ANALOG CIRCUIT DESIGN ORAL NOTES

By Giacomo Tombolan
This work is licensed under Creative Commons CC-BY-NC-SA-4.0

Guide to these notes:

- If you payed for these notes, you've been scammed. I always give my notes for free.
- There are some additional notes at the end of the documents that could make some questions (like the orchard theorem) clearer to you, or at least, they did to me.
- I tried to explain and justify every step of each question, I hope you can follow my reasonings. If there's something that's "taken for granted" (except for filter theory that's purely mathematical and it's not explained in this course), there's probably an additional note in the end of the document
- This is a helpful guide to be read together with the lectures PDFs. I don't recommend to fully rely on the stupid things I wrote. Btw, PDFs contain typos so beware of that too
- Questions \#24,\#25,\#1 are a bit meh, I didn't really know what so say about those. I really recommend not to use those as reference
- Question everything you read because during the oral you will be asked exactly that. Just to make few examples:
- (Question \#22 on 1/f noise) why do we take $\beta=\frac{1}{4}$? Can't we generalize the reasoning to all energy levels? Of course, but it's more complex. We analyze the traps at Fermi level just to demonstrate that if we consider multiple τ we end up with several lorentian shapes. Of course, on a more general view, there will be different families of traps (ions, defects on lattice, etc..) + different energy levels that will lead to something like $\frac{1}{f^{\beta}}$
- (questions \#14 and \#15) How do we size the square length and area Λ, A_{0} ? Is there any reasoning behind that? (See additional notes at the end of the document)
- NEVER EVER TAKE ANY FORMULA OR SYMBOL FOR GRANTED. The exact moment you memorize anything without a clear understanding of what you learned you will fail the oral. It's guaranteed. You must be able to justify anything that gets out your mouth or pen.
- Tip that helped me the most: don't memorize every step but memorize the first and last steps. Then memorize the track you need to follow to get from start to the end, it helps the flow of your speech and it won't take too much brain space
- It took me about 7 days to write these notes from scratch, so if my writing isn't clear, well, I'm sorry C: hope it helps anyway. Also, I speak maccheroni and I'm well aware of the English mistakes I made. However I didn't have enough time to be my grammar nazi
- There are two questions \#19, the given pdf with the oral topics had two \#19 and I didn't see that until I was done writing everything. Just ignore this mistake

If you're having any issue with this document just send an email to
giacomo.tombolan@mail.polimi.it

Topics for the orals

1. MOSFET's figures of merit: maximum voltage gain and cut-off frequency. Dependences on bias (strong, moderate and weak inversion).
2. Independent/interacting capacitors and poles. Extension of the time constant method. Middlebrook's theorem. Examples with RC networks.
3. The prototypical differential stage: from resistive to active loads. Common mode feedback and single ended option.
4. Single ended differential stage with mirror: Bias, input and output voltage swings, differential gain, Common mode gain.
5. Two-stage CMOS OTA: topology, frequency response, Miller compensation.
6. Two-stage CMOS OTA: frequency compensation with the nulling resistor. Implementing the nulling resistor
7. Two-stage CMOS OTA: frequency compensation with ideal voltage and current buffers. Impact of the buffer finite resistance.
8. Nested Miller Compensation
9. OTA Linear response. In-band zero-pole doublets and features of the settling response.
10. The slew rate limit. Impact on settling time. CMOS-OTA: Internal and external slew rate limits. Improving $S R$ with class $A B$ output stages.
11. CMOS single stage amplifiers: telescopic and folded cascode structures. Motivations, performance and linear swing
12. Output stages: Class A vs. class B output stage. Efficiency and distortion.
13. Output stages: Total harmonic distortion and feedback
14. Variability and matching: Relative matching of resistors. Pelgrom's formula
15. Variability and matching: Relative matching of threshold voltage values. Pelgrom's formula
16. OTA: Offset. Deterministic and statistical contributions to input referred offset.
17. OTA: Common-mode rejection ratio. Deterministic and statistical limits to CMRR
18. Quantitative description of noise: the power spectral density concept, thermal noise in resistors and MOSFETs
19. Input referred noise sources of a two-port network. Definitions and derivation. Extension to the differential stage
20. Noise models: The Nyquist argument for the thermal noise power spectral density
21. Noise models: Shot noise model. Application to p-n junctions and MOSFETs in weak inversion
22. Trapping noise: trapping noise in a resistor
23. McWorther model of the $1 / \mathrm{f}$ noise in MOSFETs. Tvidis formula.
24. Introduction to analog filters: Ideal performance. Limits of the causal response. Group delay and signal distortion.
25. LP filters: Filter mask and numerical parameters (selectivity, discrimination). Families of LP filter functions (Butterworth, Chebyshev, Bessel, ...) and their properties.
26. Mapping: Motivations, HP to LP transformation, BP to LP transformation
27. Active cells: The Sallen-key. Sizing options and sensitivity.
28. The universal cell. Deriving the block-diagram. Properties. The Tow-Thomas cell.
29. Ladder networks: Orchard theorem, implementation with active integrators. Flow-graph derivation procedure. Denormalization.
30. Ladder networks: implementations with gyrators. Topologies of gyrators (OP-AMP, OTA based). Properties and limitations
31. Dynamic range in filters: number of equivalent bits, guidelines to reduce the noise floor.
32. Impact of OP-AMP non-idealities on reference radial frequency and Q factor of a biquad cell.
33. Switched capacitor filters: Motivations, concepts, implementation of the ideal integrator. Stray insensitive topologies
34. SC filters: sampling, transfer function, output spectrum. Anti-aliasing filter and clock frequency.
35. SC filters: trade-off between settling time and charge sharing in sizing the switches.
1) Mos For + fut. Dependarces on strong, moderate + weak inv.

Let's see first some currncteristics of the unspet:

- $V_{G}=V_{F B} \rightarrow$ off state $\rightarrow U_{S}=0$

Substrate forms diodes

with both S, D. We therefore just have
a Ob (built-in potential) relates to the diodes.
For $V_{G}<V_{T}$ we are sub-threshold

- $V_{G}<V_{T}$ and $V_{S}=V_{D}=0$

Energy barrier is now lower

- $V_{F B}<V_{a}<V_{T}$ and $V_{D S}>0 \quad\left(V_{S}=0\right)$

Since current is low \rightarrow no ohmic drop \rightarrow potential energy along the chan reunius fairly constant. However, on the source we hame a Obi that (Boltzwnun) leads to a carrier concentration of $n(0)=N_{S} e^{-9 \frac{d b_{i}}{k_{T}}}$ while on the drain side, $V_{\Delta}>0$ will lead to a negligible concentration.

This concentration leads to a bipolar-like
diffusion wrreut that is

$$
\begin{aligned}
I_{D I F F} & =\frac{I_{S} e^{q \frac{\left.V_{a S}-V_{T}\right)}{n K T}}}{}=\frac{I_{D}}{}=\frac{\partial I}{\partial V_{G S}}=I_{S} \cdot \frac{q}{n K T} e^{q \frac{V_{a S}-V_{T}}{n K T}}=4 \frac{T_{D S}}{n K T} \\
& =\frac{I_{T M}}{n V_{T}}
\end{aligned}
$$

This will be the wax achierrble gain
$\frac{\text { Cutoff frequency }}{\frac{v_{\Delta A}}{I}}$

We define the gain-BW pronluct as $f_{T}=\frac{g^{\prime \prime}}{\operatorname{cox}} \cdot \frac{1}{2 \pi}$

$$
f_{T}=\frac{2 u \text { Nov }}{2 \pi W L C^{\prime} o x}=\frac{2 \cdot \frac{1}{2} \mu \operatorname{ci}^{\prime} x \frac{\forall}{L} \text { Nov }}{2 \pi x_{L}^{\prime} \delta k}=\frac{\mu \text { Nov }}{2 \pi L^{2}}=\frac{\bar{v}}{2 \pi L}=\frac{1}{2 \pi t-R}
$$

$\frac{V_{\text {ob }}}{L}=$ electric field $\bar{v}=\mu E=\mu \frac{V_{\text {Iv }}}{L}$
This is not true for sub-thresh:

stored dirge will be $\left.Q^{\prime}=q \cdot \underline{n(0) \cdot L}\right)^{2}$ area of the triangle
So ${\underline{t_{D I F F}}}=\frac{Q^{\prime}}{J_{\triangle I F F}}=\frac{1}{2} \times \frac{n(0) \cdot L}{Q D n \frac{n \cdot 0)}{L}}=\frac{L^{2}}{2 D n}$

So

$$
f_{\text {SUB }}=\frac{1}{2 \pi t D I F F}=\frac{D n}{\pi L^{2}}
$$

$$
f_{\text {SAT }}=\frac{g \mu}{2 \pi c_{0 x}}=\frac{\mu V_{0 V}}{2 \pi L^{2}}
$$

$$
f_{\text {SUB }}=f_{S A T} \rightarrow \frac{L^{2}}{\mu V O V}=\frac{L^{2}}{2 D_{n}}=D \quad \frac{2 D_{n}}{\mu}=V_{O V^{*}}
$$

Since $D_{n}=\frac{K T}{a} \cdot \mu \quad V_{O}{ }^{t}=\frac{2 K T}{a} \simeq 51 m V @ 300 K$
Real, final graph

2) Time constant method + examples + extension

For a LTI network the tramefor function is:

$$
T(s)=T(0) \frac{N(s)}{D(s)}=\frac{a_{m} s^{m}+a_{m-1} s^{m-1}+\cdots+1}{b_{n} s^{n}+b_{n-1} s^{n-1}+\cdots+1}
$$

$N(s)$ are zeros $D(s)$ are poles. For a 3 copocitors net wan

$$
\begin{aligned}
& \underline{b_{1}}=c_{1} R_{1}^{(0)}+c_{2} R_{2}^{(1)}+c_{3} R_{3}^{(0)} \\
& \frac{b_{2}}{b_{3}}=c_{1} c_{2} R_{1}^{(0)} R_{1}^{(1)}+c_{1} c_{2} c_{3} c_{3} R_{1}^{(1)} R_{1}^{(1)}+R_{2}^{(1)} R_{3}^{(1,2)} c_{3} R_{2}^{(0)} R_{3}^{(2)} \\
& \frac{a_{1}}{a_{2}}=c_{1} R_{01}^{(0)}=c_{1} c_{2} R_{01}^{(0)} R_{02}^{(1)}+c_{2} R_{01}^{(0)}+c_{1} c_{3} R_{01}^{(0)} R_{03}^{(0)} R_{03}^{(1)}+c_{2} c_{3} R_{02}^{(0)} R_{03}^{(2)} \\
& \frac{a_{3}}{(2)}=c_{1} c_{2} c_{3} R_{01}^{(0)} R_{02}^{(1)} R_{03}^{(1,2)} \\
& D(s)=b_{3} s^{3}+b_{2} s^{2}+b_{1} s+1 \quad N(s)=a_{3} s^{3}+a_{2} s^{2}+a_{1} s+1
\end{aligned}
$$

Since the coefficients are related to the circuit topology, order of expaitors obesuit untter

We com devote roots of the denominator so bunt

$$
D_{3}(s)=\left(1-\frac{s}{p_{3}}\right)\left(1-\frac{s}{p_{2}}\right)\left(1-\frac{s}{p_{1}}\right)=b_{3} s^{3}+b_{2} s^{2}+b_{1} s+1
$$

By comparing the expressians we fin tint

$$
b_{1}=-\left(\frac{1}{p_{3}}+\frac{1}{p_{2}}+\frac{1}{p_{1}}\right)
$$

If there's a obominout pole out of the three, $\frac{1}{p}$ will be munch higher; for example $\frac{1}{p_{1}} \gg \frac{1}{p_{2}}, \frac{1}{p_{3}}$ so $b_{1}=c_{1} R_{1}^{(0)}+c_{2} R_{2}^{(0)}+c_{3} R_{3}^{(0)} \sim-\frac{1}{p_{1}}$
on the other hour, for high frequency

$$
b_{3} s^{3}+b_{2} s^{2}+b_{1} s+1 \approx b_{3} s^{3}+b_{2} s^{2}=s\left(s b_{3}+b_{2}\right)
$$

There pore $P_{H}=-\frac{b_{2}}{b_{3}}=\frac{C_{1} C_{2} R_{1}^{(1)} R_{2}^{(1}+C_{1} C_{3} R_{1}^{\prime \prime} R_{3}^{()}+C_{2} C_{3} R_{2}^{\prime \prime} R_{3}^{(4)}}{C_{1} C_{2} C_{3} R_{1}^{\prime \prime} R_{2}^{(1)} R_{3}^{()}}$
We com simplify the terms and firn thant

$$
\begin{aligned}
p_{H}=-\frac{b_{2}}{b_{3}} & =\frac{-1}{c_{3} R_{3}^{(1,2)}}-\frac{1}{c_{2} R_{2}^{(1,3)}}-\frac{1}{c_{1} R_{1}^{(2,3)}}= \\
& =-\left(\frac{1}{\tau_{3}^{\infty}}+\frac{1}{\tau_{2}^{\infty}}+\frac{1}{\uparrow_{1}^{\infty}}\right)=-\frac{1}{\sim_{\infty}^{\infty}}
\end{aligned}
$$

zero of a network with a single pole

$$
\left\{\begin{array}{l}
V_{\text {OUT }}=A_{O} v_{I N}+R_{M} i_{C} \\
v_{c}=B_{O} v_{\text {IN }}+R_{1} i_{C}
\end{array}\right.
$$

Since $\frac{H}{v_{c}} \quad v_{c}=-\frac{i c}{s c} \quad \rightarrow i_{c}=-s c v_{c}$
$V_{c}=B_{0} V_{\text {in }}-S C R_{1} V_{c} \rightarrow V_{c}=\frac{B_{0} V_{\text {iN }}}{\left(1+S R_{1 c}\right)}$ then $V_{\text {out will be }}$

$$
\text { VOLT }=V_{\text {IN }}\left[A_{0}-s \frac{\text { RuCBO }}{1+s R_{1} c}\right]
$$

$$
=V_{\text {IN }} A_{0} \frac{1+S C\left[R_{1}-\frac{R_{m} B_{0}}{A_{0}}\right]}{1+S C R_{1}} \text { pole is } \tau_{p}=R_{1} C
$$

For the zero to occur, it must be Aovint Rmic =o Therefore at the same time

$$
\left.v_{c}\right|_{z \in R_{0}}=-\left.\frac{B o R u}{A_{0}} i c\right|_{z \in R_{0}}+\left.R_{1} i_{c}\right|_{z \in R_{0}}
$$

Resistance seen on C wring zero condition will be

$$
\left.\frac{V_{c}}{i_{c}}\right|_{Z E R_{0}}=\left(R_{1}-\frac{R_{m} B_{0}}{A_{0}}\right)
$$

Results:

- fpole $=\frac{1}{2 \pi R_{1} c} \quad ; f_{z}=\frac{1}{2 \pi R_{z} c}$
\rightarrow There's a pole $\quad \rightarrow$ there's a zero
- DC goin is $\frac{\text { Vour with C open }}{V_{\text {IN }}}$ with

3) Diff stage: Proms resistive to active lond. CM feedback t single ended option

$$
v_{d}=v_{-}^{+} v^{-}
$$

$$
\operatorname{Vor}_{00 T}=G_{\Delta} \cdot v_{d}+G_{C M} v_{0 M} \quad v_{C M}=\left(v^{+}+v^{-}\right) / 2
$$

Goal: - high differential gain (oo ideally)

- Low common moole gain (0 ideally)
$\frac{\text { Differeutian stage } \rightarrow \text { resistors }}{V}$

Issue: gain is limited by voltage drop an resistor:
To increase GD: $\rightarrow R_{D} M_{1} \rightarrow \Pi_{1}, M_{2}$ go out of saruratiom
\triangle Nov $\pi \rightarrow$ gur can saturate (EKV model)
Solution: load that shows high impedance with low bins voltage drop.

$$
\sum_{\sum_{s}}^{\sum_{0} R_{a}} V_{a u t} V_{c \pi}=-\frac{V_{c m}}{R_{s}} \cdot \frac{1}{2} \cdot R_{D} \rightarrow G_{c \pi}=-\frac{R_{\Delta}}{2 R_{s}}
$$

$$
G_{C R}=\frac{I_{D}}{I_{D}} \frac{R_{D}}{2 R_{S}}=\frac{\Delta V_{R_{D}}}{\Delta V_{R S}}
$$

$\sum^{3} \mathrm{I}^{2} \quad$ Ago
Again: gain is limited by voltage drops an resistors (ideally Gi b ©)

$$
\begin{aligned}
& \text { Put example with: } R_{L}=10 \mathrm{~K} \Omega R_{S}=16 \mathrm{~K} \Omega \\
& V_{B}=\frac{V_{\Delta D}}{2} \quad 2 I=50 \mu \mathrm{~A} \\
& V_{\text {alt }}=\operatorname{gu} \frac{v_{d}}{2} \cdot R_{\Delta}=\frac{2 I_{\Delta}}{V_{0 v}} \cdot \frac{R_{\Delta}}{R} v_{d} \\
& G_{\Delta}=\frac{I_{\Delta} R_{D}}{V_{0 V_{1}}} \text { where } I_{\Delta} R_{\Delta}=\text { bias votrage drop bul } R_{\Delta}
\end{aligned}
$$

Differential stage \rightarrow active loads
High impedance + low voltage drop \rightarrow current geverntors!

$$
\begin{aligned}
& G_{D}=g_{u} \cdot \frac{1}{2} \cdot r_{0}=\frac{\mu}{2} \rightarrow \text { marx transistor } \\
& \underline{G_{C T}}=\frac{r_{0}}{2 R_{G}}
\end{aligned}
$$

Current geverotors ave implemented using wospets:

Since we have low voltage drop, we cam use cascode structures in order to increase load impedance

We con do the same for rail geverators so that Gam cam be decreased at the expense of burning move power supply \rightarrow High CMMR weans move power consume prion
$C M R R=$ Common Mode Refection Ratio

Active bias issue

2 \rightarrow Currents need to be exactly wit dod, otherwise:
$1 I_{G}<I \rightarrow M_{1}$ ohmic
$\stackrel{2}{0}_{G}^{2} I_{G} \rightarrow M_{G}$ ohmic

π_{1}

Common mode feedback
This helps rebolaucing the wrreuts so that they call be writcusd

If $I_{a}>I \rightarrow A, B$ will rise in
 potential, thus c will rise too It's easy to see that two resistors are used to generate the average
\therefore between A, B because we need not to charge the common mode bias during differential stimula:

Example of implementation

Anotver compensontiom: Single eurled opomp

By using a corrent mivror we can elimengte the need for a Cr feedback canfiguratian. Cost:

- No fully differeutial stage
- Symmetry \rightarrow CMRR deteruimistic contributiom)
If $V_{B}=V_{A} \rightarrow I_{G_{1}}=I_{G_{2}}=I$ to first $\operatorname{order}\left(V_{D S} G_{1}=V_{D S} G_{2}\right)$
When $2 I$ is dianged, V_{B} changes as well, the transdiode ontountically os justs its curreut in order to wrich

$$
I_{G}=I
$$

4) Single ended differential stage with mirrors: bias, dynamics, GD, Gen

We see $\frac{1}{\text { gur }}$, re \rightarrow Stage is unbalanced this means V_{0} is clanging with respect to $V d \rightarrow V d$ ish't split symmetrically

Turnaround: Norton theorem

By shorting Dour, stage will vow see $\frac{1}{\text { gm }}$ and $O \Omega \rightarrow$ we "recovered" summery, therefore we com easily compute Gd using Norton

We have a feedback Lop:

$$
\text { GiD }_{\text {Norton_ }}=i c c \cdot R_{\text {out }}=g \mu \cdot\left(\text { vor\| } r_{0_{1}}\right)=\frac{g \frac{g u r_{0}}{2}=\frac{\mu}{2}}{\Delta_{7}}
$$

We comr simplify $G_{D}=\frac{2 I}{V o v} \cdot \frac{1}{2} \cdot \frac{V_{A}^{\prime}}{I}=\frac{V_{t}^{(0)}}{V_{0 V}} \cdot \frac{L}{L_{\text {min }}}, 0,35, \ldots, n$

Common mode gain
Th $1^{2}-1 E^{-1} \frac{N_{C R}}{2 R c x}$ Ideally, current generates in (1) would be sucker in (2) $s o \quad i c c=0$
We cam say that (1) is slightly mismatched with respect to (2) by au error ε, so:

$$
i_{c c}=\varepsilon \cdot \frac{v_{c M}}{2 R_{G}} \longrightarrow \underline{G_{c T}}=i_{c c} R_{\text {out }}=\frac{R_{\text {ROT T }}}{2 R_{G}}
$$

$$
\underline{C M R R}=\frac{G_{D}}{G_{c \pi}}=\frac{\frac{g m R_{00 T}}{\frac{8 R_{G}}{2 R_{G}}}=\frac{2 g m R_{G}}{\varepsilon}}{\underline{\frac{R_{0}}{2}}}
$$

Let's briefly quantify ane contribution of ε :

So $\varepsilon \cong \frac{1}{\mu} \simeq 1 \%$ since $\mu=100$
Therefore $\underline{\text { CTR }}=\frac{2 \mathrm{gm} r_{G}}{\varepsilon}=\frac{2 \cdot 100}{1 / 100} \simeq 86 \mathrm{~dB}$

Bias and dynamics (In/OUT)

Input dynamics:

$$
\begin{aligned}
& \left.V_{\text {IN }}\right|_{\text {MaX }}=V_{\Delta S}-V_{G S_{T T}}+V_{T} \simeq 2,8 \overbrace{\square}^{\frac{T}{\#}}\left|\Delta V_{I N}\right|^{V_{O V}}=2,8-1,5=1,3 V \\
& \left.\left.V_{\text {IN }}\right|_{\text {min }}=V_{\text {ova }}+V_{a S_{2}} \simeq 0,9\right]\left|\Delta V_{1, N}\right|=1,5-0,9=0,6 \mathrm{~V} \\
& \left.\left.\operatorname{Vou}\right|_{\text {max }}=V_{D D}-V_{\text {over }} \simeq 2,8\right] \rightarrow\left|\Delta V_{\text {out }} T^{t}\right|=2,8-2,2=0,6 \mathrm{~V} \\
& \left.V_{\text {Ooh }}\right|_{\text {min }}=V_{\text {Cr }}-V_{T} \quad \simeq 0,9 \quad \mid \Delta V_{\text {our }}-=2,2-0,9=1,3 \mathrm{~V}
\end{aligned}
$$

5) Two stages OTA: topology, freq response, Miller soup

$G_{1}=$ diff stage gain $\simeq 40 \mathrm{~dB}$, not enough for the $>85 \mathrm{~dB}$ spec $G_{2}=2$ ur i stage gain

$$
G_{\Delta}=G_{1} G_{2}=\frac{g_{1}\left(r_{0 \pi} / / r_{02}\right) g_{s}\left(r_{0 s} / r_{06}\right)}{140} \simeq 86 \mathrm{~dB}
$$

We mat the Gs requirement. at the cost of mere power dissipation $\rightarrow 2 v$ aud stage requires bias:

II 6 has to watch M_{s} in order to get proper bins aud Vout - Vout set at $V \Delta D / 2$ (therefore $K_{5}=K_{6}$)

$$
\underline{G_{D}}=\frac{2 I_{1}}{V_{\text {OVA }}} \frac{V_{A_{1}}}{2 I_{1}} \cdot \frac{2 I_{5}}{V_{\text {OVA }}} \cdot \frac{V_{A_{5}}}{2 I_{5}}=\frac{V_{A_{1}}}{V_{\text {OVA }}} \frac{V_{A_{5}}}{V_{\text {VS }}}
$$

Nous has to be the same of Vov3,4 because of symmetry We cen therefore choose proper $L_{5,}, L_{6}$ to wench gain by finding the $V_{A_{5}}=\frac{L_{5}}{L_{\text {min }}} \cdot 7 \mathrm{~V}$

Note: when $\Pi_{5} \neq \Pi_{6}$ we end up with a systematic offset that can be input translates to: $V_{0 s_{\text {in }}}=\left|\frac{V_{D D / 2}-V_{\text {out }}}{G D}\right|$

Noise consideration an 2nd stage

$$
\left.L^{\operatorname{Sin}}\right|_{\text {ToT }}=\frac{8 V T \gamma}{g m_{i}}\left(1+\frac{1}{2}\right)+8 K T \gamma \text { g ms } \cdot \frac{1}{G m_{1}{ }^{2} \mathrm{gms}^{2}}
$$

Division by $G_{1}{ }^{2}$ wakes 2 un d stage mise negligible with respect to dst stage
OTA applications
$V_{1} \rightarrow v_{0} \leadsto$ Resistive Loads Kill the bop grin

$$
G \operatorname{Gop}=\text { que } \cdot \frac{R_{0 u T}}{R_{00 T}+R_{1}+R_{2}} \cdot R_{1}
$$

$\sum_{i=1} R_{1} R_{2}$
$\frac{1}{7}$
We should use a buffer between Gui stage annul the resistive load \rightarrow BPAMP

We could use the OTA as a S\&H:

- No resistive bad
- Capacitive load \rightarrow could geverate unstabilify

Erealomey response
$C_{1,2,3,4}$ see low impedance \rightarrow
 pole is at higle frequency C_{7}, C_{6} do rot affect signal
$\frac{1}{I} c_{L}$ response.
$C_{g s s}, C_{L}$ offect frequency response by introducing two poles well bey and G bop $=1$:

This means tint if we used the OTA os a buffer with a capacitive load, if would be unstable. ar ONcOITPENS ATED at unity gain

Miller compensotiau
Let's simplify the stage aur let's add a comp. capacitar.

$$
R_{1}=\text { impertance of ist stinge }
$$

$R_{2}=1=2 n d 1$
$C_{1}=C_{g} 5$
$C_{\pi}=$ Miller comp. capacitor
$\underline{T(s)}=G_{D}(0) \cdot \frac{s^{2} a_{2}+s a_{1}+1}{s^{3} b_{2}+s^{2} b_{2}+s b_{1}+1} \quad$ where
(b) $=C_{1} R_{1}^{(0)}+C_{\pi} R_{n}^{(0)}+C_{L} R_{L}^{(0)}$
(62) $=C_{\pi} C_{1} R_{17}^{(0)} R_{1}^{(\pi)}+C_{1} C_{L} R_{1}^{(0)} R_{L}^{(1)}+C_{\pi} C_{L} R_{M}^{(0)} R_{L}^{(H)}$
(23) $=C_{\pi} C_{1} C_{L} R_{\pi}^{(0)} R_{1}^{(\pi)} R_{1}^{(\pi / 1)}$
(21) $=C_{1} R_{01}^{(0)}+C_{r} R_{0 r}^{(0)}+C_{2} R_{0 L}^{(0)}$
(a2) $=C_{M} C_{1} R_{0 \pi}^{(0)} R_{01}^{(\pi)}+C_{\pi} C_{L} R_{0 \pi}^{(0)} R_{O_{1}}^{(\pi)}+C_{1} C_{2} R_{01}^{(0)} R_{O_{L}}^{(1)}$
We call already say that there's no a_{3} becewse c_{1} is derectly tied to output $\rightarrow \infty$ Eero

Since capacitors iuteroct (they've dependent on esch ofber), we cal already say thnt $b_{3}=0$ for whitever carubinntion so \rightarrow max 2 poles, max 2 zeros

$$
\begin{aligned}
R_{\Pi}^{(s)}: & v_{c}=i_{c} R_{1}-\left(-i_{c} R_{2}\left(1+R_{1} g \mu_{5}\right)\right) \\
R_{\pi}^{(0)} & =\frac{v_{c}}{i_{c}}=R_{1}+R_{2}\left(1+R_{1} \text { gus }\right)=R_{2}+R_{1}\left(1+g \mu_{5} R_{2}\right)
\end{aligned}
$$

Remember that because of riller effect $R_{\pi}=R_{2}+R_{1}\left(1+G_{2}\right)$ where G_{2} is the voltoge goin between termimals of C_{π}

$$
b_{1}=\frac{C_{1} R_{1}+\frac{C_{1} R_{2}}{\sim 90_{n}}+\frac{C_{4}\left[R_{2}+R_{1}\left(1+g \mu_{5} R_{2}\right)\right]}{\sim 8 \mu s} \approx \frac{C_{\pi} R_{1} g \mu_{5} R_{2}}{\approx}}{\sim}
$$

(62):

$R_{1}^{(\pi)}=R_{1} / / R_{2} / / \frac{1}{\operatorname{g\mu _{5}}} \quad R_{L}^{(1)} R_{2}$

\triangle Iques
$\approx 1 /$ gus

$$
\begin{aligned}
b_{2} & \xlongequal{ } C_{\pi} C_{1} R_{1} R_{2} \text { qurs } \frac{1}{\text { ghs }}+C_{1} C_{2} R_{1} R_{2}+C_{\pi} C_{2} R_{1} R_{2} \text { quls } \frac{1}{\text { gurs }} \\
& =R_{1} R_{2}\left[C_{\pi} C_{1}+C_{1} C_{2}+C_{\pi} C_{2}\right]=C_{1} C_{1} R_{1} R_{2}+\left[C_{1}+C_{i}\right] C_{\pi} R_{1} R_{2}
\end{aligned}
$$

(63):

$b_{3}=0$ for every possible cambinntion
$\left(a_{2}\right):$

Setup for zeros:

- Vaut canit mave. Iuput geverotor is ON
- Copacitar geverotor outputs ic and v_{c}
$R_{01}{ }^{(0)}$: Vout covit wove $\rightarrow V_{R_{2}}=0 \rightarrow I_{R 2}=0 \rightarrow I_{13}=0 \rightarrow$

$$
\rightarrow V_{g s_{5}}=0 \rightarrow V_{c} \text { canit wore } \rightarrow R_{0_{1}}{ }^{(0)}=0
$$

Vout cait wove $\rightarrow V_{R_{2}}, I_{R_{2}}=0 \rightarrow i c+i \pi_{5}=0 \rightarrow i c+g \mu_{5} v_{c}=0$

$$
\frac{v_{c}}{i_{c}}=R_{o m}{ }^{(0)}=\frac{-1}{\operatorname{guu_{5}}} \text { while } i_{\text {in }}=\frac{v_{c}}{R_{1}}-i c
$$

(a2): $\quad \frac{a_{2}=0}{(\pi)}$ it's easy to devive thit $R_{01}{ }^{(\pi)}, R_{02}{ }^{(r)}=0$ becouse Vout can't were oud both C_{1}, C_{L} are tied to Vout when C_{T} is short

$$
G_{D}(s)=G_{D}(0) \cdot \frac{1-s C_{\Pi / g u_{s}}}{s^{2} b_{2}+s b_{1}+1}
$$

Frequency results estimation_
by seeing the large $\tilde{F}_{c_{\pi}}$, we can say that the resulting two poles will differ by more than a decade. Approx

$$
\begin{aligned}
& \underline{P_{1}} \geqslant-\frac{1}{b_{1}}=\frac{\frac{-1}{C_{\pi} R_{1} g m_{s} R_{2}} n_{0} C_{\pi} \text { courvibutes the most }}{\underline{P_{H}} \approx-\frac{1}{b_{2}}=\frac{-C_{1} g m_{s} R R_{2}}{\left[c_{1}\left(c_{\pi}+c_{L}\right)+c_{1} c_{\pi}\right] R_{1} R_{2}}=\frac{-g m_{5} C_{n}}{c_{n}\left(c_{1}+c_{L}\right)+C_{1} c_{2}}}
\end{aligned}
$$

Note: for longe $C_{\pi} \rightarrow \mathrm{pH} \simeq-\frac{q m_{5}}{C_{1}+c_{L}}$
PH wakes sense because if C_{T} is short:

$\sum_{1} \frac{1}{I R_{2}} \frac{1}{I} c_{1}+c_{2}$

$$
F_{H}=\frac{1}{2 \pi\left(C_{1}+C_{2}\right)\left[R_{1} / / R_{2} / / / \mu_{L}\right)} \simeq \frac{\text { gus }}{2 \pi\left(C_{1}+C_{L}\right)}
$$

for $C_{\pi} \rightarrow 0$ only C_{1}, C_{1} toke place in the circuit
for $C_{\pi} \rightarrow \infty \quad f_{L} \rightarrow 0$ and f_{H} saturates to $\frac{g m_{S}}{2 \pi\left(c_{1}+c_{L}\right)}$

$$
\begin{aligned}
& \underline{G B W P}=G_{D}(0) f_{t}=\frac{g m_{1} q u_{s} R_{1} R_{2}}{2 \bar{G} C \pi g \mu_{5} R_{1} R_{2}}=\frac{g m_{1}}{2 \pi C_{\pi}} \\
& \text { In order not to wt with -LodB/dec: }
\end{aligned}
$$

$$
f_{H} \geq G B W P \quad \frac{g u_{S}}{2 \pi\left(c_{1}+c_{2}\right)} \geq \frac{g m_{1}}{2 \pi c_{\pi}}
$$

Therefore compensation should be $c_{\pi} \geq g g_{1}\left(c_{1}+c_{2}\right)$ If we need wore punse margin, $f_{H} \geq 2$ GBUP

Phase margin ounlysis
IL already contributed with 90°

If this OTA is used like a buffer \xrightarrow{x} very close to instability
To recover some unrgin, $f_{H}, f_{z}=2$ GBWP so thar

$$
\phi_{\pi}=180^{\circ}-90^{\circ}-\operatorname{tg}^{-1}\left(\frac{\text { GBWP }}{f_{z}}\right)-\operatorname{tg}_{1 / 2}^{-1}\left(\frac{\text { GAWP }^{f_{H}}}{1 / 2}=90^{\circ}-27^{\circ}-27^{\circ}=135^{\circ}\right.
$$

To obtain this we cm: ICM or A gums:

1) Increosing CM shifts GBWP to the left but also f_{L} is shifted $\rightarrow B W$
2) Increasing gus shifts f_{H}, f_{z} to the right at the cost of wove power burned
3) Dulling vesistor: compensatian + implementation

We una think of a sowhian that changes the $f z$ independently or moves it to LHP ($+90^{\circ}$ contribution) We need to place something in the path of the zero:

$$
\begin{aligned}
& v_{s}=v_{c}-i_{c} R_{N} \quad g \mu_{5} v_{s}=-i_{c} \\
& R_{o_{\pi}}^{(0)}=\frac{v_{c}}{i_{c}}=R_{N}-\frac{1}{g \mu_{5}} \rightarrow \text { new }\left(P_{z}\right) \\
& \text { we can see the we com set }
\end{aligned}
$$

to the LHP so thant we com have proper ϕ_{m}

$\left(P_{1}\right)=\frac{1}{2 \pi} \frac{1}{C_{1} R_{1}+C_{1} R_{2}+C_{r}\left[R_{1}+R_{2}+g \mu_{5} R_{1} R_{2}+R N\right]}$
It's easy to derive the new b_{1} term
R_{N} is usually $\sim 2 / g \mu \rightarrow f_{L}$ has negligible change and so does GBWP

$$
\text { GAWP= }{ }^{\text {G101 }}
$$

Let's compute f3:

$$
\begin{array}{lll}
R_{1} \sum_{\frac{1}{3}}^{T_{C}} \sum_{3}^{3} R_{N} & M_{N} C_{\pi} & R_{2} \frac{\square}{\frac{1}{2}} \frac{1}{3} R_{N} \frac{\square}{\frac{1}{2}} C_{L} \\
C_{L}, C_{\pi} \text { shorr } & C_{1}, C_{L} \text { short } & C_{1}, C_{\pi} \text { shorr }
\end{array}
$$

$$
\begin{aligned}
\left(R_{3}\right) & =\sum_{i} \frac{1}{\pi_{i}^{\infty}}=\frac{1}{2 \pi}\left[\frac{1}{C_{1}\left(R_{1} \| R_{N}\right)}+\frac{1}{C_{\pi} R_{N}}+\frac{1}{C_{L}\left(R_{2} \| R_{N}\right)}\right]^{1} \\
& \approx \frac{1}{2 \pi R_{N}\left(C_{1}\left\|C_{\pi}\right\| C_{L}\right)} \sim \frac{1}{2 \pi R_{N} C_{1}}+
\end{aligned}
$$

Note: it's not importout to comporte the precise vowe, hence this fust gives us a hiut au the arder of unguitude
Compute f_{2} : cmisider C_{n} as a short

G bop $=-g \mu_{5} R_{2}$ so $R_{x} \sim 1 / g m_{s}$ if $R_{2}>R_{N}\binom{$ whid }{ it is }

$$
\text { So }\left(P_{2}\right)=\frac{1}{2 \pi\left[\frac{c_{1}}{g^{\prime \prime ⿱}}+\frac{c_{L}}{g \mu_{5}}\right]} \sim \frac{g u_{5}}{2 \pi\left(c_{1}+c_{L}\right)}
$$

f_{2} is roughly in the sanue position as before
zero-pole - cum pensation
First approade:
GBWP \& f_{2} oud $f_{z}=f_{2}$

$$
\begin{aligned}
& \frac{g \mu_{1}}{2 \pi c_{\pi}}=\frac{g \mu_{5}}{2 \pi\left(c_{1}+c_{L}\right)} \rightarrow c_{r}=\frac{g \mu_{1}}{g \mu_{5}}\left(c_{1}+c_{2}\right) \\
& \frac{1}{2 \pi C_{\pi}\left(R N-\frac{1}{g \mu_{5}}\right)}=\frac{g \mu_{1}}{2 \pi c_{\pi}} \rightarrow R N \sim \frac{1}{g \mu_{5}}\left(1+\frac{g \mu_{5}}{g \mu_{1}}\right)
\end{aligned}
$$

Now with $R N=2 /$ gus

(GAWP $\quad Q_{m}=180^{\circ}-90^{\circ}+45^{\circ}=135^{\circ}$

This way we cam hove the same bins, the same BW at the cost of implementing another resistor

Recap: GBWP	$f z$	f_{2}	$f 3$	
Miler	gulu$/ 2 \pi c_{\pi}$	$\frac{g \mu_{5}}{2 \pi c_{\pi}} R+1$	$\frac{g \mu_{5}}{2 \pi\left(c_{1}+c_{L}\right)}$	∞
R_{N}	$\frac{1}{2 \pi c_{n}}$	$\frac{1}{2 \pi\left[R_{N}-\frac{1}{g \mu_{5}}\right] C_{\pi}}$	$\frac{g \mu_{5}}{2 \pi\left(c_{1}+C_{1}\right)}$	$>\frac{1}{2 \pi c_{1} R_{N}}$

RN implementation

$$
\begin{aligned}
& I_{D}=2 U^{\prime}\left(\frac{W}{L}\right)\left(V_{O V} V_{D S}-\frac{V_{D S}}{2}\right) \quad g_{O R}=\left.\frac{\partial I_{D}}{\partial V_{D S}}\right|_{V_{D S}=0}=2 U^{\prime}\left(\frac{V^{\prime}}{L}\right)\left(V_{O V}-V_{D S}\right)= \\
& g_{O R}=2 K^{\prime}\left(\frac{W}{L}\right)_{R} V_{O V_{R}}=g M_{R}
\end{aligned}
$$

Assume $R_{N}=\frac{1}{\text { gie }}(1+\alpha)$ where α is a variability of the process
Them $\frac{g M_{S}}{g \mu_{R}}=(1+\alpha) \rightarrow \frac{(W / L)_{5}}{(W / L)_{R}} \frac{V_{\text {avs }}}{V_{\text {OUR }}}=(1+x)$
We com have Vovr $=$ Vovs so we cam better set $\frac{W}{L}$ ratios. Ne can size $I_{\text {RIF }}=\frac{1}{m} I_{s}$ so we cm hove lower power dissip. To have the Vas listed an 9, 10 , we need $\left(\frac{\mathrm{W}}{\mathrm{L}}\right)_{9,10}=\frac{1}{\mathrm{~m}}\left(\frac{\mathrm{~W}}{\mathrm{~L}}\right)_{\mathrm{s}}$
Whine $\left(\frac{W}{L}\right)_{8}=\frac{1}{m}\left(\frac{W}{L}\right)_{6}$
Note: Mr is in ohmic region because at bias C is open and therefore $V_{D S}=0$ because no current flows during bias
7) Compensation with voltrogelarrnaut buffers (ideal real)

$P^{3}=\infty$ with ideal voltage buffer (it cam be verifies by shorting two cops aud seeing that $R_{e e^{(\infty)}}^{(\infty)}=0$)
$f_{2}=$ say that $C_{I I}$ is basically short:
RT M $R_{1}^{(0)}=0$ because of the idea buffer

$f 2=\frac{g \mu_{5}}{2 \pi c_{1}}$
Let's see $P_{z}: \sqrt{\sum_{i n}}+v_{c}$
Naut cant move, $I_{R_{2}}=0$ there fare $I_{r i s}=0$ this way $V_{\text {as }}=0$ so $V_{c}=0 \rightarrow f(-z=+\infty$

Recap	$G B W P$	f_{z}	f_{2}	f_{3}	
Voltage Buffer	$\frac{g M_{1}}{2 \pi c_{\pi}}$	∞	$\frac{g \mu_{5}}{2 \pi c_{L}}$	∞	

As always we cam expect the sous P_{1}, GBWP because we preserved the Miler effect

HF pole: C_{π} is short $\rightarrow R_{2}$ curd C_{2} are shorted

$$
f_{2}=\frac{g M_{5}}{2 \pi c_{1}}
$$

Important: f_{2} is indepeurdent from $C_{L} \rightarrow$ longe loads do not effect frequency response!
 on both its ends

fl can be easily derived by shorting the other the capacitors, we will see that result is the same of f_{2}

Real voltage buff er implementation

$f_{2}: C_{\pi}$ is short
We now hare a zero:

$$
P_{2}=\frac{1}{\left.2 \pi L_{1} R_{1}^{(0)}+C_{L} R_{L}^{(0)}\right]}
$$

$$
R_{L}^{(o)} v_{c} \cdot \frac{R_{1}}{R_{1}+1 / g \mu_{c}} v v_{c}
$$

$$
\left.\left.\square\right|_{i}\right|_{i c=g \mu_{5} v_{c}} ^{R}
$$

$$
\rightarrow R_{x} \sim \frac{1}{g \mu_{s}}
$$

$\left(P_{2}\right) \approx \frac{g \mu_{s}}{2 \pi C_{L}}$ since $\frac{1}{g \mu_{B} g \mu_{s} R_{2}} \ll \frac{1}{\operatorname{g\mu _{s}}}$

$$
\begin{aligned}
\left(f_{3}\right) & =\frac{1}{2 \pi}\left[\frac{g \mu_{B}}{c_{1}}+\frac{1 / 2}{c_{1} R_{2}}\right] \\
& =\frac{2 \mu_{B}}{2 \pi c_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1}^{(0)}=R_{1}{ }^{\Delta} / / R_{x} \quad i_{c}=g \mu_{B}\left(V_{c}+\operatorname{g\mu s} R_{2} N_{C}\right) \\
& \frac{V_{c}}{i_{C}}=R_{x}=\frac{1}{g \mu_{B}\left(1+g \mu_{S} R_{2}\right)}=\frac{1}{g \mu_{B} g \mu_{B} R_{2}} \frac{N R_{1}^{(0)}}{R_{1} \text { is negljg. }}
\end{aligned}
$$

Voltage buffer	$\frac{G B W P}{}$	f_{z}	f_{2}	f_{3}
Real $_{1}$	$\frac{g m_{B}}{2 \pi c_{\pi}}$	$\frac{g M_{s}}{2 \pi c_{\pi}}$	$\frac{g \mu_{B}}{2 \pi C_{L}}$	$2 \pi c_{1}$

Since $C_{L} \gg C_{1}, f_{3}>f_{2}$ (typically), better estimate would be using the full five canst out method

We typically put $g \mu_{B}=g m_{1} \rightarrow$ We basically have the some result of a R_{N} comp but at the cost of wore power consumption $\rightarrow F_{0} M=\frac{G B W P \cdot C_{L}}{I_{\text {ToT }}}$ decreases
Real current buffer

$$
P_{2}=\frac{1}{2 \pi}\left[\frac{c_{1}}{g \mu_{5}}+\frac{c_{2}}{g \mu_{1} g \mu_{8} R_{1}}\right]^{-1} \simeq \frac{g \mu_{5}}{2 \pi c_{1}}
$$

$$
\left(P_{3}=\frac{1}{2 \pi}\left[\frac{1}{c_{1} R_{1}}+\frac{g \mu_{B}}{c_{2}}\right] \stackrel{\sim}{2 \mu_{B}} \frac{g \mu_{B}}{2 \pi c_{2}}\right.
$$

f_{z}
Vout cont move $\rightarrow V_{R_{2}}=0 \rightarrow I_{R_{2}}=0$
 ic $\neq 0$ so it must be collected by Ms (thus is/qus at the gate). All ic flows through gars so:

$$
V_{c}=\frac{i c}{g \mu_{B}}-0 \rightarrow R_{0}^{(0)}=\frac{1}{g \mu B}
$$

$$
P=\frac{g \mu_{B}}{2 \pi c_{\pi}}
$$

	$C B W p$	$f z$	f_{2}	f_{3}
Cerreut buffer Real	$\frac{g \mu_{1}}{2 \pi c_{\pi}}$	$\frac{g \mu_{B}}{2 \pi C_{\pi}}$	$\frac{q \mu_{5}}{2 \pi c_{1}}$	$\frac{g \mu_{B}}{2 \pi c_{L}}$

WARNING: If g ms $\sim \operatorname{gm}_{B}, c_{1}>c_{1}$ then $f_{3}>p_{2}$ is
This means that the werhod we used cont work \rightarrow We need the full Middebrook theorem.

$$
\begin{aligned}
& T(s)=G_{s}(0) \frac{1}{b_{2} s^{2}+b_{1} s+1} \longrightarrow T(s)=1 \\
& b_{1}=C_{1} R_{1}^{(0)}+C_{L} R_{2}^{(0)}=\frac{C_{1}}{g \mu_{5}}+\frac{C_{L}}{\operatorname{g\mu s} g \mu_{B} R_{1}} \\
& b_{2}=c_{1} c_{L} R_{1}^{(0)} R_{2}^{(1)}=\frac{c_{1}}{g \mu_{s}} \cdot \frac{c_{L}}{\operatorname{g\mu } B} \\
& s^{2} \frac{C_{1} C_{L}}{\operatorname{gus} \operatorname{gns}}+s\left(\frac{C_{1}}{\operatorname{gms}}+\frac{C_{L}}{\operatorname{gms} \sin R_{1}}\right)+1=0 \\
& \frac{1}{\omega_{0}{ }^{2}} \quad \frac{1}{\omega_{0} Q}
\end{aligned}
$$

Note: be corofol when placing the zeros
? Peaking of the pole pair can go above OtB. We why what to shift if right in order to Weep

- he pealling burner OdB

Current buffer in the differential structure
Calculating the zeros
f_{z} :

Vout cont wane $\rightarrow V_{2}=0$ curd

$$
I_{\pi s}=i_{c} \rightarrow \sqrt{g_{s}}=i c / j u s
$$

Balance current at nodes A, B

$$
\left.\frac{i c}{g \mu_{5} R_{1}}+2 \frac{v_{C}}{g \mu_{B}}=i c \rightarrow \frac{v_{c}}{i c}=R o_{\pi}^{(0)}=\frac{g \mu_{B}\left(1-\frac{1}{2}\right)}{g \mu_{5} R_{1}}\right)
$$

(a) $=C_{\pi} R_{0 r}^{(0)} \rightarrow C_{1}, C_{2}$ do not introduce zeros \rightarrow
$a_{2}=C_{1} C_{\pi} R_{01}^{(0)} R_{0 i}^{(1)}: R_{01}^{(0)}=0$
while $R_{03}^{(t)}=\left.\operatorname{Ror}^{(0)}\right|_{R_{1}=0}=\frac{\text { gus }}{2}\left(1-\frac{1}{0}\right)=-\infty$
$a_{2}=0 \cdot(-\infty) \backsim$ indefinite farm \rightarrow shuffle terms

$$
\begin{aligned}
& a_{2}=c_{r} C_{1} R_{o r}^{(0)} R_{0_{1}}^{(n)} \rightarrow R_{0_{1}}^{(r)} \\
& \text { qu as } v_{c}+i D=0 \text { is }=\frac{v_{c}}{R_{1}}-i c \\
& \text { qu } v_{c}+\frac{v_{c}}{R_{1}}=i c \xrightarrow[a_{1}]{(r)} \simeq-\frac{1}{\text { gus }}
\end{aligned}
$$

$$
a_{2}=c_{\pi} c_{1} \frac{1}{g_{B}} \cdot \frac{-1}{q_{1}}=-\frac{c_{\pi} c_{1}}{q m_{B} \mu_{s}}
$$

Poles of cascoded Ahufa compensation
Since there are 3 independent capacitors, we no:
(bi) $=C_{1} R_{1}{ }^{(0)}+C_{L} R_{L}^{(0)}+C_{\pi} R_{n}^{(0)}$
(b2) $=C_{1} C_{2} R_{1}^{(0)} R_{1}^{(1)}+c_{1} c_{\pi} R_{1}^{(0)} R_{\pi}^{(1)}+c_{1} C_{\pi} R_{L}^{(0)} R_{\pi}^{(1)}$
(b3) $=C_{1} C_{L} C_{\pi} R_{1}^{(0)} R_{L}^{(1)} R_{\pi}^{(1, L)}$
Di: $\quad \frac{R_{1}^{(0)}=R_{1}}{R_{1 i}}: \quad \frac{R_{1}^{(0)}=R_{2}}{}$ as always, while $R_{\pi}^{(0)}$;

(bi) $=C_{1} R_{1}+C_{1} R_{2}+C_{\pi}\left(\frac{1}{g \mu_{3}}+R_{2}+g \mu_{s} R_{1} R_{2}\right) \sim \underline{C_{n} g m_{s} R_{1} R_{2}}$
b_{2} :

$$
R_{\Pi}^{(1)}=\frac{1}{g \mu_{B}}+R_{2}
$$

$$
R_{\pi}^{(1)}=\frac{1}{g \mu_{B}}
$$

(ba)

$$
\begin{aligned}
& \approx C_{1} C_{L} R_{1} R_{2}+C_{1} C_{\pi} R_{1}\left(R_{2}+\frac{1}{g \mu_{B}}\right)+C_{1} C_{\pi} \frac{R_{2}}{g \mu_{B}} \\
& =\frac{R_{1} R_{2}\left(C_{1} C_{2}+C_{1} C_{\pi}\right)+C_{2} C_{\pi} \frac{R_{2}}{g \mu_{B}}}{}
\end{aligned}
$$

$b_{3}: R_{\pi}^{(1, L)}$ is exactly like $R_{r^{(1)}}=\frac{1}{g \mu_{\theta}}$

$$
R_{L}^{(1)}=R_{2} \text { intuitive }
$$

$$
\left(b_{3}=\frac{C_{1} C_{2} C_{r} \frac{R_{1} R_{2}}{g m_{B}}}{\square}\right.
$$

Complete Abuja transfer function

$$
\begin{aligned}
& T(s)=g \mu_{1} g \mu_{s} R_{1} R_{2} \frac{a_{2} s^{2}+a_{1} s+1}{b_{3} s^{3}+b_{2} s^{2}+b_{1} s+1} \\
& \underline{b_{1}} \approx C_{\pi} g \mu_{s} R_{1} R_{2} \\
& \underline{b_{2}} \simeq R_{1} R_{2}\left(C_{1} C_{2}+C_{1} C_{\pi}\right)+C_{1} C_{\pi} \frac{R_{2}}{g \mu_{B}} \\
& \underline{b_{3}}=C_{1} C_{2} C_{\pi} \frac{R_{1} R_{2}}{g \mu_{B}} \\
& \underline{a_{1}}=C_{\pi} \frac{q \mu_{B}}{2}\left(1-\frac{1}{g \mu_{s} R_{1}}\right) \simeq \frac{g \mu_{B}}{2}
\end{aligned}
$$

$$
\frac{a_{2}}{}=-\frac{c_{\pi} c_{1}}{g \mu_{5} g \mu_{B}}
$$

probably not asked at the oral

For large gus $R_{2} C_{\pi}$ (read lectures $\left.p d f\right)+$ some algebra:
Denominator: $\left[s^{2} \frac{C_{1} C_{L}}{\text { greg g ms }}+S \frac{C_{1}}{g \mu_{5}}\left(\frac{C_{\pi}+C_{L}}{C_{\pi}}\right)+1\right]\left(\frac{S}{\text { gus RRRRCR }}+1\right)$
So: $P_{l}=\frac{1}{2 \pi C_{r} \text { gus } R_{1} R_{2}}$
additional poles at $\omega_{0}=\sqrt{\frac{g \mu_{5} g m_{B}}{c_{1} c_{L}}} \quad Q=\frac{C_{\pi}}{C_{H}+c_{2}} \sqrt{\frac{g \mu_{S} C_{1}}{g \mu_{B} C_{L}}}$ Zeros: $S_{12}=\frac{g \mu_{5}}{2 c_{1}}\left[1 \pm \sqrt{1+8 \frac{g \mu_{3} c_{1}}{q \mu_{5} c_{\pi}}}\right.$
for large $c_{1} \quad \frac{z_{1}}{}=-2 \frac{g \mu_{B}}{c_{\pi}} \quad z_{2}=\frac{g \mu_{s}}{c_{1}}$ Z_{1} sits close to GBWP, Z2 is around a f^{T} because C_{1} is typically a Cg_{3}
8) Nested Miler compensation

As teclinology scales $\longrightarrow V_{D \Delta} \rightarrow$ We cant pile up transistors, Therefore far large gains \rightarrow multiple stages

$|G D C|=G m_{1} R_{1} G w_{2} R_{2} G_{w_{3}} R_{3}=(200)^{3}=138 \mathrm{~dB}$
$C_{L}, \mathrm{Cg}_{5} 5, \mathrm{Cg}_{8}$ load the OTA the most (high impedance nodes) Cl_{2} Low nt to hive high power burvert

With this comfiguratiar \rightarrow cut Od with $-60 d B / d e c \rightarrow$ NOPE Tiler amupensetian for C2 C_{1} (classic)

$$
\begin{aligned}
& \frac{G_{m}}{G_{m}}=\frac{G_{m_{2} G_{23}} R_{2} R_{3}}{2 \pi C_{m 1} G_{23} R_{22} R_{3}}=\frac{G_{m 2}}{2 \pi C_{\pi}} \\
& R_{2}=\frac{1}{T_{2}} R_{R_{3}}^{-G+1}=\frac{I}{I C_{2}} \\
& f_{3}^{\prime}=\frac{G m_{3}}{2 \pi\left(c_{L}+c_{2}\right)} \simeq \frac{G m_{3}}{2 \pi c_{L}} \\
& f_{z}^{\prime}=\frac{G u_{3}}{2 \pi C_{m_{1}}}=\text { positive zero } \\
& f_{2}^{\prime}=\frac{1}{2 \pi \operatorname{Cm}_{1} \operatorname{Cim}_{3} R_{2} R_{3}}
\end{aligned}
$$

Neglect the zero $\rightarrow \phi_{m}=60^{\circ}$ if $f_{3}^{\prime}>2 G B W P$:

$$
\frac{G m_{3}}{2 \pi C_{L}}=2 \frac{G m_{2}}{2 \pi C_{1}} \rightarrow C_{m}=2 \frac{G u_{2}}{G m_{3}} C_{L}
$$

At this point, the whole OTA response will be

$$
\begin{aligned}
& f_{2}^{\prime}=\frac{1}{2 \pi C_{u} G m_{3} R_{2} R_{3}}=20 \mathrm{~Hz} \quad f_{3}^{\prime}=2 G B W P_{23}=\frac{G m_{3}}{2 \pi C_{2}}=1,6 \pi \mathrm{~Hz} \\
& f_{1}=\frac{1}{2 \pi C_{1} R_{1}}=8 \pi \mathrm{~Hz} \quad f_{z}^{\prime}=26,5 \mathrm{MHz}
\end{aligned}
$$

$f_{z}^{\prime}>$ GBWP we assumed its coutributian is negligible.
We still wo with - LOdB/dec at OdB \rightarrow UNSTABLE
Nested Miller compensation

$\rightarrow G m_{z}$ has positive gain because we need overall negative gain an Cr_{r} in order to exploit Miller!

Since $G_{2}=G w_{2} R_{2}, G_{3}=G m_{3} R_{3} \quad C_{11}$ sees $G_{2} G_{3}$ while C_{m} only sees $\mathrm{G}_{3} \rightarrow$ lowest pole is given by C_{π}

GAWP $\left.\right|_{\text {TOT }}=\frac{G m_{1}}{2 \pi C_{\pi}} \rightarrow$ We com now short C_{π} (do not consider zeros for now)

Let's calcolare $R_{m}^{(0)}$:

$$
V_{2}=-\frac{I_{T}}{G w_{2}} \quad V_{1}=-\frac{I_{T}}{G m_{3}} \quad V_{T}=V_{1}-V_{2}=I_{T}\left(\frac{-1}{G m_{3}}+\frac{1}{G m_{2}}\right)
$$

$$
\begin{aligned}
& \frac{V_{1}}{R_{2}}-V_{2} G w_{2}=I_{T} \\
& \frac{V_{2}}{R_{13}}-V_{1} G \operatorname{Gul}_{3}=I_{T} \\
& \\
& \rightarrow \text { Neglect these } \\
& V_{T}=V_{1}-V_{2}=I_{T}\left(\frac{-1}{G w_{3}}+\frac{1}{G m_{2}}\right)
\end{aligned}
$$

$$
R_{m_{1}}^{(0)}=\frac{G_{m_{3}}-G_{m_{2}}}{G+m_{3} G_{m_{2}}}
$$

$$
f_{2}^{u}=\frac{1}{2 \pi} \cdot\left[\frac{C_{2}}{G m_{2} G m_{3} R_{13}}+\frac{G m_{3}-G m_{2}}{G m_{2} G m_{3}} C_{m}+\frac{G_{1}+C_{2}}{G m_{3} G m_{2} R_{2}}\right]^{-1}=0,8 M H_{z}
$$

As we did before, $f_{2}^{u}=2 G B W P$ se $G_{\pi}=2 \frac{G m_{1}}{2 \pi f_{p}^{\prime \prime}} \cong L O p F$

$$
\underline{G B W P}=\frac{G m_{1}}{2 \pi \mathrm{~cm}}=400 \mathrm{kHz}
$$

Estiunte the zero:

$f_{z}^{\prime \prime}$ is for away from GBWP. This though isn't totally
correct, since C_{π} aud C_{m} can contribute at most with two zeros (SPICE will tell)
comments on TF
It is possible to derive the polynomial at the denominker.

$$
\begin{aligned}
& S^{2} b_{2}+S b_{1}+1=S^{2} \frac{C_{L} C_{1}}{G m_{2} G m_{3}}+s \frac{G m_{3}-G m_{2}}{G m_{2} G m_{3}}+1=0 \\
& \omega_{0}=\sqrt{\frac{G m_{2}\left(G m_{3}\right)}{C_{1}\left(M_{1}\right)}} \quad Q=\frac{1}{\left(G m_{3}\right)-G m_{2}} \sqrt{G m_{2}\left(G m_{3}\right) \frac{C_{L}}{\left(C_{1}\right)}}
\end{aligned}
$$

- Increase $C_{M} \rightarrow B W$ is reduced but C_{π} plays no role in Q factor \rightarrow bast den
- Increase Gur z \rightarrow peaK is quenched down Fine tuning is dove on SPICE

9) OTA linear response. In band doublets + settling respanse We call have something like: (RN compensation)

Where $f_{2} \simeq \frac{g \mu_{5}}{2 \pi C_{L}} \quad p_{z}=\frac{1}{2 \pi\left(R_{N}-\frac{1}{\text { gus }}\right)^{C_{n}}}$
f_{2} - f_{t} cancellation has vegligible
f_{3}^{\prime} impact an GBWP and phosemargin
This way, since $f_{2} \propto \frac{1}{C_{L}}$ we could think of driving large capacitive loads without degrading the amplifier stability. There are however some drowboncks to this:

(4) Compensated plot where $f_{z}=f_{2}=$ GB up
(*2) Same circuit used to arrive larger C_{L} (f_{2} manas left) without major changes on compensation ($f z$ mores left too). If load isüt precise for zero-pole cancellation, we have (2)
Aunlyze Gibop of **2):
$G \operatorname{Gopp}(s)=-G_{0} \frac{1+s \tilde{\tau_{z}}}{\left(1+s \tilde{\tau}_{1}\right)\left(1+s \tilde{\tau}_{2}\right)}$ by looking at the root lows:
fl for a large Go approades oz
f_{H} will be \sim GBWP

Let's find the closed loop singularities:
$G \operatorname{Gop}(s)=1 \quad G_{0}\left(1+s \tilde{\imath}_{z}\right)=\left(1+s \tilde{N}_{1}\right)\left(1+s \tilde{\tau}_{2}\right)$

$$
s^{2}\left(\tau_{1} \tau_{2}\right)+s\left(\tau_{1}+\tilde{\tau}_{2}+G_{0} \tau_{z}\right)+\left(G_{0}+1\right)=0 \rightarrow \text { rough }
$$

- for HF $S^{2} \gg S \gg G_{0}+1 \quad S^{2}\left(\tau_{1} \tau_{2}\right)+\$\left(\tau_{1}+T_{2}+G_{0} \tau_{z}\right)=0$

$$
S_{H I G H}=-\frac{\tau_{1}+\tau_{2}+G_{0} \tilde{\tau}_{z}}{\tau_{1} \tau_{2}} \approx \frac{G_{0} \tilde{\tau}_{z}}{\tau_{1} \tau_{2}}
$$

- for $L F S^{2} \ll S \ll G_{0}+1 \quad S\left(T_{1}+T_{2}+G_{0} T_{z}\right)+G_{0}+1=0$
$S_{\text {cow }}=-\frac{G_{0}+X}{\frac{1+\Psi_{2}+G_{0} I_{z}}{\Psi_{z}}} \rightarrow-\frac{1}{\tau_{z}}$ flow approaches fo for high G_{0} Let's annlyze this a little better:

$$
P_{\text {low }}=\frac{\tilde{\tau}_{1}+\tilde{N}_{2}+G_{0} \tilde{\Gamma}_{z}}{\sigma_{0}+\not /} N \tilde{\tau}_{z}+\frac{\tilde{\tau}_{1}}{G_{0}}
$$

It's interesting tho wore that $\frac{r_{1}}{G_{0}}$ is the
GBWP*, the Od wo if $f z$ wosu't there. In reality, the GBWP is GBWP $=\frac{f_{2}}{R^{*}}$ GBWP
We now ash ourselves whit is the linear response:

$$
\left[\xrightarrow{E / s} T(s) V^{\operatorname{Vart}} T(s)=\frac{1+s \tilde{\tau}_{z}}{\left(1+s \tau_{L}\right)(1+S \tilde{T})} \quad \operatorname{Vout}(s)=\frac{E}{s} T(s)\right.
$$

Use Heaviside $v_{\text {out }}(t)=\mathscr{L}^{-1}\left[\frac{E}{S}\left(\frac{A}{1+S V_{L}}+\frac{B}{1+S \mathcal{T}_{\mu}}\right)\right]$
Use limit theorem

$$
\begin{aligned}
& B=\lim _{S \rightarrow-\frac{1}{\mu_{H}}} \frac{\left(1+S \tilde{\tau}_{z}\right)\left(1+s \tilde{T}_{H}\right)}{\left(1+\tilde{S}_{L}\right)\left(1+5 \tilde{\Gamma}_{H} H\right.}=\frac{\tilde{\Gamma}_{H}-\tilde{\tau}_{z}}{\tilde{\tau}_{H}-\tilde{\tau}_{L}}=\frac{\tilde{\tau}_{z}-\tilde{\tau}_{H}}{\tau_{L}-\tilde{\tau}_{H}}
\end{aligned}
$$

Since $\tilde{N}_{Z}>\tilde{N}_{H}$, we adjust te jet $B>07$

$$
\begin{aligned}
N_{\text {out }}(t) & =E\left[A\left(1-e^{-t / \tau_{L}}\right)+B\left(1-e^{-t / T_{H}}\right)\right]=E\left[1-A e^{-\frac{T_{L}}{2}}-3 e^{-\pi_{H}}\right] \\
A+B & =\frac{\tilde{T}_{L}-\tilde{\tau}_{t}+\tilde{T}_{t}-\tilde{T}_{H}}{\tilde{T}_{L}-\tilde{T}_{H}}=1
\end{aligned}
$$

$$
E\left\{\tilde{T}_{H} \tilde{L}_{L} \quad B \operatorname{tarm}\left(\tilde{\tau}_{H}\right)\right. \text { quickly vanishes, }
$$

leariuy to wove $\simeq E\left[1+A e^{-t / T_{L}}\right]$ This weans thant the fast curve starts at a hight

$$
\underbrace{t^{*}} \underbrace{\operatorname{Vout}\left(t^{*}\right)}
$$

$$
\xrightarrow{\operatorname{Vout}\left(t^{*}\right)}=E\left[1-A e^{-\frac{t^{*}}{\tau_{L}}}\right]=\overline{E(1-A)}
$$

Where $A=\frac{\tilde{\tau}_{L}-\tilde{T}_{z}}{\tilde{\tau}_{L}-\tilde{T}_{H}}=\frac{\tilde{N}_{z}}{\tilde{N}_{z}}$

Suppose $f_{z}=5 \mathrm{MHz} \quad G B W P=50 \pi H z \quad f_{z} / G B W p^{*}=10 \%$
Therefore, we end up with $\rightarrow A \simeq 0$ when $f_{z} \rightarrow f_{L}$

$$
A \simeq 1 \text { when } i_{z} \rightarrow G B W p^{*}
$$

These two limits generate two sitontians

(11) $f z$ approadres $\left.G B W p^{*}\right] \rightarrow \tau_{z} \overbrace{\Delta} \rightarrow A \gg \cdot \tilde{\tau}_{L}=\tilde{\tau}_{z}+\frac{\tilde{\tau}_{1}}{G_{0}}$ is woderatly slow
(52) f_{z} approaches $f L \rightarrow \hat{i} z \lambda \Pi \rightarrow A \Pi \Gamma$ and $\tilde{\tau}_{L}=\hat{\Gamma}_{z}+\frac{\tau_{1}}{G_{0}}$ is increased, therefore \$2 setting time is higher thru \$1

A similar thing happens when the zero is oftor f_{2}

In this case, the issue will be $E+A$.
Design vote: to get post settling time we accept the trade off with large A to have low T_{L}, there fare the design should foresee a $f z \rightarrow G B W P^{*}$
10) Slew Rare: inepnct au settling time, SRINT, SRExt, class AB

- Suppose we re driving a leod vising an OTA buffer:

OTA will be limited by τ (linear component) and the Slew Rate

$$
\left.V_{\text {out }}(t)\right|_{\text {lin }}=E\left(1-e^{-t / \tau)} \rightarrow \frac{d V_{\text {out }}(t)}{d t}=\frac{E}{\tau}\right.
$$

If $S R$ is slower, slopes will be $\frac{E}{\pi}>S R$. This means that well hare a slew rate section + livear section:

There will be a condition where SR will become foster them the linear limitation set by the GBWP \rightarrow slew rate becomes linen:

$$
V \operatorname{Vin}(t)=E-\Delta V e^{-t / \tau} \rightarrow \frac{d V_{1 i n}(t)}{\partial t}=\frac{\Delta V}{\tau}
$$

Cauditian is $\frac{d V \operatorname{lin}(t)}{d t}=S R \rightarrow \frac{\Delta V}{\tau}=S R \rightarrow \Delta V=S R \cdot \tau$
We cal now compute $\operatorname{tslem}=\frac{E-\Delta V}{S R}$ and the tin will Set when Neut (t) vendues 99% of input step E :

$$
\operatorname{Vlin}(t)=E-\Delta V e^{-\frac{H \text { in }}{\tau}}=\not \subset-\frac{E}{100} \rightarrow \operatorname{tlin}=\tau \ln \left(\frac{\Delta V}{E} \cdot 100\right)
$$

Total settling time will be tsettling $=$ tslew + lin

Slew vale liucitatious of a two stoge OTA

Positive SR

1) A large step is applied
2) $\pi_{1}, \pi_{3}, \pi_{4}$ shut off because of (1)
3) All the generator wrreut flows through (3) (suppose Mo is still in saturation
L) The wrreut Iro is drained from node $V_{A} \rightarrow V_{A}$ decreases is voltage
neglect the presence of C_{L}
4) (Doit consider CL far the moment) VA will generate a
ΔI_{5} current. A stable condition would be when Ms tokes core of all the Imo. This translates on its node by:
$V_{0 V_{S}}^{\prime}=\sqrt{\frac{I_{\text {bias }}+I_{r 0}}{K_{5}}}$ Note: $\Delta I_{5}=I_{\text {roo }}$ but $\left.I_{s}\right|_{\text {ToT }}=I_{\text {bias }}+\Delta I_{5}$
Suppose $K=100 \mu \quad I_{\text {To }}=5 \mu \quad I_{\text {bias }}=1 \mu \rightarrow V_{O V}=0,25 \mathrm{~V}$
Since $\left.V_{A}\right|_{\text {bias }} \underline{\simeq} \frac{V_{D D}}{2}=1,5 V \rightarrow V_{A}^{\prime}=1,25 \mathrm{~V}$
This decrease poses no issue on the saturation of π_{0}, π_{2}.
Note: if M_{2} goes ohmic, Imo will still flow through node A VA' would hare to decrease all the way down to Vovro in order to change Iro current. It does not happen
5) With point 5 Cr sees a constant (VA) voltage on the left and a constant current Imo. This will gevernte a ramp on its right pin that is $S R_{\text {INT }}=\frac{I_{\text {mo }}}{C_{\pi}}$

Sitontian is vow His one:

Since V_{A}^{\prime} is constant, the voltage ramp on $C r$ defined as SRINT will be the same exact ramp on Vout. Therefore, if we define SREXt as the ramp exinibited on the out, we cal Say SREXT $=$ SKINT
7) Now incwre CL presence. Vovs will incense wore aud VA' will decrease even ubre. At paint 5 we will have a new (stable) condition tint is $\Delta I_{S}=I_{r_{0}}+I_{L}$
Dou $_{5}=\sqrt{\frac{I_{B 5}+I_{r_{0}} I_{L}}{K_{5}}}$ The issue here will be when a too high Vovs that puts Mo out of saturation.
If this does not imppen, Iss can perfectly handle Ire and IL, therefore the voltage vamp will be set again by C_{π}, leading to $S R_{\text {Ext }}=\frac{I_{\text {no }}}{C_{\pi}}$
The only thing is that we now hame $I_{L}=$ SRExi C_{L} so

$$
\begin{gathered}
\Delta I_{5}=I_{\text {KO }}+S R E \times T C_{L} \overline{\bar{A}} \quad I_{\text {KO }}+S R \text { INT } C_{L} \\
S R_{E}=S R
\end{gathered}
$$

$$
\text { Recap: } \frac{\text { SREXT }}{\substack{\text { WITHOUT } \\ C L}} \left\lvert\,=\operatorname{SRINT}=\frac{\text { InD }}{C_{a}}\right.
$$

Negotive SR

1) large positive is applied
2) Π_{2} shuts off aud all Iro flows through Π_{1}
3) Ino gets mirrored on Ma
4) Ins flows into node (A) $\rightarrow V_{A}$ increases lending to a olocrease on Vas
5) Vas $\rightarrow V_{0 V 5}$ decreases so it cu accept ΔI_{5}. Suppose now that Isbias $>\Delta I_{S}$ (Neglect C_{L} presence)
6) since Isbins $>$ Iro, Ms com hourle Iro aud Imo cam flow through CM
7) Some as before \quad SREXT $^{\text {P }}=S R_{\text {INT }}=\frac{I_{M O}}{C_{M}}$ Vov_{6}

Now consider C_{L} presuce $\rightarrow \Delta I_{5}=I_{\text {roo }}+I_{L}$ where

$$
I_{L}=S R_{E \times T} C_{L}=S R_{\text {INT }} C_{L}=\frac{I_{\text {TO }} C_{L}}{C M}
$$

If Is bias $>$ Imo $+C_{L}=I_{\text {mo }}\left(1+\frac{C_{L}}{C_{\pi}}\right)$ then M_{s} com handle the additional current and nothing changes $S R_{\text {Ext }}=S_{\text {INT }}=\frac{I_{\pi 0}}{C_{\pi}}$ but $\Delta I_{S}=I_{R 0}+\frac{I_{\pi O}}{C_{M}} C_{L}$

Now let's aunkze what happens with Isbins < Imo + IL:

1) Since the requested wrrent $I_{\text {roo }}\left(1+\frac{C_{L}}{C_{\pi}}\right)>I_{S}$ bias is apposite our greater tho Is bios, Ms shuts off
2) The M_{5} shut-off translates to a rapid reduction of V USS \rightarrow VA rises to VDD
3) Since $V_{A} \pi \rightarrow \rightarrow \operatorname{Vos}_{4}<V_{O V} V_{H}$ there pore Ma goes ohmic and its current Imp wont be Imo omyusore
4) The only current source remaining is M_{6}
5) The situation is now:

C_{M} aud C_{L} have ave eur courected to a fixed voltage and the other tied to Vat $\rightarrow I_{r}$ sees them "in porrulles" this means that out raul will be set at:

$$
\text { SREXT }=\frac{I_{6}}{C_{\pi}+C_{L}}
$$

Note: if C_{L} wasuit convected $S R_{\text {Ext }}=$ PRINT $=\frac{I_{6}}{C_{\pi}}$
$80 I_{\pi_{4}}=I_{6}$
OHMIC

Recap:

$$
\left\{\begin{aligned}
& \frac{S R_{E X T}^{+}}{}=S R_{\text {INT }}=\underline{I_{R O} / C_{\pi}} \\
& \underline{S R_{E T T}^{-}}= \Delta S R_{I N T}=\underline{I_{\pi 0} / C_{\pi}} \\
& \frac{\frac{I_{6}}{C_{\pi}+C_{L}}}{} \text { if } I_{5}<I_{\pi 0}\left(1+\frac{C_{L}}{C_{\pi}}\right)
\end{aligned}\right.
$$

SR on a two stage compensated with RN
Nothing damages except RN will show an immediate voltage step on Inc:

$$
\sum_{\frac{R_{N} c \pi}{I_{1}} C_{B}}^{R_{p}}
$$

Class AB stage
On $S R^{-}$we need to make sone that $I_{S}>I_{r_{0}}\left(1+\frac{C_{L}}{C_{M}}\right)$ thus burning wore power. The issue is that only $\Pi_{s} \mathrm{com}$ wove. If we linked Π_{6} on the negative step only, we would recover the full SR:

Therefore $S R_{\text {EXT }}^{-}=S R_{\text {INT }} \rightarrow$ FOM improved because of the lower out put current reedesl
11) Telescopic + folded cascode amplifiers

High gain $\rightarrow 2$ stage amp adopted $\rightarrow 2$ high impedance noble that are critical to frequency response.
We com use a single stage:

By using cascode stages, we com increase the out put imper d once

$$
\frac{R_{0 u T}=g \mu_{8} V_{08} r_{06} / / R_{x}}{G l o p p=-1 \text { as always, so }} R_{x}=\frac{2 \operatorname{gm}_{A} r_{04} r_{02}}{1+\frac{1}{1}}
$$

$$
\begin{aligned}
& \text { If } r_{O_{2}}=r_{0_{4}}=r_{0_{8}}=r_{06}, g \mu_{8}=g \mu_{4}=g \mu_{4} \\
& \underline{G D}=\underline{g \mu_{1} \frac{g \mu_{0}}{2}} \text { ns we increased }
\end{aligned}
$$

The usual gu, vo of a factor μ,
The vain limit to frequency response is C_{L} (other (gs will show poles at \sim fr so thay're way higher)

$$
\underline{G B W_{P}}=\frac{g u_{1} \frac{g \mu_{0}^{2}}{2} \frac{1}{2 \pi c_{L} \cdot \frac{g \pi \pi y \sigma^{2}}{2}}=\frac{g u_{1}}{2 \pi c_{L}}}{\underline{2}}
$$

Voltage dywnics:

$$
\begin{array}{ll}
\frac{V_{C M}{ }^{+}}{}=V_{B}-V_{\text {as 3 }}+V_{T} & V_{C \pi_{1 N}}=V_{a S_{1}}+V_{\text {oN }} \\
V_{\text {our }}+ & V_{\text {as }}+V_{\text {ow }}^{6}
\end{array} \quad \underline{V_{\text {our }}}=V_{B}-\left|V_{T}\right|
$$

V_{B} serves as reference to set max VCrin and min Vovt.

- If V_{B} is high $\rightarrow \Delta V_{\text {oui }} b$ but $\Delta V_{i n}{ }^{4} \not \approx 1$
- If V_{B} is low $\rightarrow \Delta \operatorname{Vour~}^{A}$ but $\Delta V_{\text {incr }}$ b *2)

(*1) useful for OTAs used as buffers (large input swing needed)
(*2) Useful for OTAS with virtual ground (input swing is Kept as low as possible)

Folded cascode structure
Piling up transistors cant be dove with low Vas (VDD decreases with technology sealing), this mems we need to change the structure: use pills cascades:

As This is the concept we use When we talk about folding

We can easily see that $i_{c c}=$ gu, N_{b}

$R_{\text {OUT }}=R_{\text {Down }} / \frac{R_{u p}^{(0)}}{1-G \text { troop }} \quad R_{\text {Down }}=g u r_{0}^{2} R_{\text {up }}=g m r_{0}(2$ roHvog $)$
Clop:

Some current will be lost on log;

$$
\begin{aligned}
& G \text { loop }=-\frac{r_{0 g}}{r_{0 g}+2 r_{0}} \\
& \text { If } r_{0} \cong v_{o g} \rightarrow G l o o p=-\frac{1}{3} \\
& R_{u p}=\frac{g u r_{0} \cdot \frac{2}{3} r_{0}}{1+\frac{1}{3}}=\operatorname{gu} \frac{r_{0}^{2}}{2} \\
& =2
\end{aligned}
$$

Therefore ROUT $=g$ gm $\frac{r_{0}^{2}}{3}$ comparable value with a telescopic OTA
Rout $\left.\right|_{\text {FOLDED }}$ cam be mintched to a Rout $\left.\right|_{\text {TELL }}$ by changing roSFETS LENGTM

Folded cascode dyunuics
Let's see how the cascode improved voltage dywarics (issue with Yod scaling)

$V_{C M_{I N}}^{+}=V_{D D}-V_{O V_{G}}+\left|V_{T}\right|$ or $V_{B}+\left|V_{\text {ASP }}\right|+\left|V_{T}\right|$ the wore stringent of the two $\left(V_{B \max }=V_{D D}-V_{O V_{G}}-V_{\text {asp }} \mid\right)$. If $V_{B}=V_{\text {Bax }}$ the two canditiaus are the same

$$
V_{C M_{\text {IN }}}^{-}=V_{S_{S}}+V_{O V_{0}}
$$

Vout, without the enhanced mirror, would be limited to Vas 7 + Vovio but here we call Moose $V_{0}=V_{0 r} 8+V_{\text {asia }}$ so that :

VoUT $=V_{C}-V_{T}$ or $V_{\text {VV }}$ or $+V_{\text {avs (cheek and see that }}$ the two conditions are the same!)

$$
\underline{V_{O U T}}+=V_{B}+\left|V_{T}\right|
$$

Drawback of folded cascode: wrrent cousomption

Condition to have a working arcuit is $I_{G}>2 I_{1}$ because on bias the two branches will see $I_{G-I 1, ~ w h i l e ~ o n ~ l a r g e ~ s t e p s ~(S R): ~}^{\text {s }}$

- Ore branch will have Ia
- The oflied will hare IG-2 I.

Since with $I_{a}<2 I_{1}$ * com push TOSFETS in ohmic region, we need to burn move power
This weals we need to burn at lenst twice the wrreut of a equal telescopic OTA
12) Oparup output stoges: Class A, Class B, Efficiency + HD

We need to decouple OTA's high aut impedance in order to drive resistive loads \rightarrow Design a buffer stage

Set $V_{O V}=0,2$ for all mosfet
Previously Vat was set to $1,5 \mathrm{~V}$
but now we need $1,5 V$ on Vout so that $I_{R_{L}}$ bias $=0$

$$
V_{a 7}=V_{\text {OUT }}+V_{a S} 7=1,5+0,8=2,3 \mathrm{~V}
$$

$\frac{1}{2} \mu_{p}^{\prime} C_{0 x}^{\prime} \frac{W_{S}}{L_{S}}\left(1+\frac{V_{D S_{S}}-V_{D S} S_{A T}}{V_{A S}}\right)=\frac{1}{2} \mu_{n}^{\prime} C_{0}^{\prime} \frac{W_{6}}{L_{6}}\left(1+\frac{V_{\Delta S 6}-U_{D S S A T}}{V_{A 6}}\right)$
$V_{D S_{5}}=3 \mathrm{~V}-2,3 \quad V_{D S_{\text {SAT }}}=0,2 \mathrm{~V} \quad V_{D S_{6}}=2,3 \mathrm{~V} \quad V_{D S} S_{A T} 6=0,2 \mathrm{~V}$
L_{5}, L_{6} are set because of differential gain: $L_{s}=L_{6}$
So $\xlongequal{W_{6}=W_{5}}\left(\frac{1+\frac{0,5}{V_{A 5}}}{1+\frac{2,1}{V_{A 6}}}\right)$
Positive/negotive swings
t[$\left.T_{2,3}^{2,8}\right]^{2 v}$ Positive swing: Vat caul go up to $2,8 \mathrm{~V}$ (VDD-VOVS) $\rightarrow V_{\text {OUT }}$ goes up to 2 V if Gain $\left.\right|_{\text {RUE }}=1 \rightarrow$ ideal
This does not happen for two rensens:

$$
\text { (1) } G_{\text {BOP }}=\frac{R_{L} / / V_{08}}{R_{L} / / \text { roy }+1 / \text { gut }_{7}} \sim \frac{R_{L}}{R_{L}+\frac{1}{\text { gum }}}<1
$$

 on output distortion of (distortion of a MOS buffer):

$$
\begin{equation*}
H D_{2}=\frac{V a s}{2 V o v} \frac{1}{1+g u R_{2}} \tag{IDEAL}
\end{equation*}
$$

On the positive swing, peak current $I_{5}=I_{8}+\frac{\Delta V_{\text {out }}}{R_{L}}$ where $\Delta V_{\text {OUT }}=5 \mathrm{~V}$ and RL (arbitrary) $=500 \Omega$

Even though Vat \rightarrow Vows, My will move towards off store. If
$I_{8}=I_{7}=0,5 \mathrm{~mA}$, when Π_{7} shuts off there's only Is providing wrrent \rightarrow
$\Delta V_{\text {OUT }}=I_{8} \cdot R_{L}=0,5$ WA $\cdot 500 \Omega=0,25 \mathrm{~V} \rightarrow V_{\text {OUT }}=1,5-0,25$
Therefore $V_{\text {Ge 7 }}=\operatorname{VouT}^{\prime}+N_{T}=1,25+0,6=1,85 \mathrm{~V}$
Since on the positive sidle we would have $0,5 \mathrm{~V}$ theoretical swing, we would like to also hame that on the negative - o

$$
D_{\text {OUT }}-=I_{8} R_{L}=0,5 \mathrm{~V} \rightarrow I_{8}=\frac{0,5 \mathrm{~V}}{500 \Omega}=\operatorname{In} \mathrm{A}
$$

$I_{7}=I_{8}=\operatorname{ImA}$ current doubled to gonvantee $1 V_{p p}$ swing:

To verify the peaks: consider than positive peak:
$\Delta V=0,33 \mathrm{~V}$ ~olefinitely lower thou 0,5 (ideal)
Note: formula includes a squared variable.
M7 is in large sigunl operation \rightarrow we cant
cansioler it as a linear stage anymore. Positive peaks will be slightly higher and negative peaks swanker

Class A buffer power efficiency

since $V_{p}<\frac{V_{D D}}{2}$ at wast and we know tint $I_{8} R_{L}=V_{p}$ $\frac{1}{V} \frac{V_{p}^{D}}{2 V_{D D \cdot X P}}=\frac{V_{D D / 2}}{2 \cdot V_{D S}}=\frac{1}{4}$ max theoretical out efficiency
25% is very low because of the ccutinvous current consumption even when no sight is applied
Class B stages - push - pull
Concept: deliver wrrent only when reeded \rightarrow rembve Is

Ma Π_{7} can deliver current only when

$$
\left.V_{u 7}>\frac{V_{D D}}{2}+V_{T}\right] \rightarrow \text { heavy distortion }
$$

Solution: table care of the vogntive-penk:
 is symmetric \rightarrow no HD2, only
third harmonics

Check distortion

$$
\text { TOUT }=i_{7}-i_{2}
$$

$$
\frac{i_{7}=A_{0}+A_{1} \sin }{\left.i_{8}=i_{7}\left(t-\frac{T}{2}\right) \rightarrow \omega_{0} t+\varphi_{1}\right)+A_{2} \sin \left(2 \omega_{0} t+\varphi_{2}\right)+A_{3}\left(3 \omega_{0} t+\varphi_{3}\right)}
$$ half a period:

$$
1_{8}=A_{0}+A_{1} \sin \left(\omega_{0}\left(t-\frac{I}{2}+\varphi_{1}\right)+A_{2} \sin \left(2 \omega_{0}\left(t-\frac{I}{2}\right) \varphi_{2}\right)+\ldots\right.
$$

We com see that $\omega_{0} \frac{T}{2}=\frac{2 \pi}{T} \cdot \frac{I}{2}=\pi \quad 2 \omega_{0} \frac{T}{2}=2 \pi \ldots \quad$ so

$$
1_{8}=A_{0}-A_{1} \sin \left(\omega_{0} t+\varphi_{1}\right)+A_{2} \sin \left(2 \omega_{0} t+\varphi_{2}\right)-A_{3} \sin \left(\omega_{0} t+\varphi_{3}\right)
$$

Since 1 out $=17-i 8=$ even terves cancel our $=$

$$
\dot{i} 00 \tau=2 A_{1} \sin \left(\omega_{0} t+\left(P_{1}\right)+2 A_{3} \sin \left(2 \omega_{0} t+\varphi_{3}\right)\right.
$$

No HD2 if Π_{7}, Π_{8} have exact voltage-wrrent wives
 zone. To eliminate it use a voltage shifter of $2 V_{T} \rightarrow$ Class $A B$

Loss 8 efficiency
$P_{L}=\frac{V_{P}^{2}}{2 R_{L}}$ as always $P_{\text {DIss }}{ }^{+}=\frac{V_{D D}}{2} \cdot \bar{I}_{L}$ where \bar{I}_{L} is the average dissipated current over a period

Neglect sign distortion $\quad \omega=\frac{2 \pi}{T}$

$$
\frac{1}{\pi / 2} \stackrel{s}{s}
$$

$$
I_{I_{\frac{T}{2}}}=\frac{T}{2 \pi} \cdot \frac{2}{T} \cdot \frac{V_{P}}{R_{L}} \int_{0}^{T / 2} \sin (\omega t) d t \cdot \frac{2 \pi}{T}=
$$

$$
=\frac{1}{\pi} \frac{V_{P}}{R_{L}} \int_{0}^{\pi} \sin \theta d \theta=\frac{2}{\pi} \frac{V_{P}}{R_{L}} \rightarrow P_{D}+s_{s}=\frac{V_{\Delta D}}{2} \cdot \frac{V^{2}}{\pi} \frac{V_{P}}{R_{L}}
$$

Some happens for PDISS, 80 IL is the some for the entire period.

$$
\eta=\frac{P_{L}}{P_{D S S}}=\frac{\frac{V_{p}^{2}}{Q R L}}{\frac{2}{\pi} \cdot \frac{V_{D A}}{2} \cdot \frac{V_{p}}{R L}}=\frac{\pi}{4} \frac{2 V_{p}^{2}}{V V_{D D}}=\frac{\pi}{4} \frac{2 V_{p}}{V_{D D}}
$$

We set $V_{p}<\frac{V_{D D}}{2}$ therefore $\eta_{\text {Tax }}=\frac{\pi}{4} \hat{=} 78 \%$
We improved efficiency by a lot
(3) Distortion air feedback

bop cam reduce distortion:

Suppose G bop $=-\infty$ With this configuration $V_{\text {OUt }}=V_{\text {IN }}$

The only way to have $V_{\text {out }}=V_{\text {in }}$ is tint on V_{B} the voltage is are distorted:

This can be also seen through feedboal theory by adding a
 slistortion:

$D_{3}^{\text {ut }}$ is the distorted out sign with a D_{3} disturb

$$
D_{3}^{\text {OUT }}=D_{3}-\beta A D_{3}^{\text {OUT }} \rightarrow D_{3}^{\text {OUT }}=D_{3} \frac{1}{1+A \beta}
$$

We see that out distortion is reduced by $A \beta$ ounl on input there will be a $-\beta A D_{3}^{\text {out sigunt (pre-distort) }}$
(4) Variability aud untduing of resistors \rightarrow Pelgrom
$\xi R_{1} \xi R_{2}$ Suppose $R_{1}=R_{2}=R$ In reality, processes will have a variability on these values \rightarrow worst case
$\Delta!$

$$
\begin{aligned}
& R=\rho \cdot \frac{L}{\Delta \cdot W}=\frac{\rho}{\Delta} \cdot \frac{L}{W}=R_{D} \cdot \frac{L}{W} \frac{\Delta R}{R}=\frac{\Delta R_{B}}{R_{B I}}+\underbrace{\text { ne resistance, fixed by tectindogy }}_{\begin{array}{l}
\frac{\Delta L}{L}+\frac{\Delta W}{W} \\
\text { process is } \\
\text { precise } \\
\text { Negligible }
\end{array}}
\end{aligned}
$$

$$
R_{I}=\text { unit square resistance, fixed by teclunology }
$$

$$
R_{\mathbb{E}}=110 \Omega \text { unsilicided } n+\text { polysilicon }
$$

$$
=10 \Omega \text { silicided (oped with metals) } n+\text { polysiticon }
$$

Along R_{D}, manufacturers will give a $\%$ 品m coefficient used in the variability forum:
$\frac{\sigma_{\Delta R}}{R}=\frac{K \Delta R / R}{\sqrt{W L}} \sim_{0}$ statistical spend, $K=[\% \cdot \mu m]$
Deterministic spread cm be reduced

Each R_{D} has a different value (statistical)
We can divide the resistor in rows our colons of single resistors $\quad G_{0}=1 / R_{0} Z_{\text {aseverage }}^{\text {resistance }}$

$\sum_{1}^{3} G_{\text {row }} \quad G r o w=\sum G_{i}=N G_{0}$
$\{$ Grow,
$\{$ Grow 3

$\sigma^{2} G_{\text {row }}=N \sigma^{2} G_{\text {no }} \rightarrow$ Now we wont to link the conductance σ to resistance $\sigma \rightarrow$ relation is not linear because $G=\frac{1}{R}$

Linearize $\quad d G_{0}=-\frac{d R_{0}}{R_{0}^{2}} \quad \frac{d G_{0}}{G_{0}}=-\frac{d R_{0}}{R_{0}^{2}} R_{0}=-\frac{d R_{0}}{R_{0}}$

$$
\sim G=\frac{1}{R}
$$

influenced by the $1 / R$ relation
Now that we unve computed the variability for a row,
we com analyze the colones

$$
R_{T}=\sum_{\substack{ \\\rightarrow \text { TOTAL }}} R_{r}=M R_{r}=\frac{M}{N} R_{0} \leadsto \text { intuit re }
$$

We KNow that $\sigma^{2} R T=M \sigma_{R_{r}}^{2} \rightarrow \frac{\sigma_{r}^{2}}{R_{T}^{2}}=\frac{M \sigma_{2}^{2}}{M^{2} R_{r}^{2}}=\frac{1}{\Pi} \frac{\sigma^{2} R_{r}}{R_{r}^{2}} \stackrel{\downarrow}{=}$

$$
\frac{1}{M} \frac{\sigma^{2} G r}{G r^{2}}=\frac{1}{M} \frac{N \sigma_{0}^{2}}{N^{2} G 0_{0}^{2}}=\frac{1}{M N} \frac{\sigma_{0} G_{0}}{G_{0}^{2}}=\frac{1}{M N} \frac{\sigma^{2} R_{0}}{R_{0}^{2}}
$$

So $\frac{\sigma^{2} R_{T}}{R_{T}^{2}}=\frac{a^{2} R_{0}}{R_{0}{ }^{2}} \cdot \frac{1}{\Pi N} \quad$ sural relative spread
Now, suppose that each square has length , then $N=\frac{L}{\Lambda} \quad M=\frac{W}{\Lambda}$ we cal express the relative spread

$$
\frac{\sigma^{2} R_{T}}{R_{T}^{2}}=\frac{\Lambda^{2}}{W L} \frac{\sigma_{R_{0}}^{2}}{R_{0}^{2}}{ }_{K^{2}}=\frac{K^{2}}{W L} \quad \frac{\Delta R_{T}}{R_{T}}=\sqrt{\frac{\sigma^{2} R T}{R_{T}^{2}}}=\frac{K_{R}}{\sqrt{W L}}
$$

Apply this to $R_{1}, R_{2} ; \Delta R=R_{1}-R_{2} \quad \frac{\sigma R_{1}}{R_{1}}=\frac{K}{\sqrt{W L}} \frac{\sigma R_{2}}{R_{2}}=\frac{K}{\sqrt{W L_{2}}}$ Suppose WL, $=W L_{2}$ then

$$
\sigma^{2}(\Delta R)=\frac{\sigma^{2}}{\sigma_{1}}+\frac{\sigma^{2} R_{2}}{2} \frac{2}{\sigma R_{1}}=2 \frac{k^{2}}{W L} R_{1}^{2}
$$

Se $\frac{\Delta R}{R}=\sqrt{\frac{\sigma^{2} \Delta R}{R^{2}}}=\sqrt{2} \frac{K_{R}}{\sqrt{W L}}$
The $K \frac{\Delta R}{R}$ the manufacturer gives us is exactly $K \frac{\Delta R}{R}=\sqrt{2} K \quad[1 / \mu m]$
15) Vaviobility and untcliany: VT rebtive wntdeiny

MEASURE $I_{1} \neq I_{2}$ always beconse of mosfet V_{T} [IT Int variability. We cal change the detervinis
$\frac{\delta_{2 I}}{\delta_{2}}$
 centroid technique \rightarrow layout issue
 Each cell has a $V_{\text {To square spreed plus a }}$ $\sigma_{V_{T}}$ contribution (statistical)

$$
\overline{V_{T}}=\frac{\sum V_{T i}}{N}=\frac{N V_{T 0}}{N}=V_{T 0}
$$

Since $\sigma^{2}\left(\sum_{N} x\right)=N \sigma_{x}^{2}$ aud $\sigma^{2}\left(\frac{x}{b}\right)=\frac{\sigma_{x}^{2}}{b^{2}}$
We com say that $\frac{\sigma_{T}^{2}}{V_{T}}=\frac{\sigma^{2}\left(\Sigma_{N} V_{T_{i}}\right)}{N^{2}}=\frac{N \sigma_{V_{T 0}}^{2}}{N^{2}}=\frac{\sigma_{V_{T 0}}^{2}}{N}$ Let's say $A_{0}=\frac{W L}{N}$ aver of a single cell, then

$$
\sigma^{2}\left(\overline{V_{T}}\right)=\frac{\sigma_{V, 0}^{2} A_{0}}{W L} \simeq \frac{K_{V T}^{2}}{K_{L}} \quad \sigma_{V_{T}}=\frac{K_{V_{T}}}{\sqrt{W L}}
$$

Since we're interested on the mismenth between M_{1}, M_{2} we have:

- wear square $E\left(\Delta V_{T}\right)=V_{T_{1}}-V_{T_{2}}=V_{T_{0}}-V_{T_{0}}=0$
- $\sigma^{2}\left(\Delta V_{T}\right)=\sigma V_{V_{1}}^{2}+\sigma_{V_{T_{2}}}^{2}=2 \sigma_{V_{T_{0}}}^{2}$

Therefore $\sigma^{2}\left(\Delta V_{T}\right)=2 \frac{K^{2}}{W L} \rightarrow \sigma^{\Delta V_{T}}=\sqrt{2} \frac{K \Delta V_{T}}{\sqrt{W L}}$

slope set by manufacturing process K
16) Offset : deternuivistic - statistical contribution

We call always urodel on output offset to om input referred ane $\quad V_{0 s^{N}}=\frac{\operatorname{Vos}^{\text {our }}}{\text { Ad }}$, differential gain
Deterministic offset

$\left.-L_{5}^{4}\right]^{1,5 v} \Pi_{5}$ aunt Π_{6} should be properly sized to have the same Vas, thus the proper $\frac{\text { Vas }}{2}$ bins at the output \rightarrow NO Vas
statistical offer
This Kind of off set is introduced by the following,

- Input pair $\rightarrow V_{T}$ misuntch $+K$ uisuntch
- Diff mirror $\rightarrow V_{T}$ misunatch $+K$ misuntch

Input pour statistical Vt uisurtch

Consider a symmetrical misurt de $\pm \frac{\Delta V r}{2}$ bet ween M_{1}, Π_{2}. Then currents will ${ }^{2}$ be:

$$
\begin{aligned}
& I_{1}^{2}=U_{1 N}\left(V_{A_{1}}-V_{T_{0}}-\frac{\Delta V_{r}}{2}\right)^{2} I_{2}=K_{i n}\left(V_{a_{2}}-V_{T_{0}}+\frac{\Delta V_{r}}{2}\right)^{2} \\
& \Delta I=I_{2}-I_{1} \text { and } V_{\text {as }}-V_{T O}=V_{\text {On }}, 80 \\
& \Delta I=\operatorname{Kin}_{\text {IN }}\left(V_{\text {on }}-\frac{\Delta V_{T}}{2}\right)^{2}-\operatorname{Kin}_{\operatorname{N}}\left(V_{0 V}+\frac{\Delta V_{T}}{2}\right)^{2}= \\
& =K_{1 N}\left(\operatorname{VOV}^{2}-\operatorname{VOV} \Delta V_{T}+\frac{\Delta V_{T}^{2}}{4}\right)-U_{1 N}\left(V_{O V}{ }^{2}+V_{O V} \Delta V_{T}+\frac{\Delta V_{T}}{4}\right)^{\prime}
\end{aligned}
$$

$\Delta I=2 K_{\text {IN }}$ Nov ΔV_{T} since $2 U V_{0 V}=2 m_{1 N}:$

Input pair statistical K wisuntch
Some rensouivg $\quad I_{1}=\left(K+\frac{\Delta K}{2}\right) V_{e v^{2}} \quad I_{2}=\left(U-\frac{\Delta K}{2}\right) V_{o v^{2}}$

$$
\begin{aligned}
& \Delta I=I_{1}-I_{2}=\Delta K V_{o v^{2}} \rightarrow g_{u_{1}} V_{0 s^{(N)}}=\Delta K V_{o v}{ }^{2}
\end{aligned}
$$

so $\operatorname{Vos}^{(N)}=\frac{\Delta K}{K} \cdot \frac{\operatorname{Vov}^{2}}{2}$
Mirror statistical V_{T} misuntch

$$
\begin{aligned}
& \frac{I_{3}}{\sum_{\square 2} I I_{0}} \\
& I_{3}=K_{\pi}\left(V_{\text {as }}-V_{T_{0}}+\frac{\Delta V_{T}}{2}\right)^{2}=K_{\pi}\left(V_{\text {oVa }}+\frac{\Delta V_{T}}{2}\right)^{2} \\
& I_{H}=V_{\pi}\left(V_{o V}-\frac{\Delta V_{T}}{2}\right)^{2} \\
& I_{3}=K_{\pi}\left(V_{\Delta V^{2}}+\operatorname{VOV} \Delta V_{T}+\frac{\Delta V_{T}^{2}}{4}\right) \\
& I_{H}=\operatorname{Vr}\left(V V^{2}-\operatorname{Vov} \Delta V_{T}+\frac{\Delta V_{T}^{2}}{A}\right) \\
& \Delta I=I_{4}-I_{3}=\underbrace{V_{T}}_{M_{r} \cdot 2 \cdot V_{\text {av }}} V_{T} \text { so } \\
& g \mu_{1} V_{0 s}{ }^{\mathbb{N}}=g \mu_{\pi} \Delta V_{T_{\pi}} \rightarrow V_{0 s}{ }^{\mathbb{N}^{N}}=\frac{g \mu_{\pi}}{g \mu_{1}} \Delta V_{T_{\pi}} \\
& \operatorname{Vos}^{\text {IN }}=\frac{\operatorname{VoV}_{1}}{\operatorname{VoUr}} \Delta V_{\text {Tr }}
\end{aligned}
$$

Mirror statistical k mismatch

$$
\begin{aligned}
& I_{3}=\left(K_{\pi}-\frac{\Delta U}{2}\right) V_{0 V_{k}^{2}}^{2} I_{H}=\left(K_{\pi}+\frac{\Delta U}{2}\right) \operatorname{VoV}_{\pi}^{2} \rightarrow \Delta I=I_{4}-I_{3}=\Delta K V_{0 V_{\pi}^{2}}^{2} \\
& \operatorname{Vos}^{i N} g m_{1}=\Delta K V V_{n}^{2} \rightarrow V_{O S}^{i N}=\frac{\Delta u}{K} \cdot \frac{K V_{O V^{2}}^{2}}{g u_{1}}=\frac{\Delta u_{\pi}}{K_{\pi}} \frac{V_{O V}, N}{2} \\
& \underbrace{\operatorname{VOS}^{i n}=\frac{\Delta u_{\pi}}{k_{\pi} \frac{V_{\text {OVId }}}{2}}}
\end{aligned}
$$

Summary of misuntcles for input referred offset
17) CTRR : determivistic ourd statistical limits

CMRR deterncimistic centribution is purely velated to the arcuit topology. In our case, the only asinnuetry we cme find is the mirror aun input pair impedance Mirror detervinistic coutributian

It's ensy to find thit some porrion of icn is lost through Von

$$
\varepsilon=\frac{\operatorname{Igm\pi }}{\frac{1}{\operatorname{gum}}+r_{0 \pi}}=\frac{1}{1+\operatorname{gum}_{\pi} v_{0 \pi}}
$$

Iuput pair impedance misuntch
Eygun We We supposed thent 21 cm alwnys perfectly $-H_{r_{2}}\left[I_{C n_{1}} I_{2} \mid\right]$ divides through M_{1}, Π_{2}. This is wor $R_{1} \nrightarrow R_{2}$ troe as $R_{1} \neq R_{2}$

$$
R_{2}=\frac{r_{01}}{1+g m_{1} r_{01}}
$$

We cau say with miniunl error than vgnvar vs ver so

$$
i_{1}=2 i c \pi \frac{R_{2}}{R_{1}+R_{2}}=\frac{\sqrt{5}}{\operatorname{rog}} \frac{R_{2}}{R_{1}+R_{2}} \text { and } i_{2}=\frac{\sqrt[v]{5}}{\operatorname{vog}} \frac{R_{1}}{R_{1}+R_{2}}
$$

Witl a perfect mirror, $i_{\text {ccout }}=i_{2}-i_{1}=\frac{v_{3}}{r_{0 g}} \frac{R_{1}-R_{2}}{R_{1}+R_{2}}$

$$
\frac{R_{1}-R_{2}}{}=\frac{1 / g u_{n}}{1+g u_{01}} \quad \frac{R_{1}+R_{2}=\frac{2 v_{01}+1 / g u_{n}}{1+g u_{1} v_{01}}}{1}
$$

Therefore $\quad \varepsilon \frac{v_{c r}}{2 v_{0 g}}=\frac{v_{s}}{r_{0 g}} \frac{1 / g m_{r}}{1+g \mu_{1} r_{01}} \frac{1+g m_{1}+r_{01}}{2 r_{01}+1 / g m_{n}}$

$$
\begin{aligned}
& \varepsilon \frac{v_{c \pi}}{2 v_{0 g}}=\frac{v_{s}}{v_{0 g}} \cdot \frac{1}{2} \frac{1}{g \mu_{\pi} v_{01}} \text { if } \alpha=\frac{v_{s}}{v_{0 n}} \sim 1 \text { then } \\
& \varepsilon \simeq \frac{1}{g m_{\pi} r_{01}}
\end{aligned}
$$

If we a'so comsider mirror misuntch:

$$
\underline{\varepsilon_{D E T} \simeq \frac{1}{g m_{\pi} r_{01}}+\frac{1}{g m_{\pi} r_{0 \pi}}}
$$

Mirror statistical gme misuntch
 in gm (cnused by VT or K sratistical variability).

$$
i_{\text {out }}=i c \pi\left(\frac{g \mu_{4}}{g \mu_{3}}-1\right)=i c_{\pi} \frac{g \mu_{4}-g \mu_{3}}{g m_{3}} \triangleq i c c_{\pi} \frac{\Delta g \mu_{\pi}}{g \mu_{\pi}}
$$

Input pair statistienl veisunt ch for CMRR
Since we alvendy estimated the mirror misunt ch, put everything to ground:

$$
v_{c \pi} \sqrt{\frac{1}{7}} \text { As usual } i_{c c} \text { OUT }=i_{2}-i_{1}
$$

To estimate $g \mu_{1}, g m_{2}$ misuntches we could think of folding the structure in half (since $v_{c \pi}$ is applied on both gates)

We can compute $v_{s}=v_{c \pi} \frac{r_{s}^{*}}{v_{s}^{*}+1 / q \mu^{*}}$, now, since
Vas it's the same, it's easy to see that:

$$
\begin{aligned}
& i_{1}=g \mu_{1}\left(v_{c \pi}-v_{s}\right) \quad i_{2}=g \mu_{2}\left(v_{c r}-v_{s}\right) \\
& i_{2}-i_{1}=\left(g \mu_{2}-g m_{1}\right)\left(v_{c \pi}-v_{s}\right)=\Delta g \mu_{c \pi}\left(1-\frac{v_{s}^{*}}{v_{s}^{*}+\frac{1}{q \mu^{*}}}\right)
\end{aligned}
$$

Let's compare it with typical GTRR wrrent

$$
\begin{aligned}
& \varepsilon \frac{v_{c \pi}}{2 v o g}=\Delta g m_{1} v_{c r} \frac{1 / g m^{*}}{v_{s}^{*}+* u^{*}} \quad \text { where } g u^{*}=g u_{1}+g u_{2}=2 g m_{1} \\
& r_{s}^{*}+\text { guin }^{*} \text { negligible } \quad r_{s}^{*}=\operatorname{rog} / 1 \frac{r_{0} \frac{1}{2}}{} \\
& \varepsilon \frac{v_{c \pi}}{2 r o g}=\frac{\Delta q u}{2 g m} \cdot \frac{v_{0 g}+v_{01 / 2}}{v_{0 g} v_{01 / 2}}=\frac{v_{c \pi}}{2 v_{0 g}} \cdot \frac{\Delta g m}{g \mu}\left(1+\frac{2 \cdot v_{0 g}}{v_{01}}\right) \\
& \varepsilon=\frac{\Delta g \mu_{1 N}}{g \mu_{1 N}\left(1+\frac{2 r_{05}}{r_{01}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { What's the meaning of this? } \\
& \text { CHR }=\frac{2 g m_{1} r_{0} g}{\varepsilon}=\frac{2 g m_{1} r o g}{\frac{\Delta g m_{1}}{g \mu_{1}}\left(1+\frac{2 r o g}{r_{0}}\right)}=\frac{g m_{1}^{2} r_{0}}{\Delta g m_{1}}
\end{aligned}
$$

We see that even though we have a perfect tail generator $(r o g \rightarrow \infty)$ we still hove a higher limit for the CMRR set by rot. This nears:

$$
\sum_{\frac{1}{2}}^{1} \frac{r_{01}}{2} \quad \text { CMRR high enough }
$$

Recap

$$
\begin{aligned}
& \text { EState }=\left.\frac{\Delta g m}{g m}\right|_{\pi}+\left.\frac{\Delta g m}{g m}\right|_{i n}\left(1+\frac{2 r_{\text {on }}}{r_{01}}\right) \\
& \varepsilon_{\text {TOT }}=\varepsilon_{D E T}+\varepsilon_{\text {STAT }} \\
& \sigma_{\text {STAT }}=\sqrt{\frac{\sigma^{2} q_{M}}{g \mu M \pi}+\frac{\sigma_{\Delta q M, N}^{2}}{q_{M, N}}\left(1+\frac{2 r_{0 g}}{r_{0}}\right)^{2}} \\
& \frac{\Delta g \mu \pi}{g \mu}=\frac{1}{g \mu} \frac{\partial g m}{\partial V_{T}}+\frac{\alpha}{g \mu} \frac{\partial g \mu}{\partial K}=\quad d V_{T}=d\left(V_{o v}-V_{T}\right)=-\Delta V_{T} \\
& =\frac{1}{2 H V_{0}} 2 \not 20 d K+\frac{}{2 H V_{0 v}} \cdot 2 K d U_{T} \\
& =\frac{\Delta U}{U}-\frac{\Delta V_{T}}{V_{0 V}}
\end{aligned}
$$

$\sigma^{2}\left(\frac{\Delta g \mu}{g m}\right)=\sigma^{2}\left(\frac{\Delta u}{k}\right)+\frac{\sigma(\Delta v \tau)}{v_{0 v^{2}}} \quad \sim$ statisticaMy innlependent but in reality they are correlated (considered uncorrehtred for simplicity)
(18) Noise: PSD, thermal wise on resistors, DOSFETS

We found out that goin/BW tradeaff is independent from the wrreut $\left(\right.$ gur vo $=\frac{2 V_{A}^{\prime}}{V_{O V}}$ and $\left.f_{T}=\frac{\mu V_{o V}}{2 \pi L^{2}}\right)$. Want sets
the wrrent? Noise. For His discussion, consider goussion unise: $\rho(\bar{v})=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{\bar{v}^{2}}{2 \sigma^{2}}} \rho(\bar{v})$ is the probability of the aluplitude $v 68 \%$ of samples will foll within $\pm \sigma$.
We cam describe noise as a superposition of orthogoml harmonics (like sign's). Consider just two:

$$
\left.x(t)\right|_{\text {NOISE }}=A \sin \left(\omega_{1} t+\varphi_{1}\right)+B \sin \left(\omega_{2} t+\varphi_{2}\right)
$$

- Mean value is zero - Menu square value is

$$
\left.\left\langle x(t)^{2}\right\rangle=2 A^{2} \operatorname{sen}^{2}()+B^{2} \operatorname{sen}()+2 A B \operatorname{sen}() \operatorname{sen}()\right\rangle
$$

Therefore:

$$
\begin{aligned}
\left\langle x(t)^{2}\right\rangle & =\left\langle A^{2} \operatorname{sen}^{2}()\right\rangle+\left\langle B^{2} \operatorname{sen}(\rangle\right\rangle+\langle 2 A B \operatorname{sen}()) \mu(1\rangle \\
& ! \\
& =\frac{A^{2}}{2}+\frac{B^{2}}{2} \sim \operatorname{Recul} A^{2} \cdot \frac{1^{2}}{T} \int_{0}^{T} \operatorname{sen}^{2}\left(\frac{2 \pi t}{T}\right) d t=\frac{A^{2}}{2}
\end{aligned}
$$

Since weal value is zero: $\left\langle x(t)^{2}\right\rangle=\frac{\sigma_{x n}}{\sigma_{n}}$
If we causider a set of sinusoids (different freq/amplitude) $\sigma^{2}=\sum_{i} \sigma_{i}^{2}=\int_{0}^{+\infty} \operatorname{Sn}(p) d p$ where $\operatorname{Sn}(f)$ is the PSD For a sunll frequency $B W$ of we com $\operatorname{say} \sin \left(f_{0}\right) \Delta f=\Delta \sigma_{p_{0}}^{2}$
Suppose that a resistor is generating wise through a filtering network M, the mean square valve contribution will be

We call say the same for every ccuponeut inside a linear network, leading to:

$$
\begin{aligned}
& \operatorname{Sout}(f) d f=\operatorname{Snn}_{1}(f) \mid T_{1}\left(\left.f(w)\right|^{2} d f+\operatorname{Sn}_{2}(f)\left|T_{2}(f u)\right|^{2} d p+\right. \\
& \sigma_{\text {out }}=\sqrt{\int_{0}^{+\infty} \operatorname{Sout}(f) d f}
\end{aligned}
$$

Thermal wise in resistors
Charge movement our collision with ions is fort $(<1$ ps). This means thant the spikes generated one short \rightarrow short signal (impulse) means broad spectrom \rightarrow approx to flat $\xrightarrow{\stackrel{p i n}{ }(f)^{\sin }}$ f

$$
S_{n}(f)=W \quad W \text { stands for white }
$$

To estimate W value we can use on energetic argument by filtering the voise with a capacitor

$$
\begin{aligned}
& M^{h} V_{0} \\
& =\operatorname{SV}(f) \underset{=}{=} C
\end{aligned}
$$

$$
V_{0}(s)=V_{1}(s) \cdot \frac{1}{1+s R C}
$$

Since $S_{v}(f)=W$ and we said $\left\langle V_{0}^{2}\right\rangle=\sigma_{0}^{2}=W \int_{0}^{+\infty}|T(j \omega)|^{2} d \omega$

$$
\int_{0}^{+\infty} 1 T(f)^{2} d f=\int_{0}^{+\infty} \frac{1}{1+(2 \pi f \tau)^{2}} d f \cdot \frac{2 \pi \tilde{1}}{2 \pi \tau}=\frac{1}{2 \pi \tau}[\operatorname{arctg}(2 \pi f \tau)]_{0}^{+\infty}=
$$

$\frac{1}{2 \pi \tilde{\tau}} \cdot \frac{\pi}{2}=\frac{1}{4 \tilde{\tau}}$ Therefore $\sigma_{0}^{2}=\frac{1}{4 \tau} \cdot W$
If we express this in frequency cutoff $\frac{1}{4 \tau}=\frac{\pi}{2} B W_{-30 \mathrm{~B}}$
So the ENBW = equivalent noise $B W$ is $\frac{\pi}{2}$ higher the pole wroff f cot $=\frac{1}{2 \pi \uparrow}$
It's higher because it accounts for the addition l integrated boise over f Cut

Energy stored in the capacitor is $\frac{1}{2} C\left\langle v_{0}^{2}\right\rangle=\frac{1}{2} K_{B} T \rightarrow \frac{1}{2}$ for a single degre of freedom accoording to Bolizuomu:

$$
\begin{aligned}
& \frac{1}{2} c \cdot \frac{W}{4 T}=\frac{1}{2} K_{B} T \quad \frac{C \cdot W}{4 \cdot R K}=U_{B} T \rightarrow \underline{W=4 K_{B} T R} \\
& W=\left.\operatorname{Sv}(f)\right|_{R}=\left(\frac{V}{\sqrt{H z}}\right)^{2} \text { or }\left(\frac{A}{\sqrt{H z}}\right)^{2} \text { if wrreut referred } \\
& \left.S_{i}(f)\right|_{R}:\left.\quad\left[\mathcal{S V}_{V}\right]\right|_{S_{i}} \rightarrow S_{i}(f)=L K_{B} T R \cdot\left(\frac{1}{R^{2}}\right)^{\left.\frac{1}{}(j \omega)\right|^{2}} \\
& \left.S_{i}(f)\right|_{R}=\frac{4 V_{B} T}{R}
\end{aligned}
$$

Same tunppus for the resistive of MOSFET's in ohmic region:

$$
R_{c h}=\frac{1}{g_{m_{0}}} \text { where gmo }=K\left(V_{a s}-V_{T}\right)=2 K \text { Nov }
$$

So $\left.\operatorname{SV}(f)\right|_{\text {Mos }}=\operatorname{LKT}$ gu \rightarrow ohmic
For MOSFETs in antoration region, the resistive channel is shorter and less uniform \rightarrow compensate with factor γ

$$
\begin{aligned}
& \frac{S_{i}(f) \mid r o s}{4}<\begin{array}{l}
\frac{4 K T 1 \text { guT } \frac{2}{3} \text { gm }}{4} \rightarrow \text { SeT }
\end{array} \\
& \text { LAT } 2 \mathrm{gm} \rightarrow \text { SAT (short chrmuel } L \text {) }
\end{aligned}
$$

The factor is expressed using $\gamma=1, \frac{2}{3}, 2$
$S_{v}(f)$ is also available by using the following:

Note: see next question for a better procedure for Sr
9) Input referred noise sources (2 port) + Diff stage unise

We can model the noisy network as a two port noiseless network + noisy input generators (input referred wise)
 SV, Si are iveleperrleut on in/out impedances.

\rightarrow Definition of r two port network
A two port network can be represented with the Z untrix
Single MOSFET SV SI

Its easy to see that \rightarrow short input $\rightarrow \mathrm{SV}_{\mathrm{L}} \rightarrow$ (1)
Let's clarify:
(1)
 superposition of effects: SI is short

$$
S_{O U T}^{\circ}=4 K T \gamma g u
$$

$$
\text { Sout }=4 x T \gamma g \mu \quad \text { Sout }=S_{1}\left|\frac{1}{j w(c g \Delta+C g s)}\right|^{2} \cdot g m^{2}=S_{1} g m^{2} \frac{1}{\omega^{2} C_{0 x^{2}}}
$$

$$
\text { aKTrgat }=S_{1} \operatorname{gu}^{2} \frac{1}{\omega^{2} c x^{2}} \rightarrow S_{1}=\operatorname{LUT\gamma } \operatorname{gue}\left(\frac{\omega}{\omega_{T}}\right)^{2}
$$

Where w_{T} is the wroff $\omega_{T}=\frac{g m}{c o x}$
Recap on iupur referred vise for a rosFEi

Note: $\left(\frac{\omega}{\omega T}\right)$ is a rising factor because since $\$$ I $c o x$ $Z_{\text {IN }}=\frac{1}{S C O x}$ is decreasing with frequency, to get a flat output spectrum (HMT gm), SI has to ceupensate by increasing its power amplitude.

Example of applicotiom

$$
S V_{R}=4 K T R_{S} \quad S V=\frac{4 K T \gamma}{g m} \quad S_{1}=4 U T g g_{1}\left(\frac{w}{w_{T}}\right)^{2}
$$

Be careful: \rightarrow low impadouce $R_{S} \rightarrow S v$ is relevant
\triangle high impedance $R_{S} \rightarrow S_{1}$ is relevoult

$\omega^{*}=\omega_{T} / \operatorname{gur} R_{S}$ but since ω_{T} is usually very high and Rs very low $\omega^{\star} \sim G H Z \rightarrow$ we can almost always neglect Si contribution (for w $\mu \mathrm{Hz}$) 70

Input referred noise for a differential stage
Iuportcut: is the differential stage a 2 port network?
 no It's not, but it can be if we doit consider Vcr. This mems that $C \pi R R \rightarrow \infty$. Let's be wore specific

$$
\begin{aligned}
& \text { four }=A^{+} V^{+}-A^{-} V^{-} \quad V_{D}=V^{+}-V^{-} \quad V_{C \pi}=\frac{V^{+}+V^{-}}{2} \text { so } \\
& V^{+}=V_{C T}+\frac{V_{D}}{2} \quad V^{-}=V_{C H}-\frac{V_{D}}{2} \\
& V_{\text {OUT }}=A^{+}\left(V_{C \Pi}+\frac{V_{D}}{2}\right)-A^{-}\left(V_{C M}-\frac{V_{0}}{2}\right)=V_{\text {Cr }}\left(A^{+}-A^{-}\right)+V_{D}\left(\frac{A^{+}+A^{-}}{2}\right)
\end{aligned}
$$

- If $A^{+}=A^{-} \quad \operatorname{VCr}\left(A^{+}-A^{-}\right)=0$ therefore:

In reality $\operatorname{CTRR} \sim \operatorname{lood} B$ to woke these assumptions

Output noise wrreut of a differential stage

Important: CMRR $\rightarrow \infty$
Note: all the generators ceunectes to the source give a common mode contribution \longrightarrow No output noise wrrent

$$
\begin{aligned}
S_{\text {OUT }}^{0} & =S_{11}+S_{12}+S_{13}+S_{14} \\
& =8 k T \gamma g m_{1 N}+8 M T \gamma g \mu_{\pi}
\end{aligned}
$$

$$
\text { Sous }^{\circ}=8 K T \gamma\left(g \mu_{i N}+g \mu_{r}\right)
$$

Input voltage referred noise/Wrrent referred unise : Sour = Sv•gum us differential tromsfor function

$$
\left.S v\right|_{r o s}=\left(\frac{1}{g m_{1 N}}\right)^{2} 8 u_{T \gamma}\left(g m_{m_{N}}+g \mu_{M}\right)=
$$

$$
S V_{\pi O s}=\frac{8 V T X}{g M / N}\left(1+\frac{V_{O V} / N}{V_{O V K}}\right)
$$

We call see that $i_{D}=g m V_{g s}=g \mu \frac{i_{n}}{s c g s}$ vas is the voltage on Cgs

$$
i_{n_{\text {Out }}}=2 \operatorname{gu} \frac{i n}{s c g s} \rightarrow S_{\text {Out }}^{0}=\frac{4 g u^{2}}{\omega^{2} c g s^{2}} S_{1}
$$

by setting $\omega_{T}=\frac{g u}{C o x} \sim \frac{g u}{C y s}$ with miviunt error we cam say Sort $^{\circ}=4 S_{1}\left(\frac{w}{w_{T}}\right)^{2} \rightarrow$ if we compare S_{1}, Suv

$$
S v_{\mathbb{N}} \cdot g u_{\mathbb{N}}{ }^{2}=4 S_{1}\left(\frac{w}{w_{T}}\right)^{2} \rightarrow S_{\text {eq }}=S_{v e q} \frac{\operatorname{gen}_{\text {iN }}^{2}}{H}\left(\frac{w}{\omega T}\right)^{2}
$$

Corrent, voltage woise comparison
$V_{D C / N}$
${ }_{ \pm}$Rbias

$$
S=S_{\text {Veq }}+S_{i e q} R_{s}^{2}
$$

$$
\longrightarrow \text { Svey } \frac{g \mu_{1 N}^{2}}{4}\left(\frac{\omega}{\omega T}\right)^{2}
$$

Voltoge noise is dominnt up to $f=\frac{2 f_{T}}{g \operatorname{miN}_{N s}}$ so, vuless for very
high frequency (or very high impedances) \rightarrow SI negh gible
19) Noise wodels: Nypuist experiweut for PSA

Ro $\frac{1}{2}$
Use a untched coax cable. For $t=-\infty$ system will be at equilibrium. We set up untched imperamces \longrightarrow no reflections take place therefore the same energy (electric/ungnetic field) is stored in the cable.
At $t=0^{+}$we short the two ends so we separate the
Ro from the coax. Some e.n. waves will be trapped inside. Also, the energy Eo of the resistor will be twice inside the cable. $\rightarrow e . m$. system with the following equntians

Since the system has boundanies, surviving modes will be:
 first wode is $L=\frac{\lambda_{1}}{2}$ using the dispersion relatianship $f_{1} \cdot \lambda_{1}=c$

$$
f_{1}=\frac{c}{2 L}
$$

We find oo modes trapped with a wavelength turt is a multiple of the leught of the coax $f_{K}=\frac{c}{2 L} \cdot K$ every tore is spaced by $\frac{c}{2 L}$
If we select a Δf bourlwidth, com count
 the number of moles folling inside \#uodes $=\frac{\Delta f}{c / 2 L}$
Each mode has electrical/ungnetic degrees of freedoun $\rightarrow \frac{K T}{2} \cdot 2=K T$ We call say that the average emergy trapped in a single interval is $\varepsilon_{\Delta f}=K T \cdot \frac{\Delta f}{c} \cdot 2 L$
$E_{\Delta f}=K T \cdot \frac{\Delta f}{c} \cdot 2 L \longrightarrow$ number of. Modes
energy per single wo de
We com now connect the trapped energy with the input energy supplied. Consider a sinusoidal generator en:

We now need to compute the energy, therefore we need to compute how nude time it takes to travel.

$$
\begin{aligned}
& T=\frac{L}{c} \text { where } \begin{aligned}
& T=\text { transit time } L=\text { length of coax } \\
& c=\text { speed of light } \\
&\left.E_{\text {TOT }}\right|_{\text {supplied }}=2 \cdot T \cdot P \quad L \cdot \frac{L}{c}\left(\frac{e n}{2}\right)^{2} \cdot \frac{1}{2 R_{0}}
\end{aligned}
\end{aligned}
$$

cqutribution
Since en is the voltage noise generator, we link it to the wean square value

$$
\begin{aligned}
& \frac{e_{n}^{2}}{2}=S v \Delta f \\
& \langle\ln (t)\rangle^{2}=\frac{e_{n}^{2}}{2}
\end{aligned}
$$

Therefore we "linked" the power of a Δf in a single sinusoid. We call now write

$$
\text { ETOT }\left.\right|_{\Delta f} \frac{L}{c}\left(\frac{e_{n}}{2}\right)^{2} \cdot \frac{1}{R_{0}}=\frac{L}{c} \frac{e_{n}^{2}}{2} \cdot \frac{1}{2} \cdot \frac{1}{R_{0}}=\frac{S_{v} \Delta f}{2} \cdot \frac{L}{c} \cdot \frac{1}{R_{0}}
$$

This must be equal to the stored $\varepsilon \Delta f$:

$$
\frac{A}{q} \cdot \frac{1}{R_{0}} \cdot \frac{S_{V} \cdot \Delta F}{2}=K T \cdot \frac{\Delta K}{t} \cdot 2 t \rightarrow \underline{S V=4 U T R_{0}}
$$

20) SHot noise in PN Junctions + weak inversian rosfeis

The electron moving inside the PN junction behnes like in a capacitor with plane plates:

$$
\begin{array}{ll}
Q_{2}=\frac{x}{L}: q & Q_{1}=\left(\frac{L-x}{L}\right) q
\end{array} \quad Q_{1}+Q_{2}=q \sim>\text { druse of } 1 \text { the electron }
$$

The tromsit of the electron qeeverates a current

$$
\left|\frac{d Q_{2}}{d t}\right|=\left|\frac{d Q_{1}}{d t}\right|=\frac{9}{L} \frac{d x}{d t}=\frac{9}{L} v(t)=\text { Farrier }^{d}(t) \quad\left[\frac{c}{s}\right]
$$

The average flow of electrons is $\lambda=\frac{\not x \text { electrons }}{s}=I / q$
Therefore in a time interval $d t$ the probability that au electron starts to flow is $\lambda d t$

Suppose the carriers travel through the junction with saturation velocity. The current contribution will have a rectangular shape. This weans that, for a single e^{-}:

$$
i(t)=q h(t) \text { where } \int_{0}^{+\infty} h(t) d t=1
$$

We cam say that total wrreut will be a som of elementary grains (pulses):

$$
i(t)=q h\left(x_{1}\right)+q h\left(x_{2}\right)+\ldots .
$$

L_{s} arbitrary axis to toke into account the shape doting the integration.

We now compute the mean value oud the mean square $\frac{\Sigma \lambda(t)\rangle}{h}=\left\langle q h\left(x_{1}\right)+g h\left(x_{2}\right)+\cdots\right\rangle=\int_{0}^{+\infty} q h(x) \cdot \lambda d x=q \lambda \int_{0}^{+\infty} h(x) d x=g \lambda$
 continuous Loprobability of a pulse to start in a $d x$ It wakes sense, the average corr rut is given by the rate per unit time multiplied by the carrier charge $\langle i(t)\rangle=9 \lambda$

$$
\begin{align*}
\langle i(t)\rangle & =\left\langle\left(q h_{1}+q h_{2}+\ldots\right)^{2}\right\rangle \\
& \mid \\
& =\left\langle\left(q h_{1}\right)^{2}+\left(q h_{2}\right)^{2}+\left(q h_{3}\right)^{2}+2 q^{2} h_{1} h_{2}+2 q^{2} h_{2} h_{3}+2 q^{2} h_{1} h_{3}+\cdots\right\rangle
\end{align*}
$$

single squared contributions biproowcts
Pass from discrete to continuous)

$$
\begin{aligned}
& \left\langle i^{2}(t)\right\rangle=q_{0}^{q^{2}} \int_{0}^{+\infty} h^{2}(x) \lambda d x+q^{2} \int_{0}^{+\infty} h_{1}(x) h_{2}(y) \lambda^{2} d x d y \\
& =q_{0}^{2} \int_{0}^{+\infty} h^{2}(x) \lambda d x+q^{2} \int_{0}^{+\infty} h_{1}(x) \lambda d x \int_{0}^{+\infty} h_{2}(y) \lambda d y \sim \int_{0}^{+\infty} h(x) d x=1
\end{aligned}
$$

$=q^{2} \lambda \int_{0}^{+\infty} h^{2}(x) d x+q^{2} \lambda^{2}=\left\langle i^{2}(t)\right\rangle$ from statistical theory:

$$
\begin{equation*}
\sigma_{i}^{2}=\left\langle i^{2}(t)\right\rangle-\langle i(t)\rangle^{2}=q^{2} \lambda \int_{0}^{+\infty} h^{2}(x) d x+q^{2} \lambda^{2}-(q \lambda)^{2} \tag{1}
\end{equation*}
$$

Therefore $\sigma_{i}^{2}=q^{2} \lambda \int_{-\infty}^{+\infty} h^{2}(x) d x=q I \int_{-\infty}^{+\infty}|H(f)|^{2} d f$
Since $\sigma_{i}^{2}=\int^{+\infty a} S_{I}(f) d f \rightarrow-\infty$ instead of zero becwse $S_{I}(f)=2 q I|H(f)|^{2}$
Factor 2 is given by *2 and (13) because $H(f)$ is squmetric thus giving $\int_{-\infty}^{+\infty}=2 \int_{0}^{+\infty}$

$$
S_{I}(f)=2 q I|H(f)|^{2}
$$

Where, for a rect it is $|H(f)|=\left|\frac{\sin 2 \pi f / T}{2 \pi f / T}\right|$
Since T is very short (fan ps) we com say that $\frac{1}{T}$ will be placed at $\sim 100 \mathrm{GHz}$ so we sou basically say that S_{I} is w white unless some speaal anses

Shot voice on a PN function

IDIFFUSION $=$ I + IS IREVERSE $=-$ IS Since ID aud Ir ave independent on each other, they som up in spectrum

$$
S_{1}=2 q\left(I+I_{s}\right)+2 y I_{s} \text { where }
$$

- Reverse bias I DIFF $=0 \rightarrow S_{1}=29 I_{s}$
- Forward bias I DIFF PrEv $\rightarrow S_{1}=2 \varphi I$
- Zero bins $I=0 \quad \rightarrow S_{1}=49 I_{s}$

Note: at zero bias $g_{D_{0}}=\left.\frac{\partial I}{\partial V}\right|_{V=0}=\left[\frac{q I_{S}}{K_{T}} e^{\frac{q V}{k T}}\right]_{N=0}=\frac{q I_{S}}{K T}$
$S_{0} I_{S}=g_{0} \cdot \frac{K T}{q} \rightarrow \underline{S_{I}=L_{1} I_{S}=4 K T g D_{0}}$
This is very familiar to a resistor white noise. In fact, we can opply the some reasoning of the Nyquist experiment:

Weak inversion rOSFET shot noise

$$
\begin{aligned}
& I_{D R A}(N)=I_{0} e^{q \frac{V_{a S}-V_{T}}{n K T}} \rightarrow q M=\frac{\partial I_{0}}{\partial V_{a S}}=\frac{q}{n U T} I_{0} e^{\frac{q V_{a S}-V_{T}}{n K T}}=\frac{9 I_{D}}{n U T} \\
& n g m \frac{K_{T}}{q}=\left.I_{D} \rightarrow S_{I}\right|_{\text {mos }}=2 q I_{D}=2 K T n g m
\end{aligned}
$$

We can adjust the formula to LUT g gu:

21) Trapping noise in a resistor

$N=* e^{-}$contributing to current flow $=n \cdot \Delta \cdot W \cdot L$ lofree corries \quad. cm^{3}
$I=q \cdot \mu \cdot \frac{N}{L^{2}} V$ we cal see that I αN for a given
Voltage, 80 if some electrons are trapped inside the material, I will decrease $\rightarrow \Delta I / I=\Delta N / N$
Δ single electron gets captured/emitted $\sim \Delta N=|N-| \frac{N^{\prime}}{(N \pm 1) \mid}$
If $\Delta N=1$ the current variation for a captore/velease event will be $\Delta I=\frac{I}{N}$. At steady state, the emission/capture processes ane in a dynamic eqoilibriou (ip captures IP then emissions $\pi /$ to return to stendy state aud vicuversn)
Transients recover with a time constant \uparrow

\rightarrow Waveforms are

$$
i(t)=\Delta I \cdot e^{-t / \tau}
$$

$$
i(t)=Q \rightarrow h(t)=(\Delta I \cdot \tau) \frac{1}{\tau} e^{-t / \tau} \text { when e } \int_{0}^{+\infty} \frac{1}{\tau} e^{-t / \tau} d t=1
$$

Area of the pulse is $Q=\frac{I}{N} \cdot \tilde{r}$
\leadsto Just for capture or emission events Knowing that $\langle i(t)\rangle=\left\langle Q h_{1}(t)+Q h_{2}(t)+\ldots\right\rangle$ we cam recover the same shot noise reasoning and eur up with $S I=2 q^{2} \lambda|H(\omega)|^{2}$
At equilibrium the rate of emission aud capture will be the saul $\rightarrow \lambda_{e}=\lambda_{c}=\lambda$ aud $H(\omega)$ has a LPF like transfer function, therefore

$$
S I=2 Q^{2} \lambda \frac{1}{\left(1+\omega^{2} \tau^{2}\right)}=2\left(\frac{I}{N}\right)^{2} \tau^{2} \cdot \lambda \cdot \frac{1}{1+\omega^{2} \tau^{2}}
$$

We need to estimate λ, since λ is a rate of events, we cal say $\lambda=\frac{1}{\tau} N_{T} \cdot \beta$ where
NT = number of traps in the volume
$\beta=$ proportiomlity factor that adjusts N_{T} / τ

$$
S_{I}=2 \cdot 2\left(\frac{I}{N}\right)^{2} \frac{N_{T} \beta}{\tau} \tau^{2} \frac{1}{1+\omega^{2} \tau^{2}}
$$

\rightarrow double because of capture + emission contribution

$$
S_{I}=4\left(\frac{I}{N}\right)^{2} \beta N_{T} \frac{\tilde{\tau}}{1+\omega^{2} \tau^{2}} \rightarrow \frac{\text { Random Telegraph Noise }}{I}
$$

Measures show a binary change: capture emission
Recovery time should be a step (not exponential) beconse a single electron cont generate an exp current variation, but if
 We ok to all concurrent events: we discover that the som of all events will merge into one exponential transient \rightarrow 1st order model works well!

If we limit ourselves to just a single layer of Fraps placed at Fermi level $\rightarrow \beta=1 / 4$ for E_{F}
\square

- - - $-\quad E_{F}$ Er

For a more rigurous devivation, it is

$$
\hat{\tau}=\frac{\tilde{\tau}_{e} \tilde{\tau}_{c}}{\tilde{\tau}_{e}+\tilde{\tau}_{c}} \quad \beta=\frac{\tilde{\tau}_{e} \tilde{\tau}_{c}}{\left(\tilde{\tau}_{e}+\tilde{\tau}_{c}\right)^{2}} \sim_{\Delta} \frac{1}{4} \text { at E} E_{F E R \Pi_{1}}
$$

spectral will be a corention shape:

22) McWorther model for $1 / 1$ + Tsvidis formula

For now we considered only a set of traps with a single time constant. But there som be defects with a different τ. In fact, McWorther pointed out the carriers flowing in the MOSFET chanel com also be trapped in deeper layers of the oxide.
\qquad CARRTEANA, of many Lreutiou shapes with

$$
\begin{aligned}
& \text { various } \tau \text {. We said } \\
& \delta_{I}=N_{T}\left(\frac{I}{N}\right)^{2} \frac{\hat{i}}{1+\omega^{2} \tau^{2}} \text { but now }
\end{aligned}
$$

We need to tale into account the trapping centers with $g(\tau) d \tau=$ fraction of N_{T} trapping centers at fermi level with a time constant between $\hat{\imath}$ and $\hat{\imath}+d \hat{\tau}$ From quoutun medemics, we know then:

$g(\tau)$ represents the distribution of trap numbers for a given τ, there fore:
$d N_{T}(\tau)=N T, g(\tau) d \tau \rightarrow$ We need to link the * elementary total portion of
trap centers traps traps in ad τ spatial dimension $\longrightarrow x$

The spectrum changes now form to:

$$
S_{I}=N_{T}\left(\frac{I}{N}\right)^{2} \int_{\pi_{\text {min }}}^{\tau_{\text {Tax }}} \frac{\tau}{1+\omega^{2} \tau^{2}} g(\tau) d \tau
$$

We consioler that traps ave spend on the whole oxide thidlness.

So the whole NT will be spread between $x=0$ and $x=$ tox The number of traps contained in $a d x$ segment will be: $N_{T} \frac{d x}{\text { tox }}=N_{T} g(\tau) d \tau \rightarrow$ clarify this

If the traps are evenly distributed
 through the whole tox:

$$
\tilde{\tau}_{1}=\tilde{\tau}_{0} e^{\gamma x_{1}} \tilde{\tau}_{2}=\tilde{\tau}_{0} e^{\gamma x_{2}} \tilde{\tau}_{3}=\tilde{\tau}_{0} e^{\gamma x_{3}}
$$

$\rightarrow \hat{T}$ for $x=0$
If (*1) then $x_{2}=2 x_{1}$ and $\tilde{\tau}_{2}=\tau_{0} e^{2 \gamma x_{1}}$ so

$$
\frac{\tilde{\tau}_{2}}{\tau_{1}}=\frac{e^{2 \gamma x_{1}}}{e^{\gamma x_{1}}}=e^{\gamma x_{1}} \rightarrow \text { Some result for } \frac{\tau_{3}}{\tau_{2}} \text { and so on }
$$

Therefore the sauce portion of traps will be unpped to an exponentially increasing portion of τ.
e.g. 10 traps are between $\tau_{0}, \tau_{1} ; 10$ traps are between τ_{1}, τ_{2} strap density

We confirmed $N T \frac{d x}{\text { tox }}=N \nleftarrow g(\tau) d \tau \rightarrow g(\tau)=\frac{d x}{d \tau} \cdot \frac{1}{\operatorname{tox}}$
Since $\tau=\tau_{0} e^{\gamma x} d \tau=\gamma \frac{\tau_{0} e^{\gamma x}}{\tau} d x=\gamma \cdot \tau d x \rightarrow \frac{d x}{d \tau}=\frac{1}{\gamma \tau}$
Therefore $g(\tau)=\frac{1}{\gamma \uparrow t o x}$ we can clearly see that
the trap density for a given τ decreases (hyperbolic form)

Using this result in the integral:

$$
\begin{aligned}
& S_{I}(f)=\frac{N_{T}}{\gamma \operatorname{tox}}\left(\frac{I}{N}\right)^{2} \int^{\tau_{\max }} \frac{d \tau}{1+\omega^{2} \tau^{2}} \quad \tau_{M A x}=\text { traps deeper into oxide } \\
& =\frac{N_{T}}{\gamma \operatorname{tex} \omega}\left(\frac{I}{N}\right)^{2}\left[\operatorname{arctg}\left(\omega \pi_{i n x}\right)-\operatorname{arctg}\left(\omega \hat{M}_{\operatorname{tin}}\right)\right]
\end{aligned}
$$

$T_{\text {max }}=$ longest time sale measurable by the experiment
$T_{\text {MIN }}=$ shortest time constant that can be measured by instruments
The experimental observation window corresponds to

$$
\begin{aligned}
& S_{I}(f)=\frac{N_{T}}{\gamma \operatorname{tox}}\left(\frac{I}{N}\right)^{2} \cdot \frac{1}{\omega} \cdot \frac{\pi}{2}=\frac{N_{T}}{4 \gamma \operatorname{tax}}\left(\frac{I}{N}\right)^{2} \frac{1}{f}
\end{aligned}
$$

Experimental measures saw $1 / f$ relationship. Now we have a link between $1 / f$ and the superposition of Lorention shapes:

Let's rewrite the formula to be more weaning fol to designers:

$$
I=K V_{O V}{ }^{2}
$$

MOSFET current
$N=\frac{C_{0 x}^{\prime} W L}{q}\left(V_{u}-V_{T}\right)$ * corries in the conductive chsuncl

$$
N_{T}=n_{T} \cdot W L t_{0 x}
$$

$n_{T}=$ average trap olemsity per unit volume
within the oxide
So:

$$
\begin{aligned}
& =\frac{n_{T} q^{2} \mu}{8 \gamma C_{o x}^{\prime}} \cdot \frac{I}{L^{2}} \cdot \frac{1}{f}=\underline{K_{I} \cdot \frac{I}{L^{2}} \cdot \frac{1}{f}=S_{I}(f)}
\end{aligned}
$$

Refer this to a voltage input noise:

$$
\begin{aligned}
& S_{v} \mathrm{gu}^{2}=S I \rightarrow S_{V}=\frac{S_{I}}{g \mu^{2}} \text { where } g \mu_{1}=2 K \text { nov } \\
& \delta v=\frac{K_{I}{ }^{\prime} f}{\left(2 K V(Q)^{2}\right.} \frac{K \nu \sigma^{2}}{L^{2}} \cdot \frac{1}{f}=\frac{K_{I} / f}{4 \cdot \frac{1}{2} \mu c^{\prime} \circ \times \frac{W}{L} \cdot L^{2}} \cdot \frac{1}{f}= \\
& =\frac{K_{I}{ }^{1 / f}}{2 \mu} \cdot \frac{1}{c^{\prime} \operatorname{ex} W L} \cdot \frac{1}{f}=\frac{K_{V}{ }^{\prime} / f}{c^{\prime} \text { ox WL }} \cdot \frac{1}{f} \\
& \left.S_{I}^{1 / f}=K_{I}^{1 / f} \cdot \frac{I}{L^{2}} \cdot \frac{1}{f}\right) \quad S v^{1 / f}=\frac{K_{v}^{1 / f}}{c^{1} 0 \times W L} \cdot \frac{1}{f}
\end{aligned}
$$

The latter is the Tsvidis formula

To lower Ibis nereus worsening therunl noise. We could increase WL. This urges sense because the langer amen wakes the statistical Variations and coptures/emission count less with respect to the noise Notice the similarity with Pelgrom's formula
23) Introduction to filters: ideal. Limits. Group delny/distortion

Aunlog filters select harwouics or dinge the phase relations between harubvics. Ideal filters would select (brichwnh) and attenuate with a rectangle shape:

A rect in frequency downin corresponds to a sine in time donn \rightarrow this mems that in order to be able to have a ovichwoll filter, we would need to see the future. Therefore these con't be implemented.
Idenly the requirements for a filter are:

- Flat response in the band-pass $\left.|H(f \cdot w)|\right|_{\mathrm{pe}}=A$
- No phase distortion between harmonics at the output.

These translate to :

$$
x_{1 N}(t)=A \sin \left(w_{1} t\right)+B \sin \left(w_{2} t\right)+C \sin \left(\omega_{8} t\right)
$$

Filter wis hormomics offer $\omega_{2},|H(j \omega)|_{B P}=G$ so:

$$
\begin{aligned}
X_{\operatorname{lovt}}(t) & \left.=A G \sin \omega_{1}(t-\tau)\right)+B G \sin \left(\omega_{2}(t-\tau)\right) \\
& \mid \\
& =A G \sin \left(\omega_{1} t-\omega_{1} \tilde{\imath}\right)+B G \sin \left(\omega_{2} t-\omega_{2} \tau\right)
\end{aligned}
$$

We cam see that to have constant delay applied to all harmonics we need to apply a proportional phase shift ;

$$
\varphi_{1}=-\omega_{1} \tilde{\tau} \quad \varphi_{2}=-\omega_{2} \uparrow \rightarrow \varphi=-\omega \tilde{\sim}
$$

From that, we cm define the group delay os $\tilde{T}=-\frac{\varphi}{\omega} \quad T_{G D}=-\frac{d \varphi(\omega)}{d \omega}$ vo sf the plnse of the fitter is constant $(\varphi=-\omega \tilde{T})$. If wot, we unve a uni percentage allowable an group delay
24) LPF. Mask, Esp, Ese, K, Me, n, Butterwortle, Cheby....

Since we don't have ideal filters, we hare to select the limits to properly size the rent annlog filter \rightarrow masks!

$\omega_{B P}=$ band -pass frequency
$\omega_{S B}=$ stop.bound frequency
$A B P=$ unximiom attemuntion allowable in baud

Filter families
ASB = minimum attenuation req vised in stop -bour

All-poles: Butterwarth, dlebysher type 1, bessel poles + zeros: Chebyshev type 2, Caver, genernlized dliptic LPF usk - Butterworth \longrightarrow out of bant ripple in/aut ripple independent in baud out of board ripples
For a particular butterworth function, we know from Literature that

For $\omega \leq$ wee we have $A_{B P}=\mid d B$ so $\frac{1}{|\Delta(\omega)|} \geqslant \frac{1}{|A B P|}$
Therefore $|D(w)|_{w \leqslant w_{B P}} \leqslant A_{B P} 1+\left(\frac{w_{B P}}{w_{0}}\right)^{2 n} \leqslant\left(A_{B P}\right)^{2}$
$\left(\frac{\omega_{B P}}{\omega_{0}}\right) \leqslant \sqrt{A_{B P}{ }^{2}-1}=\varepsilon_{B P}$ defined for a st order filter For a higher oroler $:\left(\frac{\omega_{B P}}{\omega_{0}}\right)^{n} \leqslant \varepsilon_{B P} \rightarrow \frac{\omega_{B P}}{\omega_{0}} \leq \varepsilon_{B P}^{1 / n}$
If $A_{B P}$ is expressed in $d B \rightarrow \varepsilon_{B P}=\sqrt{10^{\frac{A B P}{10}-1}}$

We can do the sone rensouing for the slopbound our t obtain (for a List order butterwarth)

$$
\left(\frac{U_{S B}}{W_{D}}\right)>\underline{\sqrt{A_{S B}^{2}-1}=\varepsilon_{S B}} \text { for a higher order } \frac{W_{B P}}{w_{0}}=\varepsilon_{S B}^{1 / n}
$$

We can now define two coefficients:
$U \varepsilon=\frac{\varepsilon_{B P}}{\varepsilon S B}$ called discrimination coefficient
$K=\frac{W_{B P}}{W_{S B}}$ called selectivity coefficient
Since $W_{S B}>W_{B P}$ ar $\varepsilon S B>\varepsilon_{B P} \rightarrow K_{B}, K_{E}$ are always <1
For a n order filter we can write
$\frac{W_{B P}}{\omega_{S B}} \leq\left(\frac{\varepsilon_{B P}}{\varepsilon_{S B}}\right)^{1 / n} \rightarrow K \leq K_{\varepsilon}^{1 / n}$ we caul olvop the
exponent and find the filter order for Butterworth:

$$
\underbrace{\ln u}_{<0} \leq{\underset{>0}{n}<0}_{\frac{1}{n} k_{\varepsilon}}^{\ln } \underset{\sim}{\ln k} \rightarrow \frac{\ln k_{\varepsilon}}{} \text { because } k_{1} k_{\varepsilon}<1
$$

Once we set the filter order, we cam wove so so that we untoh requirements, for example:

\rightarrow The n that touches both ABP, ASB is $n=1,2$. The real implementable filter needs to be $n \geq 2$
$n=2$ dsesut touch both paints. We therefore need to move wo so that we meet some given requirements (ASB, ASB + margin and so on). To do this, we do:

$$
\Delta w_{0} \rightarrow
$$

choose the swanted wo

For a Chebysher it is $n \geq \frac{\operatorname{cn}^{-1}\left(k_{\varepsilon}^{-1}\right)}{\left(k^{-1}\left(k^{-1}\right)\right.}$
Type of filters
Botterworth: requirement of maximum flatness in passbourd.
 The result is that all poles stay on the circle and ave either complex-cong or complex-couf + one real pole (for odd order filters)
pole pairs will have $s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2} \quad Q=\frac{1}{2 \zeta}$
Bessel: used for a very smooth purse deppeunlauce in

Cleby slew type 1: Used to have even more sharpness in
 cutoff but allowing in-bourd ripple It's the result of a sum of real poles + pealing poles \rightarrow generation of in-bourd ripple still all-poles filter
Clebysher type 2: zeros in the function alow for a flat in-band response but generating ripples in the out-of-bowr Caver steeper wt tum cheby type 2 but now we have in-bound + aut-of-bounl ripple. Also ASB, ABP count be set independent ll
Jeveralized elliptic: Steeper tim caver with inhepernlent Abr, ASB Issue: worst phase response
25) Mapping: HP to LP, BP-to LP trousforuntious

For a LPF, we cam unp the frequency axis to a normalized frequency $a x$ is, where $\omega_{B P}=1 \mathrm{rad} / \mathrm{s}$
To emphnsize the two wnsks, use $\Omega_{B P}=$ Arad, therefore

aud $\Omega_{S B}=\frac{\omega_{S B}}{\omega_{B P}}$
The norunlization procedure is helpful for designing all types of filters $(L P, H P, B P, \ldots)$. The process is:

$$
\left[\begin{array}{l}
\text { filter unsK} \\
\text { specs }
\end{array}\right] \rightarrow\left[\begin{array}{l}
\text { Norunlized } \\
\text { reference unsk }
\end{array}\right] \rightarrow\left[\begin{array}{l}
\text { Network } \\
\text { transfer } \\
\text { function }
\end{array}\right] \rightarrow
$$

$$
\rightarrow\left[\begin{array}{l}
\text { circuit } \\
\text { implementation }
\end{array}\right] \rightarrow\left[\begin{array}{l}
\text { power/ubise } \\
\text { distortion } \\
\text { triming }
\end{array}\right] \rightarrow \text { fitter is complete }
$$

Having the worwnlized pornmeters, we com apply a Kin of backword transformation to obtain the wouted response: from the norunlized filters)

Notice that the trousforuntions wake sense when the arriving filter is compared with the normalized Low pass These trausforuntions com now be applied to the norunlized LP EP. Example: consider a Sst order Butterworth:

$$
\begin{array}{r}
\left.T(\hat{s})\right|_{L P}=\frac{1}{1+S}
\end{array}=\frac{1}{1+\frac{\hat{S}}{\Omega_{0}}}
$$

$$
\begin{aligned}
& \left.\begin{array}{ll}
L P(j \omega) \rightarrow L P(j \Omega) & \hat{S}=S / \omega_{B P} \\
H P(j \omega) \rightarrow L P(\jmath \Omega) & \hat{S}=\omega_{B P} / S
\end{array}\right] \text { intuitive } \\
& \left.B P(j \omega) \rightarrow L P(j \Omega) \quad \left\lvert\, \begin{array}{ll}
\hat{s}=\frac{Q}{\left(s^{2}+\omega_{0}\right)^{2}} & s \omega_{0}
\end{array}\right.\right] \text { see later }
\end{aligned}
$$

To get to a HP we apply $\hat{S}=\omega_{B P} / \mathrm{s}$ so

$$
T(S)=\frac{1}{1+\frac{1}{\Omega_{0}} \cdot \frac{W_{B P}}{S}}=\frac{S \Omega_{0} / W_{B P}}{1+\frac{S \Omega_{0}}{W_{B P}}}
$$

To get to a BP insten:
$T(s)=\frac{1}{B P F}$ if we call $Q_{p}=\frac{Q}{\Omega_{0}}$ we will end $1+\frac{Q}{\Omega_{0}} \frac{\left(s^{2}+w_{0}^{2}\right)}{s w_{0}}$ up with the dassic BPF response:

$$
=\frac{s w_{0} / Q_{p}}{\frac{s^{2}}{w_{0}^{2}}+s \frac{w_{0}}{Q_{p}}+1}
$$

Example: $3 r d$ order Bubterworth:
$H(\hat{s})=\frac{1}{(p+1)\left(p^{2}+p+1\right)} \quad \sim-3 d B$ cot at $\mathrm{srod} / \mathrm{s}$
Expansion af the freq axis $p=\frac{\hat{S}}{\Omega_{0}}$

$$
H(\hat{s})=\frac{1}{\left(\frac{\hat{s}}{\Omega_{0}}+1\right)\left(\left(\frac{\hat{s}}{\Omega_{0}}\right)^{2}+\frac{\hat{s}}{\Omega_{0}}+1\right)}=\frac{\Omega_{0}^{3}}{\left(\hat{s}+\Omega_{0}\right)\left[\hat{s}^{2}+\Omega_{0} \hat{s}+\Omega_{0}^{2}\right]}
$$

Finally, we need another shift $\hat{s}=s / \mathrm{WBP}^{\prime}$

$$
\begin{aligned}
H(s) & =\frac{-\Omega_{0}^{3}}{\left(\frac{s}{\omega_{B P}}+\Omega_{0}\right)\left(\frac{s^{2}}{\omega_{B P}}+\Omega_{0} \frac{S}{\omega_{B P}}+\Omega_{0}^{2}\right)}= \\
& =\frac{\left(\Omega_{0} \omega_{B P}\right)^{3}}{\left(S+\Omega_{0} W_{B P}\right)\left(S^{2}+\left(\Omega_{0} W_{B P}\right) S+\left(\Omega_{0} \omega_{B P}\right)^{2}\right)}
\end{aligned}
$$

BPF trausformention derivation $L P \rightarrow B P$
A norwnlized BP com be derived from a LP with $\hat{s}=\hat{p}+\frac{1}{\hat{p}}$ where $\hat{s}=\lambda+j \Omega \hat{p}=\alpha+j \omega$ are two
complex variables, so:

$$
\begin{aligned}
& \frac{-\hat{p} \hat{s}+\hat{p}^{2}+1=0}{\alpha+j \omega=\frac{\Lambda+d \Omega}{2} \pm \frac{\hat{p}=\frac{\hat{s} \pm \sqrt{\hat{s}^{2}-4}}{2} \rightarrow \Omega^{2}+2 \tilde{}}{2} \rightarrow \text { devebp this }} \\
& 2
\end{aligned}
$$

Since were interested in tramsforuntions using ω and Ω, focus just on the iungivary $a \times$ is $\rightarrow \Omega=0$:

$$
\begin{aligned}
& \alpha=0 \\
& J \omega=J \frac{\Omega}{2} \pm J \sqrt{\frac{\Omega^{2}+4}{2}} \\
& \omega=\frac{\Omega}{2} \pm \sqrt{1+\left(\frac{\Omega}{2}\right)^{2}}
\end{aligned}
$$

We therefore conclude thant a single Ω point unis on two points in the w axis. It is:

$$
\underline{\Omega=0} \rightarrow \omega_{1,2}= \pm 1 \quad \Omega=1 \rightarrow \omega_{1,2}=\frac{1}{2} \pm \sqrt{1+\frac{1}{4}}=\sum_{-0,62}^{+1,62}
$$

This mems thant:

So we com clearly see that for $\Omega=0 \div 1$ we ump a LPF to a BPF. We call set the Usual values for the LPF mask oud them retvasform everything

$$
\begin{aligned}
& f_{\theta}=\sqrt{f_{B P}^{+} f_{B P}} \\
& \text { See that we hare a Q } Q=\frac{f_{0}}{B W} \text { factor. } \\
& \text { We need to connect that to the }
\end{aligned}
$$

Whipping, so we cm use $\hat{S}=Q\left[\hat{p}+\frac{1}{\hat{p}}\right]$

A's usual we apply the transformation needed to set w_{0} as the center BPF frequency:

$$
s=\omega_{0} \hat{p} \rightarrow \hat{p}=\frac{S}{\omega_{0}} \rightarrow \hat{s}=\mathbb{Q}\left[\hat{p}+\frac{1}{\hat{p}}\right]=Q\left(\frac{s^{2}+w_{0}^{2}}{\omega_{0} s}\right)
$$

This is ivrleed the transforwntian listed in the previous table.
26) Active cells: sk cell. Sizing + sensitivity

To build the circuits for the wanted trousfer function we need active cells so that we cam casande them easily:

$$
\begin{aligned}
& \operatorname{Vout}(s)=T_{1} \cdot T_{2} \cdot T \ldots \operatorname{VIN}(s) \\
& M_{c_{1}}^{R_{1}}\left\|_{1}\right\|_{R_{2}}^{R_{2}} T(s)=\frac{1+s R_{2} c_{2}}{1+s R_{1} c_{1}}
\end{aligned}
$$

Pole + zero cam be implemented
Using a single opaup, but how about a complex pole pair?
Galen - Very cell

\Rightarrow This is the purverful point of the

Even though Gloop is positive, the root lows shows a stable our unstable region. If $K \gg \rightarrow$ unstable.
Well solve the poles by deriving Gloop(s)-1=0:

To bypass the zero in the origin, use R^{*} oud then $R^{*} \rightarrow+\infty$

$$
\begin{aligned}
& b_{2}=C C_{2}\left(R_{1} \| R^{*}\right) R_{2} \\
& b_{1}=C\left(R_{1} \| R^{*}\right)+C_{2}\left(R_{2}+R_{1} \| R^{*}\right) \quad \rightarrow C C_{2} R_{1} R_{2} \\
& a_{1}=C R^{*} \quad \rightarrow C R_{1}+C_{2}\left(R_{1}+R_{2}\right) \\
& G \operatorname{Gloop}(s)=K \quad \frac{s R_{1}^{*} \cdot S}{S^{2} C C_{2} R_{1} R_{2}+s\left[C R_{1}+C_{2}\left(R_{1}+R_{2}\right)\right]+1}
\end{aligned}
$$

Compute now G bop $(s)-1=0 \rightarrow$

$$
\begin{aligned}
& s^{2} R_{1} R_{2} C C_{2}+s\left[(1-k) C R_{1}+C_{2}\left(R_{1}+R_{2}\right)\right]+1=0 \\
& \omega_{0}=\frac{1}{\sqrt{R_{1} R_{2} C C_{2}}}
\end{aligned} \quad C=\frac{\sqrt{R_{1} R_{2} C C_{2}}}{(1-k) C R_{1}+C_{2}\left(R_{1}+R_{2}\right)}
$$

To exploit the depentance of \mathbb{Q} on R, C, rewrite Q :

$$
Q=\frac{\sqrt{\frac{R_{2}}{R_{1}} \frac{C_{2}}{C_{1}}}}{(1-V)+\left(1+\frac{R_{2}}{R_{1}}\right) \frac{C_{2}}{C_{1}}}
$$

While $w_{0}=\frac{1}{\sqrt{R_{1} R_{2} C_{2}}}$

Wo depeurts on absolute R, C values (and misuantches!) , Q depends on rehtive wiswntch between $R_{2}, R_{1} / C, C_{2}$

If we size R, C areas to be big, variability lowers with amen $\left(\frac{1}{\sqrt{W L}}\right)$ so filter ω_{0}, Q will change less

Sk with equal values or components

$$
K=\frac{R_{B}}{R A}+1 \quad R_{1}=R_{2}=R \quad C=C_{2}=C
$$

$$
\omega_{0}=\frac{1}{R C} \quad Q=\frac{1}{3-k}
$$

If $K \Pi \nearrow$, poles become complex conjugate as they toke off from the root laws. For $Q>0,5$ we have comp. conjugates
 Since $u=1 \rightarrow+\infty$ Q goes from $\frac{1}{3}$ to $+\infty$

As we cam see, to get high Q we need $k \sim 3$, but $\frac{d Q}{d K}=\frac{1}{(3-K)^{2}} \rightarrow \frac{d Q}{Q}=\frac{1}{(3-K)^{2}} \frac{K}{Q} \frac{d K}{K} \rightarrow$ express as a

$$
\begin{aligned}
& Q=\frac{1}{3-K} \rightarrow K=3-\frac{1}{Q} \text { therefore } \\
& \frac{1}{\left(\not Q-\not D-\frac{1}{Q}\right)^{2}} \cdot \frac{1}{Q} \cdot\left(3-\frac{1}{Q}\right)=\left(3-\frac{1}{Q}\right) Q \rightarrow \frac{d Q}{Q}=\left(3-\frac{1}{Q}\right) Q \frac{X U}{K}
\end{aligned}
$$

The last formula shows that for a misuntch of K, the relative variability of Q increases as Q increases, this unkes sense if we bok the high slope in the Q/K plot (previous page).

To bypass this, we see whit mppens if we fix k (buffer) :

$$
W_{0}=\frac{1}{R C \sqrt{n}} \quad Q=\frac{\sqrt{n}}{2}
$$

We com derive $\frac{d Q}{Q}=\frac{1}{2} \frac{d n}{n}$
We can see that now relative variability of Q deesn't chmuge.
However, to get high $Q n \gg 1 \rightarrow n C$ occupies a large area See addition notes to see why SM cell is so power pul!
27) Universal cell: bb ch diagram + Tow Thouns

$\frac{\operatorname{Vout}(S)}{\operatorname{ViN}(S)}=\frac{1}{S R C}$ from previous courses we found our that lis is unstable (by itself).
Let's do some ungic: HPF design

$$
\begin{aligned}
& T(s)=\gamma \frac{s^{2}}{s^{2}+\frac{\omega_{0}}{Q}+\omega_{0}^{2}} \\
& \\
& V_{\text {OUT }}\left(1+\frac{\omega_{0}}{S Q}+\frac{W_{0}}{s^{2}}\right)=\gamma V_{\text {IN }} \rightarrow \frac{\gamma}{1+\frac{\omega_{0}}{S Q}+\frac{\omega_{0}}{s^{2}}}
\end{aligned}
$$

We expbited the $T(s)$ by using single integrators

$$
\begin{aligned}
& V_{H P}=V_{1 N} \frac{2 \cdot R_{4}}{R_{1}+R_{4}}+V_{B P} \int \frac{1 / Q}{\frac{2 R_{1}}{R_{1}+R_{4}}}-V_{L P} \rightarrow \text { Using superposition } \\
& \gamma=\frac{2 R_{4}}{R_{1}+R_{4}} \quad \gamma Q=\frac{1+\frac{R_{4}}{R_{1}}}{2} \rightarrow \gamma=\frac{R_{4}}{R_{1}} \cdot \frac{1}{Q}
\end{aligned}
$$

If Q is set, then γ will be linked to Q with R_{4} / R_{1}

The procedure is helpful to build wintever function:

$$
T(s)=\frac{s^{2}+\frac{w_{z}}{Q z} s+w_{2}^{2}}{s^{2}+\frac{s w_{0}}{Q}+w_{0}^{2}}=s p l i t=\frac{s^{2}}{()}+\frac{s w_{z / a}}{()}+\frac{w_{z}^{2}}{c)}
$$

We can always use the gevernl cell and then proceed with a weighted sum to get the wanted output

Tow Thous
It is possible to simplify the system even urve by exploiting the sum of currents at integrator inputs. We switde from voltage to current by using am arbitrary resistor R^{*}

However, the V Hp node will be missing therefore the circuit con implement BPF and LPF only

Notice that we still need a -1 gain. This is not a problem for Gully differential opamps

Filter variability
The wore filters we cascade to get the proper (high number of poles/zeras) Eronsfrer function, the higher we will be subjected to vowiobility of components. For example consider $Q=\left(\frac{R_{4}}{R_{1}}+1\right) \frac{1}{2} \rightarrow \frac{d Q}{Q}=1 \frac{d\left(R_{4} / R_{1}\right)}{R_{4} / R_{1}}$
Q is sensitive to the ratio of resistor, which is better them the absolute value of the two In wo we clearly see thant $\frac{\Delta T}{T}=\frac{\Delta Q}{Q}$
The relative T variation is directly coureched to

the relative Q variation. If we consider the absowhe Tvaninhion

$$
\begin{gathered}
\Delta T=T \frac{\Delta Q}{Q}=\sum_{\mathcal{Q}} \frac{\Delta Q}{Q}=\mathbb{Q} \frac{d\left(R_{H} / R_{1}\right)}{\left(R_{H} / R_{1}\right)} \\
\left.\simeq T\right|_{\omega=w_{0}}=Q
\end{gathered}
$$

We see tint the absolute variation of T increases for an increasing Q given a fixed $\frac{d\left(R_{4} / R_{1}\right)}{R_{4} R_{1}}$
If $\frac{\Delta R}{R}=\frac{K_{R}^{\prime}}{\sqrt{W_{L}} \frac{1}{\sqrt{2}}}$ then $\frac{d R_{H} / R_{1}}{R_{H} / R_{1}}=\frac{d R_{4}}{R_{H}}+\frac{d R_{1}}{R_{1}}=\frac{K_{R}!}{\sqrt{2 W_{H} L_{1}}}+\frac{K_{R}!}{\sqrt{2 W_{1} L_{1}}}$
Where $K_{R}^{\prime}=K_{R} \sqrt{2}$ given by manufacturer
Use see that for a redwad variation we need large oren of silicon. Small dinges on a large area will be more negligible with respect to a sural area resistor
28) Ladder Networks: Ordand theorem, implementation.

Flow graph. Denormelizatian
Consider a lossless networK (L,C ave ideal) in a doubly terminated net work K :

At the peaks of the trousper function, the reactive elements
resounte in a way thant the impedance seen $Z_{i n}$ will be R. The power delivered to the lond will then be wrximum our d its derivative will be nil:
$P_{L}=\frac{V_{1 / N}^{2}}{2 R}\left|T\left(j \omega, X_{0}\right)\right|^{2}>$ renetive eleuleuts
This mems tint no untter whit, the reactive elements on the peaks wont give any contribution \rightarrow their
Variability will be negligible.
Exploit the derivative of the power:

If power is maximum, the tromsfer fouction is on a perk
the transfer function depends also on reactive elements X, but when the $P_{L}=w n x$ only R remains, there fore also the derivative on reactive elements is nil:

$$
\left.\frac{\partial P_{L}}{\partial x}\right|_{x=x_{0}}=\cdots \frac{\partial}{\partial x}|T(j \omega, x)|_{\begin{array}{l}
w=\omega_{p e a k} \\
x=x_{0}
\end{array}}=0
$$

The last canditiau is a very powerful result our d it's called Ordains Theorem.
Example: III order cheby implemented with ladder V.S. SK cell. Consider a 10% variation of a single capacitor:

See that peaks move slightly (ω_{0} chrriges), but the peak hight wont be affected because $\left.P_{L}\right|_{\text {max }}=\frac{V_{\mathbb{N}^{2}}}{2 R}$
29) Implementation with gyrators

The issue here is to implement the filter without the Use of inductors.

$$
\begin{aligned}
& v_{2}=\left(i_{s}+S C R_{\text {is }}\right) R=i s R+S C R^{2} \text { is } \\
& v_{s}=v_{2}+v_{1}=2 \text { is } R+S C R^{2} i s \\
& z_{\text {iN }}=2 R+S C R^{2}=R \text { eq }+ \text { s Leq } \\
& R_{\text {eq }}=2 R \quad L_{\text {eq }}=C R^{2}
\end{aligned}
$$

Other Kinds of gyrators:

$$
\begin{aligned}
& \text { A Mex }
\end{aligned}
$$

Issues with gyrators: finite OT A Rovi, misuntches on gen, noise (we use active elements), distortion, BW is limited becanse of the GBWP of OTAs, voltage swing is limited,
 The real inductor usdel will be sourething like $\frac{b R}{\frac{b}{\mid}}$ 28 part T) Flowgroph procedure

1) highlight all wrrents and voltages
2) Exploit the integration

Link between reactive elements I_{1}
+11

3)

Then, storting from the integrator input, link all the Variables by coking at on the voltage/ current relations
Then, finish connecting the rest of the nodes, vote he $i_{0} \cdot R_{1}=V_{0}$ out iout $\cdot R_{2}=$ LOUT
44) It's wore convenient to sum wrrents instead of voltages (less opamps used) change $i_{0}, i_{c}, i_{1}, i_{2}$, iout into voltages and adjust everything

5) Continue with the current som

6) Find step: adjust the sign for inverting integrotors

We cal now implement the rent circuit

$$
R_{x}+R_{y}=\frac{R^{*^{2}}}{R_{2}} \quad \frac{R_{y}}{R_{x}+R_{y}}=\frac{R_{2}}{R^{*}} \rightarrow R_{x}=\frac{R^{*^{2}}}{R_{z}}-R^{*} \underline{R_{y}=R^{*}}
$$

$$
C_{1}=L_{1} / R^{* 2} \quad C_{2}=L_{2} / R^{* 2}
$$

Demorunlization procedure
Ladder networks ave usually listed for $1 \mathrm{Var} / \mathrm{s}$. To shift the filter wraf we need to sente components so that we cam hive the proper wo and a renustic a pacitor size. For example:

$$
\int_{\frac{1}{s}}^{M^{R} \frac{1}{2} \frac{1}{T c} \frac{1}{=} R} \rightarrow T(s)=\frac{1}{2} \frac{s \frac{w_{0}}{Q}}{\left(s^{2}+s \frac{w_{0}}{Q}+w_{0}^{2}\right)}
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}} \quad Q=\omega_{0} \frac{R}{2} \cdot C
$$

To shift from $1 \mathrm{rnd} / \mathrm{s}$ to wo we need

$$
\omega_{0}^{\prime}=N \frac{1}{\sqrt{C^{0} L^{0}}} \rightarrow \omega_{0}^{\prime}=\frac{1}{\sqrt{\frac{C^{0}}{N} \frac{L^{0}}{N}}} \quad c^{\prime}=\frac{c^{0}}{N} \quad L^{\prime}=\frac{L^{0}}{N}
$$

$$
Q^{\prime}=\forall W_{e} \cdot \frac{R}{2} \cdot \frac{C}{A}=Q^{0} \sim Q \text { obesit change }
$$

To dinge Resistor size we need to: Keep the same Q without clanging wo, so
$R^{\prime}=M R^{0} \rightarrow Q^{\prime}=w_{0} \cdot \frac{R \cdot \pi}{2 R^{\prime}} \cdot \frac{C^{0}}{\pi} \not$ we need to divide C unchanged $2 R^{\prime} \pi$ by Π so that $Q^{\prime}=Q^{0}$
If $C^{\prime \prime}=\frac{C^{0}}{N \cdot \pi}$ then $L^{\prime \prime}=\frac{\pi}{N} L^{0}$ so wo does nt chnuge
30) Dymnuic Range: ENOB, guidelines to realuce unise floor

This result is obtained using a wiseless opamp, if

$$
A=\frac{V_{D D}}{2} \rightarrow h_{a} l p \text { range }(S N R)^{2}=\frac{V_{D D}^{2} / 8}{\frac{K T}{c}}
$$

With noisy opomps $\rightarrow(S N R)^{2}=\frac{V_{\Delta D^{2}} / 8}{\frac{V T}{c}(1+F)}$ Where F
is an additiounl noise factor
that olegrodes the SNR because of active elements Tore in general, if signal amplitude is lower:

$$
S N R=\sqrt{\frac{\alpha^{2} U_{D D}^{2}}{\frac{u T}{c}(1+F)}}=D R \text { dyunuric range }
$$

For a given frequency wraf: If cगノ, $R \Delta b \rightarrow$ Sr to. Higher capacitor voles minimize the noise.
If the system is connected to cm ADC:

$$
\begin{aligned}
& \frac{2^{n} \geq \Delta R}{} n \geqslant \log _{2} \Delta R=\frac{\log _{10} \Delta R}{\log _{10} 2} \quad n \geq \frac{\Delta R / d B}{6 a B} \\
& D R d B=20 n \log 2=6,02 d B \cdot n
\end{aligned}
$$

$\frac{\text { Noise - power dissipation } \operatorname{lin} K}{\alpha \text { VBA }}$

We need to calculate the energy dissipated per cycle.
We're taking charge from power supply Vas
$\varepsilon_{\Delta I S S}=\underbrace{\alpha V_{D D} \cdot C}_{Q} \cdot V_{\substack{ \\\text { supply }}}^{\substack{\text { cycle }}}$ for a complete $\quad P_{D i s s}=\frac{\alpha V_{D D^{2} C}}{T S}=\alpha V_{D D^{2} C} f_{S}$

Opamp noise

We writ to calculate all the contributions to the output noise

$$
G=-\frac{R}{R_{1}} \quad w_{0}=\frac{1}{R C}
$$

- Re: BOUT $=4 K T R_{1} G^{2}\left|\frac{1}{1+\frac{S}{W_{0}}}\right|^{2}=\alpha K T R_{1} G^{2} \cdot \frac{\omega_{0}}{4}$
- R: SLUT $=$ HKTR $\cdot \frac{W_{0}}{H}$
- opaup: noise gen at v^{+}sees a different transfer funchinu:

$$
T(s)=1+\frac{R}{R_{1}} \frac{1+s\left(R / / R_{1}\right) C}{1+s R C}
$$

Sort can be seen as a superposition of two contributions

This is however just an approxiuntion (total noise will be Lower \rightarrow Look at tables to find the correct estimate) - Lastly input noise will lend to gout $=\operatorname{Sin} \cdot G^{2} \frac{w_{0}}{4}$

We finally call compare the various sources to input noise:

1) Use low R_{1} values as it directly compares with input noise
2) Increase G? Not bad because a higher gain incuenses input noise as well as input sign
3) G does not have any influence $\left(\frac{1+G^{2}}{G^{2}} \sim 1\right) \rightarrow$ Just select a Low mise oparup so that $G^{2} S V A \ll S$ IN
4) Gain reduces this contribution. $\omega_{u}=\frac{G B W P}{g \pi}$ so $\omega_{0} \omega_{0}$ world lower noise. However $2 \pi G B W P=w_{0} \operatorname{so}_{0}^{2 \pi}$ it's definitely a bod idea.
Instead, we could add a LPF at the output that cots at wo with the sunll contribution of $\frac{K T}{C}$
Note: $\quad S_{V A}=\frac{8 X T X}{\text { gM }}\left(\frac{3}{2}\right) \rightarrow$ Lower SVA mems higher gen therefore higher power dissipation (bias corneut $\nexists 1$)
5) Impact of Oponep nou-idenlities on wo aud Q for

$$
\left.\frac{1}{\beta}=1+\frac{\omega_{0}}{s} \quad A(\omega) \right\rvert\,=\frac{A_{0}}{1+s \tau_{0}}
$$

$$
g_{G} \operatorname{lop}(s) \longrightarrow A_{0} \cdot f_{x}=1 \cdot \frac{1}{2 \pi R C} \longrightarrow f_{x}=\frac{1}{2 \pi A_{0} R C}
$$

GBWP Gloop is >1 in the range

$$
f^{x} \text { and } \frac{1}{2 \pi R C}
$$

For om ideal integrator: $\rightarrow-\omega_{0} / \mathrm{s} \rightarrow$
With the red one
we get:

$$
\omega_{x}=\frac{V}{A_{0} R C} \quad \omega_{0}=2 \pi G B \omega P
$$

AORC $=\omega_{0}$
Let's use this in the biquard cell.
$\left.T(s)\right|_{B I Q U A D}=\frac{W_{0}^{2}}{s^{2}+s \frac{W_{0}}{Q}+W_{0}^{2}} \rightarrow$ highlight the iutegrotrors

$$
=\frac{\left(-\frac{w_{0}}{s}\right)^{2}}{\left(-\frac{w_{0}}{s}\right)^{2}-\frac{1}{Q}\left(-\frac{w_{0}}{s}\right)+1}=\frac{H_{\text {INT }}^{2}(s)}{H_{\operatorname{INT}(s)}^{2}-\frac{1}{Q} H_{\text {INT }}(s)+1}
$$

with the usual topology:

Where now Hint (s) takes into accovut real integrators

The full trousfor function is difficult to ounlyze, so split the annysis with the two poles:

$$
\begin{aligned}
& \xrightarrow[\omega_{L}]{\omega_{0}} \xrightarrow[\omega_{0}]{\text { A (2) }} \\
& T^{\prime}(S)^{(2)}=\frac{\frac{1}{\left(\frac{1}{A_{0}}+\frac{S}{\omega_{0}}\right)^{2}}}{\frac{1}{\left(\frac{1}{A_{0}}+\frac{S}{\omega_{0}}\right)^{2}}+\frac{1}{Q\left(\frac{1}{A_{0}}+\frac{S}{\omega_{0}}\right)}+1} \\
& =\frac{W_{e^{2}}}{s^{2}+s w_{0}\left(\frac{1}{Q}+\frac{2}{A_{0}}\right)+\omega_{0}^{2}\left(1+\frac{1}{Q A_{0}}+\frac{1}{A_{0}^{2}}\right)}
\end{aligned}
$$

$$
w_{0}^{\prime}=\omega_{0} \sqrt{1+\frac{1}{A_{0} Q}+\frac{1}{A_{0}^{2}}} \rightarrow \text { for } A \rightarrow \infty \rightarrow \omega_{0}^{\prime}=\omega_{0}
$$

\rightarrow for finite $A_{0} \rightarrow$ minor ω_{0} shift
$\frac{\omega_{0}^{\prime}}{Q^{\prime}}=\omega_{0}\left(\frac{1}{Q}+\frac{2}{A_{0}}\right)$ approx to $w_{0}^{\prime} \sim \omega_{0}$, then $\frac{1}{Q^{\prime}} \simeq \frac{1}{Q}+\frac{2}{A_{0}}$

$$
\begin{aligned}
& \frac{1}{Q^{\prime}}-\frac{1}{Q}=\frac{2}{A_{0}} \quad \frac{Q-Q^{\prime}}{Q Q^{\prime}}=\frac{2}{A_{0}} \quad \frac{Q^{\prime}-Q}{Q^{\prime}} \\
& \frac{Q^{\prime}-Q}{Q} \approx \frac{\Delta Q}{Q} \text { so } \frac{\Delta Q}{Q} \simeq-\frac{2}{A_{0}} Q
\end{aligned}
$$

We see Q factor will be quenched because of the opanup finite $A C$ gown
We cal allow a $\%$ of Q error tint is EERR $\%=\left|\frac{2 Q}{A_{0}}\right|$ thus deriving the minimum to requirement

This type of discussion cm be wide for every active cell filter.
Consider mow $\frac{\text { HINT }{ }^{\prime}=-\frac{w_{0}}{s} \cdot \frac{1}{1+\frac{s}{\omega_{0}}}}{\omega_{0}^{2}}$

$$
T(s)=\frac{s^{2}\left(1+\frac{s}{\omega_{0}}\right)^{2}}{\frac{w_{0}{ }^{2}}{s^{2}\left(1+\frac{s}{\omega_{0}}\right)^{2}}+\frac{w_{0}}{Q s\left(1+\frac{s}{\omega_{0}}\right)}+1}=\frac{w_{0}^{2}}{s^{2}\left(1+\frac{s}{\omega_{0}}\right)+\frac{w_{0}}{Q} s\left(1+\frac{s}{\omega_{0}}\right)+{w_{0}}^{2}}
$$

$$
=\frac{1}{\frac{s^{2}}{w_{0}^{2}}\left(1+\frac{s}{\omega_{0}}\right)^{2}+\frac{s}{w_{0} Q}\left(1+\frac{s}{\omega_{0}}\right)+1} \text { We get the poly }
$$

$$
\left(1+\frac{s}{w_{v}}\right)^{2}\left[\frac{s^{2}}{w_{0}}+\frac{s}{w_{0} Q\left(1+\frac{s}{w_{0}}\right)}+\frac{1}{\left(1+\frac{s}{w_{v}}\right)^{2}}\right]=0
$$

It's a $4^{- \text {th }}$ order polinomial. However if GBWP is large enough $\omega_{b} \ll \omega_{u}$, we com assume that $\frac{s}{\omega_{0}} \ll 1$ (we're interested in peal reduction thant is around wo, so $\frac{s}{\omega_{u}} \cong \frac{\omega_{0}}{w_{0}} \ll 1$), therefore we call approx:

$$
\frac{1}{\left(1+\frac{s}{w v}\right)^{2}} \approx\left(1-\frac{s}{w v}\right)^{2} \text { and } \frac{1}{\left(1+\frac{s}{w v}\right)} \approx\left(1-\frac{s}{w v}\right)
$$

This way the polynomial is reduced to:

$$
\begin{aligned}
& \frac{s^{2}}{w_{0}^{2}}+\frac{s}{Q w_{0}}\left(1-\frac{S}{w_{0}}\right)+\left(1-\frac{S}{w_{0}}\right)^{2}=0 \\
& \frac{s^{2}}{w_{0}}\left[1-\frac{w_{0}}{Q w_{0}}+\left(\frac{w_{0}}{w_{0}}\right)^{2}\right]+\frac{s}{w_{0}}\left(\frac{1}{Q}-2 \frac{w_{0}}{w_{0}}\right)+1=0 \\
& S^{2}+s \frac{w_{0}}{1-\frac{w_{0}}{w_{0}}+\left(\frac{w_{0}}{w_{0}}\right)^{2}} \frac{\left(1-\frac{w_{0}}{w_{0}} Q\right)}{Q}+\frac{w_{0}^{2}}{1-\frac{w_{0}}{w_{0}}+\left(\frac{w_{0}}{w_{0}}\right)^{2}}=0
\end{aligned}
$$

We can finnly derive $\omega_{0}^{\prime}, Q^{\prime}$:

We then have $\omega_{0}\left[\frac{1}{Q}-\frac{2 \omega_{0}}{\omega_{0}}\right] \rightarrow \frac{1}{Q!}=\frac{1}{Q}-\frac{2 \omega_{0}}{\omega_{0}}$

$$
\frac{1}{Q^{\prime}}-\frac{1}{Q}=-2 \frac{w_{0}}{w_{0}} \quad \frac{Q^{\prime}-Q}{Q^{\prime} Q^{\prime}} \simeq \frac{\Delta Q}{Q}=2 \frac{w_{0}}{w_{0}}
$$

$$
\frac{\text { Recap }}{\text { Finite } D C \text { goin }} \rightarrow \frac{\text { minor wo shift (slightly larger) }}{\frac{\Delta Q}{Q}=-\frac{2}{A_{0}} Q}
$$

Finite BW \longrightarrow minor W_{0} shift (slightly larger)

$$
\frac{\Delta Q}{Q}=\frac{2 w_{0}}{w 0}
$$

We see runt for the finite BW limit, Q is enhmuced. We therefore has twe effects, droop because of finite $D C$ and enhancement because of the finite BW.
We need to take into account all the coutributialls:

$$
\frac{\Delta Q}{Q} \cong Q\left[2 \frac{\omega_{0}}{\omega_{0}}+2 \frac{\omega_{0}}{\omega_{p_{2}}}+\cdots-\frac{2}{A_{0}}\right]
$$

Distortion

$$
y(t)=\underbrace{\alpha_{1} x_{\text {in }}(t)}_{\text {livers }}+\underbrace{\alpha_{2} x_{\text {in }}^{2}(t)}_{\text {DISTORTION }}
$$

Even though we're filtering our input horusuics, fitter distortion cam generate other harubuics, this process is combed spectral regrowth
32) SW cap filters: Motivations, concepts, implementation stray insensitive topologies
Audio range is $\mathrm{BW} \sim 10 \mathrm{KHz} \rightarrow$ with $1 p F$ capacitors we would need $210 \pi \Omega \rightarrow$ even with $R \square=2 \mu \Omega / \square$ the aven needed waved be too large for implementation. Solution \rightarrow SW capacitors

$V_{\text {OUT }}=-\frac{V_{\text {IN }}}{R C}$ with $D C$ input

(1)

(2) GND

1) Sin charges $C_{1} \rightarrow Q c_{1}=V_{i n} \cdot C_{1} \rightarrow$ sampling of $V_{1 N}$
2) C_{1} is between gund and virtual gut \rightarrow charge is transferred on $C \rightarrow \Delta Q_{C}=C_{1} V_{\text {IN }}=C \cdot V_{\text {OUT }} \quad \Delta V_{C}=\frac{C_{1}}{C} V_{\text {IN }}$
Assuming $C_{1} c_{1}$ ideal, we'll see a staircase at the output: because were continuously applying new dirge to c
$\square, \frac{C_{1} E}{C}$ slope $\frac{\Delta V_{c}}{T}$ will be $\frac{C_{1} E}{C_{T}}=\frac{\Delta V_{c}}{T}$ if

Linear annoy integrator mum is $\frac{\Delta V_{\text {OUT }}}{\Delta t}=\frac{-V_{\mathbb{I}}}{R C}$ while it is $\frac{\Delta V_{0 u r}}{\Delta t}=\frac{-V_{i N} C_{1} \rightarrow \text { We see a similarity by posing }}{T C}$

$$
R_{e q}=\frac{T}{c_{1}}=\frac{1}{f_{s} \cdot c_{1}} \rightarrow T=10 \mu s, c_{1}=1 p F \rightarrow R_{e q}=10 \mathrm{~N} \Omega
$$

It's convenient to use switdred caps
The result can be found in our alternative way by saying: $Q_{1}=C_{1} V_{\text {IN }} \quad i_{\text {average }}=\frac{C_{1} V_{I N}}{T}$ in a period T
$i_{\text {in }}=\frac{C_{1} V_{\text {IN }}}{T}$ the same hoppers for a resistor $\lambda_{\text {IN }}=\frac{V_{1 N}}{R}$
Thus deriving $R_{\text {eq }}=\frac{T}{c_{1}}$
The resulting vuity gain frequency is $\omega_{0}=\frac{1}{\operatorname{Reg} \cdot C}$

Of course (aliasing) fcoik $>B$ BW of sigual
At the some time $f c l o c k \ll G B W P$ of the amplifier in order to provide λ good virtual grout and limiting nonlinemity
Stray insensitive topologies
Integrated capacitors suffer from (ironically) parasitic capacitances:

/... Since $C_{p_{1}}>C_{p_{2}}$ (look at the picture), it's better to short it to gun.
Now only Cpa geverates issues
Rep $=\frac{T}{C_{1}+C_{p_{2}}} \sim$ We com't control $C_{p_{2}}$ value Stray con we eliminate it?

I cap is tied to vgnd during (1) ar gur owring (2)
2 cap is charged by Vine on (1), shorted by (2)
Therefore VOut will not suffer from c_{p} (ideally)

Moreover, if we now switele phases:

It's easy to see that c_{p} count contribute either.
With these switched phases, we cam also implement a non inverting integrator with ease, so Tow Thouns - R^{*} com be implemented without additions opomps
33) $\frac{S C \text { : sompling, } t f \text {, out spectrowe. Auti-duasing pilther and } f \mathrm{cn}}{\operatorname{Vin}}$

Vout spectrom: series of rectongles:

$$
\operatorname{Var}(t)=\sum_{0}^{+\infty} n \operatorname{Vor}(n T)\left\{1\left[t-\left(n-\frac{1}{2}\right) T\right]-1\left[t-\left(n+\frac{1}{2}\right) T\right] \operatorname{Vour}^{n T}(n T)\right.
$$

Laplace

$\operatorname{louT}(s)=\sum_{0}^{+\infty} \operatorname{VOUT}(n T) \frac{1}{s}\left\{e^{-s\left(n-\frac{1}{2} T\right)} e^{-s\left(n+\frac{1}{2}\right) T}\right\}$

$$
\begin{aligned}
& \text { Gavier }=\sum_{0}^{+\infty} \operatorname{VouT}(n T) \frac{1}{s} e^{-s n T}\left[e^{s \frac{T}{2}}-e^{-s \frac{T}{2}}\right] \\
& \operatorname{VavT}(j \omega) \stackrel{+\infty}{=} \sum_{0}^{+\infty} \operatorname{VouT}(n T) \frac{1}{\left(2 \omega \frac{T}{2}\right.} \cdot e^{-j \omega n T} \cdot \frac{2}{2} T\left[e^{-j \omega \frac{T}{2}}-e^{+j \omega T},\right.
\end{aligned}
$$

$$
s=j w
$$

$$
\operatorname{Vout}(j \omega)=\sum_{\sigma} \sum_{n} \operatorname{Vour}(n T) e^{-j \omega n T} \cdot T \sin \left(\frac{\omega T}{2}\right)
$$

\longrightarrow This is the nT delay of $\operatorname{Vout}(n T)$
$\operatorname{Vout}(j \omega)=\sum_{0}^{+\infty} \operatorname{Vout}(n T) e^{-j \omega n T} \Rightarrow \operatorname{VOUT}(z)=\sum_{n=0}^{+\infty} \operatorname{Vout}(n) z^{-n}$ defivition of z trousform
There fore

$$
\underline{\operatorname{VOUT}(j \omega)}=\left.\operatorname{Vout}(z)\right|_{z=e^{j \omega T} \cdot T \operatorname{sinc}\left(\frac{\omega T}{2}\right)}
$$

out put sequence
z-transform

Filter transfer function $H(z)$
We now need to find the relation between Yin our Vour:

@ tive=n

$$
Q_{c}=C_{1} \cdot V_{1 N}
$$

$$
\operatorname{Vout}(n+1)=-\operatorname{Ve}(n+1)
$$

Therefore we cam write

$$
\begin{aligned}
& \operatorname{VOT}(n+1)=\operatorname{VOUT}(n)-\operatorname{Vin}(n) \frac{c_{1}}{c} \Delta \\
& \operatorname{VOT}(z) z=\operatorname{VOUT}(z)-\operatorname{Vin}(z) \frac{c_{1}}{c} \rightarrow \frac{\operatorname{VOT}(z)}{\operatorname{Vin}(z)}=-\frac{c_{1}}{c} \frac{1}{z-1}
\end{aligned}
$$

$H(z)=-\frac{c_{1}}{c} \frac{1}{z-1}$ no sampled trausfer
function of the circuit

Total output spectrum

$$
\operatorname{VouT}(j \omega)=\left.\operatorname{Vin}(z) \cdot H(z)\right|_{z=e^{j \omega T} \cdot T \sin c}\left(\frac{\omega T}{2}\right)
$$

Where :

transform of $V_{\text {IN }}(t) \sum_{n=-\infty}^{+\infty} \delta(t-n T) \sim$ sampled $V_{\text {IN }}$

Therefore:
(*) Sampling in time dounsin \rightarrow replicas in frequency dourine

*2)

$$
\left.M(z)\right|_{z=e^{j \omega T}=-\frac{c_{1}}{c} \frac{1}{e^{j \omega T}-1}=-\frac{c_{1}}{c} \frac{1}{\cos (\omega T)+j \sin (\omega T)-1}} ^{\text {j }}
$$

\rightarrow This ans a trousfer function that is something like:
 $H(j(u) \rightarrow+\infty$ on each δ as it would do om aurlog ane

$$
\begin{aligned}
& \left.\operatorname{ViN}(z)\right|_{z=e^{j \omega T}=\eta\left[\operatorname{ViN}(t) \sum \delta(t-n T)\right]=\operatorname{VIN}(j w) * g\left(\sum \delta(t-n T)\right)=}=
\end{aligned}
$$

Every filter will have a different $H(z)$, but the replicas sine function one typical of SC themselves, so
 attenvation given by the sine
$H(j \omega)$ shows $2 \pi f$ periedicity because offer the sampling, the circuit is no wore able to veceguize fo hrubuic from the others at $\rho+\frac{2 n \pi}{T}$.

Sine is related to the stepped output. However, if the SC out is read by all $A D C$, the silic is lost since we need mot to a cyoire the sigunl in continuous tine downin.
Also, since output BW is limited to tho fitter, to get rid of replicas we com sse an aunbg filter:

$$
\begin{aligned}
& f_{\text {ANTIALIAS }} \ll \frac{1}{T} \ll G B N P \\
& f_{\text {RECOVERY }} \ll \frac{1}{1} \ll G B W P \\
& L_{100 \mathrm{~V}}
\end{aligned}
$$

Note: for a simple SC iutegualor
for OHz it goes to too like an ounlog integrritor does
AA filter: $f_{A A}=f_{c u}-f_{0} \quad\left(f_{0}=\right.$ cutoff of the integrator)
This weans that for $f<f_{0} \rightarrow$ no aliasing
for $f_{0}<f<f_{c u}-f_{0} \rightarrow$ ALIASING butit's filtered by H (ounl by sine for a little port). This whams that fAA cam be relaxed with respect to fo
34) Non idenlitios: trade - off between settling time ar dirge sharing in sizing the switches

Switches are not ideal. Transient time needs to' be low enough (Bo NC $<\frac{T}{2}$) so that the step isn't dhunged. M. Bad ed on $V_{C_{1}}$, Mos could be sat or orrmic.
 Suppose tint MOS is ohmic, then:

$$
V_{D S}=V_{C_{1}}-V_{g u n l}=V_{C_{l}}
$$

$\left.I_{D S}\right|_{O H \pi}=2 K\left[\left(V_{D D}-V_{T}\right) V_{C_{1}}-\frac{V_{C_{1}}^{2}}{2}\right]$
The cop discharge current is the folbuing:
$I_{D S}=-C_{1} \frac{d V_{01}}{d t} \rightarrow d t=\frac{-c_{1}}{I_{0 S}} d V_{c_{1}} \rightarrow$ solve this:

To first order, we con say $T_{\text {sw }}=\frac{C_{1}}{21 \text { vow }}$
Usisally C_{1} is set by wise requirements, therefore
$T_{s w}=\frac{C_{1}}{2 \mu_{n} C^{1} \times\left(V_{\Delta D}-V_{T}\right)} \frac{L}{W} L_{\Delta} L=L_{\text {min }}$ to redUce $T_{s w}$
The Last dooice would be $W \nmid \uparrow$, but large ane mesms
Larger $C_{0 x}=$ WL C'ox

\leadsto We now need to tall e into account the Cpar
$\frac{\text { charge sharing }}{\forall \Delta \Delta}$

To form the chan rel, some electrons come from C_{1} and some come from vaud.
I When wa switch the transistor on, some
 This mems that e^{-}flow inside the mos from c_{1} aunt ugus, therefore the wrreut flows throug the otter direction. This menus that there's charge infected to C_{1} aunt vaud.
This is called "charge infection".

(1) ON transient, dirge is moving to form the channel
(2) $Q_{S_{2}}$ is infected, Q_{81} accomulates on Q_{81}
(3) Hos is on Chmunal is formed and now Q $Q+Q$ si com flow to aground too.

Total charge that will go on C will be $Q_{c_{1}}+Q_{s_{2}}+Q_{s_{1}}$

On the OFF transient, e^{-}flow towards c_{1} and ugud.
Some portion (because of different impersances aunt
nan-iolealities of the apampl will be lost on C_{1}, therefore offer the two cycles there will be some net positive charge acwumbited on $C \rightarrow Q_{c}=\alpha_{c_{1}}+\alpha_{G}$ where $Q_{G}=\operatorname{cox} \cdot\left(V_{\Delta D}-V_{T}\right)$ aunt α is a proportianl factor

Son le upgrade com be oboe by using aMos t pros so that the differential switdaing on Van and Gp will reduce the addition barge effect

We com see this acuumbated charge for endue clock cycle as an infected current $I_{B}=\alpha \frac{Q_{c h}}{T c I N}$, mooleled like:

\rightarrow There's always a resistive path

IB would generate a ramp on C, bot since sc filters always hame resistive paths on vgun, we cm see IB as om iuput referred offset.
Therefore, SC filters will have higher $D C$ offsets
$\frac{\text { Mosfet sizing }+ \text { deck }}{1}$

1) Ensure Tow is lower tho Tekk:
$N=$ constant that divides
$\operatorname{RoN} C_{1}=\frac{C_{1}}{2 K V_{V}}=\frac{T_{c u}}{N}=\frac{1}{N f_{c k}}$ the dock

$$
V_{O V}=V_{D D}-V_{T}
$$

This leads to $\operatorname{Cox} W\left(V_{\Delta \Delta}-V_{T}\right)>\frac{N f\left(u C_{1 L}\right.}{\mu}$
2) Limit charge infection effects

$$
\frac{\alpha Q c h}{c}<\underbrace{}_{V_{m A x} \rightarrow \frac{\alpha C_{o x}^{\prime}(W L)\left(V_{\Delta D-V}\right)}{c}<\Delta V r A x}
$$

Combine $1+2$:

$$
\underline{f_{c k}<\frac{c}{c_{1}} \frac{\Delta V_{i A x} \cdot \mu}{L_{\text {min }}} \cdot \frac{1}{N \alpha}} \rightarrow W<\frac{c}{c^{\prime} 0 x\left(V_{\Delta D-V}\right)} \frac{\Delta U_{\pi A x}}{\alpha L_{\text {min }}}
$$

By selecting uni transient tine our the lowest offset allowable upper limits for fou oud w (if we use Lain)
Note: overlap between gate aunt drain, source is there not to have issues with potential barriers
 capacitances

Addition: Ordiard Theorem example

$$
\begin{array}{r}
\frac{V_{\text {OUT }}}{V_{\text {IN }}}=\frac{R}{2 R+\frac{1}{S c}+S L}= \\
=\frac{S R C}{=}=
\end{array}
$$

$$
w_{0}=\left.\frac{1}{\sqrt{L C}} \quad Q\right|_{\substack{\text { SERIES } \\ R R C}}=\frac{1}{w_{0} 2 R \cdot c}
$$

for a 10% value shift, wo druges by $\sim S \%\left(\frac{1}{\sqrt{C^{\prime} L}}=\omega_{0}^{\prime}\right)$, Q also changes but the peak value isn't infuenced at all. In fact, at resomuce, the reactance of the capacitor aud inductor will hame equal value but apposite signs, therefore they will be candled out, Lending to:

To be more clear, at resonnce wo:

$$
\begin{aligned}
& L=15 \mu H \\
& C=10 p F \\
& \omega_{0}=\frac{1}{\sqrt{L C}}=2 \pi(13 \mathrm{MHz})
\end{aligned}
$$

At $13 \mathrm{MHZ}:$

$$
\left.\begin{array}{c}
j \cdot 2 \pi 13 \cdot 10^{6} \cdot 15 \mu H \cong J 1225 \\
\frac{1}{J 2 \pi 13 \cdot 10^{6} \cdot 10 \cdot 10^{-12}}=-J 1225
\end{array}\right]
$$

Additional: Why the two stoges zevo is negntive?

At OHZ: goin is negotive $\rightarrow Q=-180^{\circ}$
At oo Hz: gain is pesitive $\rightarrow \phi=-360^{\circ}$ or 0°
From circsit inspection we fiust the usunl pole at

$$
\begin{aligned}
f_{L}=\frac{1}{2 \pi g \mu_{5} R_{1} R_{2} C_{\pi}} \text { and the gain } \quad \begin{array}{l}
G_{D C}
\end{array}=-R_{1} g m_{5} R_{2}+G A C \\
G_{a r}=+\frac{1}{g m_{5}}
\end{aligned}
$$

There fore $G \Delta c f_{L}=G_{\infty} f_{z} \quad f_{z}=\frac{g \mu_{s}}{2 \pi c \pi}$
To hane Vout <0 at OHz aur $\operatorname{Vout}>0$ at $\infty \mathrm{Hz}$, the ouly way to achiere this is to have a RHP zero With nulling vesistor:

$$
G_{D C}=R_{1} g m_{5} R_{2}
$$

$$
\begin{aligned}
R_{x} & =\frac{R_{2}+R_{N}}{1+g \mu_{5} R_{2}} \\
& \approx 1 / g \mu_{5}
\end{aligned}
$$

$G_{\infty}: \quad V_{\text {OUT }}=\operatorname{lin}_{\text {in }} \cdot\left(R_{1} / / R_{x}\right)-\sin \cdot \frac{R_{1}}{R_{1}+R_{x}} \cdot R_{N}$

$$
=\sin \left(\frac{1}{\operatorname{gms}}-R_{N}\right)
$$

If $R_{N}>\frac{1}{\text { guss }}$, Vour at oe is $<0 \rightarrow$ LHP zero recovers the 90° lost
If $R_{N}<\frac{1}{\text { guss, }}$, Vout at ae is $>0 \rightarrow$ RHP zero agoin

$$
\begin{aligned}
& \text { Additiounl: Solving Tswith } \\
& T_{\text {sw }}=\frac{C_{1}}{U} \int_{V I}^{V_{F}} \frac{1}{2 \operatorname{Vov} x-x^{2}} d x \Rightarrow \frac{1}{x(2 \operatorname{VOV}-x)}=\frac{A}{x}+\frac{B}{2 \operatorname{VOV}-x} \\
& \frac{A(2 \operatorname{Vav}-x)+B x}{1}=\frac{1}{x+3} \quad A 2 \operatorname{Vov}+x(B-A)=1 \\
& \left\{\begin{array}{l}
2 V_{O V A}=1 \\
B-A=0
\end{array} \rightarrow A=B=\frac{1}{2 V_{O V}}\right. \\
& \int_{V_{i}}^{t_{1}} \frac{1}{2 \operatorname{Vav}} \cdot \frac{1}{x}+\frac{-1}{2 \operatorname{Vav}} \cdot \frac{-1}{2 \operatorname{Vov}-x} d x= \\
& \frac{1}{2 V_{0 v}}\left[\ln x-\ln \left(2 V_{o v}-x\right)\right]_{V_{i}}^{V_{f}}=\frac{1}{2 V_{o v}} \ln \left\{\frac{\left(2 V_{o v}-V_{F}\right) V_{I}}{\left(2 V_{0 v}-V_{F}\right) V_{F}}\right\} \\
& V_{I} \int_{\text {If }}^{V_{C l}} V_{F}=0 \rightarrow T_{\text {sw }} \rightarrow+\infty \text { meculivg that }
\end{aligned}
$$ there will be some error in the trmisperred charge because C1 will never be fully discharged for a finite clock period

Addition: Why we use the SK cell
We kine multiple ways to implement complex soyjugnte poles, but the sol cell com:

- Low cemponeert number
- Q can be independently set by just using X (w_{0} is the same) - Just one amp for two coluplex conjugate poles

$$
\omega_{0}=\frac{1}{R C} \quad Q=\frac{1}{3-x}
$$

Addition: how do we choose the "elementary cells" in

How do we choose to? (This is unlid
for both K_{T} and K_{R} calculations.).
Each square must be spatially uncorrelated with the adjecent squares.
If the squame was too large, it wouldn't be a gaussian distribution amy more, therefore all the statistical reasoning we make would be affected by deterministic processes. In few words:

$$
\begin{aligned}
& \frac{2}{\sigma_{V_{T}}}=\sigma_{V_{1}}^{2}+\sigma_{V_{T_{2}}}^{2}+\sigma_{V_{T_{3}}}^{2}+\cdots \rightarrow \text { These wouldu't be valid } \\
& \sigma_{G_{T}}=\sigma_{G_{1}}^{2}+\sigma_{G_{2}}^{2}+\sigma_{G_{3}}^{2}+\cdots . \quad \text { amyurre }
\end{aligned}
$$

To select the vigut A_{0}, Ω we would need to compute the double autocorrelation (across x ann y axis) in order to have uncorrelated squares (or at least, whtocorvelation length is small enough).

Addition l: votes on SR
We have an OTA buffer
At the start we have the SR limitation (see SR question). Right in this tine, we com say that the big input (on V^{+}node) step will shut off the MOSFETs and etc, etc... But offer the tslew, when Vout has risen enough, v^{+}wont be that big with respect to v^{-}:

$$
V^{-}=\text {Vout }
$$

$V^{+}=E$ while $V^{-}=E-\Delta V$
This means that v^{+}oud V^{-}are similar enough so
that the differential stage will recover the linear operation:

At the stout of SR When linearity is recovered Condition will be met when $\frac{\Delta V}{\tau}=S R$

Additional: class $A B$ voltage shifter

We could think of using just nos as trouscliodes, but if we mimic the output configuration we com compensate process variability on V_{T}

$$
\text { leads to wore power burned } \rightarrow \eta \text { of the stage } \rightarrow>
$$ We clearly see a tradeoff between distortion our efficiency

$$
\begin{aligned}
& V_{\text {as }}+V_{\text {as }} 8=V_{\text {as }}+V_{\text {as }} 10 \\
& V_{T n}+\sqrt{\frac{I_{7}}{K_{7}}}+V_{T p}+\sqrt{\frac{I_{8}}{N_{8}}}=V_{T n}+\sqrt{\frac{T_{9}}{V_{9}}}+V_{T_{p}}+\sqrt{\frac{I_{10}}{K_{10}}} \\
& \left.\sqrt{\frac{I_{7}}{K_{7}}}+\sqrt{\frac{I_{8}}{K_{8}}}=\sqrt{\frac{I_{9}}{K_{9}}}+\sqrt{\frac{I_{10}}{K_{10}}} \quad \begin{array}{l}
I_{7}=I_{8}=I_{6} \\
I_{9}=I_{10}=I_{T}
\end{array}\right] \rightarrow I_{T}=n I_{6} \\
& \sqrt{\frac{I_{T}}{I_{6}}}=\frac{\sqrt{\frac{1}{K_{10}}+\sqrt{\frac{1}{K_{9}}}}}{\sqrt{\frac{1}{K_{7}}+\sqrt{\frac{1}{K_{8}}}}} \quad K_{7}=n K_{9} \\
& \frac{I_{T}}{I_{6}}=n\left(\frac{1+\sqrt{\frac{K_{g}}{K_{10}}}}{\left.1+\sqrt{\frac{K_{7}}{K_{8}}}\right)^{2} \xrightarrow{\leadsto \text { Result: }} \begin{array}{l}
\text { If } n \Pi_{7}, I_{T} \text { II } \rightarrow \text { distortion } \Delta \text { fec } \\
\text { output trousistors are well biased. }
\end{array} \text { This weans that higher current }}\right.
\end{aligned}
$$

Addition : root lows Per the RHP zero
consider to use the OTA in a feedback configuration, then: Great $=G_{\text {IDEAL }} \frac{-G_{\text {coop }}(s)}{1-G_{\text {coop }}(s)}$ g denominator has roots

Root lows: lows of the singularities that solve 1-Gbop(s) for a varying Goop (0). Consider the circuit bebw

$$
G \operatorname{loop}(s)=G_{0} \frac{1-s \pi_{z}}{1+s \pi_{p}}
$$

$$
\tau_{z}=\frac{C_{\pi}}{g \mu_{5}} \quad \tilde{\tau}_{p} \cong C_{M} R_{1} g \mu_{S} R_{2}
$$

Neglect C_{1}, C_{L}, we cal $\frac{1}{\text { do }}$ the source reasoning with those

$$
1-G \operatorname{Loop}(s)=0 \rightarrow G_{0} \frac{(1-s \tilde{i} z)}{1+s \tau_{p}}=1 \rightarrow-G_{0} \frac{\tilde{z}_{z}}{\tau_{p}} \cdot \frac{s-\frac{1}{\tau_{z}}}{s+\frac{1}{\pi_{p}}}=1
$$

The solution of this is split in two equations
$\left|G_{0}\right| \frac{\left|\tilde{\tau}_{z}\right|}{\left|\tau_{p}\right|} \frac{\left|S-\frac{1}{\tau_{z}}\right|}{\left.s+\frac{1}{\tau_{p}} \right\rvert\,}=|1| \sim$ absolute value equation

$$
\operatorname{ary}\left(-G_{0} \frac{\tilde{N}_{z}}{\tau_{p}}\right)+\operatorname{Torg}\left(s-\frac{1}{\tau_{z}}\right)-\operatorname{rarg}\left(s+\frac{1}{\tau_{p}}\right)=0^{0} \text { phase } \quad \text { equation }
$$

Note thin $G_{0}<0, \tau_{z}>0, \tau_{p}>0 \rightarrow G x=-G_{0} \frac{v_{z}}{\tau_{p}}>0$ so $G x$ is real and $>0 \rightarrow \arg (G x)=\tan ^{-1}\left(\frac{0}{G x}\right)=0^{\circ}$

$$
\arg \left(j \omega-\frac{1}{\nu_{z}}\right)=\tan ^{-1}\left(\frac{\omega}{-\frac{1}{\tau_{z}}}\right)=-\tan ^{-1}\left(\tau_{z} \omega\right) \rightarrow \text { we can }
$$ rewrite the $\arg \left(j \omega+\frac{1}{\tau p}\right)=\tan ^{-1}\left(\frac{\omega}{1 / \tau p}\right) \quad$ requirement

