
DESD - Theory Lectures

Marco La Barbera

2023/2024

1

This document contains the notes for the Digital Electronic System Design course taught by
Nicola Lusardi for the 2023/2024 Electronics Engineering class held at Politecnico di Milano.

A big thank you to those who helped me.

This work is licensed under CC BY-NC 4.0

Lectures Digital Electronics Systems Design

Contents

1 FPGA Overview 5
1.1 CPLD . 5
1.2 FPGA . 6
1.3 SoC - System On Chip . 6
1.4 Logic - LUTs and Registers . 7
1.5 I/O Blocks . 8
1.6 Connections - Interconnects Resources . 8
1.7 Advanced Modules . 9
1.8 Market Side . 9

2 FPGA Power and Logic 10
2.1 FPGA Power . 10
2.2 FPGA Logic . 11

3 I/O Resources 17
3.1 Single-Ended vs Differential . 18
3.2 Buffer configurations . 19
3.3 Impedance Matching . 20
3.4 I/O Logic . 20

4 Timing 21
4.1 Timing of D Flip-Flop . 21
4.2 Timing of D-Latch . 22
4.3 Single-Clock D-FF System Timing . 23
4.4 Jitter . 26
4.5 Clock Domain Crossing (CDC) . 26

5 Clock Resources 28
5.1 CMT - PLL vs MMCM . 28
5.2 Clock Routing . 29
5.3 BUFH . 30
5.4 BUFR . 30
5.5 Clock Input . 30

6 Pipeline 32
6.1 Latency and Throughput improvement . 33
6.2 Power Consumption . 34
6.3 Optimizing pipeline and well design rules . 34

7 Memories - RAM & FIFO 36
7.1 Random Access Memory (RAM) . 36
7.2 FIFO . 37

8 AXI-Stream Protocol 41
8.1 Protocol description . 41
8.2 Common Mistakes . 44

3/45

Lectures Digital Electronics Systems Design

1 FPGA Overview

FPGA belongs to a greater family that is the so called ”Programmable Logic Device” (PLD).

In this family we find the following kind of decives:

• Complex Proglammable Logic Device (CPLD)

• Field Programmable Gate array (FPGA)

• System-On-Chip (SoC)

Behavior of circuits are described with HDL code, devices assume configuration changing the
connections to work as designed.

Figure 1: A general PLD configuration

1.1 CPLD

CPLD are the simplest devices of this family. A CPLD device is composed by few and simpler
modules:

• I/O blocks: Simple Input, Output and Tri-State ports

• Logic: LUTs, Registers (D Latch, D Flip-Flop)

• Connections: Switching Matrix

Figure 2: An example of a CPLD architecture

The bitstream is uploaded into a non-volatile FLASH/EEPROM.

5/45

Lectures Digital Electronics Systems Design

1.2 FPGA

FPGA is a more complex family with respect to CPLD. It contains advanced blocks useful for
high power computation.

• I/O blocks: Input, Output, Tri-State ports and registers for advanced configurations

• Logic: LUTs, registers (D Latch, D Flip-Flop)

• Connections: Switching Matrix

• Advanced Modules: Additional RAM, DSP, PCIe, and so on.

The bitstream is uploaded inside a volatile memory, a static RAM. At each power on, the FPGA
has to be re-programmed.

Just before the SRAM, we can find some configuration pins that are used to put the infor-
mation of the bitstream into the memory. Moreover, some ”boot” choices are available to store
permanently the bitstream into an SPI FLASH external memory and use it at each power on.
For security reasons, the SPI FLASH memory is not inside the FPGA, in-fact, the bitstream
is encrypted and it can be decrypted only by an engine just before entering the SRAM. The
bitstream is kept encrypted into the SPI FLASH.

Static RAM: Composed by 6 MOS (2 MOS for two NANDS and one MOS for two switches).
This Memory is used in FPGA.

Dynamic RAM: Composed by a capacitor and a switch. More compact, more dense, but
it has some leakage and memory remains only for some milliseconds, we need to refresh it. So
this Memory does not work properly for our purposes because it can’t give us a fixed constant
configuration.

So, the question now can be: why do we use a volatile memory?

Having the possibility to modify the bitstream at runtime, making ”partial reconfiguration”,
is very useful. As an example, it can be useful for space problems.

1.3 SoC - System On Chip

SoC are temporal computer architectures connected to the FPGA. A microprocessor is used for
accomplish some tasks while FPGA is used for other different tasks, an optimum solution can
be if you want parallel computation, in which FPGA is very powerful.

6/45

Lectures Digital Electronics Systems Design

Figure 3: System-On-Chip design example

1.4 Logic - LUTs and Registers

LUT changes its configuration considering the bitstream. How is this possible?

The simpler way to build a Look Up Table (LUT) is to implement it using a mutliplexer.

If I want to change Look-Up table configuration from an OR to an AND, I can simply change
the input of the multiplexer. In this way it’s possible to implement all the logic gates.

The other actors inside the FPGA logic are the registers

Figure 4: Latch and Flip-Flop behaviour

Latch: is a register that is not sensitive to a clk but with an enable signal
Flip-Flop: a register where information is stored when rising or falling edge of the clock

A register could be a flip flop or a latch.

7/45

Lectures Digital Electronics Systems Design

1.5 I/O Blocks

In micro-controllers we have only input and output peripheral. In FPGAs, a I/O block could
be an input, a programmable output or a three state port.

Even more, input and output are not simple ports: we can find additional flip flop to performs
additional stuffs through these ports.

Figure 5: Input and Output pins configuration

Moreover, with Programmable delay and matching impedance features, we have the pos-
sibility to increase speed communication. (See Chapter 3)

1.6 Connections - Interconnects Resources

Interconnect is the programmable network of signal pathways between functional elements within
the FPGA. It’s the so called Switching Matrix, controlled by Programmable Interconnect
Points (PIP).

Figure 6: Switching Matrix Design

8/45

Lectures Digital Electronics Systems Design

1.7 Advanced Modules

Differently from CPLD, FPGA has dedicated modules:

• Frequency synthesizer and jitter filter; e.g., Phase Locked Loop (PLL). For instance, if I
enter in an FPGA with a 1MHz clk, thanks to a dedicated module it’s possible to obtain
a 100MHz clk. In CPLD, if I need a 100MHz clk, I must enter with a 100MHz clk.

• Digital Signal Processor (DSP), that are specialized ALUs to perform sum and multipli-
cation.

• RAM grouped in Block (BRAM) or Distributed

• Communication primitive; e.g. PCIe, SERDES, Transceiver

1.8 Market Side

Figure 7: Market percentage on FPGA usage

Figure 8: Xilinx 7-Series 28-nm

9/45

Lectures Digital Electronics Systems Design

2 FPGA Power and Logic

2.1 FPGA Power

High level FPGA are very difficult to power-up, instead, low level FPGA are easier.

There are three main issues regarding the powering of an FPGA:

• It requires multi level voltages

• There are several Power-on sequencing

• Generally we take care of Power-Performance ratio

The price of reconfigurability is an higher power consumption. In fact, with respect to ASICs,
power consumption is a struggle factor. For instance, we trade the speed of a simple FC-CMOS
NOT gate with a slower and a power hungry implementation that use multiplexer in which we
have to configure each input.

Let’s see the FPGA main Power Lines:

Figure 9: FPGA powering connection design

• VCCINT: Used to power-on the core of the internal logic (LUTs, registers), connection
(Switching Matrix) and advanced blocks (DSP, RAM).

• VCCO: Used to power-on Input and Output Resources, expecially for output buffers.

• VCCAUX: Auxiliary power-lines used where there are not VCCINT and VCCO.

• Other power lines: In some FPGA they can be found to power-on very specific modules
(external RAM, transceiver) and references (ADC, impedance matching, transceiver).

In a FPGA the static power consumption is 10-20% of the total and it’s not 1o1 firmware de-
pendent. Instead, the dynamic portion is more or less 80-90%, and is 1o1 firmware dependent.

10/45

Lectures Digital Electronics Systems Design

With technologies scaling, power consumption decreases due to parasitic capacitances becoming
smaller.

Figure 10: Performance and Power consumption
on technology scaling

2.2 FPGA Logic

2.2.1 Configurable Logic Block (CLB)

The fabric of the 7-Series FPGA is arranged in a matrix way, each cell of the matrix is called
Configurable Logic Block (CLB). Each CLB is divided into a pair of slices (Slice0, Slice1) that
contain LUTs, registers, multiplexer and carry logic. These are only simple logics, without any
advanced functionality.

Figure 11: CLB design configuration and connections

11/45

Lectures Digital Electronics Systems Design

The simple logic inside a CLB is composed by:

• LUTs

• Registers

• Distributed Memory and Shift Register

• Dedicated high-speed carry logic

• Multiplexers

CLBs are the main logic resources for implementing sequential circuits.

As it can be seen below, each CLB element is connected to a switch matrix for access to the
general routing matrix.

Figure 12: Inside a CLB design

Every slice contains the following logic:

• 4 look-up tables (LUTs)

• 8 storage elements (LATCHs/FFs)

• Multiplexers (MUXs), to move information from LUTs to registers

• Carry logic (CARRY4), dedicated high-speed carry logic

Slices can be SLICEL or SLICEM. The simplest kind of slice is the SLICEL, that contains
only the elements we have seen before. SLICEM, thanks to some bits, supports two additional
functions: storing data using distributed RAM, and shifting data with 32-bit registers integrated
in LUTs.

Each CLB contains two SLICEL or a SLICEL + SLICEM, Slice0 can be L or M and Slice1
can be L or M too.

12/45

Lectures Digital Electronics Systems Design

• SLICEM structure:

Figure 13: SLICEM design configuration

LUTs can be configured as: Look-Up table, distributed RAM or Shift Register. In fact, LUTs
have the 32 bit information that can be configured as a distributed RAM (for this reason is also
called LUT RAM), or as a 32-bit shift register.

The multiplexer just after the LUTs area are used to move the information from LUTs to
the four Half-Adders (4-bit Carry-Logic, called ”CARRY4” in Xilinx terminology).

The four registers of the third column can be used only as D-type Flip-Flop, instead the
four of the last column can be used as D-type or D-type LATCH (FF/LAT in the image).

13/45

Lectures Digital Electronics Systems Design

• SLICEL structure:

Figure 14: SLICEL design configuration

SLICEL is simpler than the previous slice, the only difference is that now the LUTs block be-
comes smaller because it has not the distributed RAM and Shift Register functions anymore.

What if we need to use more than one slice?

If a more complicated Logic is needed, (i.e. it requires more than 8 registers, 4 LUTs and
4 adders) the switching matrix comes to play, connecting slices between each other.

In fact, is not possible to connect ”directly” any slice0 logic to slice1 logic of the same CLB.
To connect them is only possible to use the switching matrix, but these connection are slower
than direct connection. Direct connection and switching box connection have a difference more
or less of one order of magnitude in terms of time: 100ps vs 1ns.

14/45

Lectures Digital Electronics Systems Design

An ASIC has only direct connection, for this reason is better in timing performance, but it has
not flexibility!

The cost in time and resources (Non recursive Engineering Cost, NRE) to design an ASIC
is higher than FPGA. In fact, kilo-Units of those chips are needed to make visible this technol-
ogy. Only in this way ASICs are better.

For FPGA, instead, only one unit is required, and time to develop a design is much less. But
FPGA stops to be convenient when more than kilo-Units are sold.

Time To Market for FPGA is low, means ”Fast prototyping”.

(From professor opinion performance are not very relevant, only TTM and NRE should be
considered.)

2.2.2 BRAM - Block RAM

Between the columns of CLBs we can have addition functionality that can be connected to
them, the most important element into the Xilinx 7-Series devices is the 36kb Block RAM
(BRAM), each containing two independently controlled 18kb RAM blocks.

Figure 15: A BRAM memory

The number of BRAMs in the device depends on the specific model, ranging from 5 (180 kb) of
the smallest Xilinx Spartan-7 to 1880 (67.68 Mb) of the biggest Xilinx Virtex-7.

Even if FPGA is very big, it has very few Mb of RAM inside. If we want increase the RAM ca-
pability, the FPGA has to be connected with an external DRAM (DDR), and we need a proper
MIG controller to interface them (Xilinx provides IP-cores to do this).

15/45

Lectures Digital Electronics Systems Design

2.2.3 DSP - Digital Signal Processor

FPGAs are very efficient for Digital Signal Processing (DSP) applications because they can im-
plement custom, fully parallel algorithms.

DSP applications use many binary multipliers and accumulators that are best implemented
in dedicated DSP slices.

We can have few or hundreds of DSP per FPGA with the following main feature:

• 25 × 18 two’s-complement multiplier

• 48-bit accumulator

• Dual 24-bit or quad 12-bit add/subtract/accumulate

Figure 16: A DSP module

16/45

Lectures Digital Electronics Systems Design

3 I/O Resources

7-Series FPGAs don’t have only one VCCO that power-on all the I/O pins, in fact, I/O pins
are distributed through different banks. Each bank has its own VCCO power supply. The first
advantage is the possibility to turn off a specific bank. This structure has been added only for
power saving reasons, killing static or leakage power.

Figure 17: I/O banks

Each bank has 50 pins, and there are two types of them:

• High-Range (HR), has extended voltage level from 1.2V to 3.3V.

• High-Performance (HP), has limited voltage level (1.2V - 1.8V) with better electrical
characteristics (impedance matching and jitter)

If we change VCCO, the output high level voltage changes (1.2V / 1.8V / 2.5V / 3.3V are the
voltages that can be selected).

17/45

Lectures Digital Electronics Systems Design

3.1 Single-Ended vs Differential

In Single-Ended implementation, the information is brought only by one wire, and it is measured
with a common reference as the ground. So, if we use 50 single-ended pins, we can work with
50 different signals.

Figure 18: Single-ended configuration

However, this way can produces some problems: single ended signaling is not robust to distur-
bances. If the disturb signal is higher than Noise Margins, it’s possible to confuse logical values.

Instead, with differential signaling, if we have 50 pins we turn out to have only 25 signals.

Figure 19: Differential configuration

Now, if a disturb acts, both lines vary and the disturb is rejected. Fully differential signaling
helps also in terms of signal integrity, that comes from electromagnetic coupling issues (cross-
talk). In fact, using fully differential signaling, it’s possible to decrease the coupled area.

18/45

Lectures Digital Electronics Systems Design

3.2 Buffer configurations

In our FPGAs we can find three different buffers:

• IBUF/OBUF

• IBUFDS/OBUFDS

• TRI STATE

The single-ended implementation requires only the simple IBUF for inputs, and OBUF for
outputs. IBUFG is used when an input buffer is used as a clock input.

Figure 20: IBUF Figure 21: OBUF

Fully Differential implementation requires IBUFDS for inputs, and OBUFDS for outputs.
IBUFGDS is used when an input buffer is used as a clock input.

Figure 22: IBUFDS Figure 23: OBUFDS

Using Tri-State Buffer, if we turn on the input buffer, the buffer becomes an input buffer, and
obviously if we turn on the output buffer the opposite happens. High impedance means big
resistance and big parasitic capacitance, so the τ becomes high and the communication slow.

Figure 24: IOBUF Figure 25: IOBUFDS

19/45

Lectures Digital Electronics Systems Design

3.3 Impedance Matching

Impedance matching is the possibility to activate the output and input resistance in order to
match with the transmission line impedance, to avoid reflections.

Moreover, a Digital Controlled Impedance (DCI) present in High-Performance pin, checks the
fluctuation of the internal resistance of the FPGA in order to perfectly tune to the desired value.

3.4 I/O Logic

Let’s see in details how input/output blocks give more functionality to FPGAs.

Figure 26: High-Performance I/O pin Figure 27: High-Range I/O pin

ILOGIC andOLOGIC are Double-Data-Rate or Edge-Trigger input/output D-type Flip-Flop.
ILOGIC samples the external pin and put the Q value on the FPGA, vice-versa for OLOGIC.

IDELAY and ODELAY permit to program the delay of the signal. This functionality is
very important to high speed communication and length matching, in fact, it’s possible to com-
pensate skew.

ISERDESE is a dedicated serial-to-parallel converter for data receive with specific clocking
and logic features. OSERDESE is a dedicated parallel-to-serial converter for data transmis-
sion with specific clocking and logic resources.

In addition, we can find FIFOs at the input and output pins that are useful for timing per-
formance.

20/45

Lectures Digital Electronics Systems Design

4 Timing

A pure combinational logic is characterized by a propagation and contamination delay. Sequen-
tial logic are characterized by Setup, Hold and Propagation Delay.

4.1 Timing of D Flip-Flop

Figure 28: D Flip-Flop

• tCQ: propagation delay D → Q at clock event, the delay we need to write the information
to the output

• tSETUP : minimum time D has to be stable before clock event

• tHOLD: minimum time D has to be stable after clock edge

Figure 29: D Flip-Flop timing analysis parameters

If this values are not respected, it can happens that wrong information are showed on output.
Moreover, if timing is not respected, an other huge problem called Meta-stability can happens.

If Meta-stability status occurs, it means that the electrical value measured on Q is not an
HIGH or LOW value but a value inside the half dynamics. Moreover, the system starts to spend
also in term of energy, increasing power consumption.

21/45

Lectures Digital Electronics Systems Design

Figure 30: Setup violation

Figure 31: Hold violation

4.2 Timing of D-Latch

Figure 32: D-latch

• tDQ: propagation delay D → Q when transparent (E = 1), the delay we need to write the
information to the output

• tSETUP : minimum time D has to be stable before latching (E from 1 to 0)

• tHOLD: minimum time D has to be stable after latching (E from 0 to 1)

Figure 33: Setup violation

22/45

Lectures Digital Electronics Systems Design

Figure 34: Hold violation

4.3 Single-Clock D-FF System Timing

Figure 35: The sequential circuit taken for our upcoming analysis

Timing analysis does not check the source signal Din because it is non-deterministic and its
timing behavior is entirely random. It’s possible to respect only the timing violation of the dest
register.

Figure 36: Hold computation

23/45

Lectures Digital Electronics Systems Design

If a ’0’ is sampled in FF-Dest, FF-Dest needs that this value remains stable at least for a tHOLD

before the new information arrives (’1’ sampled in the source FF in this case). So, the ’1’ infor-
mation in FF-Srcs has to take tp + tCQ > tHOLD in order to respect hold timing.

We can say that the Hold is related to the ”present” pulse of clock.

Figure 37: Setup computation

The new value D of FF-Dest has to be stable at least a tSETUP before the sampling rising edge.
So, the ’1’ information, has to arrive before the Setup window: tSETUP < Tclk − (tp + tCQ).

If D is too low, we can choose to reduce the tp of the logic and, if not possible, the only
way is to reduce the clk frequency.

We can say that the Setup looks to the ”future” regarding the clock pulse.

4.3.1 Forward and Backward Skew

Is not guaranteed that the clk inputs of source and destination are synchronized. A positive
(Forward) Skew indicates that, from the source to the destination register, the clk is delayed.

24/45

Lectures Digital Electronics Systems Design

Figure 38: Hold with forward skew

Skew in Hold decrease the allowed window tHOLD < tp + tCQ − tskew because the Dest clock
sample is moved ahead in time.

Figure 39: Setup with forward skew

Skew in Setup increases the allowed window tSETUP < Tclk+ tskew− (tp+ tCQ) because the Dest
clock sample is moved ahead in time.

25/45

Lectures Digital Electronics Systems Design

Overall, the timing analysis can be performed with these two formulas:

• tSETUP < Tclk + tskew − tPATH

• tHOLD < tPATH − tskew

Obviously, if a negative skew occurs, we have to invert the skew sign and we observe that Hold
has a benefit and Setup is worsened.

4.4 Jitter

Figure 40: Jitter

The edge of real clocks fluctuate around the ones. This fluctuation is a random variable with
null mean value. The standard deviation (tj) of the probability density function is called jitter.

If we consider the real source edge at t = 0 the destination has a positive/negative skew of
tj (worst case because it is random!).

Now, our timing equations have to be fixed with this new value. We need to handle the Jitter
in a conservative way and, considering the worst situation, we put it into the equation with a
negative sign.

• tSETUP < Tclk + tskew − tj − tPATH

• tHOLD < tPATH − tskew − tj

Both Setup and Hold are worsened with this choice.

4.5 Clock Domain Crossing (CDC)

If source and destination registers work with different clock domains, a δ between two clocks
appears, and acts like a skew that changes for every pulse in a predictable way.

In order to avoid Setup, Hold violation and so meta-stability issues, we can add Flip-Flops
in series (typically from 2 to 8) to stabilize the data. However, the most used CDC circuit is
the Asynchronous FIFO.

26/45

Lectures Digital Electronics Systems Design

Meta-stability is now avoided, but I can still achieve a wrong value at the output. In order
to avoid this issue, we can build a circuit with a TVALID bit that ensure the right value of the
data.

Figure 41: Clock Domain Crossing solution for TVALID in AXIS

A read logic has been built to check when the incoming data is valid or not.

How can we guarantee that no more than one TVALID pulse happens for each pulse of clock of
the source? We have to perform a toggle for each time the data is valid.

27/45

Lectures Digital Electronics Systems Design

5 Clock Resources

Work on clock implementations means find the best solution in order to minimize skew and jitter.

As an example, from the top to the bottom of the FPGA, with the direct connection of the
CARRY4 modules, there is more or less 2 ns delay. Using the switching box, the time duration
is more or less ten time slower, 20 ns. The maximum skew that we have today on our FPGA is
more or less of 100 ps. How can we achieve this speed?

If we want to work with clk inside our FPGA, it is not possible to work with direct connection
or switching box, but a faster mechanism has to be implemented.

Our goal is to mix circuits at a CLB level. The solution for our 28 nm technology is a ”tree”
connection that distributes the clock inside the FPGA.

Overall, inside our FPGA, there are up to 32 clks. A number of 50 different CLBs are grouped
in a clk region point of view. Each clk region can manage up to 12 clock domains. So, each
clock region has 12 different ”trees”. These 12 global clocks can be driven by any combination
of the 32 global clock buffers.

The 7 series FPGAs clocking resources manage complex and simple clocking requirements with
dedicated global and regional I/O and clocking resources.

The Clock Management Tiles (CMT) provide clock frequency synthesis, deskew and jit-
ter filtering functionality. It is instantiated by the user to solve some issues and is divided in
two:

• Phase Locked-Loop, PPL

• Mixed-Mode Clock Manager, MMCM

The clock routing and buffers, managed by vivado, allow to propagate clock without skew at
low jitter and is divided as follow:

• Global Buffer, BUFG

• Horizontal Buffer, BUFH

• Regional Buffer, BUFR

5.1 CMT - PLL vs MMCM

Each 7 series FPGA has up to 24 CMTs, each consisting of one MMCM and one PLL.

A PLL is a feedback system that takes in input fin and put in output N · fin. In the feed-
back path it has a frequency divider. Overall, we obtain a frequency multiplier. It has one
input and N different output.

A MMCM can have a fractional number instead of N, so no more just an integer, it takes
in input fin and put in output Q ·fin. It has also a filter on the jitter. Moreover, MMCM has
fine phase-shift capability in either direction and can be used in dynamic phase-shift mode.
So we can create a misalignment with a shift between the output and the input.

28/45

Lectures Digital Electronics Systems Design

In both modules, there is a flag that permit us to dynamically change all the parameters (Q,
phase-shift and so on). This functionality is very useful when we have to connect an external
device for which we don’t have information about the delay (it can have an other clk domain).

For instance, in order for handshakes to work properly on a DDR memory, it’s needed to
match the processor clk with the memory clk, and this can be dynamically adjusted changing
parameters at run time.

5.2 Clock Routing

Each CLB is connected, by means of the Switch Matrix, to the global routing network, which
is composed by wires running between two Switch Boxes.

While the global routing network offers reasonable propagation delays for a signal, these de-
lays are not acceptable for clock signals, which require instead strict timings to avoid clock skew
issues. To overcome them, dedicated clock lines with reduced propagation delays are available
in the FPGA, each driven and accessed by a global clock buffer.

5.2.1 BUFG

Each 7 series device has 32 global clock lines that can clock all sequential resources in the whole
device. Global clock buffers (BUFG/BUFGCE) are 32 buffers that, thanks to clock routing,
receive the clks from all their input pins, and drive the global clock lines in order to distribute
this clock in all the FPGA.

Figure 42: BUFG routing, they are not inside a clock region

Remember that, even if there are 32 BUFG, each clock region can only acquire 12 clock lines.

29/45

Lectures Digital Electronics Systems Design

5.3 BUFH

The movement of the clk between clock regions are made by BUFH (Horizontal buffer). So we
have our BUFG that moves clk potentially in one region, and from one region to an other the
connection is performed by the BUFH.

Figure 43: BUFH and BUFR routing

5.4 BUFR

BUFRs drive clock signals coming from clock-capable I/O pin to a dedicated clock net within a
clock region, independent from the global clock tree. BUFRs can drive the I/O logic and logic
resources (CLB, block RAM, etc.)

If we have a pin that is near to a clock region, and our implemented circuit clk is very small, we
can consider to use a BUFR.

5.5 Clock Input

Each I/O bank contains few clock-capable input pins to bring user clocks onto the 7 series FPGA
clock routing resources. In conjunction with dedicated clock buffers, the clock capable input
bring user clocks on to:

30/45

Lectures Digital Electronics Systems Design

• Global clock lines in the same top/bottom half of the device

• I/O clocks lines within the same I/O bank and vertically adjacent I/O banks

• Regional clock lines within the same clock region and vertically adjacent clock regions

• CMTs within the same clock region and, with limitations, vertically adjacent clock regions.

Figure 44: BUFIO Driving I/O Logic

If a standard net is used as a clock signal, there is a several increase on path delay, due to the
fact that before arriving to a clock routing path, the signal has to overcome some other non
optimized line.

In a circuit that is completely integrated into the FPGA, this is a simple delay from the in-
put to the buffer.

Instead, the delay is converted in skew problem if we connect our FPGA to an external de-
vice. The best choice is to use a MMCM to compensate the skew between the two cock paths.

31/45

Lectures Digital Electronics Systems Design

6 Pipeline

Adding in a proper way Flip-Flops and latches into our circuit, can allow us to speed-up the
rate of the circuit.

The maximum propagation delay of a circuit is called latency and it is represented as τ , the
throughput instead, is 1

τ .

The technique that allows these values to be decoupled is called pipelining, and it is the primary
strategy for achieving parallelism.

There exist two kind of pipeline parallelism: Temporal and Spatial.

Figure 45: Temporal vs Spatial Parallelism

Pipeline in Temporal Computing Device means that the stages (i.e. Fetch, Decode and Execute)
are overlapped.

In FPGA we speak about Spatial Parallelism.

32/45

Lectures Digital Electronics Systems Design

6.1 Latency and Throughput improvement

Figure 46: Non pipelined path

The latency is the sum of the propagation delay and the throughput is the inverse of this
value.

Figure 47: Figure of merit of non-pipelined path

Figure 48: Pipelined path

With the insertion of registers, the logic is now temporized with clock. The clock must be bigger
than the maximum propagation delay.

Latency = N · Tclk, Throughput =
1

Tclk

33/45

Lectures Digital Electronics Systems Design

Figure 49: Figure of merit of a pipelined circuit

6.2 Power Consumption

Today, area is not the only problem anymore. In fact, also power is a huge problem about
pipeline. Static power or leakage power is proportional to the number of the off transistors.
Also dynamical power consumption increases because node with pipeline is bigger than the
node without pipeline due to the insertion of registers. Also the parasitic capacitance of clock
input have to be taken into account.

PD = PDno pipe +

reg∑
fsw · C · V 2

DD +

reg∑ 1

Tclk
· C · V 2

DD

6.3 Optimizing pipeline and well design rules

Our goal now is to do pipeline where is strictly necessary in order to optimize everything.

Figure 50: How to add registers to properly
pipeline a circuit

1. Draw a first pipeline line that intercepts each output of the combinatorial circuit. This
provides a model for implementing a 1 pipeline, usually an uninteresting implementation
choice.

2. Draw additional pipeline lines that define the stages. Each contour must (a) divide the
circuit by intersecting the signal lines and (b) intersect the lines so that each signal crosses
the contour in the same direction. Each additional line increases the number of stages in
the pipeline by one.

34/45

Lectures Digital Electronics Systems Design

3. Implement the pipeline circuit by entering a register at each point of the combinatorial
circuit where a signal line crosses a pipeline boundary

4. Choose a minimum clock period sufficient to cover the longest combinatorial path within
the circuit. Unless ideal registers are assumed, the paths must include the upstream
registers propagation delay and the downstream registers setting times.

Continue adding registers only if latency does not drastically increase and throughput remains
unchanged.

35/45

Lectures Digital Electronics Systems Design

7 Memories - RAM & FIFO

7.1 Random Access Memory (RAM)

The Random Access Memories is a volatile memory in which it is possible to read and write
data, organized in a set of “words”, each one identified by an “address”. A flag will be used to
specify if RAM has to be read or written.

If the value of each “word” is fixed, the memory is called Read-Only Memory (ROM).

RAMs have two main parameters: word width and memory depth.

A Single-Port RAM (SPRAM) module must have at least 4 ports:

Figure 51: SPRAM design

• address port: (input), to select which word has to be read or written

• write enable bit: (input), to specify whether the current operation is a read or a write
be read or written

• data out port: (output), to read the data coming from the memory (if reading)

• data in port: (input), to provide the data to be written into the memory (if writing)

In a Simple Dual-Port RAM (SDPRAM) is possible to read and write data at the same time,
in fact, SDPRAM has address out and data out port for reading operation and address in and
data in port for writing operation. There exists also a True Dual-Port RAM (TDPRAM).
Note that some conflicts can happen if the same address is read and written at the same time.

Read and Write operation are not instantaneously. When the write enable is put at ’1’, data in
is moved inside the memory after a certain amount of clock pulses (latency), the same will be
applied for the reading operation.

36/45

Lectures Digital Electronics Systems Design

Figure 52: RAM process engine

Keep attention at the addr signal, it has to be an integer value.

In this VHDL description, the write and read operations have a latency of 1 pulse of clk.

Depending on the size of the implemented RAM, Vivado can choose to implement it using
Distributed RAM (the 32-bits of LUTs when it has small dimension), or Block RAM (BRAM,
when instead dimensions increase). The RAM dimension for which Vivado chooses to implement
a Distributed or a Block RAM can be changed in settings.

7.2 FIFO

FIFOs are memories (without addresses) with a “write” and a “read” interface.

As the name suggests, the first “word” written into the FIFO in the WRITE interface is the
first one that will be provided on the READ interface.

FIFOs are widely used in digital electronics, as they are the main memory element to han-
dle data streams. In fact, if the data processor is temporary busy, data stream is stored inside
a FIFO in order to avoid losing data.

The write interface must have at least three signals:

• data in (input)

• write enable (input), to notify the FIFO that the data on the data in signal has to be
written

• full (output), which is set to 1 by the FIFO when the internal memory is full (so any write
request is ignored)

Likewise, the read interface must have at least three signals:

37/45

Lectures Digital Electronics Systems Design

• data out (output)

• read enable (input), to notify the FIFO that the data on the data out signal has been
read and a new value can be put on data out

• empty (output), which is set to 1 by the FIFO when the internal memory is empty (so
any read request is ignored, and the value on the data out signal has to be considered as
invalid)

Figure 53: FIFO design

FIFO could have the read and write ports clocked with the same or different clocks. In that
case we have Synchronous (SYNC) or Asynchronous (ASYNC) FIFOs, respectively.

FIFO could be standard (STD) or First-Word Fall Through (FWFT). The last one has the
advantage of outputting immediately the valid data when ready is asserted.

Figure 54: FWFT functioning waveform

One common way to implement FIFOs is by using circular buffers (also called ring buffers).
Circular buffers have two “pointers”:

• Write (or head) pointer, which points to the location where the next word has to be
written

38/45

Lectures Digital Electronics Systems Design

• Read (or tail) pointer, which points to the location of the data that’s going to be read

It is build using a RAM, in particular a Dual Port RAM type.

Figure 55: FIFO as a Circular Buffer

From a VHDL description perspective a circular FIFO can be written in the following way:

Figure 56: Full and Empty Behavior (concurrent statement)

Figure 57: Declaring variables for beauty-code (From this
point forward, we are within the FIFO engine process.)

39/45

Lectures Digital Electronics Systems Design

Figure 58: Word tracking

Figure 59: Write and read indexes tracking

Figure 60: Read and write operation, note that dout assign-
ment is performed inside the process, so this becomes a stan-
dard FIFO and not a FWFT

40/45

Lectures Digital Electronics Systems Design

8 AXI-Stream Protocol

8.1 Protocol description

AXI-Stream protocol is a not address mapped protocol, but it simple transfers streams of data.
It’s made up of a Master and a Slave that work synchronous with each other.

Figure 61: AXIS interface

Let’s discuss all ports rules and specifics:

Figure 62: aclk and aresetn

Figure 63: tvalid, tready and tdata

Figure 64: tlast

41/45

Lectures Digital Electronics Systems Design

With these essential ports we can start doing simple transactions.

Figure 65: An example of packets transaction

The first high tlast signal does not represent a real last data of a packet. Moreover, each packet
can have different number of data.

Additional signals can help to build more complex AXIS protocols.

Figure 66: Complete AXIS interface

Let’s discuss all the additional signal ports rules and specifics:

42/45

Lectures Digital Electronics Systems Design

Figure 67: tsrb and tkeep

Figure 68: Behavior of tsrb and tkeep

Figure 69: tuser

Figure 70: tid and tdest

Master and Slave AXIS handshake is a one-to-one protocol. Anyway, thanks to TDEST signal,
Xilinx is able to provide some special engines called broadcaster to route one Master to more
Slaves.

43/45

Lectures Digital Electronics Systems Design

8.2 Common Mistakes

Figure 71: Valid and ready alignment

Data is transferred at each clock cycle when both VALID and READY are ”1”.
After each clock cycle when this condition is verified, the master can either:

• keep VALID high and provide a new word

• set VALID to 0 if it does not have a word to transfer right now

8.2.1 Valid must not wait for ready

Figure 72: Wrong transaction Figure 73: Ok

The VALID assertion (0 → 1) must not wait for a high READY.

The Master, if it wants to transmit some data, must assert VALID, without waiting for a
high READY.

8.2.2 Valid and Data are linked

Figure 74: Wrong transaction Figure 75: Ok

When VALID is 0, DATA must be considered invalid.

When VALID is 1, DATA is valid and can be used.

In other words, in the same clock cycle as the VALID assertion, the correct DATA value must
be put on the bus, not later.

44/45

Lectures Digital Electronics Systems Design

8.2.3 Once VALID is high, it must wait for READY

Figure 76: Wrong transaction Figure 77: Wrong transaction

Once VALID goes to 1, it must stay to 1 until READY is asserted.

“Presented” data can not be “withdrawn” (left). Similarly, DATA can not be changed until
a high READY (right)

Figure 78: Ok

In the waveform, DATA is kept constant until a high READY. Also, VALID is kept to 1 until
the master has no more data to send (in this case, after the second word).

8.2.4 Ready can be freely asserted or de-asserted

Figure 79: Ok

Unlike VALID, READY is free to be asserted or de-asserted. So, as MASTER, do not rely on
a high READY to infer the value of READY in the following clock cycles.

45/45

