ANALOG CIRCUIT DESIGN ORAL NOTES

By Giacomo Tombolan

This work is licensed under Creative Commons CC-BY-NC-SA-4.0

Guide to these notes:

- If you payed for these notes, **you've been scammed**. I always give my notes for free.
- There are some additional notes at the end of the documents that could make some questions (like the orchard theorem) clearer to you, or at least, they did to me.
- I tried to explain and justify every step of each question, I hope you can follow my reasonings. If there's something that's "taken for granted" (except for filter theory that's purely mathematical and it's not explained in this course), there's probably an additional note in the end of the document
- This is a helpful guide to be read together with the lectures PDFs. I don't recommend to fully rely on the stupid things I wrote. Btw, PDFs contain typos so beware of that too
- Questions #24,#25,#1 are a bit meh, I didn't really know what so say about those. I really recommend not to use those as reference
- Question everything you read because during the oral you will be asked exactly that. Just to make few examples:
 - (Question #22 on 1/f noise) why do we take $\beta = \frac{1}{4}$? Can't we generalize the reasoning to all energy levels? Of course, but it's more complex. We analyze the traps at Fermi level just to demonstrate that if we consider multiple τ we end up with several lorentian shapes. Of course, on a more general view, there will be different families of traps (ions, defects on lattice, etc..) + different energy levels that will lead to something like $\frac{1}{r\beta}$
 - (questions #14 and #15) How do we size the square length and area Λ , A_0 ? Is there any reasoning behind that? (See additional notes at the end of the document)
- NEVER EVER TAKE ANY FORMULA OR SYMBOL FOR GRANTED. The exact moment you memorize anything without a clear understanding of what you learned you will fail the oral. It's guaranteed. You must be able to justify anything that gets out your mouth or pen.
- Tip that helped me the most: don't memorize every step but memorize the first and last steps. Then memorize the track you need to follow to get from start to the end, it helps the flow of your speech and it won't take too much brain space
- It took me about 7 days to write these notes from scratch, so if my writing isn't clear, well, I'm sorry C: hope it helps anyway. Also, I speak maccheroni and I'm well aware of the English mistakes I made. However I didn't have enough time to be my grammar nazi
- There are two questions #19, the given pdf with the oral topics had two #19 and I didn't see that until I was done writing everything. Just ignore this mistake

If you're having any issue with this document just send an email to giacomo.tombolan@mail.polimi.it

Topics for the orals

- 1. MOSFET's figures of merit: maximum voltage gain and cut-off frequency. Dependences on bias (strong, moderate and weak inversion).
- 2. Independent/interacting capacitors and poles. Extension of the time constant method. Middlebrook's theorem. Examples with RC networks.
- 3. The prototypical differential stage: from resistive to active loads. Common mode feedback and single ended option.
- 4. Single ended differential stage with mirror: Bias, input and output voltage swings, differential gain, Common mode gain.
- 5. Two-stage CMOS OTA: topology, frequency response, Miller compensation.
- 6. Two-stage CMOS OTA: frequency compensation with the nulling resistor. Implementing the nulling resistor
- 7. Two-stage CMOS OTA: frequency compensation with ideal voltage and current buffers. Impact of the buffer finite resistance.
- 8. Nested Miller Compensation
- 9. OTA Linear response. In-band zero-pole doublets and features of the settling response.
- 10. The slew rate limit. Impact on settling time. CMOS-OTA: Internal and external slew rate limits. Improving SR with class AB output stages.
- 11. CMOS single stage amplifiers: telescopic and folded cascode structures. Motivations, performance and linear swing
- 12. Output stages: Class A vs. class B output stage. Efficiency and distortion.
- 13. Output stages: Total harmonic distortion and feedback
- 14. Variability and matching: Relative matching of resistors. Pelgrom's formula
- 15. Variability and matching: Relative matching of threshold voltage values. Pelgrom's formula
- 16. OTA: Offset. Deterministic and statistical contributions to input referred offset.
- 17. OTA: Common-mode rejection ratio. Deterministic and statistical limits to CMRR
- 18. Quantitative description of noise: the power spectral density concept, thermal noise in resistors and MOSFETs
- 19. Input referred noise sources of a two-port network. Definitions and derivation. Extension to the differential stage
- 19. Noise models: The Nyquist argument for the thermal noise power spectral density
- 20. Noise models: Shot noise model. Application to p-n junctions and MOSFETs in weak inversion
- 21. Trapping noise: trapping noise in a resistor
- 22. McWorther model of the 1/f noise in MOSFETs. Tvidis formula.
- 23. Introduction to analog filters: Ideal performance. Limits of the causal response. Group delay and signal distortion.
- 24. LP filters: Filter mask and numerical parameters (selectivity, discrimination). Families of LP filter functions (Butterworth, Chebyshev, Bessel, ...) and their properties.
- 25. Mapping: Motivations, HP to LP transformation, BP to LP transformation
- 26. Active cells: The Sallen-key. Sizing options and sensitivity.
- 27. The universal cell. Deriving the block-diagram. Properties. The Tow-Thomas cell.
- 28. Ladder networks: Orchard theorem, implementation with active integrators. Flow-graph derivation procedure. Denormalization.
- 29. Ladder networks: implementations with gyrators. Topologies of gyrators (OP-AMP, OTA based). Properties and limitations
- 30. Dynamic range in filters: number of equivalent bits, guidelines to reduce the noise floor.
- 31. Impact of OP-AMP non-idealities on reference radial frequency and Q factor of a biquad cell.
- 32. Switched capacitor filters: Motivations, concepts, implementation of the ideal integrator. Stray insensitive topologies
- 33. SC filters: sampling, transfer function, output spectrum. Anti-aliasing filter and clock frequency.
- 34. SC filters: trade-off between settling time and charge sharing in sizing the switches.

1) MOS FOM + PWT. Dependances on strong moderate + weath inv. let's see first some chiracteristics of the mospar: · VG=VFB -- D off state -- Vs=0 9 VFB VF X JU=0 MI Substrate porms diodes M Point X JU=0 MI with both S, D. We there fore just have a Obi (built - in potential) related to the duodes. For VG < V we are sub-threshold Ob1 1 Vs-· Uu < VT and VS=VD=0 Every bourier is now lower · VEB × Va × VT and VDS >0 (VS=0) V \$6 X- LPS 1- - p(\$5:-(\$5+V2) Ohi-Ve h(0) Neglig ; ble Since correct is low -> no obvic drop -> potential energy along the channel remains fairly constant. However, on the source we have a Obi that (Boltzwann) leads to a carrier concentration of $N(0) = N_{S} e^{-q} \frac{Q(0)}{M_{T}}$ while on the dualin side, Vo>0 will lead to a negligible concentration. This concentration leads to a bipolar-like diffusion wrrent that is $\frac{1}{1} = \frac{1}{1} = \frac{1}$ IDS n VTH O

) Time constant method + examples + extension or a LTI network the transfor function is: T(s) = T(o) N(s) = ams + am-1 = + 1 D(s) = by sh + bn-1 = + 1	
N(s) are zeros D(s) are poles. For a 3 capacitors network $b_1 = C_1 R_1^{(0)} + C_2 R_2 + C_3 R_3^{(0)}$ $b_2 = C_1 C_2 R_1 R_1^{(1)} + C_1 C_3 R_1 R_3 + C_2 C_3 R_2 R_3^{(0)}$	N
$ \begin{array}{l} \alpha_{1} = & C_{1} & R_{01}^{(0)} + & C_{2} & R_{02}^{(0)} + & C_{3} & R_{03}^{(0)} \\ \alpha_{2} = & C_{1} & C_{2}^{(0)} & R_{02}^{(4)} + & C_{1} & C_{3} & R_{03}^{(6)} & R_{03}^{(4)} + & C_{2} & C_{3} & R_{02}^{(6)} & R_{03}^{(2)} \\ \alpha_{3} = & C_{1} & C_{2} & C_{3} & R_{01}^{(0)} & R_{02}^{(4)} & R_{03}^{(4,2)} \\ \end{array} $	
D(S) = b3 S ³ + b2 S ² + b, S + 1 N(S) = a3 S ² + a2S ² + a, S + 1 Since the coefficients are related to the circuit topology, order of capacitors obesuit watter	
We can devote roots of the devolution to that $D_2(s) = (1 - S)(1 - S)(1 - S) = p_3 S^3 + p_2 S^2 + p_1 S + 1$ By comparing the expressions we find that	
$D_{1} = - \left(\begin{array}{c} p_{3} \\ p_{2} \\ p_{3} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{2} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{2} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{3} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \\ p_{3} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \\ p_{2} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} \end{array}\right)^{2} \left(\begin{array}{c} p_{1} $	
On the other hand, for high frequency $b_{3s}^{3} + b_{2s}^{2} + b_{1s} + 1 \approx b_{3s}^{3} + b_{2s}^{2} = S(sb_{3} + b_{2}) \qquad 3$	

There fore
$$p_{H} = -\frac{b_{T}}{b_{T}} = C_{1}(2, \beta_{1}^{2}R_{1}^{2} + C_{1}(2, R_{1}^{2}R_{1}^{2} + C_{2}(2, \beta_{1}^{2}R_{1}^{2}))$$

We can simplify the terms and first that
 $p_{H} = -\frac{b_{T}}{b_{T}} = -\frac{1}{c_{T}} \frac{1}{c_{T}} \frac{1}{c_$

Results: • fpole = _____ • fz = ____ Lo There's a pole Lo Hurre's a zerro • DC gain is Vour with C open Vin 5

Differential stage -> active loads

High impredance + low voltage drop -- corrent generators!

TIDEAL DE AT REAL

Orrent generators are implemented Pira using waspets.

HITE SER OF REGIMENT MAL

Since we have low voltage drop, we can use cascode structures in order to increase load impedance

We can do the same for tail generators so that Gran can be decreased at the expense of burning more power supply -> High CMMR mans more power consumption

CMRR = Common Mode Rejection Ratio

Another	compensation: Single ended opamp
Vosa.	Vasca By using a convent minnor we INB Land Con eliminate the need for a VA OVOUT CTT feedback canfiguration. Cost:
	IB2I ONTRIBUTION)
When 2]	= VA - > IG, = IG2 = I to first order (VosG, = VosG) I is changed, VB changes as well, the transdidde cally adjusts its current in order to writch
I = I	
	3

Bias	ang	3V	allics				Vou	W/L	gm	Vo
	A.3 -	10,8	+4	M1,2		25,		50	0,5 m	
						25,		25	0,25m	
	021	2 0	9,2 - No	Ms		50/1		25	0,25 m	1400
1,5V-	ILA .	0,8	A	1,54			VDD		VD	
VDD	0,81	V	10,7		-	Va	Sn 🌢			A Vour
2	1						Vov B	Vusn		Vour Voc
					Vasni		VT			VT
Input	dy	vani	cs:				VGS 2		^{[4}	
							Vov G			
VIN) Ma	× =	Vos -	Vasn +	VT ~	2,8	(t)	JAVIN+1	= 2 8 -	1,5 =	1,3V
VINI	-	Vov G	+ Vase	21	0,9	5	$\Delta V_{1N} =$. 0, 9 =	0,6V
100	. V	_				7				
Vout / mu	=	V00 -	- Vovra		2,8		[AVOUT]=			
100T / mi	=	Vcr -	VT	\sim	0,9		AV005 =	2,2 - 0	9,9 =	1,3V
100	n									
										_
			T							

5)	Two stages	OTA: topology	1, freq response, Miller comp
2 + 5 - 0	DIFE	Non Allo	Gri = diff stage gain 22 40 dB, not enough for the > 85dB spec G2 = 2nd stage gain
Gъ	= G, G2	= qui, (von/	(V62) glus (V05/ V06) ~ 860 B
We	wat the (ED requireme	eut. at the cost of more power
di se	sipation ->	2 val stage	requires bias:
	2,200	4 2,24 5 1504 1,5 - Nout	Me has to watch Ms in order to get proper bias and Vour set at VDD/2 (therefore Ks = Ke)
GD	= 2 II V Vovi 2		VAS = VAI VAS 2 ES VOVI NOVS
VOVS	s has to b	e the same	of Vors, & because of symmetry
We	can there	fore chase	proper Ls, Le to watch gain by
fin	ding the 1	JAS = LS . 7' Lunin	V
Note	: when M	$5 \neq \Pi_6$ we	end up with a systematic offset
FMF	can pe	input translat	real to: Vos: = NOD/2 - VOUT

GD

Miller compensation
Let's simplify the stage and let's add a comp. capacitor: = R_1 = impedance of 1st stage
$R_2 = -2 N d$
JE FRI IGI CHI JO GI = COS5 JE I I I CHI FRI I COMP. capacitor JUII VO
$T(s) = GD(s)$. $S^{2}a_{2} + Sa_{1} + 1$ where $S^{3}b_{2} + S^{3}b_{2} + Sb_{1} + 1$
$ \begin{aligned} \hline \Box &= C_1 R_{01}^{(0)} + C_R R_{0R}^{(0)} + C_L R_{0L}^{(0)} \\ \hline \Box &= C_R C_1 R_{0R}^{(0)} R_{01}^{(R)} + C_R C_L R_{0R}^{(0)} R_{0L}^{(R)} + C_I C_L R_{0I} R_{0L}^{(I)} \\ \hline We can already say that there's no as because C_L is directly field to ant put => ao zero \end{aligned}$
Since capacitors interact (they're dependent an each other), we can already say that b3 = 0 for whatever cambination
$s_{0} \rightarrow w_{AX} 2 polas, w_{aX} 2 zeros$

6) Nulling resistor: compensation + implementation We wry think of a solution that changes the fz independently or moves it to LHP (+30° contribution) We need to place something in the path of the zero: $\frac{J}{m_{rot}} = \frac{1}{N_{c}} = \frac{1}{N_{c}}$ $\frac{R_{0\Pi}^{(0)} = Nc}{ic} = RN - 1 \rightarrow NeW (Pz)$ ican see that we can set RN = 1 to have fz=00, or we can wore fz to the LHP so that we can have proper Ou RN CR MM_11____ Caps are now independent -> RN Note: I ci I ce -> additional pole. PUN JUT CIRI + CLR2 + CM [RI+R2 + gus RIR2 + RN] It's easy to derive the new bi term RN is usually ~ 2/gm - of this negligible change and does GBWP So 4/01 GBWP = QWI = QWI\$2 × \$2 × \$3 25 Cr guis Rikz

Let's campute f3: RIS TCI SRN FRN CH BESTRN FCL GL, CA SHOYT CI, CL SWOYT CI, CR SHOYT 2 2T RN (GINGTORICE) ~ 2TT RNC. Note: it's not important to compute the precise value, hence this just gives us a hint on the order of magnitude Compute f2: consider Cri as a short $\frac{1}{2} = \frac{1}{2} = \frac{1}$ Gloop = - gus R2 So RX ~ / gus if R2 >> RN (it is) $R_{L}^{(0)}$: $R_{X} = R_{L}^{(0)} = R_{Z} / R_{X}$ where $R_{X} = \frac{1}{2}$ RNR2 VcSo $(2) = 2\pi \int C_1 + C_2 \int Q Hs$ $2\pi \int g Hs = 2\pi (C_1 + C_2)$ fe is roughly in the same position as before

Zerro-pole- compensation GEWP 42 A First, approad 12 GBWP @ Pz out Pz=P2 -> Cri = gui, guis Plus alli $(C_1 + C_L)$ 2 tr Cn 20 (CI+CL) gen, 1 + 2ms RN = ____ 200 CM 2TE CTI (RN-L) guis guns Now with RN = 2/gus: gu s 160 RN= 2 gws gui, guis R. R. 2m(C.+CL) 200 (CAUCIAC)RN -20 PF × × 20 20 gms RiRz qui, LOBB/dec 2 to CT @ GBWP On= 180°-90°+45°= 135° This way we can have the same bias, the same BW at the cost of implementing another resistor Recap: 3 12 fz GBWP guis gus (n 00 RHP ден эт Сп Miller 2TT (C1+CL) guis RN guui 2tr Cri 201 RN-J-CA 200 C. RN $2 \overline{v} (C_1 + C_1)$

Complete Ahuja transfer forction azs taisti $T(s) = qui guis R_1 R_2$ bast bast bistl bi = Cri gues Ri Rz b2 2 RIR2 (CICL+CICR)+CICR R2 gmB $b_3 = c_1 c_2 c_n \frac{R_1 R_2}{g_{MB}}$ $A_{1} = C_{\Pi} \frac{gue}{2} \left(1 - \frac{1}{gue_{S}R_{1}}\right) \frac{\gamma}{2} \frac{gue}{2}$ az= - CnCi puis guis probably not asked at the aral For large guis R2 Cn (read lectures pdf) + some algebra Devouivator: 13° CICL + S CI (CTT+CL).+ 1 (S + 1) gue gues gues (CTT) (Ques Rike(TT)) So : $l_1 = 2\pi Cr gus R_1 R_2$ additional poles at we = guisgue Q = Cri guis Gi CICL CH+GN guie CL $\frac{2}{2} evos: S_{12} = \frac{2}{2} \frac{2}{C_1} \left[\frac{1}{2} \pm \frac{1}{2} + \frac{8}{2} \frac{2}{9} \frac{2}{1} \frac{1}{1} + \frac{8}{9} \frac{2}{9} \frac{2}{1} \frac{1}{1} + \frac{8}{9} \frac{2}{9} \frac{2}{1} \frac{1}{1} + \frac{8}{9} \frac{2}{9} \frac{2}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} \frac{1}{1} \frac{1}{1} + \frac{8}{1} \frac{2}{1} \frac{1}{1} \frac{$ $\int or \ lange C_1 \quad Z_1 = -2 \quad guis \quad Z_2 = \quad guis \quad C_1 \quad C_1 \quad C_1$ El sits close to GBWP, Zz is avoud a for because C1 is typically a Cgs

At this point. The whole OTA response will be $f_2' = \frac{1}{2\pi C_{u1} G_{u13} R_2 R_3} = 20HZ$ $f_3' = 2GBWP = G_{u13} = 1,6\Pi HZ$ $f_1 = \frac{1}{2\pi C_1 R_1} = 8\pi Hz$ $f_z = 26, 5\pi Hz$ fz > GBWP we assured its contribution is negligible. We still with - 400B/dec at OdB -- UNSTABLE Nested Miller campensation Guer Guer Guer Has positive gain Guer Guer Guer Guer Has positive gain Guer Guer Guer Guer Has positive gain an Crr in The first order to exploit Miller! Since G2 = Gu2R2, G3 = Gu3R3 CT Sees CT2 CT3 While Cu only sees G3 - > lowest pole is given by CTI GBWP = Gwi - > we can now short Cri (do not causider Tot 201 Cri Zeros for now) $P_{2}^{(1)} = \frac{1}{2\pi} \frac{1}{C_{2} R_{2}^{(0)} + C_{4} R_{4}^{(0)} + (C_{4} + C_{4}) R_{4}^{(0)}} R_{1}^{(1)} R_{1}^{(1)} R_{2}^{(1)} = \frac{1}{R_{2}} \frac{1}{R_{4}} \frac$ 1 Can R2 C2 - Grust R1//R3 TC1+C1 - Gunz

comments ou TF

It is possible to devive the polynomial at the demonstration. $S^{2}b_{2} + Sb_{1} + 1 = S^{2}C_{L}C_{u_{1}} + SG_{u_{2}} - G_{u_{2}} + 1 = 0$ Guiz Guiz Guiz Guiz Guiz Guiz $W_{0} = \begin{bmatrix} G_{uu2} & G_{uu3} \end{bmatrix} & Q = \begin{bmatrix} I \\ G_{uu3} & G_{uu2} \end{bmatrix} & G_{uu2} & G_{uu3} & G_{uu3} \\ \hline & C_{L} & C_{uu3} \end{bmatrix} & C_{uu3} & C_{uu3} & C_{uu3} \\ \hline & C_{uu3} & C_{uu3} \end{bmatrix} & C_{uu3} & C_{uu3} & C_{uu3} \\ \hline & C_{uu3$ In simulations we see peaking. How can we solve this? look at -> Guiz, Cu · Increase CM - BW is reduced but Cn plays no role in Q Pactor -> bast idea · Increase Gruz -> peak is greached down. Five tuning is dove on SPICE 35

3) OTA linear response. In band doublets + settling response We can have something like: (RN compensation) 1 60 Where $P_2 = gus P_2 = - RN - Cn$ fr f2 f2 f3 import on GBWP and phose morgin This way, since f2 of the could think of driving large capacitive loads without degrading the amplifier stability There are however some drawbacks to this: Here de Crewp 1 open loop response 0 +1 open loop respense f. fz f2 (F) Compensated plot where $f_2 = f_2 = GBWP$ Some circuit used to arrive larger CL (fz waves left) without water changes on compensation (fz moves left too). If load isn't precise for zero-pole cancellation, we have (#2) Aunlyze Gloop of (*2): Gloop(s) = -Go 4 + siz(1+siz)(1+siz)by loo king at the root lows: fi for a large Go approaches fz fr will be N GBWP

Let's find the closed loop singularities:
$Gloop(s) = 4$ $Go(1+s1^2) = (1+s1^2)(1+s1^2)$
$s^{2}(\gamma, \gamma_{2}) + s(\gamma, + \gamma_{2} + G_{0}\gamma_{2}) + (G_{0}+1) = 0$ $s^{2}(\gamma, \gamma_{2}) + s(\gamma, + \gamma_{2} + G_{0}\gamma_{2}) + (G_{0}+1) = 0$ $s^{2}(\gamma, \gamma_{2}) + s(\gamma, + \gamma_{2} + G_{0}\gamma_{2}) + (G_{0}+1) = 0$
• for HF 52>>> Got 1 52 (2, 22) + & (1, + T2 + Go 22) = 0
$SHIGH = - \frac{N_{1} + N_{2} + G_{0}N_{2}}{N_{1} N_{2}} + \frac{N_{0} G_{0}N_{2}}{N_{1} N_{2}}$
• for LF s ² ≪ S ≪ Go+1 S (T1+12+ GoTz) + Go +1 =0
$S_{LOW} = -\frac{G_0 t}{Y_1 + Y_2 + G_0Y_2} - \frac{1}{Y_2} flow approaches fz for high the$
Let's avolyze this a little better:
Let's auguyze this a little better: $Plow = \frac{1}{60} + \frac{1}{2} + \frac{1}{60} + \frac{1}{2} + \frac{1}{60} + $
It's interesting to vote that 1/4 is the GBWP* GBWP
GBWP*, the OdB wit if fz wasn't there. In reality, the
$GBWP is GBWP = \frac{P2}{P2} GBWP^{*}$
We now ask ourselves what is the linear response:
$E/S \qquad \qquad$
Use Heaviside Novi (t) = $\chi' \begin{bmatrix} E \\ -1 \end{bmatrix} \begin{bmatrix} A \\ -1 \end{bmatrix} \begin{bmatrix} A \\ -1 \end{bmatrix} \begin{bmatrix} B \\ -1 \end{bmatrix} \begin{bmatrix} B \\ -1 \end{bmatrix} \begin{bmatrix} A \\ -1 \end{bmatrix} \begin{bmatrix} B \\ -1 \end{bmatrix} \begin{bmatrix} B$
Use limit theorem
$A = \lim_{S \to S^{-1}} \frac{(1+SN_{2})(4+SN_{1})}{(4+SN_{1})} = \frac{1-\frac{1}{N_{1}} e^{N_{2}}}{4-N_{1}N_{1}} = \frac{N_{1}-N_{2}}{N_{1}-N_{1}}$
B= lim (2+STZ) (2+STH) = TH-TZ = TZ-TH S-D-1 (2+STL) (2+STH) TH-TZ = TZ-TH TH TL-TH Since TZ-TH, we adjust to get B 201 27

In this case, the issue will be EtA.

Design note: to get fast settling time we accept the trade off with large A to have low M, therefore the design should foresee a fz -> GBWP*

Slew valle limitations of a two stoge OTA

1) A large step is applied

2) M., M3, M4 shut off because of ()

3) All the generator wrrent flows through 3) (suppose no

is still in saturation

h) the correct Ino is awained from node VA -> VA decreases in voltage. > neglect the presence of CL

5) (Dou't consider of for the noment) VA will generate a DIS corrent. A stable candition would be when 175 takes

care of all the Ino. This translates on its node by:

Vovs = VISbias + Ino Note: AIS = Ino bot Is = Isbias + AIS US

Suppose $K = 100\mu$ Ino = 5 μ Isbias = 1μ - ν Vovs = 0,25V

Since VA 2 VOD = 1,5V -> VA = 1,25V

This decrease poses no issue on the saturation of Mo, M2. Note: if M2 goes onnic, Ino will still flow through node A VA would have to decrease all the way down to vours in order to change Ino corrent. It does not happen) With point 5 CM sees a constant (VA) voltage on the left and a constant correct Ino. This will generate a ramp on its right pin that is SRINT = Ino

Situation is vow this one;	VDD-VOVS
VA' TITO VOUT -> VOUT = SRINT · E	ASR DD/2
Since VA' is caustant, the Noltage ramp	an (- de Rined
as SRINT will be the same exact ramp or	
if we define SREXT as the ramp exitibi	
We can say SREXT = SRINT	
7) Now include CL presence. Vovs will increas	o unave and
VA' will decrease even wore. At point 5	
a new (stable) candition that is AIs =	
Vous = IBS + IRO + IL The issue here	e
Ks CL is large erroug	
a too high Voys that puts the out of s	aturation.
If this does not impen, its can perfect	
Ito and IL, there fore the voltage var	
Set again by Cripeding to SREXT =	
	Сп
The only thing is that we now have I	= SREXT CL 80
DIS = IRO + SREXT CL = IRO + SRINT CL	
SRE=SR	
Recap: SREXT = SRINT = Ino WITHOUT	
$\frac{SREXT}{CL} = \frac{SRINT}{CT} = \frac{Ino}{CT} but$	Keep an eye Mo saturatian

Negative SR Ino Vovy Vuss 5 D A Von bias 3 TSREXT HI Ino K- TARG 1) lange positive is applied 2) The shuts opp and all IRO plans through The 3) Ino gets mirrored on M4 4) Ino glows into node A -> VA increases leading to a decrease on Vass 5) Vass - Vous decreases so it can accept AIS. Suppose now that Isbias > DIS (Neglect CL presence) 6) Since Isbios > Ino, Ms can have I to and Ino can flow VOD/2 SREXT through Cr 7) Same as before SREXT = SRINT = IRO Vov6 Now consider CL presence -> DIS = Ino + IL where IL = SREXT CL = SRINT CL = IRO CL If Isbias > Ino + CL = Ino (1 + CL) then Ms can handle the additional correct and nothing changes SREXT = SRINT = JRO but DIS = IRO + IRO CL

Now let's analyze what happens with Isbias < Ino + IL: 3 TIS Wrrent OHNIC JRO OHNIC SREXT ILD Ino ALDI 1) Since the requested wrrent Ino (1+ CL) > Is bins is opposite and greater than Is bros, Ms shuts aff 2) The 175 shut-off translates to a rapid reduction of Vass -> VA vises to VDD 3) Since VATT -> VOSA < VOVA there fame MA goes omic and its correct Inde won't be Ino onywore L.) The only current source remaining is MG 5) The situation is now: NVDD TCTT VOUT SREXT BL ICL VOVE Cre and CL have are end connected to a fixed voltage and the other tied to Vaut - > Ing sees them in poweller" this means that out ramp will be set at: SREXT = 16 CritCL Note: if CL wasn't canvected SREXT = SRINT = IG 80 In4 = I6 44

Folded cascode structure Piling up transistors can't be dove with low VDD (Vob decreases with technology scaling), this means we need to change the structure: use prios cascadas: THE PHONE ROUT When we talk about and We can easily see that Acc = gui, No rog \$ 8 g trog 2 roll rog Via gui ro (2roll vog) 2vo gun lo - Lo 6 guro2 ROUT = ROOWN // RUP ROOWN = gurro RUP = gurro (2rollvog) 1-Gloop Gloop: Lost Some correct will be lost on rog; Vog Gloop = - VogVog t 2ro $\frac{1}{100}$ $-I_{a} = \frac{1}{2} r_{a} = \frac{1}{2} r_{b} = \frac{1$ Therefore $Rout = gm ro^2$ comparable value with a telescopic OTA ROUT FOLDER can be watched to a ROUT TELE by changing MOSFETS LENGTH

Drawback of folded	cascode : corrent consumption
Elia Ela-II	Candition to have a working arcuit is Ia>2I, because on
-1 t_1 t_1 t_1	bias the two branches will see IG-I, while on large steps (SR);
FILT. ?	• One branch will have IG • The other will have IG - 2I, (K)
	RD can push MOSFETS in ahmic
	to burn at least twice the writer
	49

2) Opamp output stoges: Class A, Class B, Eppicieury + HD
We need to decouple OTA's high out impedance in order
to drive resistive loads -> Design a buffer stage
2,2V al Set Vov = 0,2 for all wosfet.
RL but now we need 1,5V on Vour So
$\frac{0.8}{10}$ $\frac{100}{10}$ $\frac{100}{2}$ $$
$V_{GR} = V_{00T} + V_{GR} = 1,5 + 0,8 = 2,8V$
$\frac{1}{2}\mu_{p}cox W_{S}\left(1+V_{DSS}-V_{DSSATS}\right) = \frac{1}{2}\mu_{p}cox W_{6}\left(1+V_{DSG}-V_{DSSAT6}\right)$ $\frac{1}{2}\mu_{p}cox W_{S}\left(1+V_{DSS}-V_{DSSATS}\right) = \frac{1}{2}\mu_{p}cox W_{6}\left(1+V_{DSG}-V_{DSSAT6}\right)$ $\frac{1}{2}\mu_{p}cox W_{S}\left(1+V_{DSS}-V_{DSSATS}\right) = \frac{1}{2}\mu_{p}cox W_{6}\left(1+V_{DSG}-V_{DSSAT6}\right)$
VDSS = 3N-2,3 VDS SATS = 0,2V VDS6 = 2,3V VDSSAT6 = 92V
L5, L6 are set because of differential gain: L5 = L6
So $W_6 = W_5 \begin{pmatrix} 1 + 0, 5 \\ VA_5 \end{pmatrix}$
Positive / neglotive swings
The The Count of the State of t
The SML IBUF
3) GENE = RL/1V08 N RL 11
$\frac{1}{8} \frac{1}{100} \pm \frac{1}{10} \frac{1}{100} \frac{1}{$
guiz is not linear, when Vast, guiz a leading to
an output distortion of (distortion of a ros buffer):
HD2 = Vas 1 2 (Distoried)
(Not explained in Huis CONYSE!!)
(Not explained in Huis course!!) 50

On the positive	SWING	, peak	corrent	Is	= I8	+ AVOUT
where Albour = 51	and F	RL (arrit	oitrary) =	2002		KL.

AVOUT = I8 RL = 0, SWA. 500 - = 0,25V - VOUT = 1,5-0,25 There fore Var = Vor + NT = 1,25 + 0,6 = 1,85V

Since on the positive side we would have 0,50 theoretical Swing we would like to also have that on the negative - $0.0007 = 18 R_{L} = 0, 5V - b Is = 0.5V = 100A$

IT = IN = INA corrent doubled to goarantee 1Upp Swing: 0,5]

 $GBUF = \frac{RL}{RL + \frac{1}{9}m_{T}}$ Real wave IS RL if Is can't gooroutee a clipped peak four swing -0,5

To verify the peaks: consider what positive peak:

 $I_{T} = K_{T} \left(V_{U_{T}} - V_{D} - \Delta V - V_{T} \right) = \Delta V_{T} + I_{8}$ $I_{TAX} = \begin{cases} 2 \\ 12 \\ 12 \\ 12 \\ 12 \end{cases}$ $I_{T} = \frac{1}{\sqrt{2}}$ $I_{T} = \frac{1}{\sqrt{2}}$

AV = 0,33V no definitely lower thru 0,5 (ideal)

Note: formula includes a squared variable

M7 is in large signal operation - we can't consider it as a linear stage anymore. Positive peaks will be slightly higher and negative peaks smaller

	V				
	\ \ \).		1		
	6		1-12	4	
				/	
		e	(~	
		P	1022	1/2	
		L		P	2
		÷.,	Ğ		
	1	N)	4	2
	1				
		5			a.'
		1 2			8
	/	er Ve	96	C.	
	2 ci	22	7	+	7
	F	-			11
		A N			-
			0	3.0	1
		V			
	N	P Ft	2	10	
	-				
	fo				
	n	1	P	9	
	e	-		i V	
	9	so u			
		-		10	4
	l		5	cł T	
	nl		Q	- - -/2	=
	1	2		a) 2	
	TLA	V		u	
	× ×	p			2
		0		()) (>
		•	+ 0		. \ X
	7 4			1	T
	r	2		N=	
	•		/	5	
		80 TA	2	27	
	7				
	-8				be
) 	2	2 2		200
	%	+ Vi			6
		-			
		Y			
		ł			Ξı
		2			1
5					8
-14					

(4) Variability and untering of resistors -> Pelprom Suppose RI=RZ=R In reality, processes will BRI BRZ have a variability on these values - worst case R= p. L = P. L = Ro. L <u>AR</u> = ARD, <u>AL</u>, <u>AW</u> <u>A.W</u> <u>A.W</u> <u>R</u> <u>Re</u> <u>L</u> <u>W</u> A1 1 process is RI = Unit square resistance, fixed by technology precise Negligible precise = calitribution RE = 110 2 Unsilicided n+ polysilicon = 10 r silicidad (2000d with metals) N+ poly silicon Along RD, manufacturers will give a "."um coefficient used in the variability forment: DAR - KARIR no statistical spread, K = [% mm] RZ Deterministic spread can be reduced Lo symmetric center Each Ro has a different value (statistical) We can divide the resistor in rows and colums of single resistors. Go= 1/Ro Loaverage resistance B Grow - Z Gi = N Go ORO \$ Grow 2 A MARINA 60=1/R. \$ Carows O Grow = N O Gro - > Now we want to link the conductance of to resistance of - > relation is not linear because G= 56

15) Variability and watching: Ut relative watching
MEASORED I, 7 I2 always because of mospet VT
- III Ist It variability. We can change the deterministic
\$2II contribution by using the common
e p centroid technique - playout issue
The The The lay out MOSFets in 1/ on a center with axis
Suppose we divide the wester in square cells and s
Each call has a VE Severe some dales a
Each an usis a vio square spread pios a portion over over a portion (statistical)
$VT = \sum Vri = NVro = Vro$
Since $\sigma^2(\underline{z}\underline{x}) = N \sigma \underline{x}$ and $\sigma^2(\underline{x}) = \sigma \underline{x}$
$\frac{1}{2}$ $\frac{1}$
We can say that $\overline{OV_{r}} = \overline{O(S_{N}V_{r})} = N \overline{OV_{r}} = \frac{2}{N^{2}}$
Let's say Ao= WL area of a single cell, then
$\frac{\partial}{\partial V_T} = \partial V_T \partial A \partial $
Since we're interested on the misunt ch between M, M2
We wave:
• we are square $E(\Delta V_T) = V_{T_1} - V_{T_2} = V_{T_0} - V_{T_0} = 0$
Therefore $\mathcal{O}^{+}(\Delta V_{T}) = 2 \frac{K^{2}}{WL} = 0 \Delta V_{T} = \sqrt{2} \frac{K \Delta V_{T}}{WL}$
A OVIG
2001 Slope Set by Manufacturing process K
2/Jun VWL 58

16) Offset: deterministict statistical contribution

We can always model an autput affect to an import referred one Vosin = Vos cor differential gain ______ Vasin

Deterministic affect

1 \$ 1,5V	Ms and M6 should be properly ws	
	sized to have the same Vos, thus the	
	proper Vos bias at the output No Vos	>

Statistical offset

- This kind of offset is introduced by the following:
- Juppet pair Vr mismatch + K mismatch
 Diff mismatch Vr mismatch + K mismatch

Input pair statistical VT misurita

$$I_{1} = K_{1N} \left(V_{US_{1}} - V_{TO} - \Delta V_{T} \right)^{2} \quad I_{2} = K_{1N} \left(V_{US_{2}} - V_{1O} + \Delta V_{T} \right)^{2}$$

$$\Delta I = I_2 - I_1 \quad and \quad Vas - Vro = Vov, so$$
$$\Delta T = K_{11} (Vov - AVT)^2 - K_{1N} (Vov + AVT)^2$$

Sourcery	of misuntches for	input referred effect
VOS INPUT REP	AVTIN + AKIN VOUIN.	+ AVTA VOVIN + AKA VOVIN VOVA KA 2
		mirror pair
$0.005 = \sqrt{0}$	$2\sqrt{\tau_{1N}} + 0\sqrt{\tau_{1N}} \left(\frac{\sqrt{0}\sqrt{\lambda}}{\sqrt{0}\sqrt{\pi}}\right) +$	$\frac{2}{\left(\frac{\Delta K_{IN}}{V_{IN}}\right)} + \frac{2}{\left(\frac{\Delta V_{IN}}{V_{IN}}\right)} + \frac{2}{\left(\frac{\Delta V_{IN}}{V_{IN}}\right)$
		61

Therefore $\sum \frac{V_{cri}}{2rog} = \frac{V_S}{rog} \frac{1/glum}{1+glumon} \frac{1+glum}{2roj} \frac{1+glum}{2roj} \frac{1+glum}{2roj} \frac{1+glum}{2roj} \frac{1+glum}{2roj} \frac{1+glum}{2roj}$ $\sum \frac{N_{cri}}{2 v o g} = \frac{N_{S}}{2} \frac{1}{g u \pi v o_{i}}$ if $\chi = \frac{N_{S}}{N_{cri}}$ then En guin Voi If we also causider mirror misunter: EDET D' JUIN VOIL JUIN VOIL Mirror statistical gue misuratch Trice gus im We vow consider a difference gus lien in gu (caused by VT or K statistical Variability). $100T = icn \left(\frac{gW_{4}}{gw_{3}}\right) = icn \frac{gw_{4}}{gw_{3}} \stackrel{=}{=} icm \frac{\Delta gw_{17}}{gw_{17}}$ Since Eicur = icur Agum -> Estar = Agum gum mirker gum

What's the meaning of this? rog = 000 CTIRR = 2 gmi Vog = 2 gmi Vog = gmi Voi $E = \frac{2 gmi}{gmi} \left(1 + \frac{2 vog}{voi}\right) = \frac{2 gmi}{gmi}$ We see that even though we have a perfect tail generator (rog - a) we still have a higher limit for the CMRR set by roy. This means This tells as that having a great The fit rog may be not enough to have a Frog may be not enough to have a Recap ESTAT $\mathcal{E}_{STAT} = \frac{\Delta g_{UU}}{g_{UU}} \left[\frac{1}{R} + \frac{\Delta g_{UU}}{g_{UU}} \right]_{IN} \left(\frac{1}{R} + \frac{2V_{0}q}{V_{01}} \right)$ ETOT = EDET + ESTAT EDET $OSTAT = \left(\begin{array}{c} \frac{2}{2} \\ \frac{2}{2}$ estimate Dagu $\frac{\Delta q_{uv} \pi}{q_{uv}} = \frac{\Delta}{q_{uv}} \frac{\partial q_{uv}}{\partial V_r} + \frac{\Delta}{q_{uv}} \frac{\partial q_{uv}}{\partial V_r} = -\frac{\Delta V_r}{q_{uv}} \frac{\partial V_r}{\partial V_r} = -\frac{\Delta V_r}{q_{uv}}$ = 1 2400 dl + ____. 2t dVr 1 & 1 Vov $= \frac{\Delta k}{\kappa} - \frac{\Delta V_T}{V_{OV}}$ Vov z (JAgm) = (JU) + G(AVT) 15 Statistically independent but (Jun vertitie there are correlate in reality they are correlated considered uncorrelated for simplicity)

18) Noise: PSD, therwal voise on resistors, MOSFETS
We found out that goin / BW tradeoff is intependent from
the coverent (genvo = 2VA' and PT = MVov). What sets
the writer. Noise. For this discussion, cousider coussion wite:
$p(\overline{x}) = -\frac{1}{\sqrt{2\pi}} e^{\frac{1}{2\sqrt{2}}} p(\overline{x}) \text{ is the probability of the amplitude}$
~68% of samples will fall within ± J.
We can describe voise as a superposition of orthogom!
Normonics (like signals). Consider just two: X(t) [Norse = A Sin(Wit+Qi) + B Sin (w2t+Q2)
· Mean value is zero · Mean square value is
$2 \times (t)^{2} = 2A^{2} \times (t)^{2} + B^{2} \times (t)^{2} + 2AB \times (t)^{2} \times (t)^{2}$
There fore:
$\langle x t\rangle > = \langle A gev(1) > t \langle B gev(1) > t \langle 2AB gev(1) > t \rangle$
$= \frac{A^{2}}{2} + \frac{B^{2}}{2} \longrightarrow \operatorname{Recold} A \cdot \frac{1}{T} \int \frac{B^{2}}{T} dt = \frac{A^{2}}{2}$
Since we are value is zero: $\langle X(t) \rangle = 0 \times n$
If we causider a set of simsoids (different freq / amplitude)
J= = J Sn(p)dp where Sn(p) is the PSD
For a suml frequency BW Af we can say $Sn(f_0)Af = \Delta \overline{OF_0}$
Suppose that a resistor is generating voise through a
filtering network, the mean square value contribution will be
$\frac{M^{R}}{\sqrt{S_{V}(p)dp}} = \frac{1}{T(p)} = \frac{S_{V}(p)}{S_{V}(p)} = \frac{1}{2} dp$
Contraction for the second sec

We can say the same for every component inside a livear network, leading to: Sour (P) dP = Su(P) IT, (dw) 2df + Su2(P) T2(Jou) 2dp + Jour = J Sour (p) of thermal voise in resistors and collision with ions is fast (<1ps). Charge novement This weaks that the spikes generated are short - short signal (impolse) means broad spectrum -> approx to flat Su(f) W Sn(f) = W W stands for white To estimate whole we can use an evergetic argument by filtering the voise with a capacitor $\frac{MR}{OSV(P)} = V_0(S) = V_1(S) - \frac{1}{1+SRC}$ Since Sv(f) = W and we said $\langle V_0 \rangle = \sigma_0^2 = W \int |T(jw)|^2 dw$ $\int \left(\frac{1}{1 + 1} \right)^2 df = \int \frac{1}{1 + (2\pi f^2)^2} df \cdot \frac{2\pi r}{2\pi r} = \frac{1}{2\pi r} \left[\frac{1}{2\pi r} \left(\frac{2\pi f^2}{2\pi r} \right) \right]_0^{+\infty}$ $\frac{1}{2\pi \gamma} \cdot \frac{\pi}{2} = \frac{1}{4\gamma} \quad \text{Therefore} \quad \overline{C_0} = \frac{1}{4\gamma} \cdot W$ If we express this in frequency who ff 1 = IT BW-20B So the ENBW = equivalent unise BW is I higher the pole where $f = \frac{1}{2\pi}$ It's higher because it accounts for the additional integrated voise over fout

Import referred voise for a differential stage Important : is the differential stage a 2 port network? Non $\frac{N_{b}}{2}$, vor $\frac{1}{2}$ It's not, but it can be if we don't ($\frac{N_{b}}{2}$) , vor $\frac{1}{2}$ It's not, but it can be if we don't consider Ver This wears that $\frac{1}{2}$. CHAR to ∞ . Let's be wore specific Noor = $\frac{1}{2}$ Nour = $\frac{1}{2}$ \frac

In reality CTIRR ~ 1000 B to woke these assumptions

13) Noise models: Nyquist experiment for PSA Ro $T = R_0 - \Phi_{12} = \Phi_{21}$ fluxes and equal Ro $T = R_0 - \Phi_{12} = \Phi_{21}$ fluxes and equal Ro \$ / () Use a writched coax cable. For t = - as system will LARO be at equilibrium. We set up untiled impedances -s no reflections take place therefore the same energy (electric/ungnetic field) is stored in the cable. At t=0 t we short the two ends so we separate the Ro from the coax. Some e.m. waves will be trapped inside Also, the energy to of the resistor will be twice inside the cable. re.m. system with the following equations $\int \partial N(x,t) = \frac{1}{2} \frac{\partial N(t)}{\partial t^2} \frac{\partial N(x,t)}{\partial t^2} = \frac{1}{2} \frac{\partial N(x,t)}{\partial t^2}$ AX v(x, E) Since the system has boundaries, surviving wodes will be: first wode is L= A using the dispersion relationship findiec $f_1 = \frac{c}{2L}$ We find a modes trapped with a wavelength thr. I is a ~ tones multiple of the lenght of the coax: fk = C. K every tore is spaced by C 42 If we select a Af baudwidth, can count the number of modes falling inside * modes = Af Each mode has electrical / unginetic degrees of freedom -> KT. 2 = KT We can say that the average energy trapped in a single interval is $EAP = KT - AF \cdot 2L$ 74

Eag =
$$kT \cdot \Delta f \cdot 2L$$
 mulber of wode
We never you for single wode
We can now connect the two pped energy with the
imput energy sopplied. Consider a sinuscidal generator e_n :
 $e_n \int_{1}^{1} \frac{1}{16} e_n \int_{2}^{\infty} \frac{1}{16} = \frac{1}{2} e_n \int_{2}^{1} \frac{1}{16} \frac{1}{16} e_n \int_{2}^{\infty} \frac{1$

21) Trapping voise in a resistor	pres carriers
$D = G \cdot V = 9 \mu n W \Delta \cdot V$	
N = * e = contributing to correct flow = n. A. W. I Lo free conviers	s
$I = q \cdot \mu \cdot \frac{N}{L^2}$ We can see that $I \propto N$	l for a given
Voltage, so if some electrons are trapped in material, I will decrease -> AI/I = AN/N > Single electron gets captured/emitted -> AN	$I = \left[N - \left(N \pm 1\right)\right]$
IF ON=1 the current variation for a captore	Veauxe eveni
will be $\Delta I = I$. At steady state, the en processes are in a dynamic equilibrium (i	2 captures 77 then
emissions 77 to return to stendy state and	A
Transients recover with a time constant ji(t) $I = I/N \longrightarrow Waveforms$ $i(t) = \Delta I \cdot e^{-t}$	ane
C C C C C C C C C C C C C C C C C C C	-t e $dt = 1$
Avea of the pulse is Q=I. ?	
> Just for capture or emissi	ion events
Knowing that < ilt) >= <q +="" +<="" hilt)="" qhz(t)="" td=""><td></td></q>	
vecover the same shot noise reasoning (with $S_T = 2q^2 \lambda H(w) ^2$	swa ewa op
At equilibrium the vote of emission and	a capture will
be the same -> re=rc=r and H(w)	
like transfer fonction, therefore	
$SI = 2 Q^{2} \lambda - \frac{1}{(1+\omega^{2}\gamma^{2})} = 2 \left(\frac{1}{N}\right)^{2} \gamma^{2} \lambda .$	$\frac{1}{1+\omega^2\gamma^2} = 80$

22) Mc Worther model for 1/2 + Tsvidis formula	
tor now we considered only a set of trops with a	
single time constant. But there can be depects with	
a different r. In fact, Morther pointed out that	
corriers plowing in the MOSFET channel can also be	
trapped in deeper layers of the exide.	
We expect SI to be a superposition	on
in various P. We said)) oxide ST = NT (I) ² P but new	
$S_{I} = N_{T} \left(\frac{I}{N} \right) \frac{1}{\sqrt{1 + w^{2} N^{2}}}$ but now	_
Traps of Fermi level	
We read to take into account the trapping centers with	
g(r)dr = fraction of Nr trapping centers at fermi	
level with a time constant between I and I't di	
From qualiture medianics, we know that:	
Xx Xx	
MAYAN -> time to tunnel will be 1-100	
the deeper the exide, the higher the	
g(n) represents the distribution of trap numbers for	
a given ?, there pare:	
dNT(N) = NT g(T)dN We need to link the	
* elementary total portion of distribution g(T) to the	
trap centers traps in a dr spatial dimension -	X
The spectrum changes now form to:	
$S_{T} = N_{T} \left(\frac{T}{T} \right) \int \frac{1}{(1+1)^{2} n^{2}} g(n) dn$	
This constatos that trans and spread on the whole	
WE CONSIDER THE TROPS WAR SPILLE	
oxide thidlness.	2

23) Introduction to filters ideal. Limits Group dany/distortion
Analog filters select harwoulds or drange the phase relations between harwoulds. Ideal filters would select (brichwall)
and attenuate with a rectangle shape.
fe of the state of
A rect in frequency downin corresponds to a sinc in time downin - > this means that in order to be able to
have a prichwall filter, we would need to see the future. Therefore these call be implemented.
I deally the requirements for a filter are:
• Flat response in the band-pass H(jus) = A • No phase distortion between than monics at the output.
These translate to: $X_{1N}(t) = A_{sin}(w_{1}t) + B_{sin}(w_{2}t) + C_{sin}(w_{3}t)$
Filter cots horwoulds after W_2 , $ H(zw) _{BP} = G_50$: $X_{OVT}(t) = AG \sin W_2(t-m) + BG \sin (W_2(t-m))$
=Aasin (w,t-w,r)+Basin (w2t-w2r) We can see that to have constant delay applied to an
harmonics we need to apply a propertional phase shift; $q_1 = -w_1 h^2 + q_2 = -w_2 h^2 + y = -w_1 h^2$
From that, we can define the group delay os
N=- P Map = - deflow) wo TP the physe of the filter w dw is linear, the group delay
is constant (q=-wr). If not, we have a work percentage
See

For a Chebr	1Shew it is $n \ge Cn^{-1}(N\epsilon^{-1})$ $Cu^{-1}(N^{-1})$
Type of fil	
Botter worth:	requirement of maximum flatness in possbourd.
butter	The result is that all poles stay on
wo to cheby	the circle and are either complex - conf
* * >	or complex - court one real pole (for odd
××	Order Pilters)

pole pairs will have SZ+SW0+W02 Q=

Bessel: used for a very smooth phase dependence in X Trodeoff with a not sharp cutoff

Alei bessel but chaby Chaby Cueby

Clebysher type 2: zeros in the function allow for a flat in-band response but generating ripples in the out-of-band Caver steeper wit than cheby type 2 but now we have in-band + aut-of-band ripple. Also Asp, App can't be set independently

Jeveralized elliptic: Steeper thru cover with independent App, Asp Issue: worst phase response

No RM No RM	$ \begin{array}{c} \text{normalized LP tf. Example: co} \\ T(3) \\ LP \\ LP \\ 1 + S \\ 4 \\ 1 \\ + \end{array} $	These transformations can now	Notice that the transformations exviving filter is compared with	$BP(JW) \rightarrow LP(TTL)$ $\dot{S} = O(S^2)$	$\frac{1}{LP(JW)} \xrightarrow{\bullet} LP(J-R) \qquad \stackrel{\wedge}{S} = \frac{S}{WBP}$ $\frac{1}{HP(JW)} \xrightarrow{\bullet} LP(J-R) \qquad \stackrel{\wedge}{S} = \frac{WBP}{S}$	Kind of backward transformatives from the normalized fi	Having the normalized paramet	-> circuit Limpementation -> [power/wise distortion -> tvinning]	[filter unsk] > [Norunlized]	(LP, HP, BP,). The process	The norunliz	to emphasize the two wasks, u	a normalized frequency axis, u	For a LPF, we can wap the	25) Mapping ; HP to LP, BP - to
AS	1 1 1 1 1	be applied to the		+ wo) John See later	-s intoitive	tion to obtain the wanted	ers, we can apply a	filter is complete	-> [Network T(s)]> transfer function]	all types of filters	were were Lation procedure is helpful		where WBP = 1 val/s	Prequency axis to	LP transpormations

To get to a HP we apply
$$\hat{S} = WeP/S$$
 so
 $T(S) = 4 = S - Re/WeP$
 $HPF = 4 + \frac{1}{R_0} \cdot \frac{WeP}{S} = 4 + \frac{G}{R_0} + \frac{G}{WeP}$
To get to a BP instead:
 $T(S) = 4 = iF$ we call $Q_P = Q$ we will end
 $ePF = 4 + \frac{G}{R_0} (S^2 + Wo^2)$ up with the classic BPF response:
 $= S Wo (Q_P) = \frac{1}{R_0} + \frac{1}$

 $fo = \sqrt{fbp} fbp$ Q = fo = bw = fbp - fbpSee that we have a & factor. We need to connect that to the for for for fset wapping, so we can use $\hat{s} = @ [\hat{p} + \frac{1}{p}]$ *** w > w usual we apply the transformation needed to set wo As as the center BPF frequency; $S = Wop \rightarrow p = S \rightarrow S = & [p + 1] = Q(S + Wo)$ WosThis is indeed the traves for untique listed in the previous table. 92

The last formula shows that for a misunter of K, the relative variability of a increases as a increases, this workes sense if we look the high slope in the Q/K plot (previous page). To bypass this, we see whit inppeus if we fix K Ne can derive de = 1 du M M M M R R M Voviability of & doesn't change. (buffer): However, to get high Q N>>1 - nC accupies a large area. See additional notes to see why SN cell is so power Pul! 96

Filter variability

The wore filters we cased to get the proper (high number of poles /zeros) Evansprer function, the higher we will be subjected to variability of components. For example causider $\mathcal{R} = \left(\frac{R_{4}+1}{R_{1}}\right)\frac{1}{2} - \frac{1}{\mathcal{R}} \frac{d\mathcal{R} = 1}{R_{4}/R_{1}}$ Q is subsitive to the vatio of resistor, which is better they the absolute value of the two Q In we ne clearly see that $\Delta T = \Delta R$ Wo The relative T variation is directly connected to the relative Q variation. If we causider the absolute Transhim $\Delta T = T \Delta R = Q \Delta Q = Q d(R_{4}/R_{1})$ $R_{4}(R_{1})$ $\nabla = T = \frac{2}{\omega}$ see that the absolute variation of T increases for We an increasing & given a fixed d(R4/R1) R4R1 IP DR = KRS then ORA/RI = dRA + dRI = KR' + KR' R JWL 12 RA/RI RA RI J2WALL J2WALL J2WALL where KR = KR J2 given by manufactorer We see that for a reduced variation we need large onen of silicon. Small duringes on a large area will be more negligible with respect to a swall area resistor

28) Ladder Networks: Ordhrid Heorem, implementation.
Flow graph. Denorumlization
Consider a lossless network (L, C ane ideal) in a doubly terminated network:
UN The R At the peaks of the transfor Vin The R Function, the reactive elements
resource in a way that the impedance seen Zin will be R. The power delivered to the load with then be unximum
and its derivative will be nil:
$P_{L} = \frac{V_{IIN}^{2}}{2R} T(J_{UV}, X_{o}) ^{2} reactive elements$
This weaks that no written what, the reactive elements on the peaks would give any contribution -> their
Voviability will be vogligible. Exploit the derivative of the power:
$\frac{\partial P_{L}}{\partial w} = \frac{V_{IN}}{2R} \frac{\partial}{\partial w} T(y_{W}, x_{0})^{2} = \frac{W_{A}x}{w} power$
$= \frac{V_{iN}}{2R} \cdot 2 \left[T \left(j w_{P}, x_{0} \right) \right] \cdot \frac{\partial}{\partial w} \left[T \left(j w, x_{0} \right) \right] = 0$
Therefore 2 [T (Jw, Xo)] =0 wp1 wp2 If power is maximum, the transfer fonction is on a peak
the transper punction depends also on reactive elements
X, but when the PL=whx only R remains, there fore also the derivative on reactive elements is nil:
$\frac{\partial P_{L}}{\partial x} = \frac{\partial}{\partial x} \left[T(gw, x) \right] = 0$

30) Dynnic Rauge : El	NOB, guide	lives to redu	uce Mille	Ploor
Vas R SU MOTO F T C	$\left(\frac{S}{N}\right)^2 = \frac{1}{XW}$	$\frac{A^2}{2} = \frac{1}{4RC}$	A ² 2 KT C	
This result is obtained $A = \frac{V_{DD}}{2} \rightarrow half range$	$(SNR)^{2} =$	Voiseless Voo /8 KT	opamp, i	P.
With noisy openups -> is an additional noise for	ctor	C AT (A+F)		F
that degrades the SNR More in general, if sig	unt ampti	rude is (ower:	
$SNR = \frac{\chi^2 V_{PP}}{\chi T} = \frac{\chi^2 V_{PP}}{\chi T} = \frac{\chi T}{\chi T} \left(\frac{1}{2} + F\right)$	DR dyu	auric range		
tor a given prequency Higher capacitor volves u If the system is con	uninize	the noise.		v ha ha i
$\frac{1}{2} \stackrel{n}{=} DR n = \log DR$ $\frac{1}{2} \frac{1}{2} DR dB = 20 n \log 2 = 6,02d$	= 200,000 = 200,000 200,000 010			
Noise - power dissipation	liuk			
M We're With a Q = CAV =	X VDD Big	dischniging mi no asked		citor .
We need to calculate the We're taking charge from EDISS = XVDD. C. VDD TO F	evergy of	ussipated upply Vod	der cycle	

We finally can compare the various sources to imput noise: $\langle V_{H} \rangle = S_{IN} G^{2} U_{0} \left[1 + \frac{4}{4} \frac{4}{5} \frac{1}{N} + \frac{4}{5} \frac{4}{5} \frac{1}{N} + \frac{5}{5} \frac$ 1) Use low RI volves as it directly compares with input noise 2) Increase G? Not bad because a higher gain increases imput noise as well as imput signi 3) G does not have any influence (1+G2 ~1) -> Just select a low mise opanup so that SVA KSIN 4) Grain reduces this contribution. WU = GBWP so be would lower voise. However 200 GBWP = WO So it's definitely a bod idea. Instead, we could add a LPF at the output that cots at we with the sund contribution of KT Note: $SVA = 8HTF \left(\frac{3}{2}\right) \rightarrow Lower SVA means higher$ gue therefore higher power dissipation (bias cornect 77)

This type of discussion can be unde for every active cell filter. A HINT (S) Cousider now HINT = - WO wo B 1+S Wo² $T(S) = \frac{S^{2}(1 + \frac{S}{W})^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{Wo^{2}} = \frac{Wo^{2}}{S^{2}(1 + \frac{S}{W})^{2}} = \frac{WO^{2}}$ $= \frac{s^2}{\omega o^2} \left(\frac{1+s}{\omega} \right)^2 + \frac{s}{\omega} \left(\frac{1+s}{\omega} \right) + 1 \qquad \text{We get the poly}$ $= \frac{s^2}{\omega o^2} \left(\frac{1+s}{\omega} \right)^2 + \frac{s}{\omega} \left(\frac{1+s}{\omega} \right) + 1 \qquad \text{We get the poly}$ $\begin{pmatrix} 1+\frac{5}{2} \\ \frac{5}{2} \\$ It's a fi-th order polinomial. However if GBWP is large evolgh up << w, we can assume that 2 << 1 wo (we're intervested in peak reduction that is proved we, so S = wo << 1), therefore we can approx: $\frac{1}{\left(1+\frac{3}{2}\right)^2} \stackrel{\text{def}}{=} \left(1-\frac{3}{2}\right)^2 \text{ and } \frac{1}{\left(1+\frac{3}{2}\right)^2} \left(1-\frac{3}{2}\right) \left(1+\frac{3}{2}\right)^2 \left(1-\frac{3}{2}\right)$ This way the polynomial is reduced to: $\frac{S^{2}}{W_{0}^{2}} + \frac{S}{Q_{W0}} \left(1 - \frac{S}{W_{0}}\right) + \left(1 - \frac{S}{W_{0}}\right)^{2} = 0$ $\frac{5^{2}}{\omega_{0}} \left[1 - \frac{\omega_{0}}{\omega_{0}} + \left(\frac{\omega_{0}}{\omega_{0}} \right)^{2} \right] + \frac{5}{\omega_{0}} \left(\frac{1}{\omega_{0}} - \frac{2\omega_{0}}{\omega_{0}} \right) + 1 = 0$ Up2

Ne can finally devive wa', Q':
We = > slightly longer thru we VI = we + (werz - slightly longer thru we - ve -
We then have $Wo \left[\frac{1}{2} - \frac{2wo}{w_0} \right] \longrightarrow \frac{1}{2} = \frac{1}{2} - \frac{2wo}{w_0}$
$\frac{1}{Q} - \frac{1}{Q} = -2 \frac{W_0}{W_0} \qquad \frac{Q'-Q}{QQ'} - \frac{1}{Q} = -2 \frac{W_0}{W_0}$
Recap Finite DC gain AQ = -2 Q Q AO
Finite BW \rightarrow winor Wo shift (slightly larger) $\Delta Q = 2WO$ Q WV
Ne see that for the finite BW limit, Q is enhanced. Ne therefore have two effects, stroop because of finite DC and enhancement because of the finite BW.
We need to take into account all the contributions: $A = A = A = \begin{bmatrix} 2 & Wo + 2 & Wo + 2 \\ Wv + 2 & Wpz \\ Wpz \\ A = A = \end{bmatrix}$
$\begin{aligned} \mathcal{D}_{istortion} \\ \mathbf{X}_{in}(\mathbf{t}) &= A_{i}\cos\left(\omega_{i}\mathbf{t}\right) + A_{2}\cos\left(\omega_{2}\mathbf{t}\right) & \uparrow \mathbf{X}_{in} \\ \mathbf{Y}(\mathbf{t}) &= \alpha_{i}\mathbf{X}_{in}(\mathbf{t}) + \alpha_{2}\mathbf{X}_{in}(\mathbf{t}) & \omega_{i}\omega_{2} \end{aligned}$
livering Bo B21 A B11 B22 A A OUT impost harmonics, filter O W2-W, W1 W2 2W1 2W2 distortion Can generate
other harwoulds, this process is called spectral regrowth

32) SW cap filters: Motivations, concepts, implementation +
stray insensitive topologies
Audio varige is BW VIOUHZ -> with SpF capacitors we would need 21011.2 -> even with RD = 24.2/10 the aven needed would be too large for implementation. Solution -> SW capacitors
SUIN
$V_{NO} = V_{NO} = V_{IN} = V$
1) Vin charges C1 - a QC1 = Vino C1 - a Sampling of Vin 2) C1 is between guid and virtual guid - a charge is transperred on C - a DQc = C1 VIN = C. Vout - DVc = C1 VIN c
Associating C, C, ideal, we'll see a staircase at the output: because we've continuously applying new charge to c
$\frac{C_{iE}}{T} = \frac{C_{iE}}{T} = \frac{\Delta V_{c}}{T} = \frac{\Delta V_{c}}{T} = \frac{\Delta V_{c}}{T} = \frac{1}{T} = \frac{C_{iE}}{T} = \frac{\Delta V_{c}}{T} = \frac{1}{T} = \frac{1}{$
Linear analog integrator ramp is $\frac{\Delta V_{00T}}{\Delta t} = -\frac{V_{IN}}{Rc}$ while it is $\frac{\Delta V_{00T}}{\Delta t} = -\frac{V_{IN}}{Tc}$ by we see a similarity by posing
Req = I = T=10 us, C_1 = 1 pF - Req = 10 M 2 It's convenient to use switched caps
The result can be found in an alternative way by saying: $Q_3 = C_1 V_{1N}$ iaverage = $C_1 V_{1N}$ in a period T T 12

V 0	
N:	6
ił,	
h Ne	0
)V(
1 1 1	TI VE
6	
or i v	
se N	
10	
×	- 1
ti	
< (° m	
2	
ł	0
ξ λ	
N N	
4	0\
6	N
9	
A.	
0	CD 4
, b V	
01 V	
۱۶ ۲	4
26	9
0	
NI	
U -1	(
io NE	3
M	0
f	
	+ ()
b W	
1	
0	
9	
21	.].
9	
1	
T	
u 01	
A N	2
ρ) [-
6	1
1	
V	
0	
W	1
M	1
S	
	X

Every filter will have a different H(2), but the replicast	
Sinc function are typical of SC themselves, so	
[H(fw)] > Be careful of the in-band	
TSinc (# with altion given by the	-
-200 1001HZ 200	
-20 Ipnikz 20	
M(Jw) shows stop periodicity because after the sampling,	
the circuit is no more able to recognize to harmonic from	
the others at for 2nt.	
Sinc is related to the stepped autput. However, if the	
SC out is read by an ADC, the since is last since we	
need not to acyoine the signal in continuous time downin.	
Also, since output BW is limited to the filter, to get rid	
of replicas use can use an aunitog filter :	
A.A LPF J SIN	
ALIAS SC RECOVERY A ALIAS	
LANTIALIAS XX (XX GBWP ALLASING)	F
ANTIALIAS XX C XX GBNP ALLASING OFC 2m - fc 2m	
FRECOVERY KL KK GBWP	
A 100M	
Note: for a simple SC integrator	
0 H2-	->
for OHZ it goes to too like an surley integrator closs	
-AA filter: fAA = fcu - fo (fo = cutoff of the integrator)	
This weaks that for p< fo to aliasing	
Por fo < f < fcu-fo - ALIASING but it's filtered by H	
(and by sinc for a little part). This means that	
fax can be relaxed with respect to fo 118	

34) Non identitios: Errole - app last week setting time and charge sharing in sizing the switches Switches are not ideal. Transient time needs to be low everyth [Row CI <]) so that the step isn't downged. VDD Based on Vc, MOS Could be SAT or OMMIC. P-I-C Suppose that Mos is ohnic, then: CI-I-VCI-I-I-RON = I = I FIFT RON = I = I FIFT RON = QDO QUE VOV Vos = Vc1 - Vgun = Vc1 $I_{DS} = \frac{2}{0} \times \left[(V_{DD} - V_{T}) V_{C1} - \frac{V_{C1}^{2}}{2} \right]$ The cap discharge correct is the following: $I_{DS} = -C_{1} \frac{dV_{c1}}{dt} \longrightarrow dt = \frac{-C_{1}}{I_{DS}} \frac{dV_{c1}}{dV_{c1}} \longrightarrow Solve Huis:$ $T_{SW} = \frac{C_{1}}{M} \int \frac{dV_{c1}}{2V_{0}V_{c1} - V_{c1}^{2}} \longrightarrow T_{SW} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0} - V_{F}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{c1}}{2W_{0}V - V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0} - V_{F}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{c1}}{V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0} - V_{F}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{0}}{V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{0}}{V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{0}}{V_{F}} \frac{dV_{0}}{V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{0}}{V_{F}} \frac{dV_{0}}{V_{F}} = \frac{C_{1}}{2W_{0}V} \frac{dV_{0}}{(2V_{0}V - V_{F})V_{F}} \int \frac{dV_{0}}{V_{F}} \frac{dV_{0}}$ VI ~ VE SVF To first order, we can say Tow = CI Osvally Ci is set by voise requirements, therefore TSW = CI LT Lo L= Lmin to reduce TSW 2mnCox (NDD-VT) W The last doice would be WMA, but large area means Longer Cox = WL C'ox > We now need to take into account the Cpar 119

Mosfet sizing + dock
1) Ensure Tsw is lower thru Takk: N = constant that divides $Row C_1 = C_1 = Tan = 1$ the clock 2KVov N Nfan Vov = VDD - VT
This leads to Cox W (VDD-VT) > N fcuCiL
2) Limit charge injection effects
<u>x Qch</u> < <u>AVrax</u> - <u>D</u> <u>Q</u> <u>Cox (WL)(VDD-VF)</u> < <u>AV</u> RAX
Combine 1+2:
PCK < C AVIAXIN & A W < C AVIAX CI LUIN ² NX COX (VDD-VT) X LUIN
By selecting wax transient time and the lowest offset allowable upper limits for fan and W (if we use Luin)
Note: overlop between gate and drain, source is there not to have issues with potential barriers
This generates polation por citic Capacitonces VERLAP
122

Additional: now do we choose the "elementary cells" in
74 pelgrom formulas
X This is a $\Lambda \times \Lambda = Ao$ square L L A A A A A A A A A A A A A A A A A A
- W How de we avose to? (This is valid
for both Kut and KR calculations).
Each square must be spatially uncorrelated with
the adjacent squares.
+ F The signame was roo large, it wouldn't
be a gaussian distribution anymore, therefore an
the statistical reasoning we make would be affected
by deterministic processes. In few words:
OGF - OGI + OGZ + OGZ + OMYWORE
To select the vight Ao, A we would need to
compute the double autocorrelation (across x and y
axis) in order to have uncorrelated squares
(or at least, autocorrelation leugth is small enough).

Condition will be met when $\frac{\Delta V}{N} = SR$

