gate 
voltage ramp and the deep-depletion established in the substrate when VG reaches +3V is then stronger than 
in the cases of longer dt_ramp. 

By using the simulation results for the substrate charge Qs and the gate voltage VG as a function of time 
obtained for the dt_ramp cases considered in Fig.2 (T=300K), the capacitance-voltage (C-V) curves of Fig.3 
can be extracted. The small-signal capacitance CG of the MOS capacitor has been calculated by exploiting the 
variations of Qs and VG during the gate voltage ramp, i.e., CG=-dQs/dVG (in this regard, consider that the 
discretization of VG and Qs during the ramp is tight enough to accurately calculate the previous derivative as 
a function of VG by numerical techniques). In the case of dt_ramp=0.01s and 0.1s, the CG results are almost 
overlapped and reproduce the deep-depletion C-V curve of the MOS capacitor. As previously discussed, in 
fact, for short dt_ramp the electrostatics in the device during the gate voltage ramp is dominated by the 
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depletion layer charge, since just a weak-inversion condition can be established by the generation processes 
in the substrate. For dt_ramp=1s and 10s, instead, a nonnegligible generation of electrons during the gate 
voltage ramp occurs and, as a result, the electrostatics in the device is not determined just by the depletion-
layer charge but also by a partial contribution of the inversion layer charge. As a consequence, the C-V curves 
corresponding to these cases are a bit higher than the deep-depletion curve obtained for shorter dt_ramp in 
the interval VG>VT. 
 

  
Fig.3: C-V curve of the investigated MOS capacitor as extracted 
from the simulated Qs vs. VG relation at T=300K, for different 
dt_ramp. 

Fig.4: Simulated time evolution of the electron concentration at 
the silicon surface, for different T and dt_ramp=0.1s. 

 

  
Fig.5: Same as in Fig.4, but with linear scales on the axes. Fig.6: Time to reach an electron concentration at the silicon 

surface equal to 5x1019cm-3 as a function of 1/kT, in the case of 
dt_ramp=0.1s. The calculated generation time constant τG is also 
shown. 

 

Fig.4 shows the simulated time evolution of the electron concentration at the silicon surface in the case of 
dt_ramp=0.1s and T ranging from 300K to 500K. Results reveal that the transient condition of the substrate 
induced by the gate voltage ramp vanishes earlier at higher T. In particular, at T=500K the electron 
concentration at the silicon surface equals its stationary value already at the instant when VG reaches +3V 
(this is clearly evident when looking at the transients on a linear plot, see Fig.5), meaning that in that case a 
thermodynamic equilibrium condition is preserved in the substrate even during the gate voltage ramp. In 
order to quantitatively investigate the accelaration of the recovery of stationary electrostatics in the 
substrate with T, the time needed at VG=+3V to reach a constant electron concentration at the silicon surface 
equal to 5x1019cm-3 is reported as a function of 1/kT in Fig.6 (Arrhenius plot, kT is the thermal energy). In the 
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figure, only the data points for T=300K, 325K, 350K and 375K were considered, since for T=400K and 500K a 
significant growth of the electron concentration already occurs during the gate voltage ramp (see Fig.5) and 
that results in a significantly different initial condition for the electrostatics in the substrate at the end of the 
ramp with respect to the other cases. A clear exponential acceleration of the recovery of the stationary 
condition in the substrate appears from Fig.6 when T increases. That exponential acceleration can be 
quantified by assuming an exponential dependence exp(EA/kT) for the data points in the figure, with EA 
representing the so-called activation energy of the recovery process. Starting from the slope of the points in 
the figure, EA≈0.65eV can be extracted.  

The exponential acceleration of the recovery of the stationary condition in the substrate with T can be easily 
explained by considering the T dependence of carrier generation in the substrate. From what studied during 
lessons, the time constant for the generation processes in the substrate of an MOS capacitor can be written 
as τG=2τ0*Na/ni, where τ0 is the characteristic time of the generation/recombination processes and ni is the 
intrinsic carrier concentration. Fig.6 shows that τG follows the same T activation of the previously discussed 
time needed to reach a constant electron concentration at the silicon surface (the quantitative vertical 
agreement between the two trends in the figure slightly depends on the value of the electron concentration 
selected to extract the recovery time from the simulation results). This result proves that it is the temperature 
activation of τG (arising from ni) that determines the temperature activation of the recovery of stationary 
electrostatics in the device. 
 

 
Fig.7: C-V curve of the investigated MOS capacitor as extracted 
from the simulated Qs vs. VG relation for dt_ramp=0.1s and 
different T. 

 

To complete the analysis, Fig.7 shows the C-V curves obtained from the simulation results corresponding to 
the cases considered in Figs.4-6. Due to the faster carrier generation in the substrate at higher T, a relevant 
change in the behavior of the curves appears for VG>VT. Over that interval, in fact, CG decreases with the 
increase of VG at T=300K, 325K and 350K, following the previously discussed deep-depletion curve of the 
MOS capacitor. At T=375K and 400K, instead, CG increases with VG over that interval, due to a more relevant 
role played by the growth of the electron concentration in the inversion layer on device electrostatics during 
the gate voltage ramp. At T=500K, finally, the CG behavior maps the low-frequency C-V curve of the capacitor, 
since carrier generation is so strong to keep the substrate close to thermodynamic equilibrium even during 
the gate voltage ramp. 

For some further investigations, students may plot the band diagram of the MOS capacitor at different times 
during the gate voltage ramp and during the stretch of time over which VG stays constant at +3V, at different 
T. In so doing, the dependence of the electrostatics of the device on holes and electrons in the substrate can 
be better understood, along with the change of the total charge in the substrate over time and the change 
of the voltage drop over the substrate and over the oxide. 
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Step 5: Analysis of the numerical results in Matlab 

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab 
for a detailed analysis of the electrostatics and of current transport in the investigated MOS transistor, 
addressing the impact of the drain voltage VDS on its ON-state behavior. Students are kindly invited to try to 
perform the analysis on their own, reproducing the figures reported in this section (anyway, who is still not 
familiar with Matlab may find the sequence of commands used to generate the reported figures at the end 
of the analysis). 

Fig.1 shows the simulated drain current (IDS) vs. VDS characteristics of the investigated MOS transistor 
corresponding to an applied gate voltage VGS equal to 0.5V, 0.75V, 1V, 1.25V and 1.5V. For all of the selected 
VGS values, the typical ON-state trend of IDS with VDS featuring the ohmic, parabolic and saturation regimes 
clearly appears. As studied during lessons, the three regimes hold, respectively, for low, intermediate and 
high VDS. In the ohmic regime, IDS grows almost linearly with VDS. In the parabolic regime, the IDS increase with 
VDS becomes markedly less-than-linear, following a parabola with the concavity directed downwards. In the 
saturation regime, finally, IDS becomes weakly dependent on VDS. From these results, it is possible to come to 
the conclusion that the threshold-voltage VT of the investigated device is less than 0.5V. This conclusion is 
confirmed by the formula VT=VFB+2|φB|+sqrt(2εsi*qNa*2|φB|)/Cox, which leads to VT≈0.3V (VFB is the flat-band 
voltage, φB the electrostatic potential in the bulk region, εsi the dielectric constant of silicon, q the elementary 
charge, Na the substrate doping concentration and Cox the oxide capacitance per unit area). As a final remark 
about Fig.1, students are kindly invited to pay attention to the y-axis scale showing the IDS values. First of all, 
IDS has been reported normalized to the width W of the transistor expressed in µm (pay attention that 
W=1µm was assumed in the Comsol Multiphysics project), which is a quite common way to show the IDS 
values. After this normalization, IDS spans the typical range from a few hundreds of µA/µm to few mA/µm. In 
this regard, it is worth mentioning that the scaling path followed by the CMOS technology over the years has 
resulted in the growth of the maximum W-normalized ON-state IDS of MOS transistors (for the minimum value 
of the device channel length L of the technology). That was due to the impossibility to stick to the constant-
field scaling rules, which would have maintained the maximum W-normalized IDS constant, and to the need 
to introduce some generalized-scaling steps along technology evolution.  
 

  
Fig.1: Simulated IDS-VDS curves of the investigated MOS transistor, 
for different values of VGS ranging from 0.5V to 1.5V. 

Fig.2: Comparison between the IDS-VDS curves resulting from 
numerical simulations and from the analytical formulas derived 
during lessons. 

 

Fig.2 compares the IDS-VDS curves resulting from numerical simulations with the predictions of the analytical 
formulas derived during lessons, i.e., IDS=µnCoxW/L*[(VGS-VT)*VDS-mVDS

2/2] in the ohmic and parabolic regimes 
and IDS=IDS

sat=µnCoxW/L*(VGS-VT)2/2m in the saturation regime (µn is the electron mobility and 
m=1+Cdep/Cox=1.17, with Cdep being the minimum depletion-layer capacitance in the substrate corresponding 
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to a value of the surface potential Vs=2|φB|). Although a rough general agreement between the two sets of 
curves appears from the figure, it is clearly evident that the analytical formulas overestimate IDS with respect 
to what obtained from numerical simulations. In order to understand the reasons for that, it is worth starting 
from the ohmic and parabolic regimes and considering that the investigated device can be safely assumed to 
be a long-channel MOS transistor, since L=300nm is significantly longer than the critical length 
2(Wd

max+3tox)≈83nm separating the long-channel from the short-channel regime (Wd
max is the maximum 

depletion-layer width corresponding to Vs=2|φB| and tox is the oxide thickness). The long-channel nature of 
the device allows to safely say that the gradual-channel approximation adopted to come to the analytical 
expression for IDS in the ohmic and parabolic regimes is valid. The origin of the mismatch between the 
analytical and the simulation results in these regimes, then, is to be attributed to some other approximation 
done after it. In this regard, recalling the steps taken during lessons to come to the analytical expression for 
IDS, it is possible to identify three major approximations following the gradual-channel approximation. The 
first is the charge-sheet approximation, which allows to calculate the inversion charge Qinv at each point in 
the channel even under strong-inversion as Qinv=-Cox*(VGS-VFB-Vs)+sqrt(2εsi*qNa*Vs), where the square-root 
term represents the absolute value of the depletion-layer charge Qdep (remember that Qinv and Qdep are 
charges per unit area). The second is the regional approximation Vs=2|φB|+V, with V representing the quasi-
Fermi potential for electrons. The third is that V is smaller than 2|φB|, even though it is not completely 
negligible with respect to it. After these three approximations, the expression Qinv=-Cox*(VGS-VT-mV) was 
obtained and, from it, IDS was calculated. Among the three, the second approximation is by far the roughest 
and is mainly responsible for the mismatch between the analytical and the simulation results in the ohmic 
and parabolic regimes in Fig.2. 

In order to understand the role of the approximation Vs=2|φB|+V on device electrostatics, we may focus our 
attention on the ohmic regime. In that regime, VDS is so small that V is negligible with respect to 2|φB|, making 
the previously mentioned third approximation surely appropriate. Setting Vs=2|φB|, then, the relations 
Qdep=Qdep

max=-sqrt(2εsi*qNa*2|φB|) and Qinv=-Cox*(VGS-VT) can be obtained. Although these results provide, of 
course, the most elementary description of what happens to Qinv and Qdep in an MOS device entering strong-
inversion, they do not account for some important details related to device behavior near VT. In particular, 
saying that Qinv is zero when VGS=VT and then linearly grows when VGS increases above VT misses a careful 
description of what happens to that charge close to VT. A more accurate description of device physics should 
consider that for VGS<VT both Qinv and the change of Qinv arising from a slight change of VGS are negligible with 
respect to Qdep and to its change. When VGS=VT, instead, Qinv is still small and negligible with respect to Qdep, 
but its change arising from a slight change of VGS becomes equal to the change of Qdep (remember, in fact, 
that when VGS=VT the total substrate capacitance Cs of the MOS system is twice the value of the depletion-
layer capacitance Cdep, meaning that the capacitance of the depletion layer and of the inversion layer are 
equal). For VGS higher than VT, then, device electrostatics is significantly affected by Qinv and by its change 
with VGS and that is what makes the device work in the strong-inversion regime (pay attention on that Qinv is 
not required to be dominant over Qdep for that). Since Qinv is exponentially related to Vs, moreover, the growth 
of VGS above VT rapidly makes the inversion-layer capacitance much larger than not only the depletion-layer 
capacitance but also the oxide capacitance Cox. That means, first of all, that the change of Qinv following a 
slight change of VGS becomes much stronger than the change of Qdep, which can then be neglected. Then, that 
also means that the change of Qinv becomes equal to the product between Cox and the amplitude of the VGS 
variation, since the latter drops mainly over the oxide. From the standpoint of the Vs vs. VGS relation, this 
phenomenology makes Vs first deviate from the almost linear trend with VGS observed under weak-inversion 
as soon as VGS rises above VT and then strongly flatten, reaching almost a saturation, when VGS is well above 
VT. It is only when Vs flattens, in particular, that the change of Qdep vanishes and Qinv becomes linearly related 
to VGS. Therefore, some hints about how much VGS must be increased above VT to achieve those conditions 
can be derived by looking at the Vs vs. VGS curve (see the notes on the MOS capacitor to accurately visualize 
that curve). From the inspection of that curve, Vs must increase by few kT/q above 2|φB| before reaching a 
true saturation (kT/q is the thermal voltage). kT/q is, in fact, the characteristic voltage ruling the exponential 
dependence of Qinv and, in turn, the inversion-layer capacitance, on Vs. By increasing Vs by few kT/q above 
2|φB|, and then VGS by a similar amount above VT, the inversion-layer capacitance grows from the value 
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corresponding to the depletion-layer capacitance to a value much larger than it, giving rise to Vs and Qdep 

saturation and to a linear dependence of Qinv on VGS. 

From the previous picture, it should be clear that assuming Vs=2|φB|, Qdep=Qdep
max and Qinv=-Cox*(VGS-VT) 

under strong-inversion represents a rough approximation, since it corresponds to considering the inversion-
layer capacitance to abruptly increase from a value much lower than Cdep and Cox to a value much higher than 
them at VGS=VT. That misses that the increase of the inversion-layer capacitance with Vs is fast but, anyway, 
gradual and that an increase of Vs above 2|φB| by few kT/q is needed to make that capacitance much larger 
than Cdep and Cox. In turn, that misses that an increase of VGS above VT by few kT/q is needed to make Vs 
saturate, to make the small-signal gate capacitance approach Cox and to make Qinv reach a linear dependence 
on VGS. 

Getting back to the mismatch between the simulation and the analytical results for IDS in the ohmic and 
parabolic regimes in Fig.2, it is easy to understand that one of the reasons why the formula 
IDS=µnCoxW/L*[(VGS-VT)*VDS-mVDS

2/2] overestimates the correct IDS coming from simulations is that it 
underestimates the value of VGS needed to achieve a linear growth of Qinv with VGS. In order to prove this 
conclusion, the value of VT used in the formula for IDS was slightly increased by 80mV to take into account the 
need to increase VGS and Vs by few kT/q to make the inversion-layer capacitance much larger than Cdep and 
Cox and, then, reach Vs saturation and a linear dependence of Qinv on VGS. These VT-corrected curves are 
reported in Fig.3 and display a fairly good agreement with the simulation results in the ohmic and parabolic 
regimes. As a final remark, it is worth pointing out that the increase by 80mV of the VT value to be adopted 
in the formulas for IDS to reach such a good agreement with the simulation results is relevant because the VT 
of the investigated MOS transistor is just about 300mV. In the case of devices with a much higher VT and 
working, in turn, with much higher overdrives (VGS-VT), the correction to be introduced on the VT value to 
account for the finite inversion-layer capacitance is typically negligible. 
 

 
Fig.3: Comparison between the IDS-VDS curves resulting from 
numerical simulations and from the analytical formulas derived 
during lessons, increasing VT by 80mV. 

 

The residual mismatch between the simulation and the analytical results appearing in Fig.3 close to the edge 
between the parabolic and the saturation regimes can be attributed to both the gradual-channel 
approximation and the assumption that V and, in turn, VDS are much smaller than 2|φB|. The latter 
assumption, in fact, is not so accurate at the edge of the parabolic regime, where VDS is rather large. The 
gradual-channel approximation, on the other hand, cannot provide a careful description of device 
electrostatics approaching and entering the saturation regime, as discussed during lessons. That is due to the 
strongly-bidimensional electrostatics in the channel when VDS approaches the value leading to saturation. In 
particular, the simplified electrostatic analysis based on the gradual-channel approximation misses the 
channel-length modulation effect, which is responsible for the weak increase of IDS in the saturation regime 
(in Fig.3, in fact, the theoretical IDS

sat was considered to be perfectly flat under saturation). That effect can be 
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clearly appreciated from the simulation results for the electron concentration reported in Fig.4. In order to 
partially correct this approximation, the Early voltage VA=L*Fp, where Fp is an effective electric field between 
the position of the pinch-off point in the channel and the drain, was extracted in Fig.5. That was done by 
extrapolating the linear trend observed in the simulated IDS curves under saturation down to the horizontal 
axis, obtaining from the intersection VA≈15V (the curve at VGS=1.5V was not considered in the extraction since 
a too narrow VDS interval is available for it in the saturation regime, leading to a relevant error in the 
extrapolation). As studied during lessons, VA can be used to calculate the output resistance of the device in 
the saturation regime (going from 24kΩ to 740kΩ for the explored VGS values in our case) and to correct the 
analytical IDS formulas. In order to obtain a gradual increase of IDS due to the channel-length modulation effect 
when approaching and entering the saturation regime, the correction is typically introduced by multiplying 
IDS by (1+VDS/VA) both in the parabolic and in the saturation regime (during lessons, the corrective term 
1+(VDS-VDS

sat)/VA was introduced only for IDS in the saturation regime, leading to a discontinuity of the 
derivative of the IDS-VDS relation at the edge between the parabolic and the saturation regime). This latter 
correction partially improves the agreement between the calculated and the simulated IDS-VDS curves at high 
VDS (students can easily verify this point). To further improve the correctness of the formulas for IDS, these 
are modified and made more complex in the compact models adopted by circuit simulators. However, the 
simple expressions studied so far are typically enough for some first order back-of-the-envelope calculations 
related to circuit operation. 
 

 

 

 
Fig.4: Simulation results for the electron concentration at the drain side of the channel of the 
investigated MOS transistor, in the case of VGS=1V and VDS equal to, from top to bottom, 0.9V, 
1.2V and 1.5V. In the last case, note that the pick of the electron concentration close to the 
drain junction is not at the silicon surface but a few nm inside the substrate. 
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Fig.5: Extraction of the Early voltage VA of the investigated MOS 
transistor via the linear extrapolation of the simulated IDS trend in 
saturation down to the horizontal axis. 

 

To complete the analysis of the operation of the investigated MOS transistor, Fig.6 shows the simulated 
conduction band edge (Ec) and EFn profiles at the channel surface in the source-to-drain direction, in the case 
of VGS=1V and for increasing VDS from 0V to 1.5V. As discussed during lessons, for low VDS equal to 0.1V and 
0.3V (ohmic regime), the band bending in the horizontal direction is almost linear and so is the bending of 
the quasi-Fermi level for electrons EFn. For higher VDS equal to 0.5V, 0.7V and 0.9V (parabolic regime), then, 
the reduction of Qinv moving from the source side to the drain side of the channel (see Fig.7) results in a 
stronger band bending and EFn drop close to the drain. For VDS equal to 1.2V and 1.5V (saturation regime), 
finally, a very steep band bending and drop of EFn appear close to the drain, while far from the drain the 
bands and EFn keep a profile that is independent of VDS. This latter piece of evidence clearly demonstrates 
that in the saturation regime the drain loses control of the electrostatics in the channel, but for the channel-
length modulation effect. Fig.8 shows the complete band diagram of the device for each VDS condition. 
 

  
Fig.6: Simulation results for the Ec and EFn profiles along the 
channel of the MOS transistor, in the case of VGS=1V and for 
increasing VDS from 0V to 1.5V. 

Fig.7: Simulation results for the electron concentration at the 
surface of the MOS transistor, in the case of VGS=1V and for 
increasing VDS from 0V to 1.5V. 
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Fig.8: Simulation results for the band diagram in the source-to-drain direction of the investigated MOS transistor in the case of VGS=1V 
and VDS equal to 0V (first row, left), 0.1V (first row, right), 0.3V (second row, left), 0.5V (second row, right), 0.7V (third row, left), 0.9V 
(third row, right), 1.2V (fourth row, left) and 1.5V (fourth row, right).  
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As a final result related to device electrostatics, Fig.9 shows the hole concentration profile in the substrate 
at VGS=1V and VDS=1.5V. The width of the depletion layer at the source side and its increase moving to the 
drain side of the channel can be clearly appreciated. 
 

 
Fig.9: Simulation results for the hole concentration in the MOS transistor in the case of VGS=1V 
and VDS=1.5V. 
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Step 4: Analysis of the numerical results in Matlab 

The files with the simulation results generated by Comsol Multiphysics can now be easily loaded into Matlab 
for a detailed analysis of the electrostatics and of current transport in the investigated MOS transistor, 
addressing the impact of the gate voltage VGS on both its subthreshold and ON-state behavior. Students are 
kindly invited to try to perform the analysis on their own, reproducing the figures reported in this section 
(anyway, who is still not familiar with Matlab may find the sequence of commands used to generate the 
reported figures at the end of the analysis). 

Fig.1 shows the simulated drain current IDS, source current IS and substrate current Isub of the investigated 
MOS transistor as a function of VGS, in the case of drain voltage VDS=0.1V and temperature T=300K. The 
semilogarithmic plot reveals the typical shape of the IDS – VGS transcharacteristics (blue curve) studied during 
lessons and featuring: i) a very-low current regime where IDS is nearly constant and equal to Isub (magenta 
curve), due to carrier generation in the channel-region and at the drain-bulk junction of the device producing 
electrons gathered by the drain contact and holes gathered by the bulk contact; ii) an intermediate current 
regime where IDS grows exponentially with VGS due to electron diffusion from source to drain at the channel 
surface, corresponding to the weak-inversion regime of the MOS device; iii) a high-current regime above the 
threshold-voltage VT≈0.3V where the dependence of IDS on VGS turns into a power-law dependence (then 
flattening in the plot), due to the onset of strong-inversion in the channel. In this regard, it is worth pointing 
out that the current level corresponding to the generation processes in the substrate is very low at room 
temperature in the presence of a low VDS=0.1V. That means that, under those conditions, it may be difficult 
to detect it experimentally, being typically overwhelmed by measurement noise (of course, that level may 
be more easily detected by increasing T or VDS). Besides, it is also worth recalling that the generation current 
flows between the drain and bulk contacts of the device and does not affect IS. As a consequence, differently 
from IDS, IS preserves the exponential trend corresponding to the subthreshold regime down to VGS values 
approaching the flat-band voltage VFB≈-0.99V (see the red curve in Fig.1). For such low VGS values, the 
dependence of the surface potential Vs in the channel region on VGS weakens, turning from linear to parabolic 
and then to logarithmic. That weakens the dependence of the inversion charge in the channel on VGS as well, 
resulting in IDS flattening. 
 

  
Fig.1: Simulated IDS, IS and Isub of the investigated MOS transistor 
as a function of VGS, for VDS=0.1V and T=300K. 

Fig.2: Simulated IDS of the investigated MOS transistor as a 
function of VGS, for VDS=0.1V and T=300K. The IDS from the 
analytical formula studied during lessons and valid in the 
subthreshold regime is also shown. 

 

Fig.2 shows a comparison between the predictions of the analytical formula derived during lessons for IDS in 
the subthreshold regime IDS=µnCoxW/L*(m-1)*(kT/q)2*exp[q(VGS-VT)/(mkT)] and the simulated IDS – VGS 
transcharacteristics (µn is the electron mobility, Cox is the oxide capacitance, W and L are the channel width 
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and length, m=1+Cdep/Cox, Cdep is the depletion-layer capacitance evaluated for Vs=2|φB|, φB is the bulk 
potential, kT is the thermal energy, q is the elementary charge). Although a rough agreement between the 
analytical and the numerical IDS values appears from the figure, some nonnegligible differences between 
them are also evident. In particular, the analytical IDS is a bit lower than the simulated one and, moreover, 
displays a stronger growth with VGS, corresponding to a smaller subthreshold slope in mV/dec. Recalling that 
the subthreshold slope is just STS=kT/q*ln(10)*m, the mismatch between its analytical and numerical value 
can only be the result of inaccuracies in the assessment of m. These may arise from the depletion 
approximation and from some nonnegligible bidimensional electrostatic effects coming from the source and 
drain regions, both slightly affecting the value of Cdep. The lower IDS, on the other hand, may be attributed to 
slight inaccuracies in VT estimation and to a shorter “effective” channel length of the device. To understand 
this latter point, Fig.3 shows the band diagram of the device in the source-to-drain direction at the substrate 
surface in the case of VGS=0.2V, i.e., less than VT, T=300K and VDS=1V (1V and not 0.1V was assumed for VDS 
to better visualize the profile of the quasi-Fermi level for electrons EFn). Since L is longer than the critical 
length 2(Wd

max+3tox)≈83nm separating the long-channel from the short-channel regime (Wd
max is the 

maximum depletion-layer width corresponding to Vs=2|φB| and tox is the oxide thickness), as expected from 
what discussed during lessons, the investigated MOS transistor can be safely considered to be a long-channel 
device and there is a wide region of the channel where the bands are flat and the electrostatics is mainly 
controlled by the vertical action of the gate. However, Fig.3 also highlights that the length of the transition 
regions at the sides of the channel, where the electrostatics is significantly affected by the presence of the 
source and drain n+ junctions, is not completely negligible with respect to L (in other words, L is not “much” 
longer than 2(Wd

max+3tox)). This leads to defining a so-called “effective” channel length that is slightly 
different from L. In this analysis, however, this correction is not introduced and only a slight change of VT is 
taken into account to correct the mismatch between the IDS values of Fig.2. Fig.4 shows that, by slightly 
increasing m from its analytical value equal to 1.17 to 1.21 and by reducing VT by 20mV with respect to its 
analytical value (this latter correction will be better validated in the “Simulation Lab#9 – Scaling the channel 
length of an MOS transistor”), the IDS predicted by the analytical formula for the subthreshold regime of the 
MOS transistor can nicely fit the simulation results. In this regard, it is worth pointing out that circuit 
simulators rely on compact models for the electrical characteristics of the adopted electron devices that may 
be based on simple expressions such as those studied for the IDS of an MOS transistor in the subthreshold 
and in the ON-state regimes, but the parameters involved in those expressions are typically calibrated against 
simulation results and experimental data for the devices, to have them accurately reproduce device behavior. 
In addition, further dependences of the parameters in the formulas for the electrical characteristics are 
introduced to account for additional physical effects that were not considered in a first-order analysis of the 
devices. 
 

  
Fig.3: Simulated band diagram of the investigated MOS transistor 
at the substrate surface in the source-to-drain direction, for 
VGS=0.2V, VDS=1V and T=300K. 

Fig.4: Same as in Fig.2, but with the analytical results calculated 
after slightly correcting m and VT. 
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Fig.5: Simulated IDS of the investigated MOS transistor as a 
function of VGS, for VDS=0.1V, 0.5V, 1V and 1.5V, with T=300K. 

Fig.6: Simulated Ec profile at the substrate surface in the source-
to-drain direction in the case of VDS=0.1V, 0.5V, 1V and 1.5V, with 
VGS=0.2V and T=300K. 

 

Fig.5 shows the IDS – VGS transcharacteristics of the investigated MOS transistor for different VDS ranging from 
0.1V to 1.5V. As expected from the long-channel nature of the device, the increase of VDS does not affect the 
subthreshold current (pay attention on that the minimum VDS=0.1V is larger than kT/q). That can be easily 
explained by the fact that the flat part of the band diagram in the source-to-drain direction is not affected by 
VDS, as shown in Fig.6. The increase of VDS, on the other hand, slightly enlarges the transition region of the 
bands close to the drain side of the channel, strongly increasing the band bending there. In the ON-state 
regime, instead, IDS is significantly impacted by the change of VDS. That is yet visible in Fig.5 but can be better 
appreciated in Fig.7, where a linear scale for IDS is adopted. As studied during lessons, on a linear scale, IDS 
starts to grow above VT approximately following, first, the quadratic trend with VGS of the saturation regime 
IDS=IDS

sat=µnCoxW/L*(VGS-VT)2/2m; when VGS rises above VT+mVDS, then, the linear  trend with VGS of the 
ohmic/parabolic regimes IDS=µnCoxW/L*[(VGS-VT)*VDS-mVDS

2/2] appears. From Fig.7, it is clear that, for each 
VDS, the linear trend detaches from the quadratic curve as its tangent at the VGS value determining the 
transition from the saturation regime to the ohmic/parabolic regimes. In this regard, it is worth pointing out 
that considering VT+mVDS for the latter VGS value and using the analytical expression for IDS in the saturation 
regime are, of course, approximations. Remember, in fact, that not only the saturation regime but also the 
onset of saturation cannot be carefully described by the gradual-channel approximation adopted to come to 
the formulas for IDS. The channel-length modulation effect impacting IDS approaching and entering saturation, 
for instance, cannot be described following a gradual-channel approximation analysis. Besides, the formulas 
for IDS were obtained under the hypothesis that VDS is smaller than 2|φB| and that introduces some errors 
even in the ohmic/parabolic regimes at high VDS. Another important point worth mentioning is that the value 
of VT to be used in the formulas for IDS must be increased a little bit with respect to what predicted by the 
analytical definition of threshold-voltage of an MOS system. As discussed in the “Simulation Lab#7 – Long-
channel MOS transistor in the ON-state: impact of VDS”, this is due to the gradual (and not abrupt) increase 
of the inversion-layer capacitance entering strong-inversion, which results in a linear growth of the inversion 
charge Qinv with VGS only a few kT/q above VT. In order to prove this point, Fig.8 shows the extrapolation down 
to the horizontal axis of the linear part of the simulated transcharacteristic of the device for VDS=0.1V. Since 
the linear part of the curve corresponds to the ohmic/parabolic regimes and VDS is low, the gradual-channel 
approximation and the hypothesis that VDS is smaller than 2|φB| are surely valid. That allows to use the 
analytical formula for IDS and say that the intercept of the linear extrapolation with the voltage axis should 
correspond to VT+mVDS/2 and from that the VT value may be extracted. From the simulation results of Fig.8, 
VT≈0.37V can be obtained, which is about 70mV higher than the analytical value VT≈0.3V. This is in reasonable 
agreement with the VT correction by 80mV adopted in the “Simulation Lab#7 – Long-channel MOS transistor 
in the ON-state: impact of VDS” to reproduce with the analytical formula for IDS the simulated IDS-VDS curves of 
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the device in the ohmic/parabolic regimes. To better formalize the need for this correction when addressing 
the formulas for IDS in the ON-state of an MOS transistor, VT is sometimes called VON in the formulas. 
 

  
Fig.7: Same as in Fig.5, but with a linear scale for IDS. Fig.8: Extrapolation of the linear part of the IDS-VGS 

transcharacteristics for VDS=0.1V  (T=300K) to extract device VT. 
 

  
Fig.9: Simulated IDS of the investigated MOS transistor as a 
function of VGS, for VDS=0.1V and T=300K, 350K and 400K. 

Fig.10: Same as in Fig.9, but with a linear scale for IDS. 

 

To complete the analysis of the transcharacteristics of the investigated MOS transistor, Figs.9-10 show its 
dependence on T. The semilogarithmic plot of Fig.9 clearly highlights three major changes induced by the 
increase of T: i) the growth of the baseline arising from the carrier generation processes in the substrate, 
since these are thermally activated; ii) the degradation of the STS (more mV/dec), due to the kT/q term in its 
definition; and iii) the reduction of VT, due to the change of φB and of the energy gap EG of silicon with T (in 
that, the change of the effective density of states for the valence band and the conduction band Nc and Nv, 
and of the intrinsic carrier concentration ni are also involved). From the linear plot of Fig.10, on the other 
hand, the change of device transconductance clearly appears. That arises from the degradation of electron 
mobility. Note that the previous changes with T make IDS increase in the subthreshold regime and slightly 
above VT, while they make IDS decrease deep in the ON-state. 
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REPORT LAB 1 ELECTRON DEVICES 

Andreea Colpos, Sofia Cano Castro, Mattia Marinoni, 30th November 2022 

Introduction and aim 

For this laboratory three high-voltage transistors (after changing the working table because of 

electromagnetic noise) were employed, each one with its own dimensions (see next table); our goal was to 

measure every output resistance of every device at different gate voltages. For this experiment, we used 

the following values of 𝑉𝐺𝑆 : [1,  1.25,  1.5,  1.75] [𝑉]. 

Device name W [μm] L [μm] 

#2 10 10 

#3 0.5 0.6 

#4 10 0.6 

 

First thing we did was calculating the flat band voltage 𝑉𝐹𝐵, knowing that it is equal to −𝜙𝐵𝐼, and 

immediately after the threshold voltage 𝑉𝑇, the capacitance of the oxide 𝐶𝑜𝑥 and the one of the depletion 

layer 𝐶𝑑𝑒𝑝 (𝑡𝑜𝑥 = 10.5 𝑛𝑚,  𝑁𝑎 = 2 ⋅ 1017𝑐𝑚−3). 

 

 

𝑉𝐹𝐵 = −
(𝑞𝜒𝑆 +

𝐸𝐺𝐴𝑃
2 + 𝐾𝑇 ln (

𝑁𝑎
𝑛𝑖
) − 𝑞𝜙𝑚)

𝑞
= −0.98 𝑉 

𝑉𝑇 = 𝑉𝐹𝐵 + 2|𝜙𝐵| +
√2𝜖𝑆𝑖𝑞𝑁𝑎2|𝜙𝐵|

𝐶𝑜𝑥
= 0.96 𝑉 

𝐶𝑜𝑥 =
𝜖𝑜𝑥
𝑡𝑜𝑥

= 0.328 
𝜇𝐹

𝑐𝑚2
 

𝐶𝑑𝑒𝑝 = √
2𝜖𝑆𝑖𝑞𝑁𝑎2|𝜙𝐵|

4(2|𝜙𝐵|)
2

= 0.121 
𝜇𝐹

𝑐𝑚2
 

 

After performing a total of 12 measurements (4 for each device), we imported the data on Matlab and 

we’ve plotted the I-V curves of the different measurements. Then in a single plot we grouped, for each 

device, the curves obtained with the different gate voltages applied, so it would be easier showing how 

Fig.1: Band diagram and Fermi's levels 
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they change.  Obtained results are supported by the analytical formulas we encountered during theoretical 

classes, such as the one for the current in saturation regime 

𝐼𝐷𝑆 = 𝜇𝑛𝐶𝑜𝑥 (
𝑊

𝐿
) [(𝑉𝐺𝑆 − 𝑉𝑇)𝑉𝐷𝑆 −

𝑚𝑉𝐷𝑆
2

2
] 

where 𝑚 = 1 +
𝐶𝑑𝑒𝑝

𝐶𝑜𝑥
= 1.37, a recurrent value.   

 

Knowing that 

 𝑟0 = (
𝜕𝐼𝐷𝑆

𝑠𝑎𝑡

𝜕𝑉𝐷𝑆
 )
𝑉𝐷𝑆>𝑉𝐷𝑆

𝑠𝑎𝑡

−1

   

 

all left to do was just writing a proper Matlab code to elaborate the experimental data. 

                     

Plots and results 

We managed to obtain the output resistances for every device at the different Vgs by exploiting 

the polyfit and polyval functions in Matlab; here is a table summarizing what we got: 

Device number Vgs 𝑟0 

#2 1 V 14.8 MΩ 

#2 1.25 V 7.2 MΩ 

#2 1.5 V 4 MΩ 

#2 1.75 V 2.6 MΩ 

#3 1 V 2.7 MΩ 

#3 1.25 V 1 MΩ 

#3 1.5 V 568.5 kΩ 

#3 1.75 V 399.6 kΩ 

#4 1 V 313.7 kΩ 

#4 1.25 V 87.6 kΩ 

#4 1.5 V 42.8 kΩ 

#4 1.75 V 29.2 kΩ 
 

As we can see, the resistance decreases by moving through the saturation regime, this is reasonable and 

compatible with the plots in fact, what is happening in the device is the following: while Vgs increases, the 

slope of the I-V plot increases, so the resistance that is the reverse of the slope, decreases at higher and 

higher values of Vgs, so when Vgs will be at the highest value considered (1.75 [V]), 𝑟0 will be at the lowest 

value. For all 3 devices we can observe this fact and the Vgs in the plots, increase from the bottom to the 

top. 
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REPORT LAB 2 ELECTRON DEVICES 

Andreea Colpos, Sofia Cano Castro, Mattia Marinoni 

Introduction and aim 

For this laboratory three low-voltage transistors were employed, each one with its own dimensions (next 

table); our goal was to measure the STS (SubThreshold Slope) and the DIBL (Drain Induced Barrier 

Lowering) of each device. For this experiment we used 4 different voltages for 𝑉𝐷𝑆 : [0.25, 0.5, 0.75, 1] [V]. 

Device number W[μm] L[μm] 

#3 1 0.085 

#4 10 0.085 

#5 1 0.095 

 

The devices have all the 𝑁𝑎= 1.5 ∙ 1018 [𝑐𝑚−3] and same 𝑡𝑜𝑥 = 2.2 [nm].  We proceeded to calculate the 

threshold voltage, 𝐶𝑜𝑥 and 𝐶𝑑𝑒𝑝. 

 

𝑉𝑇 = 𝑉𝐹𝐵 + 2|𝜙𝐵| +
√2𝜖𝑆𝑖𝑞𝑁𝑎2|𝜙𝐵|

𝐶𝑜𝑥
= 0.43 [𝑉] 

                                                                                𝐶𝑜𝑥 =
𝜖𝑜𝑥

𝑡𝑜𝑥
= 0.157 [

𝜇𝐹

𝑐𝑚2] 

𝐶𝑑𝑒𝑝 = √
2𝜖𝑆𝑖𝑞𝑁𝑎2|𝜙𝐵|

4(2|𝜙𝐵|)2
= 0.354 [

𝜇𝐹

𝑐𝑚2
] 

 

After performing a total of 12 measurements, we imported the data on Matlab and we’ve plotted the      

𝐼𝐷𝑆-𝑉𝐺𝑆 curves of the different measurements. Then in a single plot we grouped, for each device, the curves 

obtained with the different drain voltages applied, so it would be easier showing how they change.  

Obtained results are supported by the analytical formulas we encountered during theoretical classes, such 

as the one for the current in the subthreshold regime: 

𝐼𝐷𝑆 = 𝜇𝑛𝐶𝑜𝑥 (
𝑊

𝐿
) (𝑚 − 1) (

𝑘𝑇

𝑞
)

2

𝑒𝑞(
𝑉𝐺𝑆−𝑉𝑇

𝑚𝑘𝑇
) [1 − 𝑒−𝑞(

𝑉𝐷𝑆
𝑘𝑇

)] 

where 𝑚 = 1 +
𝐶𝑑𝑒𝑝

𝐶𝑜𝑥
= 1.22, a recurrent value. The term in blue could be neglected in our analysis since we 

have a Vds large enough in every case. Theoretically, the expected 𝑆𝑇𝑆 can be calculated as 

𝑆𝑇𝑆 = (
𝜕 log10 𝐼𝑑𝑠

𝜕𝑉𝐺𝑆
)

−1

= [… ] =
𝑘𝑇

𝑞
ln(10) 𝑚 = 73.2 

𝑚𝑉

𝑑𝑒𝑐
  

Plots and results  

When we plotted the line in the logarithmic scale, by using the funcion polyfit, Matlab gave as a result the 

slope of the line ( that is the STS). These are the diagrams for device #5; in the graphs, from the bottom to 

the top, 𝑉𝐷𝑆 increases. 
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Considering values only in the subthreshold regime we see the obtained fitted line (dotted) which showed a 

value 𝑆𝑇𝑆 = 85.4 
𝑚𝑉

𝑑𝑒𝑐
, comparable to the theoretical one. 

                                             

 

The following table shows the intersections between a constant current, arbitrarily chosen as 𝐼𝐷𝑆 = 25 𝑛𝐴, 

and the plots presented before. 

𝑉𝐷𝑆 [V] 𝑉𝐺𝑆 [V] 

1 0.216 

0.75 0.227 

0.50 0.24 

0.25 0.251 
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Here we can observe how the curves (and consequentially the threshold voltage) shift from right to left, by 

changing 𝑉𝐷𝑆. That is due to the fact that, when the channel is too short like in this case (𝐿 = 95 𝑛𝑚), 

electrostatics in the horizontal direction becomes relevant (if not overwhelming over the vertical one), thus 

the gradual channel approximation is no longer valid. If 𝑉𝐷𝑆 keeps growing, then, the gate-drain band 

transition becomes so tight that we start to see a peak moving closer to the source and getting 

progressively lower, incrementing the electrons in the channel; at a certain point, electron concentration 

becomes so high that the nMOS device is turned on even in subthreshold regime (subthreshold leakage 

current). Finally, in order to find the shift for the threshold voltage, we have to calculate the difference 

between the 𝑉𝐺𝑆 values listed previously; results are reported in the following table. 

Δ𝑉𝐷𝑆 [V] |Δ𝑉𝑇|[V] 

0.5 − 0.25  0.011  

0.75 − 0.5  0.013  

1 − 0.75  0.011  

 

In this report, we considered only one device (#5) because for the other devices, unfortunately the data 

from the experiments result to be seriously distorted (the difference between the maximum and the 

minimum current values was of very few nA) so also the data imported for the elaboration in Matlab were 

wrong. We elaborated the graphs equally, in the following we present a graph showing the described 

situation for device #4. 
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