Analog Cirwit Dssign

for simplicity
$V_{G}>V_{T}$: threshold voltage

$$
\begin{aligned}
d V_{c} & =I_{D} d R=I_{D} \frac{d x}{9 \mu_{n} \frac{n(x) W \Delta(x)}{C^{\prime-3}}}= \\
& =I_{D} \frac{d x}{\mu_{n} Q_{n}^{\prime} W}
\end{aligned}
$$

$\frac{C}{a^{2}}$ charge surface density
What is Q_{n}^{\prime} equivalent to?
$V_{G}=\phi_{m s}+\psi_{s}+\Delta V_{o x}(0)$

$$
\left.V_{G}=\phi_{m s}+\psi_{s}+V_{c}+\frac{Q_{d}^{\prime}+Q_{n}^{\prime}}{C_{o x}^{\prime}}\right) \rightarrow Q_{n}^{\prime}=C_{a x}^{\prime}\left[V_{G}-\left(\phi_{m s}+\psi_{s}+V_{c}+Q_{d}^{\prime}\right)\right]
$$

But $\Theta_{d}^{\prime}=Q_{d}^{\prime}\left(\psi_{s}+V_{c}\right)$ voocies as the depleted reegiou deepens (body effect).
\Longrightarrow First order approx:

$$
V_{c}+\underbrace{\phi_{m s}+\psi_{s}+\frac{Q_{d}^{\prime}\left(\psi_{s}\right)}{C_{a x}^{\prime}}}_{V_{T}}+\underbrace{Q_{d a x}^{\prime}}_{\Delta X_{T}}+\underbrace{C_{l}^{\prime o}}_{V_{d}^{\prime}\left(\psi_{s}+V_{c}^{\prime}\right)-Q_{d}^{\prime}\left(\psi_{s}\right)}
$$

$\Longrightarrow Q_{n}^{\prime} \simeq C_{o x}^{\prime}\left[V_{G}-V_{T}-V_{c}\right]$ (charge-sheet model)

$$
\begin{aligned}
& d V_{C}=\frac{d x}{\mu_{n} Q_{n}^{\prime} W} I_{D} \simeq \frac{d x}{\mu_{n} C_{o x}^{\prime}\left[V_{G}-V_{T}-V_{C}\right] W} \cdot I_{D} \\
& \int_{0}^{V_{D S}} \mu_{n} C_{o x}^{\prime} W\left[V_{G}-V_{T}-V_{C}\right] d V_{C}=\int_{0}^{L} I_{D} d x
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow & I_{D}=\mu_{n} C_{e x}^{1} \frac{W}{L}\left[\left(V_{G}-V_{T}\right) V_{D S}-\frac{V_{D S}^{2}}{2}\right] \\
& {\left[I_{D}^{s a t}=\frac{\mu_{n} C_{0 x}^{1}}{2} \frac{W}{L}\left(V_{G}-V_{T}\right)^{2}=K V_{a v}^{2}\right] }
\end{aligned}
$$

are there any electrons?

$$
\begin{aligned}
\int_{0}^{V_{G}-V_{T}} d V_{C} & =\int_{0}^{L^{\prime}} I_{D} \frac{d x}{\mu_{n} W Q_{n}^{\prime}} \\
& \rightarrow I_{D}=\frac{\mu_{n} C_{0}^{\prime}}{2} \frac{W}{L^{\prime}}\left(V_{G}-V_{T}\right)^{2}
\end{aligned}
$$

$L^{\prime}<L$ certainly, so knowing that if V_{D} grows bigger than Nov $\left(=V_{G}-V_{T}\right)$ then L' decreased, we can say for sure that as V_{D} grows I_{D} grows as well (being L' at the denominator)
Moving from source to drain, current stays the same but electron density goes down. Given the equation:

$$
I \sim \downarrow n \cup \uparrow \text { and } \uparrow v=\mu_{n} F \uparrow
$$

it rears that electro speed and therefore electric field unit be munch bigger after the piuch-off.

$$
\Delta V_{c}=V_{0}-\underbrace{\left(V_{G}-V_{T}\right)}_{V_{D}^{\text {sat }}} \quad F \simeq \frac{\Delta V_{C}}{L-L^{\prime}} \quad \operatorname{eut} \quad L^{\prime}=L^{\prime}\left(V_{D}\right)
$$

First order expausiau: $L^{\prime}\left(V_{D}\right)=L+\left.\frac{d L^{\prime}\left(V_{D}\right)}{d V_{D}}\right|_{V_{D} \text { sat }}\left(V_{D}-V_{D}^{\text {sat }}\right)$

$$
\begin{aligned}
& =L\left[1+\left.\frac{1}{L} \frac{d L^{1}}{d V_{D}}\right|_{V_{D} \text { sat }}\left(V_{D}-V_{D}^{\text {sat }}\right)\right] \\
& =L\left[1-\lambda\left(V_{D}-V_{D}^{\text {sat }}\right)\right]<0
\end{aligned}
$$

$$
\begin{aligned}
\Longrightarrow I_{D} & =\frac{1}{2} \mu_{n} C_{o x}^{1} \frac{W}{L}\left(V_{G}-V_{T}\right)^{2} \\
& =\frac{1}{2} \mu_{n} C_{o x}^{\prime} \frac{W}{\left.L\left[1-\lambda\left(V_{G}-V_{T}\right)^{2}-V_{D}^{\text {sat }}\right)\right]} \\
& \xi^{E} \frac{1}{1-x} \approx 1+x \quad \text { for } x \rightarrow e I_{D} \uparrow \\
{\left[I_{D}\right.} & \left.=\frac{1}{2} \mu_{n} C_{o x}^{1} \frac{W}{L}\left(V_{G}-V_{T}\right)^{2}\left[1+\lambda\left(V_{D}-V_{D}^{\text {sat }}\right)\right]\right]
\end{aligned}
$$

true only for where $\lambda=\frac{1}{L}\left|\frac{d L^{\prime}}{d V_{D}}\right|_{V_{D}=V_{0}^{\text {vat }}}=\frac{1}{V_{A}}$ you - short choumel devices
V_{A} : undulation voltage ("Early effect")

$$
V_{A}=\alpha L=\frac{V_{A}^{0}}{L_{0}} \cdot L \quad \text { tipically } L_{0}=0,35 \mu u, V_{A}^{\circ}=7 V
$$

langer chanel \rightarrow higher ruadulation voltage \rightarrow lower output conductance

$$
g_{0} \sim \lambda=\frac{1}{L}\left|\frac{d L}{d V_{0}}\right|_{V_{0}^{v a t}}
$$

Is should have a relative increase equal to $\frac{\Delta L}{L} \Rightarrow$ the langer the chanel, the lower the inverse

$$
\begin{aligned}
I_{D}= & I_{D}^{\text {sat }}\left[1+\lambda\left(V_{D}-V_{D}^{\text {sat }}\right)\right] \quad(\text { sauce } @ \text { ground) } \\
& I_{D}^{\text {sat }}=K_{n}\left[V_{G}-V_{T}\right]^{2}, \quad K_{n}=1 / 2 \mu_{n} C_{\text {ax }} W / L
\end{aligned}
$$

$$
V_{D}^{\text {set }}=V_{G}-V_{T}=V_{\text {av }} \text { (mau-shert devices) }
$$

$$
\begin{aligned}
& g_{0}=\frac{d I_{D}}{d V_{D}}=K\left(V_{G}-V_{T}\right)^{2} \cdot \lambda=\lambda I_{D}^{\text {sat }}=\frac{1}{L}\left|\frac{d I_{D}}{d V_{D}}\right|_{V_{D}^{\text {sat }}} \cdot I_{D}^{\text {sat }} \\
& \Rightarrow g_{0}=\frac{I_{D}^{\text {sat }}}{V_{A}} \quad r_{0}=\frac{V_{A}}{I_{D}^{\text {sat }}} \simeq \frac{V_{A}}{I_{D}}
\end{aligned}
$$

output resistance
increasing Vow decreases the output resistance!

IMPLICATIONS
The transistor is not an ideal werent generator anymore

\Rightarrow RESISTIVE COUPLING between source and drain

$g_{m}=\frac{\partial I_{D}^{\text {sat }}}{\partial V_{G}}=\frac{\partial\left[K\left(V_{G}-V_{T}\right)^{2}\right]}{\partial V_{G}}=2 K\left(V_{G}-V_{T}\right)$ trauscouductauce

$$
\left[g_{m}=2 K\left(V_{G}-V_{+}\right)=2 K V_{o v}=\frac{2 I_{D}}{V_{D v}}=2 \sqrt{K I_{D}}\right]
$$

Maximum gain $\mu=g_{m} r_{0}=\frac{2 I_{D}}{V_{0 v}} \cdot \frac{V_{A}}{I_{D}}=\frac{2 V_{A}}{V_{o v}} \downarrow$ independent
Ideally:
Really:

$$
G=-g_{m} R_{L} \xrightarrow{R_{L} \rightarrow \infty}-\infty
$$

$$
G=-g_{m}\left(R_{L} / / r_{0}\right) \xrightarrow{R_{L} \rightarrow \infty}-g_{m} r_{0}=-\mu
$$

To build an OP AMP. with a gain

$$
\xrightarrow[\text { parameters }]{\substack{\text { duly transistor }}} \xrightarrow{\text { FIGURE }} \xrightarrow{\text { OF MERIT }}
$$

higher than the maximum gam we are then forced to use multiple transistors usu cascade:

Since $\mu=\frac{2 V_{A}}{V_{\text {Vv }}}$ you can use as little current as passible and stu gain Nov the most ant of the transistor.
This nears you can amplify seguals by a huge amount with almost no power consumption whatsoever.
Fer exauple: $\quad V_{A}^{0}=7 \mathrm{~V} \quad L_{0}=0,35 \mu \mathrm{~m} \quad L=1 \mu m \quad V_{\text {ov }}=0,1 \mathrm{~V}$

$$
\begin{aligned}
& \Rightarrow V_{A}=\frac{V_{A}^{\circ}}{L_{0}} \cdot L=20 V \Rightarrow \mu=\frac{2 V_{A}}{V_{0 V}}=400 \\
& 2 \text { stages } \Rightarrow A_{0}=\mu^{2}>10^{5}!!!
\end{aligned}
$$

"The maximum gain increases with longer channels"
BUT
"The cut-off frequency increases with shorter channels"

Ideally:

Really:

$$
\begin{gathered}
\frac{v_{s}-R_{D} i_{s}}{r_{0}}+g_{m} v_{s}=i_{s} \\
v_{s}\left(\frac{1}{r_{0}}+g_{m}\right)=i_{s}\left(1+\frac{R_{0}}{r_{0}}\right) \\
\frac{v_{s}}{i_{s}}=\left[R_{s}=\frac{\left.r_{0}+R_{D}\right]}{\left.1+g_{m} r_{0}\right]}\right. \\
R_{0}>r_{0} \quad r_{0}=\infty \\
\frac{R_{0}}{\mu} \quad \frac{1}{g_{m}}
\end{gathered}
$$

Ideally:

Really:

$$
\begin{aligned}
& \quad v_{s} V_{0} R_{s}=\frac{v_{s}-R_{s} i_{s}}{r_{0}}-g_{m} R_{s} i_{s} \\
& i_{s}\left(1+\frac{R_{s}}{r_{0}}-g_{m} R_{s}\right)=\frac{\sigma_{s}}{r_{0}} \\
& \begin{array}{c}
\sum_{i s}^{\sum} R_{s} \quad \frac{U_{s}}{i_{s}}=\left[R_{0}=r_{0}+R_{s}\left(\mu+g_{m} r_{0}\right)\right] \\
R_{s}>r_{0} \quad r_{0}^{\prime}=\infty \\
k \\
\mu R_{s}
\end{array}
\end{aligned}
$$

Nate that $\mu=g_{m} r_{0}=\frac{2 V_{A}}{V_{o v}}$ uranus not duly that we can get a greater maximum gain by haring a banger channel Gand therefore a bigger V_{A}) - that is increase the unuerator but also that we can get a very big maximin gain by having an aluost-zeres Nov - that is, decrease the denari. gator.

if $V_{G} \rightarrow V_{T}\left(V_{\text {or }} \rightarrow 0\right)$ then $\mu \rightarrow+\infty$? No
actual slope - how is it derived?

Let's study the SUBTHRESHOLD OPERATION of the transistor:

higher potential $=$ lower voltage

$$
n(0) \simeq N_{D} e^{-\frac{q\left(\phi_{k}-\psi_{s}\right)}{k T}}
$$

A few electrons at the source side hour enough thermal energy to cross the potential barrier, which is now lowered by us. The number of eleortous is given by Boltzmann's law.

$$
n(L) \simeq 0
$$

Almost all electrons at the drain side will get over the potential drop to read h a lower potential level, which is deeper than the source side thanks to V_{D}.

$$
I_{D}=q D_{n} \frac{d n(x)}{d x} A \simeq q D_{n} \underbrace{n(0)-n(L)}) A=q \frac{D_{n} A}{L} N_{D} e^{-\frac{q}{k T} \frac{Q_{B} \cdot}{k T}} e^{q \frac{\psi_{s}}{k T}}=\underbrace{q \frac{D_{n} A}{L} \frac{n_{i}^{2}}{N_{A}}} e^{q \frac{\psi_{s}}{k T}}
$$

$=I_{0} e^{q \frac{V^{*} *}{*}}$ diffusion current
\Rightarrow even if the transistor is off there is still same leakage current given by a diffusion term
Since $\psi_{s} \sim V_{G}$ then I_{D} grows exponentially with V_{G} while below threshold.

$$
I_{D}\left(V_{G}=V_{T}\right)=I_{D}\left(V_{o v}=0\right):=I_{S} \neq 0!!
$$

I_{s} is the "threshold current".

$$
\begin{aligned}
& C_{o x}=\frac{\varepsilon_{o x}}{t_{0 x}} \cdot A \quad C_{D}=\frac{\varepsilon_{s i}}{W_{D}} \cdot A \\
& \Delta \psi_{s}=\Delta V_{G} \frac{C_{0 x}^{\prime}}{C_{o x}^{\prime}+C_{D}^{\prime}}=\frac{\Delta V_{a}}{n} \\
& n=\frac{C_{o x}^{\prime}+C_{D}^{\prime}}{C_{o x}^{\prime}}=1+\frac{C_{D}^{\prime}}{C_{o x}^{0}} \geqslant 1
\end{aligned}
$$

(typically $n \simeq 1,5$)

$$
\begin{aligned}
& I_{0}=I_{s} e^{\frac{q\left(\psi_{s}-\psi_{s}^{T h}\right)}{k T}} \text { in fact } I_{0}\left(\psi_{s}=\psi_{s}^{T h}\right)=I_{s}=I_{0} e^{q \psi_{k T}^{T h}} \\
& =I_{s} e^{\frac{q \Delta \psi_{T}}{k T}} \quad \text { where } \Delta \psi_{s}=\psi_{s}-\psi_{s}^{T h}, \psi_{s}^{T h}:=\psi_{s}\left(v_{0}=v_{T}\right)=\psi_{s}\left(v_{a}=0\right) \\
& =I_{s} e^{q \frac{\Delta V_{a}}{n K T}} \quad \text { since } \frac{\Delta V_{G}}{n}=\Delta \psi_{s} \\
& \Rightarrow \quad I_{D}=I_{S} e^{q\left(V_{G}-V_{D}\right)} \\
& g_{m}=\frac{d I_{D}}{d V_{G}}=I_{s} e^{q\left(\frac{\left(V_{a}-V_{T}\right)}{n k T}\right.} \cdot \frac{q}{n k T}=\frac{I_{D} q}{n k T} \\
& \Longrightarrow \sqrt[g_{m}]{ }=\frac{I_{D}}{n V_{\text {th }}} \text { subthreshold trauscouductauce } \\
& \longrightarrow V_{\text {th }} \simeq 25 \mathrm{mV} \text { @ } 300 \mathrm{~K}
\end{aligned}
$$

Now gm DEPENDS on the BIAS CURRENT and is INDEPENDENT of the OVERDRIVE VOLTAGE
\longrightarrow there is a fixed limit to the trauscanductance and the maximum gain, which grows with the bias current and therefore with power consumption

$$
g_{m}=\frac{2 K\left(V_{G}-V_{T}\right)^{2}}{V_{G}-V_{T}}=\frac{2 I_{0}}{V_{0 V}} \xrightarrow{V_{a v} \rightarrow 0} \infty=g_{m} r_{0}=\frac{2 I_{D}}{V_{0 V}} \cdot \frac{V_{A}}{V_{D}}=\frac{2 V_{A}}{V_{o v}} \xrightarrow{V_{o v} \rightarrow 0} \infty
$$

\Longrightarrow around-threshold and sub-threshold values:

$$
\quad\left[g_{m}=\frac{I_{D}}{n V_{t h}}\right] \quad\left[\mu=g_{m} r_{0}=\frac{I_{D}}{n V_{\text {th }}} \cdot \frac{V_{A}}{I_{D}}=\frac{V_{A}}{n V_{+h}}\right]
$$

Far example:

$$
\begin{aligned}
& L=1_{\mu m} V_{A} \simeq 20 V \quad n=3 \\
& \Longrightarrow \mu^{\max }=\frac{20}{3 \cdot 25} \cdot 10^{3}=600
\end{aligned}
$$

We necessarily need more than are transistor to obtain really high gaius $\left(A_{0}=10^{6} \div 10^{7}\right)$.

$$
\frac{i_{d}}{i_{s}}=G_{0}=\frac{i_{s} R_{a g m}}{i_{s}}=g_{m} R_{a}
$$

$$
\begin{aligned}
& G\left(f_{T}\right) \cdot f_{T}=G\left(f_{P}\right) \cdot f_{P} \\
& 1 \cdot f_{T}=g_{m} R_{G G} \cdot \frac{1}{2 \pi\left(C_{8 s}+C_{g \theta}\right) R_{g}} \simeq g_{m} \frac{1}{2 \pi C_{0 x}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{T}= \frac{g_{m}}{2 \pi\left(C_{o s}+C_{g d}\right)} \simeq \frac{g_{m}}{2 \pi C_{o x}}=\frac{2 K V_{\text {ov }}}{2 \pi C_{o x} W L}=\frac{2 \frac{1}{2} \mu_{n} C_{o x} W_{L} V_{o v}}{2 \pi C_{o x} W^{2} L}= \\
&= \frac{\mu_{n} V_{\text {ox }}}{2 \pi L^{2}}=\frac{\bar{G}}{2 \pi L}=\frac{1}{\left.2 \pi t_{m i}\right)} \text { transit time } \\
& \quad \frac{V_{\text {ov }}=F, \mu_{n} F=\bar{G}}{}
\end{aligned}
$$

 approximation

$$
\left[f_{T}=\frac{1}{2 \pi t_{T R}}=\frac{\mu_{n}\left(V_{0}\right)}{2 \pi L^{2}}\right]
$$

higher overdrive higher bandwidth shorter chancel
higher bandwidth

Sub-thresheld value:

$$
\begin{aligned}
& J_{d i 88}=q D_{n} \frac{d n}{d x} \simeq q D_{n} \frac{n(0)}{L} \\
& Q^{\prime}=\frac{9}{2} n(0) L \\
& t_{\text {diff }}=\frac{Q^{\prime}}{J_{\text {diff }}}=\frac{q_{2} n(0) L}{9 D_{n} \frac{n(0)}{L}}=\frac{L^{2}}{2 D_{n}} \leftarrow t_{n k}
\end{aligned}
$$

just like a water tank, the ratio w/ Φ should give us the average transit time

$$
\Longrightarrow\left[f_{T}=\frac{l}{2 \pi t_{T R}}=\frac{D_{n}}{\pi L^{2}}\right]
$$

Now f_{T} is INDEPENDENT of the OVERDRIVE VOLTAGE.

GAIN/BW TRADE OFF

where is this transition?

Einstein's equation: $D_{n}=\frac{k T}{q} \mu_{n}$

$$
\Longrightarrow V_{o v}^{*}=\frac{2 k T}{9} \simeq 50 \mathrm{mV}
$$ Coefficient

Weak inversion: $\quad I C \leqslant 0,1$
Moderate iwersiau: $0,1 \leqslant I C \leqslant 10$
Strong inversion: $I C \geqslant 10$

Siqual, Naise and Disturbs
need to haudle unise

$s(t) \rightarrow x(\omega)$ Spectrum
$n(t) \rightarrow S_{n}(\omega)$ Power Spectral Deusity (PSD)

$$
v(t)=s(t)+d(t)+\underline{n(t)}
$$

cau be reeduced to uegligible values with preper screeuing

$\langle n(t)\rangle=0$: naise fluctuatious have a null average therefare we causider $\left\langle n^{2}(t)\right\rangle \neq 0$ (uuless $n(t) \equiv 0$)

$$
\begin{aligned}
& |X(\omega)| \uparrow \quad \frac{A}{2} \uparrow \quad\left\langle n^{2}(t)\right\rangle=\left\langle\left(x_{1}(t)+x_{2}(t)\right)^{2}\right\rangle \\
& =\left\langle\left(A \sin \left(\omega_{1} t+\varphi_{1}\right)+B \sin \left(\omega_{2} t+\varphi_{2}\right)\right)^{2}\right\rangle \\
& =\left\langle A^{2} \sin ^{2}\left(\omega_{1} t+\varphi_{1}\right)+B^{2} \sin ^{2}\left(\omega_{2} t+\varphi_{2}\right)+\right. \\
& +2 A B \sin \left(\omega_{1} t+\varphi_{1}\right) \sin \left(\omega_{2} t+\varphi_{2}\right)> \\
& =\lim _{T \rightarrow+\infty}\left\{\frac{1}{T} \int_{0}^{T} A^{2} \sin ^{2}\left(\omega_{1} t+\varphi_{1}\right) d t+\frac{1}{T} \int_{0}^{T} B^{2} \sin ^{2}\left(\omega_{2} t+\varphi_{2}\right) d t+\right. \\
& \left.+2 \frac{A B}{T} \int_{0}^{T} \sin \left(\omega_{1} t+q_{1}\right) \sin \left(\omega_{2} t+\varphi_{2}\right) d t\right\}= \\
& \Longrightarrow\left\langle n^{2}(t)\right\rangle=\frac{A^{2}}{2}+\frac{B^{2}}{2} \\
& \rightarrow \frac{1}{2}\left\{\cos \left[\left(\omega_{1}-\omega_{2}\right) t+\varphi_{1-2}\right]-\cos \left[\left(\omega_{1}+\omega_{2}\right) t+\varphi_{2-1}\right]\right\}
\end{aligned}
$$

$\{$ Naise made by many different haremonics threughout ideably the whole spectrum:

$$
\left\langle n^{2}(t)\right\rangle=\sum_{i} \frac{a_{i}^{2}}{2}=\int_{0}^{+\infty} S_{n}(f) d f \rightarrow\left[S_{n}(f):=\frac{\left.\left\langle n^{2}(t)\right\rangle\right|_{\Delta f}}{\Delta f}\right]
$$

$$
[n(t)]=V \rightarrow\left[\left\langle n^{2}(t)\right\rangle\right]=V^{2} \rightarrow\left[S_{n}(f)\right]=\frac{V^{2}}{H_{z}}
$$

 coutaires $\sim 68 \%$ of the raise fluctuations
$p(x)=k e^{-\frac{x^{2}}{2} \sigma_{n}^{2}} \rightarrow$ the lower σ_{n}, the uncre concentrated is the gaussian curve aroid DV

The average square value or variance of the raise is a uneasure of the amplitude of the fluctuation

$$
\sigma_{n}=\sqrt{\left(\sigma_{n}^{2}\right)}=\sqrt{\left\langle n^{2}(t)\right\rangle}
$$

root eneau square variance
(RMS)

The RMS value gives a more precise measure of the average amplitude of the Maise:

- within $\pm \sigma_{n}$: around $68,3 \%$ of all fluctuations
- " $\quad 42 \sigma_{n}: \quad$ " $95,5 \%$ " "
- " $\quad 13 \sigma_{n}: \quad$ " $99,7 \% \quad$ "

Signal - to-Naise Ratio

SNR: how much larger the signal is compared to the raise

$$
\left(\frac{S}{N}\right)^{2}=\frac{\left\langle S^{2}(t)\right\rangle}{\left\langle n^{2}(t)\right\rangle} \int_{0}^{B W} S_{n}(f) d f
$$

The SNR is related to the information content and quality of our signal

$V_{F S}=$ full scale rouge
$\Delta=$ quantization interval $\quad \rightarrow \Delta=\frac{V_{\text {ES }}}{2^{n}}$
$\stackrel{\Delta}{\Delta(t)} \begin{gathered}n(t) \\ n M M H\end{gathered}$ to little precision

$$
n(t)
$$

$\Longrightarrow \triangle$ should be in the order of $3 \sigma_{n} \div 4 \sigma_{n}$ to have an optimized system
Consider $\Delta=\alpha \cdot \sigma_{n} \cdot\left(\frac{s}{N}\right)_{\text {max }}^{2}=\frac{\left\langle\left(S_{\text {max }}(t)\right)^{2}\right\rangle}{\left\langle n^{2}(t)\right\rangle}=\frac{\left(\frac{V_{F S}}{2}\right)^{2} / 2}{\sigma_{n}^{2}}=\frac{V_{f S}^{2} \alpha^{2}}{8 \Delta^{2}}$

$$
\begin{aligned}
& \Rightarrow\left(\frac{S}{N}\right)_{\operatorname{rax}}^{2} \simeq 2^{2 n} \\
& 10 \log \left(\frac{S}{N}\right)^{2}\left.=20 \frac{V_{F S}^{2} \alpha^{2}\left(2^{n}\right)^{2}}{8 V_{F s}^{2}}=\frac{\alpha^{2}}{8}\right)^{2 n} \\
&\left.=n \cdot \frac{S}{\frac{S}{N}}\right)=10 \log 2^{2 n}=20 \log 2 \\
& 6,02 d B
\end{aligned}
$$

$\rightarrow(S / N)_{d B}=n \cdot 6,02 d B \rightarrow$ the umber of bits (information content) is defined by the signal -toraise ratio

Example: $R C$ network

$$
v_{s}=A_{0} \sin \left(\omega_{0} t\right) \quad\left(\frac{S}{N}\right)^{2}=\frac{A_{0}^{2} / 2}{\left\langle v_{c}^{2}\right\rangle}
$$

1) where is the mise coming from?
2) $S_{n}(f)=$?
3) $\int_{0}^{+\infty} S_{n}(f) d f=\sigma_{n}^{2}=$?
4) The RESISTOR is a unise source due to thermal agitation of electrons

5) $M_{n}+\sum_{i} \sigma_{c}$ We are looking fore $\left\langle\sigma_{c}^{2}\right\rangle=\int_{0}^{+\infty} S_{n}(f) d f$ with $M_{n}-\left\{R\left(\frac{I}{ \pm} C\right.\right.$ the signal tweed off.

$$
\varepsilon=\frac{1}{2} C \sigma_{c}^{2}(t) \quad\langle\underline{\underline{E}}\rangle=\frac{1}{2} C\left\langle\underline{\underline{\sigma_{c}^{2}(t)}}\right\rangle \stackrel{\downarrow}{=} \frac{1}{2} k T \longrightarrow \text { for leaf system e }
$$

The energy of the system can ally be stored in the capacitance. The only source of energy of the system is thermal energy. Therefore the two inst be equal

$$
\Longrightarrow \uparrow\left(\frac{S}{N}\right)^{2}=\frac{A_{0}^{2} / 2}{\left\langle V_{c}^{2}\right\rangle}=\frac{A_{0}^{2} / 2}{k T / C}=\frac{C \uparrow}{k T} \frac{A_{0}^{2}}{2}
$$

To hove a high SNR while keeping the circuit pale at the desired frequency, we nest increase C and decrease R acucrdiugly,

τ is in the order of [ff] which is munch smaller than the typical observation time.
it takes a time equal to τ for the electron to bonce back to its original position, where τ is the scattering time due to the resistor's particles reticulum.

U_{R} can then be approximated as a series of delta -like pulses, whose correlation time tends to zero.

Therefore the PSD of the thermal rise can be represented by a white raise as it is the superposition of the Fourier trausfarues of delta-like pulses.

$$
\begin{aligned}
T(s) & =\frac{1 / s C}{1 / s C+R}-\frac{1}{1+s C R} \\
& \left.=\frac{1}{1+\frac{s}{\omega_{0}}}\right\} R C=\frac{1}{\omega_{0}}
\end{aligned}
$$

We don't care about the phase shift of the output usise, just about its amplitude:

$$
\begin{aligned}
& |T(j \omega)|=\left|\frac{l}{1+j \omega / \omega_{0}}\right|=\frac{1}{\sqrt{1+\omega^{2} / \omega_{0}^{2}}} \\
& \left\langle\operatorname{vout}^{2}(t)\right\rangle=\left\langle(n(t)|T(j \omega)|)^{2}\right\rangle=\left\langle n^{2}(t)\right\rangle|T(j \omega)|^{2}=e_{n}^{2}|T(j \omega)|^{2} \\
& =\frac{e_{n}^{2}}{1+\omega^{2} / \omega_{0}^{2}}=\frac{S_{R}(f) \Delta f}{1+\omega^{2} / \omega_{0}^{2}} \\
& \text { def of } S_{n}(f) \\
& \Longrightarrow\left\langle v_{\operatorname{out}^{2}}(t)\right\rangle=\int_{0}^{+\infty} \frac{S_{R}(f) d f}{1+\frac{\omega^{2}}{\omega_{0}^{2}}} \\
& \left\langle\sigma_{0 u t}^{2}(t)\right\rangle=\left\langle\sigma_{c}^{2}(t)\right\rangle=\int_{0}^{+\infty} \frac{w d f}{1+\frac{\omega^{2}}{\omega_{0}^{2}}}=\frac{\omega_{0} W}{2 \pi} \int_{0}^{+\infty} \frac{d f 2 \pi / \omega_{0}}{1+\omega^{2} \omega_{0}^{2}}= \\
& =\frac{\omega_{0} w}{2 \pi} \int_{0}^{+\infty} \frac{d x}{1+x^{2}}=\frac{\omega_{0} W}{2 \pi} \frac{\pi}{2}=\frac{\omega_{0} W}{4} \\
& \begin{aligned}
& x=f \frac{2 \pi}{\omega_{0}}=\frac{\omega_{0}}{2 \pi} \int_{0} \frac{d x}{1+x^{2}}=\frac{\omega_{0}}{2 \pi} \frac{\pi}{2}= \\
& \frac{W}{4 R C}=\left\langle U_{c}(t)\right\rangle=\frac{k T}{C}
\end{aligned} \\
& \Rightarrow W=S_{v_{k}}(f)=4 k T R
\end{aligned}
$$

Thevenin/Norton transformations

For a resistor $R=1 k \Omega$ the associated power spectral density is $S_{V_{R}}=(4 \mathrm{nV})_{\mathrm{Hz}}^{2}$ (@ room temperature $T=300 \mathrm{~K}$)

What about thermal uaise in transistors?

$$
\begin{aligned}
& I_{D S}=K\left[2\left(V_{G S}-V_{T}\right) V_{D S}-V_{D S}^{2}\right] \\
& \left.V_{D S} \rightarrow 0\right] \text { then } I_{o s} \longrightarrow 2 K\left(V_{O S}-V_{T}\right) V_{D S}= \\
& \Rightarrow R_{c h} \simeq \frac{1}{2 K\left(V_{G S}-V_{T}\right)}=\frac{1}{g_{m}}=G_{c h} V_{D S}
\end{aligned}
$$

$$
\longrightarrow \quad S_{i_{T}}=\frac{4 k T}{R h}=4 K T g_{m}
$$

$$
\text { when } V_{o s} \simeq 0
$$

What about other operating paints, such as $\left\lceil V_{D S}>V_{O V} \mid\right.$?

$$
S_{i_{T}}=4 k T \gamma g_{m}\left\{\begin{array}{l}
\gamma \simeq 1 \text { ohmic } V_{\Delta s} \simeq 0 \\
\gamma \simeq \frac{2}{3} \text { saturation } V_{\Delta s}>0
\end{array}\right.
$$

for long channel devices; $y \simeq 2$ goo short chancel devices

$$
\begin{aligned}
& v_{s}=A_{0} \sin \left(\omega_{0} t\right) \\
& \Longrightarrow I_{\triangle} \downarrow \text { then }\left(\frac{S}{N}\right) \downarrow
\end{aligned}
$$

\Longrightarrow By reducing the current (power consumption) we are impairing the sigual-to-naise ratio (information coutent).

Iuput-referred roise sourzes

We cau simplify the systeve by "moving" all roise sources at the iuput and cousider everything else uaiseless.

(1) It is always possible to represent a vaisy vetwerk as a reaisless wetwork with valtage and evoreut input. referred ucise seurces, as long as the retwork is a two-pert uetwork
(2) The PSD of the iuput-referred usise saurces is independant of the iuput and output (source and load) resistances

TWO-PORT NETWORKS

$$
\left[\begin{array}{l}
V_{1} \\
V_{2}
\end{array}\right]=\left[\begin{array}{ll}
z_{11} & z_{12} \\
z_{21} & z_{22}
\end{array}\right]\left[\begin{array}{l}
I_{1} \\
I_{2}
\end{array}\right]
$$

differential U_{m}

it's a twa-part retwork auly if its eammou uode gaiu is Ctem $=0$, that is, $C M R R=\infty$

- We care use the input-referred raise representation -
- for a normal amplifier duly if its CMRR is very high

$$
v_{\text {cut }}=A^{+} \sigma^{+}-A^{-} \sigma^{-}
$$

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ v _ { d } = v ^ { + } - v ^ { - } } \\
{ v _ { c m } = \frac { v ^ { + } + v ^ { - } } { 2 } }
\end{array} \rightarrow \left\{\begin{array}{l}
v_{d}=v^{+}-v^{-} \\
2 v_{c m}=v^{+}+v^{-}
\end{array}\right.\right. \\
& v^{+}=v_{c m}+\frac{v_{d}}{2} \Leftarrow v_{d+2 v_{c m}=2 v^{+}}^{2} \quad v_{d}-2 v_{c m}=-2 v^{-}
\end{aligned}
$$

$$
\begin{aligned}
v_{\text {out }} & =A^{+}\left(V_{c m}+\frac{v_{d}}{2}\right)-A^{-}\left(V_{c m}-\frac{v_{d}}{2}\right) \\
& =\left(A^{+}-A^{-}\right) V_{c m}+\left(\frac{A^{+}+A^{-}}{2}\right) v_{d} \\
A_{c m} & \longleftrightarrow
\end{aligned}
$$ $\rightarrow A_{d}$

The amplifier is a good differential amplifier duly if

$$
A^{+}=A^{-} \Rightarrow A_{c m}=0, \quad C M R R=\infty
$$

and therefore con be considered a two-part network.
Indeed, if Am $\neq 0$ then the output would vary by just increasing v^{+}and v - by the same amount, however their difference would still be the same. The amplifier could not be considered a two-port network, sunce the output would change without any change on the (differential) input.
A good differential amplifier can be represented as a noiseless amplifier through the use of iuput-referred noise sources.
\rightarrow Is it true that any 4-Terminal retwork is a two-port network? NO

Let's now see how to compute the input-refered Masses S_{0} and S_{i}.

Example:

- To calculate S_{v}, short input and antput terminals and compare the real current output PSD with the undel one.

$$
S_{\text {out }}^{0}=4 k T \gamma g_{m}=S_{\text {out }}=g_{m}^{2} S_{v} \Rightarrow S_{v}=\frac{4 k T \gamma}{g_{m}}
$$

- To calculate S_{i}, short output and open input terminal and eourpare the current output PSD

$$
\begin{aligned}
& C_{o x} \approx C_{g s}+C_{g d} \\
& \begin{aligned}
S_{o u t} & \approx g_{m}^{2} S_{v_{g}}
\end{aligned}=g_{m}^{2} S_{i}\left|\frac{l}{\omega C_{0}}\right|^{2} \quad \text { this courreu } \\
&=S_{i} \frac{g_{m}^{2}}{\omega^{2} C_{o x}^{2}}=S_{o u t}^{0}=4 k T \gamma g_{m} \\
& \Rightarrow S_{i} \approx 4 k T \gamma g_{m} \cdot \frac{\omega^{2} C_{0 x}^{2}}{g_{m}^{2}} \omega_{T}=2 \pi f_{T} \\
&=4 k T \gamma g_{m}\left(\frac{\omega}{\omega_{T}}\right)^{2}
\end{aligned}
$$

Note that because of rube (2), these results are still valid even if there was a resistance load attached to the transistor drain
source voltage and noise

Instead of computing each raise contribution an Sort we can calculate their effects on the network iupent (the transistor gate) and then utilize the network transfer function
to detain Sout. In this way we can afraid using many different transfer functions for each raise source.

$$
S_{v_{g}}=S_{n}+S_{v}+S_{i} \cdot R_{s}^{2} \rightarrow S_{a n t}=S_{v_{g}} \cdot|T(s)|^{2}
$$

Note that it would be otherwise hard to compare different types of uaise sources (voltage ar current) an the output PSD.

In this particular case, we can see that the most relevant intrinsic noise' source depends an the value of $\mathbb{R s}^{\prime}$

Sour $\propto S_{v}+R_{s}^{2} S_{i}$

$$
\frac{4 k T \gamma}{g_{m}} \quad 4 k T \gamma g_{m}\left(\frac{\omega}{\omega_{T}}\right)^{2} R_{s}^{2}
$$

\Rightarrow In standard conditions, S_{i} is negligible. In case of very big R_{s} or very low w_{T} then it should be considered.

Au off-topic mote: Norton theorem
Will be used to quickly compute transfer function of a network.

1) Compute output current (icc) as a function of input signal with outpert shorted to ground
2) Coup ute output impendance (Req)
3) $T=\frac{\sigma_{\text {out }}}{\operatorname{Sin}}=\frac{i_{\text {cc }}(\operatorname{Sin})}{\operatorname{Sin}} \cdot R_{\text {eq }}$
\longrightarrow can be either voltage ar current signal

CIRCUIT DESIGN

Prototypical differential stage

We need: $\left.\begin{array}{l}\text { very high } A_{d} \simeq 10^{5} \\ \text { very law } A_{c m} \simeq 0\end{array}\right\} \longrightarrow C M R R \geq 100 \mathrm{~dB}$

BIAS
"The differential gain is quite low!

SIGNAL

$$
\begin{aligned}
\Rightarrow \mid G_{d} & \left.=\frac{v_{o u t}}{v_{d}}=\frac{g_{m} R_{D}}{2} \right\rvert\,= \\
& =\frac{2 I_{0}}{V_{o v}} \cdot \frac{R_{D}}{2}=\frac{I_{0} R_{D} \uparrow}{v_{0 v}}=2
\end{aligned}
$$

- POOR!

To increase the gain, we can either

- decrease the overdrive to increase gm this cam be dove oily down to the point where gm saturates to the thermal value $\frac{I_{0}}{n V_{\text {th }}}$ which world increase Gd only up to 5,33
- increase the load No
this can be done ally up to when the transistors exit saturation and enter ohunic region, that is when the bias paint of their drain gees below 0,9V, which represents a voltage drop over the load equal to 2,1V and a resistance. R_{D} equal to $84 \mathrm{k} \Omega$, returning a maximum differential gain of 21

The gain can then be increased, but ut by much and only through greater power consumptions.

To reduce the CMRR we can ally increase the source resistance, but duly up to when the transistors exit saturation.

The CMRR can hardly be increased and only through greater power cousumptions (higher power supply voltage to iupprave the stage dyuaruic).

Possible solution:
use current generators (transistors) instead of the resistors

$$
G_{d}=\frac{g_{m} r_{0}}{2}=\frac{\mu}{2}>2
$$

The stage gain has the same expression as before, but it is now higher and the valtage drop across the Road is independent of the current.

can be decreased without
afflicting the operating region of the transistors; two transistors in caxcode under can give high resistance with low bias voltage drop.

Bias issue: current mismatch

$$
\begin{aligned}
& V_{S D_{G}}\left(\bigotimes_{=} \downarrow I_{a} V_{S D_{G}}+V_{D S_{1}}=V_{S}\right. \\
& V_{D S_{1}}\left(\bigotimes_{S} \downarrow I V_{S D_{G}}=V_{S}-V_{D S_{1}}\right. \\
& I_{S D_{G}}\left(V_{S D_{G} G}\right)=I_{S D_{G}}\left(V_{S}-V_{D S_{1}}\right)
\end{aligned}
$$

A suall difference in the transistors parameters or bias values will couse either of the two transistors (in each branch of the stage) to exit saturation region.
\rightarrow we reed a camman-mode feedback to properly fix the bias operating paint of the stage, while allowing the signal to propagate.

It's a cauman-mode feedback because it does nat affect the differential signal gam while cantedling the effects of a conman rude signal an the bias.

Better structure for the same amplifier:

trausdiede
built-in feedback
the current through the right-hand side of the current mirror precisely matches the current an the left-hand side (presided that V_{A} and V_{B} are equal, considering the effects of the modulation voltage)
it detects the current flowing through the dzoiu: if $I_{G} \neq I$ then there unit be a voltage change at the drain, which in turce will adjust I_{G} through the camection to the gate in order to equate I.
Only issue with this structure is that it came provide a double-ended output (not fully differential)

$$
\begin{aligned}
& \longrightarrow \quad i_{\text {out }}=g_{m} v_{d} \quad R_{\text {out }} \simeq r_{O_{H}} / / \frac{2 r_{0}}{1-G_{\text {loop }}}=r_{o_{H}} / / r_{0} \simeq \frac{r_{0}}{2} \\
& G_{d}=g_{m} r_{0} \\
&=\frac{2 I}{V_{\text {ow }}} \cdot \frac{V_{A}}{I} \cdot \frac{1}{2}=\frac{V_{A}}{V_{\text {av }}} \simeq 70 \text { groves }
\end{aligned}
$$

does not depend on current

but in truth there might be a small current mismatch:

$$
G_{\text {cm }}=\frac{(\varepsilon)}{2 r_{g}} R_{\text {out }}
$$

How ta compute the current ever ε ?

$$
\begin{aligned}
i_{\text {out }} & =\frac{v_{c m}}{2 r_{g}}-\frac{v_{c m}}{2 r_{g}}\left(\frac{r_{o m}}{r_{o m}+1 / g_{m \mu}}\right)= \\
& =\frac{v_{c m}}{2 r_{g}}\left(\frac{1 / g_{m \mu}}{r_{o m}+1 / g_{m}}\right)=\frac{v_{c m}}{2 r_{g}} \frac{1}{1+g_{m} r_{o m}} \simeq \\
& \simeq \frac{v_{c m}}{2 r_{g}}\left(\frac{1}{\mu}\right)^{v} \\
& \varepsilon \simeq \frac{1}{\mu} \simeq 10^{-2}
\end{aligned}
$$

CHR $=\frac{2 g_{m} r_{g}}{\varepsilon} \simeq 2 \cdot 10^{4}=86 \mathrm{~dB}$ GREAT: it's actually slightly larger because of other uau-idealities

Input referred raise
$C M R R>10^{4} \rightarrow$ stage can be seen as a two-part network
Compute $S_{v}:\left.S_{o u t}\right|_{0}=S_{v} g_{m}{ }^{2}$

$$
\begin{aligned}
& S_{\text {out }}=\frac{8 K T r g_{m}}{}+\frac{8 K T \gamma g_{m}}{} \\
& \Rightarrow S_{v}=\frac{8 K T \gamma}{g_{m}}\left[1+\frac{g m_{\mu}}{g_{m}}\right] \\
&=\frac{8 K T \gamma}{g_{m}}\left[1+\left[\frac{V_{0 v}, 1 V}{V_{\text {over }}}\right] \simeq(5 n V / \sqrt{H z})^{2}\right.
\end{aligned}
$$

\rightarrow overdrive of the mirror higher higher trauscouductance thou the input pair overdrive higher bias current greater power consumption

(ugglecting Cod)

Compute $S_{i}:\left.S_{o u t}\right|_{i}=4 S_{i}\left(\frac{\omega_{\tau}}{\omega}\right)^{2}=\left.S_{i}\left|2 g_{j \omega}\right|_{8>}\right|^{2}$
Sort $=8 K T \gamma g_{m}\left[1+\frac{q_{m}}{g_{m}}\right]$

$$
\Longrightarrow S_{i}=2 k T \gamma g_{m}\left[1+\frac{V_{\text {av }}}{V_{V_{M}}}\right]\left(\frac{\omega}{\omega_{T}}\right)^{2}
$$

$$
=S_{v} \frac{g_{m}^{2}}{4}\left(\frac{w^{w}}{\omega_{T}}\right)^{2}
$$

at low frequencies $S_{v} \gg S_{i}$
(considering an input resistance in e the order of $\frac{1}{g_{m}}$)

To sumuwarise what we've got so far:

$$
\begin{aligned}
K_{n}^{\prime}= & 50 \mu A / V^{2} \quad K_{p}^{\prime}=25 \mu A / V^{2} \\
V_{T}= & 0,6 \mathrm{~V} \quad V_{A}^{0}=7 \mathrm{~V} @ L_{\text {min }}=0,35 \mu \mathrm{~m} \\
\rightarrow & \frac{S_{V}}{}=\frac{8 \mathrm{KT} \gamma}{g_{m i n}}\left(1+\frac{V_{\text {olin }}}{V_{\text {aV }}}\right) \leqslant \frac{\left(5 \frac{n V}{H_{R}}\right)^{2}}{g_{m \text { in }} \geqslant 1,2 \frac{\mathrm{~mA}}{\mathrm{~V}}} \\
\rightarrow & \frac{V_{\text {av in }}=0,1 \mathrm{~V} \quad V_{e V_{M}}=0,2 \mathrm{~V}}{} \quad \rightarrow g_{m_{\text {in }}}=1,5 \frac{\mathrm{~mA}}{V} \quad g_{m_{M}}=0,75 \frac{\mathrm{~mA}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \underline{G_{d}}=g_{\text {min }}\left(r_{0_{H}} / / r_{0_{\text {in }}}\right)=\frac{V_{A}}{V_{\text {oven }}} \geqslant 100 \quad I=\frac{g_{m} V_{\text {ova }}}{2}=75 \mu \mathrm{~A} \\
& V_{A} \geqslant 10 \mathrm{~V} \rightarrow V_{A}=2 V_{A}^{\circ}=14 \mathrm{~V} \quad\left(\frac{W}{L}\right)_{\text {in }}=150 \quad\left(\frac{W}{L}\right)_{M}=75 \\
& L=2 L_{\text {min }}=0,7 \mu m \quad W_{\text {in }}=105 \mu \mathrm{~m} \quad W_{M}=52,5 \mu \mathrm{~m} \\
& \rightarrow \underline{V_{\mathrm{OVg}}}=0,2 \mathrm{~V} \rightarrow\left(\frac{W}{L}\right)_{g}=\frac{2 I}{K_{n}^{\prime} V_{\text {org }}}=150 \rightarrow W_{g}=105 \mu \mathrm{~m} \\
& G_{c m} \simeq \frac{r_{0 \mu} / / r_{0 i i}}{2 \mu_{M} r_{g}} \quad r_{0 i n}=r_{0 M}=186,6 \mathrm{k} \Omega \quad r_{g}=93,3 \mathrm{k} \Omega \\
& \simeq \frac{1}{2 \mu_{M}}=\frac{V_{0 V_{H}}}{4 V_{A}}=0,00357
\end{aligned}
$$

$$
G_{d}=43 d B \quad C M R R=\frac{G_{d}}{G_{c m}} \simeq 2 g_{\min } r_{g} \mu_{M}=92 d B
$$

only parameter that should still be improved (up to 100 dB)
\Longrightarrow Add a second stage with high gain:

$$
\begin{aligned}
& \rightarrow \quad \underline{G_{2}}=g_{m_{s}}\left(r_{\cos } / / r_{06}\right)=\frac{2 I_{2}}{V_{o V_{s}}} \cdot \frac{V_{A}}{2 I_{2}}= \\
&=\frac{V_{A}}{V_{o V_{s}}}=140 V_{o V_{s}}=V_{o V_{s, 4}}=0,2 \mathrm{~V} \\
& \rightarrow V_{A_{S}}=28 \mathrm{~V} L_{s}=L_{6}=1,4 \mu \mathrm{~m}
\end{aligned}
$$

common source stage (with active load)

$$
r_{0_{5}}=r_{0_{6}}=186,6 \mathrm{k} \Omega \quad g_{m_{5}}=1,5 \frac{\mathrm{~mA}}{\mathrm{~V}}
$$

$$
G_{d}=g_{m_{1}}\left(r_{140} / / r_{0_{4}}\right) g_{m_{5}}\left(r_{140} / / / r_{0_{6}}\right) \simeq 86 d B \text { :GREAT! }
$$

Note that the second stage adds a negligible coutributicu to the iuput-referred uaise of the overall ouplifier.

$$
S_{0}=\frac{8 k T \gamma}{g_{m_{1}}}\left(1+\frac{V_{O V_{1}}}{V_{0 V_{3}}}\right)+\frac{4 K T \gamma\left(g_{m_{5}}+g_{m_{6}}\right)}{\left(G_{1}^{2}\right) \cdot g_{m_{5}}}
$$

referred to the input, the raise of the second stage is reduced by the gain of the first stage

This prototypical differential stage is called Operational Trausimpedence Amplifier (STA)
its outpert impedance is very large (it amplifies voltage into current)

has a very high gain (transimpedence)

Au OTA count be used with a low impedance load:

$$
\text { Rout }=\left(r_{05} / / r_{6}\right) / /\left(R_{1}+R_{6}\right)
$$

$$
\simeq R_{1}+R_{6}
$$

$\downarrow T_{\text {STA }} \propto$ Rout $\downarrow \rightarrow$ the gain of the amplifier gases down with its output resistance
$R_{1} \sim 10 \mathrm{er}$

$$
\begin{aligned}
& \rightarrow \quad I_{2}=150 \mu \mathrm{~A} \quad\left(\frac{W}{L}\right)_{5}=150 \\
& \rightarrow \underline{V}_{0 V_{6}}=0,2 \mathrm{~V} \quad\left(\frac{W}{L}\right)_{6}=75 \\
& W_{S}=210 \mu \mathrm{~m} \quad W_{G}=105 \mu \mathrm{~m}
\end{aligned}
$$

That is why a generic operational amplifier is made of an OTA connected to au output buffer so that its output impedance is not ruodified by the load and its gain remains stable.

OPAMP
buffer (e.g. a simple source -follower)
Au OPAMP car be convected to whatever load. An OTA unist be cemented to a high impedance load.

Frequency Response and Compensation ||

$$
f_{p}=\frac{1}{2 \pi C R_{e q}} \quad \text { frequency range of }
$$

Since lower frequency poles are found at high resistance modes, we are better of considering the capacitances seen at only those nodes.

Note: for each high-gain stage, there exists 1 high impedance mode
Most relevant capacitances seen at the two high-imp nodes:

$$
\begin{array}{ll}
C_{s_{5}}=C_{o x}^{1}(W L)_{5} \cdot \frac{2}{3} \simeq 1_{p} F & C_{L} \simeq 2 p F \\
f_{p_{1}}=17 \mathrm{MHz} & f_{p_{2}}=8,5 \mathrm{MHz}
\end{array}
$$

it can easily become unstable if used in any low-gain neg. feedback circuit (egg. buffer)
The two poles are tao close and produce a bad closure angle of the transfer function.

We have to split them apart in order to cut the OdB axis with a $-20 \frac{d B}{d e c}$ slope. How can it be dare?

Insert a Miller capacitance that comects the two modes

$$
\begin{aligned}
R_{1} & =r_{0_{2}} / / r_{0_{4}} \quad R_{2}=r_{05} / / r_{06} \\
T(s) & =-\left[g m_{1} R_{1} g_{m} R_{2}\right] \frac{a_{2} s^{2}+a_{1} s+1}{b_{2} s^{2}+b_{1} s+1}
\end{aligned}
$$

How do we compute f_{z}, f_{p} ? Aud a_{2}, a_{1}, b_{2}, b_{1} ?

TIME CONSTANT METHOD
numerator is polinamial

$$
T(s)=G_{T_{0}} \frac{a_{2} s^{2}+a_{1} s+1}{b_{2} s^{2}+b_{1} s+1}
$$

DC gain
of order equal to the number of reactive capacitauces when output is set to zero voltage
denominator is olinamial of order equal to the unuber of independent eapacitances in the circuit
unuber of capacitances across which I can freely set any voltage

Example:

Generalized first order uetwark

$$
\begin{aligned}
& -v_{c} S C=i_{c} \\
& \rightarrow v_{c}=B_{0} v_{i n}-R_{1} v_{c} S C \\
& \\
& v_{c}\left(1+s C R_{1}\right)=B_{c} v_{i n} \\
& v_{c}=\frac{B_{0} v_{i n}}{1+s C R_{1}} \\
& \quad \mid
\end{aligned}
$$

$$
\left\{\begin{array}{l}
v_{\text {out }}=A_{0} v_{i n}+R_{m} i_{c} \\
v_{c}=B_{0} v_{i n}+R_{1} i_{c}
\end{array}\right.
$$

$$
\longrightarrow R_{1}=\left.\frac{v_{c}}{i_{c}}\right|_{v_{i n}=0}
$$

$$
\longrightarrow V_{\text {out }}=V_{\text {in }}\left[A_{0}-\frac{s C R_{m} B_{0}}{1+s C R_{1}}\right]
$$

$$
=\operatorname{vin} \frac{A_{0}+S C\left[R_{1} A_{0}-R_{m} B_{0}\right]}{1+S C R_{1}}
$$

$$
v_{\text {out }}=v_{\text {in }} A_{0} \frac{1+S C\left[R_{1}-R_{m} \frac{R_{0}}{A_{0}}\right]}{1+S C R_{1}}
$$

$\rightarrow 1$ pale as expected
Let's better understand the expression of the zero:

$$
\left\{\begin{array} { r l }
{ v _ { \text { out } } | _ { 0 } = 0 = A _ { 0 } v _ { i n } | _ { 0 } + R _ { m } i _ { c } | _ { 0 } } \\
{ v _ { c } = B _ { 0 } v _ { \text { in } } + R _ { 1 } i _ { c } }
\end{array} \longrightarrow \left\{\begin{array}{l}
\left.v_{i n}\right|_{0}=-\left.\frac{R_{m}}{A_{0}} i_{c}\right|_{0} \\
\left.v_{c}\right|_{0}=-R_{m} \frac{\left.B_{0} i_{c}\right|_{0}+\left.R_{1} i_{c}\right|_{0}}{A_{0}} \\
\end{array} \frac{\left.v_{c}\right|_{0}}{\left.i_{c}\right|_{0}}=R_{1}-R_{m} \frac{B_{0}}{A_{0}}=R_{01} .\right.\right.
$$

$\Longrightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\left(\frac{a_{1} s+1}{b_{1} s+1}\right.$ Go $\quad \begin{array}{l}\text { DC gain (with then tor open) }\end{array}$
resistance sene
from the capacitor when
the output is at
zero voltage (not grand!)
times the capacitance
\longrightarrow resistance seen ${ }^{\text {Con }}$ the capacitor when the input is tiered of (shorted if voltage, open if current' times the capacitance

Example:

$$
\begin{aligned}
G(s) & =\frac{1}{4} \frac{\left(1+s C_{1} R\right)}{\left(1+s C_{1} R / 2\right)} \frac{\left(1+s C_{1} R\right)}{\left(1+s C_{2} R / 2\right)}= \\
& =\frac{1}{4} \frac{s^{2} C_{1} C_{2} R^{2}+s\left(C_{1} R+C_{2} R\right)+1}{s^{2} C_{1} C_{2}\left(R_{2}\right)^{2}+s\left(C_{1} R_{2}+C_{2} R / 2\right)+1}
\end{aligned}
$$

\rightarrow second order network

The capacitances are the same; the resistances seen frau each capacitor will be different

$$
G(s)=G_{0} \frac{s^{2} C_{1} C_{2} \alpha_{12}+s\left[C_{1} \alpha_{1}+C_{2} \alpha_{2}\right]+1}{s^{2} C_{1} C_{2} \beta_{12}+s\left[C_{1} \beta_{1}+C_{2} \beta_{2}\right]+1}
$$

$R_{0, ~}^{(0)}$

$$
\rightarrow C_{2}=0 \quad G(s)=G_{0} \frac{s C_{1} \alpha_{1}+1}{s C_{1} \beta_{1}+1}
$$

$$
R_{0_{2}}^{(0)} \xrightarrow{\prime} \longrightarrow R_{1}^{(0)}
$$

(first order networks)

$$
\rightarrow C_{1}=0 \quad G(s)=G_{0} \frac{s C_{1} \alpha_{2}+1}{s C_{2} \beta_{2}+1} \underset{L_{1} R_{2}^{(0)}}{ }
$$

$R_{x}^{(0)}:=$ resistance seen fran capacitor x when all the other ares are open

C_{2} shorted

$$
\begin{aligned}
\rightarrow C_{2} \rightarrow \infty \quad G(s) & =G_{0} \frac{s^{2} C_{1} C_{2} \alpha_{12}+s C_{2} \alpha_{2}}{s^{2} C_{1} C_{2} \beta_{12}+s C_{2} \beta_{2}}=G_{0} \frac{s C_{1} \alpha_{12}+\alpha_{2}}{s C_{1} \beta_{12}+\beta_{2}} \\
& =G_{0} \frac{\alpha_{2}}{\beta_{2}} \frac{s C_{1} \alpha_{12} / \alpha_{2}+1}{s C_{1}\left(\beta_{12} / \beta_{2}+1\right.} R_{01}^{(2)}
\end{aligned}
$$

$\rightarrow C_{1} \longrightarrow \infty$
(first order uetworles)
$R_{x}^{(y)}:=$ resistance seen from capacitor x when capacitor y is shorted and all the other ares are open

Nate that while you do reed to compute both $R_{1}^{(0)}$ and $R_{2}^{(0)}$ ($R_{a_{1}}^{(0)}$ and $R_{o_{2}}^{(0)}$) to detain β_{1} and $\beta_{2}\left(\alpha_{1}\right.$ and $\left.\alpha_{2}\right)$, you do NOT need to compute beth $R_{1}^{(2)}$ and $R_{2}^{(1)}\left(R_{1_{1}^{(2)}}^{(2)}\right.$ and $\left.R_{O_{2}^{(1)}}\right)$ to Stain $\beta_{12}\left(\alpha_{12}\right)$.
Computing just are of the two will suffice.

$$
\begin{array}{cl}
\alpha_{1}=R_{01}^{(0)} & \beta_{1}=R_{1}^{(0)} \\
\alpha_{2}=R_{0_{2}}^{(0)} & \beta_{2}=R_{2}^{(0)} \\
\alpha_{12}=R_{0_{1}}^{(2)} \cdot R_{0_{2}}^{(0)}=R_{0_{2}}^{(1)} \cdot R_{0_{1}}^{(0)} & \beta_{12}=R_{1}^{(2)} R_{2}^{(0)}=R_{2}^{(1)} R_{1}^{(0)} \\
C_{2} C_{1} R_{0_{2}}^{(1)} R_{0_{1}}^{(0)}=C_{1} C_{2} R_{01}^{(2)} R_{0_{2}}^{(0)} r & C_{1} R_{01}^{(0)}+C_{2} R_{0_{2}}^{(0)} \\
G(s)=G_{0} \frac{s^{2} a_{1}+S a_{1}+1}{s^{2} b_{2}+s b_{1}+1} \\
C_{2} C_{1} R_{2}^{(1)} R_{1}^{(0)}=C_{1} C_{2} R_{1}^{(2)} R_{2}^{(0)} C^{2} R_{1}^{(0)}+C_{2} R_{2}^{(0)}
\end{array}
$$

What about third+ order networks?

$$
\begin{aligned}
b_{1} & =\tau_{1}^{(0)}+\tau_{2}^{(0)}+\tau_{3}^{(0)}=c_{1} R_{1}^{(0)}+c_{2} R_{2}^{(0)}+c_{3} R_{3}^{(0)} \\
b_{2} & =\tau_{1}^{(2)} \tau_{2}^{(0)}+\tau_{1}^{(3)} \tau_{3}^{(0)}+\tau^{(3)} \tau_{3}^{(0)}= \\
& =\tau_{2}^{(1)} \tau_{1}^{(0)}+\tau_{3}^{(1)} \tau_{1}^{(0)}+\tau_{3}^{(2)} \tau_{2}^{(0)}=\ldots \\
b_{3} & =\tau^{(2,3)} \tau_{2}^{(3)} \tau_{3}^{(0)}=\tau_{2}^{(1,3)} \tau_{3}^{(1)} \tau_{1}^{(0)}=\tau_{3}^{(1,2)} \tau_{3}^{(2)} \tau_{2}^{(0)}= \\
& =\tau_{1}^{(2,3)} \tau_{3}^{(0)} \tau_{2}^{(0)}=\tau_{2}^{(1,3)} \tau_{1}^{(3)} \tau_{3}^{(0)}=\tau_{3}^{(1,2)} \tau_{2}^{(1)} \tau_{1}^{(0)}
\end{aligned}
$$

In general, you just have to follow the sauce calculation pattern of a simple second order network.

Let's now use this method to study the frequency resparse of our OTA.

note that here there is abready a parasitic capacitance due to $C_{g d}$ but it is too sural to have significant effects an the circuit

$$
\begin{gathered}
G_{0}=\left(g_{m_{1}} R_{1}\right)\left(g_{m_{s}} R_{2}\right) \\
T(s)=G_{0} \frac{s^{3}}{s^{3} \frac{a_{2}+s^{2} a_{2}+s a_{1}+1}{b_{3}+s^{2} b_{2}+s b_{1}+1}}
\end{gathered}
$$

- ouly C_{3} introduces a zero (that is ut at infinite frequence) the three capacitances are dependent (that is, are of them has its voltage drop set by the other two and does not introduce a pole)

$$
\begin{aligned}
& \left.L(s)=G_{0} \frac{s a_{1}+1}{s^{2} b_{2}+s b_{1}+1} \right\rvert\, \\
& \text { - } b_{1}=C_{1} R_{1}^{(0)}+C_{2} R_{2}^{(0)}+C_{3} R_{3}^{(0)} \\
& R_{1}^{(0)}=R_{1} \quad R_{2}^{(0)}=R_{2} \quad R_{3}^{(0)}=R_{1}+R_{2}+g_{m_{5}} R_{1} R_{2} \\
& \text { - } b_{2}=C_{1} C_{2} R_{1}^{(0)} R_{2}^{(1)}+C_{1} C_{3} R_{1}^{(0)} R_{3}^{(1)}+C_{2} C_{3} R_{2}^{(0)} R_{3}^{(2)} \\
& R_{2}^{(1)}=R_{2} \quad R_{3}^{(1)}=R_{2} \quad R_{3}^{(2)}=R_{1} \\
& \text { - } b_{3}=C_{1} C_{2} C_{3} R_{1}^{(0)} R_{2}^{(1)} R_{3}^{(1,2)}=0 \text { since } R_{3}^{(1,2)}=0 \\
& \text { - } a_{1}=C_{1} R_{0_{1}}^{(0)}+C_{2} R_{O_{2}}^{(0)}+C_{3} R_{O_{3}}^{(0)} \\
& R_{O_{1}}^{(0)}=0 \quad R_{O_{2}}^{(0)}=0 \quad R_{o_{3}}^{(0)}=-1 / g_{m_{s}} \\
& \text { - } a_{2}=C_{1} C_{2} R_{0_{1}}^{(0)} R_{0_{2}}^{(1)}+C_{1} C_{3} R_{0_{1}}^{(0)} R_{0_{3}}^{(1)}+C_{2} C_{3} R_{0_{2}}^{(0)} R_{0_{3}}^{(2)} \\
& \text { - } a_{3}=0
\end{aligned}
$$

Solve for the rats of the polireuial at the unuerator or denaminater of the tranefer function to find the zeroes or poles of the network with no approximation:

$$
s^{2} b_{2}+s b_{1}+1=0 \circlearrowright w_{L}=2 \pi f_{L}, \begin{aligned}
& w_{H}=2 \pi f_{H}
\end{aligned}
$$

Instead of solving this equation, we can consider the following approxcuatians if f_{L} and f_{4} are far apart from each other (at least are decade):
s very low $\rightarrow s^{2} b_{2}+s b_{1}+1 \simeq s b_{1}+1=0 \rightarrow s_{2} \simeq-\frac{1}{b_{1}}$
s very high $\longrightarrow s^{2} b_{2}+s b_{1}+y^{\prime} \simeq s^{2} b_{2}+s b_{1}=0 \longrightarrow S_{H} \simeq-\frac{b_{1}}{b_{2}}$
Middle brook
approximation $f_{L} \simeq \frac{1}{2 \pi \sum_{i} \tau_{i}^{(0)}} \quad f_{H} \simeq \sum_{i} \frac{1}{2 \pi \tau_{i}^{(0)} \text { seen frow capacitance }} \begin{aligned} & R_{i}^{(0)}:=\text { resistance }\end{aligned}$ i when all other ares are shorted
this is ally valid if all the capacitances in the network are independent -

- for this example it is NOT valid since the three capacitances are dependent (unst use $\omega_{H}=\frac{b_{1}}{b_{2}}$)

$$
\left.\begin{array}{l}
\Longrightarrow f_{L} \simeq \frac{1}{2 \pi\left[C_{1} R_{1}+C_{2} R_{2}+C\left(R_{1}+R_{2}+g_{m_{5}} R_{2} R_{1}\right)\right]} \\
\Longrightarrow f_{H} \simeq \frac{C_{1} R_{1}+C_{2} R_{2}+C\left(R_{1}+R_{2}+g_{m} R_{1} R_{2}\right)}{2 \pi\left[C_{1} C_{2} R_{1} R_{2}+C\left(C_{1}+C_{2}\right) R_{1} R_{2}\right]} \\
C \rightarrow \infty
\end{array} \begin{array}{l}
f_{L}=\frac{1}{2 \pi C\left(R_{1}+R_{2}+g_{m} R_{1} R_{2}\right)} \\
f_{H}=\frac{1+g_{m}\left(R_{1} / / R_{2}\right)}{2 \pi\left(C_{1}+C_{2}\right)\left(R_{1} / / R_{2}\right)}
\end{array}\right) .
$$

We must have $G B$ SUP $\leqslant f_{H} \simeq \frac{1}{2 \pi} \frac{g_{m_{s}}}{c_{1}+c_{2}}$ to have a compensated amplifier.

$$
\begin{aligned}
& \text { But GBWP }=G_{0} f_{2} \simeq g_{2 m_{1} R_{1} g_{m_{s}} R_{i}}^{2 \pi C g_{m} 2 m_{1} R_{2}}=\frac{g_{m_{1}}}{2 \pi C} \\
& \text { So the GBWP is also dependent au. } \\
& \begin{aligned}
\frac{g_{m s}}{2 \pi\left(C_{1}+C_{2}\right)} \rightarrow C^{*} & =\left(C_{1}+C_{2}\right) \frac{g_{m_{1}}}{g_{m_{s}}}= \\
\text { e) zero: } & =\underbrace{\left(C_{1}+C_{2}\right)}_{\sim 3 p} \frac{2 I_{1}}{V_{\text {ave }}} \underbrace{V_{\text {vs }}}_{\sim 1}
\end{aligned}
\end{aligned}
$$

$$
\begin{array}{ll}
\Longrightarrow \text { GBWP }=f_{H} \rightarrow \frac{g_{m_{1}}}{2 \pi C^{*}}=\frac{g_{m}}{2 \pi\left(C_{1}+C_{2}\right)} \rightarrow C^{*} & =\left(c_{1}+C_{2}\right) \frac{g_{m_{1}}}{g_{m s}}= \\
& =(\underbrace{\left.c_{1}+c_{2}\right)}_{\sim 3 p} \frac{2 I_{1}}{V_{\text {over }}} \underbrace{\frac{V_{\text {os }}}{2 I_{s}}}_{\sim 1}
\end{array}
$$

$$
f_{n}^{0} \approx \frac{C_{1} R_{1}+C_{2} R_{2}}{2 \pi C_{1} R_{1} C_{2} R_{2}}=\frac{1}{2 \pi} \sum \frac{1}{\tau_{i}^{\left(c_{1}\right)}}
$$

$$
\Longrightarrow f_{z}=\frac{g_{m_{s}}}{2 a c} \text { but } G B W P \simeq \frac{g_{m_{1}}}{2 \pi c} \text { and } g_{m_{1}}=g_{m_{s}}
$$

se with our parameters we get GBWP $=f_{z}$
If we then set $C=C^{*}=\left(C_{1}+c_{2}\right) \frac{q_{m_{1}}}{\partial_{m_{s}}}$ it turns out that the zero is coincident with the high frequency pole, as well as with the GBWP frequency.

* watch out that for $C=0$ the Middlebrook approx. doesu't hold anymore

Apparently, having pole and zero coinciding at GBWP seems to compensate the Bode plot of the absolute value by having a good closure angle.
However, since this is a positive zero it introduces
 a $-\pi / 2$ phase shift which adds up with the pole phase shift causing the phase margin to be approximately 0°.

The sigual in a negative feedback circuit with such aurplifier would be fed back at the input with the same amplitude and in phase with the original sigual, since the phase shift would be $-180^{\circ}-\pi=-360^{\circ}=0^{\circ}$ (insufficient phase margin), thus causing the output to grow with au unstable fashion.

$$
f_{z}=\frac{1}{2 \pi} \frac{g_{m s}}{C} \quad G B W P=\frac{1}{2 \pi} \frac{g_{m l}}{C} \quad f_{H}=\frac{1}{2 \pi} \frac{g_{m s}}{C_{1}+C_{2}}
$$

To stabilize the amplifier in a negative feedback circuit we therefore reed to wove the POLE AND the zERO at a frequency higher than GBNDP, so we reed to increase aims through using a higher current in the respective branch (higher power disscpatiau).
E.g: $\quad g_{m_{s}}=\frac{2 I_{s}}{V_{o v_{s}}} \quad I_{s}^{0}=150 \mu A \rightarrow I_{s}=300 \mu A=2 I_{s}^{0}$

$$
\begin{aligned}
& \quad g_{m_{s}}^{i^{\prime}}=1, \frac{m \frac{m A}{V}}{} \rightarrow \frac{f_{H}}{G B W P}=2 \frac{g_{m_{s}}}{g_{m_{\mu}}} \frac{C^{*}}{C_{4}+C_{2}}=2
\end{aligned}
$$

$$
\begin{aligned}
\phi_{m} & \simeq 180^{\circ}-90^{\circ}-\arctan \left(\frac{G B W P}{f_{H}}\right)-\arctan \left(\frac{G B W P}{f_{z}}\right) \\
& \simeq 35^{\circ}: P Q O R \quad\left|G_{d}\right| \uparrow
\end{aligned}
$$

This solution returns a good ϕ_{m} ally with very high currents in M_{s} and so with very high power dissipation.

Another solution could then be to increase C above the minimum value $C *$ to more both the GRWP AND the ZERO at lower frequencies (lower GBwP)

The phase margie should at this paint be high enough (arauid 60 6) but at the cost of mare power dissipation and lower GBWP.

$$
f_{2} \simeq \frac{1}{2 \pi C g_{m_{s}} R_{1} R_{2}} \quad G B W P \simeq \frac{g m_{1}}{2 \pi c} \quad f_{z} \simeq \frac{g m_{3}}{2 \pi C} \quad f_{H} \simeq \frac{g m_{5}}{2 \pi\left(c_{1}+c_{2}\right)}
$$

Insights to better understand these unuerical results - au intuitive may to calculate poles and zeros:

(1)

Is there a way to replace this capacitor with two separate equivalent impedences in order to consider C_{1} and C_{2} as independent capacitances?

MILER THEOREM

$$
\left\{\begin{aligned}
I_{21} & =\frac{V_{2}-V_{1}}{Z_{12}}=-\frac{V_{1}}{Z_{10}} \\
Z_{10} & =Z_{12} \frac{-V_{1}}{V_{2}-V_{1}} \\
& =Z_{12} \frac{1}{1-V_{2} / V_{1}}
\end{aligned}\right.
$$

If $k(s)=\frac{V_{2}(s)}{V_{1}(s)}$ then

$$
z_{10}(s)=z_{12}(s) \frac{1}{1-k(s)}
$$

$$
I_{21}=\frac{V_{2}-V_{l}}{Z_{12}}=\frac{V_{2}}{Z_{20}}
$$

$\longrightarrow z_{20}(s)=\frac{k(s)}{k(s)-1}$

To apply this theareue we mould then need to know $\frac{V_{2}(s)}{V_{1}(s)}=K$.
However in air problem $\frac{V_{2}(s)}{V_{1}(s)}$ is exactly the transfer function $T(s)$ between the first and second stage which is what we are trying to derive in the first place.
Nevertheless we can still apply the theoreur for the low frequency pole by considering the value of $T(s)=\bar{K}(s)$ approximately equal to the DC gain which is known.

$$
\begin{aligned}
& K(s)=\frac{V_{2}(s)}{V_{1}(s)}=T(s) \simeq T(0)=-g_{m_{s}} R_{2}=K(0) \\
& \longrightarrow z_{10}(s)=z_{12} \frac{1}{1-K(s)} \simeq \frac{1}{s C} \frac{1}{\left(1+g_{m_{s}} R_{2}\right)} \\
& \longrightarrow Z_{20}(s)=z_{12}(s) \frac{K(s)}{K(s)-1} \simeq \frac{1}{s C} \frac{g_{m_{s}} R_{2}}{g_{m_{s}} R_{2}+1} \simeq \frac{1}{s C}
\end{aligned}
$$

The Miller capacitance
behaves like two separate capacitances: are at the output with the same site as the actual capacitance, and sue at the second stage input with a size equal to the actual capacitance multiplied by the stage gain (Miller effect).

At high frequencies the first capacitance that will start behoving like a short circuit is C since it is related to the highest time constant (lowest frequency pole).
But then C_{4} and C_{2} con be considered in parallel, contributing equally to the high frequency pole.

We observed that the Miller capacitance introduces a finite positive zero in the transfer function of our differential amplifier because of the feed forward current it enables between the two stages at higher frequencies.

This zero impairs the phase margin causing the amplifier to easily became unstable in a negative feedback bop. In order to compensate the phase shift introduced by the zero we seeded to both increase the power consumption and decrease the baudwith.

Therefore we want to deal with this singularity without altering the performances of the amplifier
\Longrightarrow Add a mulling resistor in series with the Miller capacitance

$$
\begin{gathered}
g_{m_{s}} y_{s}=\frac{v_{s}}{R_{N}+\frac{1}{s C}} \\
R_{N}+\frac{l}{s C}=\frac{l}{g_{m_{s}}} \\
\frac{l}{S C}=\frac{l}{g_{m}}-R_{N} \\
\Longrightarrow\left[S=\frac{l}{C\left(1 / g_{m s}^{-}-R_{N}\right)}\right]
\end{gathered}
$$

we can now m ave the zero however we like!

$$
\begin{array}{ll}
R_{N}=\frac{1}{g m_{s}} & R_{N}>\frac{1}{g m_{s}} \\
N O \text { zero (uou-fiuite) } & \\
& \text { NEGATINE zero }
\end{array}
$$

Problem: adding the unlling resistor will move not only the zero but also any other pole

The three main capacitances are now independent.

3 poles
$\left(f_{1}, f_{2}, f_{3}\right)$
ERN in the order of $1 / \mathrm{gm} 3\}$
The lower pale will be moved dowse, but just by a very negligible ounount:

$$
\Longrightarrow f_{1} \simeq \frac{1}{2 \pi \sum \tau_{i}^{(0)}}=\frac{1}{2 \pi\left[C_{1} R_{1}+C_{2} R_{2}+C\left(R_{1}+R_{2}+g_{m} R_{1} R_{2}+R_{N}\right)\right]} \simeq \frac{1}{2 \pi\left[C_{m} R_{1} R_{2}\right]}
$$

negligible
The higher pale will also be marred down, frau infinite frequency to a finite (but still high) frequency:

$$
\begin{aligned}
\Longrightarrow f_{3} & \simeq \sum \frac{1}{2 \pi \tau_{i}^{(c)}}=\frac{1}{2 \pi}\left[\frac{1}{C_{1}\left(R_{1} / / R_{N}\right)}+\frac{1}{C R_{N}}+\frac{1}{C_{2}\left(R_{2} / / R_{N}\right)}\right] \simeq \frac{1}{2 \pi R_{N}\left(C_{1} / / C_{1} / / C_{2}\right)} \\
& \approx \frac{1}{2 \pi R_{N} C_{1}}
\end{aligned}
$$

To compute the uniddle pole, we can consider C shorted since it's related to the lower frequency pole, then calculate the low poe of the resulting second order metwork:

Rcloredloop 1

$$
R_{2}^{(0)} \simeq \frac{R_{2} / / R_{1}}{1+g_{m_{s}}\left(R_{2} / / R_{l}\right)} \simeq 1 / g_{m s}^{\frac{1}{\bar{G}}}
$$

$$
\begin{aligned}
& R_{1}^{(c)}=R_{1} / /\left(\overline{R_{\text {opouloep }}}\right) \\
& R_{\text {opeulexp }}=R_{N}+R_{2} \\
& G_{l o s o o p 1 ~}=\frac{-g_{m_{s}} R_{2} v_{s}}{v_{s}}=-g_{m_{s}} R_{2} \\
& \Rightarrow R_{\text {dondleapp }_{1}}=\frac{R_{N}+R_{2}}{1+g_{m} R_{2}} \simeq \frac{1}{g m_{s}} \\
& R_{2}^{(0)}=\frac{R_{\text {epeulopp }}}{1-G_{\text {loop }}} \\
& R_{\text {opeuleop }_{2}}=R_{2} / /\left(R_{1}+R_{N}\right) \simeq R_{2} / / R_{1} \\
& G_{\text {soap } 2}=-g_{m s} \frac{R_{2} \cdot R_{1}}{R_{2}+R_{1}+R_{N}} \simeq-g_{m}\left(R_{1} \| R_{2}\right) \\
& \Longrightarrow f_{2} \simeq \frac{1}{2 \pi\left[c_{1} / g_{m_{s}}+c_{2} / g_{m_{3}}\right]}=\frac{8 m_{s}}{2 \pi\left(c_{1}+c_{2}\right)}
\end{aligned}
$$

The uniddle pole is approximately at the same frequency of the previous higher poke

$$
\begin{gathered}
G_{0}=g_{m_{1}} R_{1} g_{m_{s}} R_{2} \quad f_{1} \simeq \frac{1}{2 \pi C g_{m_{S}} R_{1} R_{2}} \quad G B W P \simeq \frac{g m_{1}}{2 \pi C}=f_{z}=\frac{1}{2 \pi C\left(R_{N}-1 / m_{s}\right)} \\
\\
f_{2} \simeq \frac{g m_{s}}{2 \pi\left(C_{1}+C_{2}\right)} \quad f_{3} \simeq \frac{1}{2 \pi R_{N}\left(C_{1}\left\|C_{2}\right\| C\right)}
\end{gathered}
$$

lower power
consumption

$$
g m_{1}=g m_{5}=150 \frac{\mu A}{V} \quad C \geqslant C_{1}+C_{2} \quad C_{1} \simeq 1 p F \quad C_{2} \simeq 2 p F
$$

\rightarrow higher baudwith
If $C=C_{1}+C_{2}$ the zero and the middle pole perfectly cancel out in both modulus and phase, thus having a fully compensated amplifier.
Note how the use of the unlling resistor allowed to avoid the use of a greater current and a bigger capacitor while still enabling the compensation of the OTA.

$$
\left[F O M:=\frac{G B W P \cdot C_{L}}{I_{\text {tot }}}\right]
$$

Figure of Merit that represents how well au auplifier performs, given its load capacitance, total wrreut consenmptiour and Gain Band Width Product. The higher it is, the better the amplifier.

In our example: $F O M \simeq \frac{g_{m} 1 / 2 \pi c \cdot C_{2}}{2 I_{1}+I_{5}}$ without $R_{N}: \quad g m_{1}=130 \mu \mathrm{~A} \quad I_{1}=75 \mu \mathrm{~A} \quad I_{S}=300 \mu \mathrm{~A}$

$$
\begin{aligned}
& C_{2} \simeq 2 p F V V=\left(C_{1}+C_{2}\right) \cdot 2 \simeq \sigma_{p} F \\
& \longrightarrow F O M=0,18\left[V^{-1}\right] \quad G B W P=40 M H z
\end{aligned}
$$

with R_{N} :

$$
\begin{array}{ll}
g_{m_{1}}=150 \mu \mathrm{~A} & I_{1}=75 \mu \mathrm{~A} \quad I_{5}=150 \mu \mathrm{~A} \\
d_{2} \simeq 2 \mathrm{pF} & \mathrm{~V}=C_{1}+C_{2} \simeq 3 \mathrm{pF} \\
\longrightarrow & F O M=0,54\left[\mathrm{~V}^{-1}\right] \quad G B W P=80 \mathrm{MHz}
\end{array}
$$

Two alternative ways to deal with the zero singularity without altering the performances of the amplifier

1. \Longrightarrow Add a valtage buffer in series after the Miller capacitance

With this expedient, we mantain the Miller effect of capacitance C adding up with capacitance C_{1} to attain the pole splitting, while completely avoiding the introduction of a zero (since there cannot be any feedforward current).

The three capacitors are dependent, therefore there are duly two (finite) poles There is how he (finite) zero

The lower pole is as before, since it's dominated by the Miller effect on capacitance C.
The GBwd is as before too, since the gain is also the same.
To compute the higher pole, we eau consider C shorted and evaluate the lower pole of the corresponding circuit

$$
\begin{aligned}
& R_{1}^{(0)} \simeq 0 \rightarrow \text { high pole independent } \\
& R_{2}^{(0)}=\frac{1}{g_{m s}+\frac{1}{R_{2}} \simeq \frac{1}{g_{m s}}} 1 \\
& \Longrightarrow f_{2} \simeq \frac{1}{2 \pi \sum \tau_{i}^{(0)}} \simeq \frac{g_{m s}}{2 \pi C_{2}}
\end{aligned}
$$

2. \Longrightarrow Add a current buffer in series before the Miller capacitance

The Miller effect an C is still maintained, also there cam ot be any feedforward current.

In a first order approximation, C and C_{2} are in parallel, therefore there are cull two independent capacitances and se duly truro poles.

The lower pale and the GBWP are as before.

We can compute the higher pole just like in the previous case:

$$
\begin{aligned}
& R_{1}^{(0)}= R_{1} \| 1 / g m_{s} \simeq 1 / g m_{s} \\
& R_{2}^{(0)} \simeq 0 \rightarrow \text { high pole independent } \\
& \text { of load cap. } \\
& \Longrightarrow f_{2} \simeq \frac{1}{2 \pi \sum \tau_{i}^{(0)}} \simeq \frac{g m_{s}}{2 \pi C_{1}}
\end{aligned}
$$

To summarize what we've got se far:

These seasults were obtained by considering the valtage and current buffers ideal.
By redoing the calculaticus, taking into account the non-unll resistances of the Prefers ($1 / \mathrm{gm}_{8}$), we can derive a unare accurate value for the singularities of the transfer function:

1. Miller + voltage buffer

$$
\Longrightarrow f_{z}=\frac{g m_{B}}{2 \pi C} \quad f_{1} \simeq \frac{l}{2 \pi C g m_{s} R_{1} R_{2}}
$$

$$
\Longrightarrow\left\{\begin{array}{l}
f_{2} \simeq \frac{1}{2 \pi \sum \tau_{i}^{(0)}} \simeq \frac{1}{2 \pi\left[\frac{c_{1}}{g_{m} g m_{B} R_{2}}+\frac{c_{2}}{g_{m_{s}}}\right]} \simeq \frac{g m_{s}}{2 \pi c_{2}} \\
f_{3} \simeq \frac{1}{2 \pi} \sum \frac{1}{\tau_{i}^{(\infty)}}=\frac{1}{2 \pi}\left[\frac{g_{m_{B}}}{C_{1}}+\frac{1}{C_{2} R_{2}}\right] \simeq \frac{g_{m_{B}}}{2 \pi C_{1}}
\end{array}\right\}
$$

C shorted

GBWP $=f_{2}=f_{z}$ to have zero and pole cancelling ant and

$$
\begin{gathered}
\frac{g m_{1}}{2 \pi C}=\frac{g m_{s}}{2 \pi c_{2}}=\frac{g m_{B}}{2 \pi C} \geq\left\{\begin{array}{l}
C=c_{2}=2 p F \\
g m_{s}=g m_{1}
\end{array}\right. \\
\quad g_{m_{B}}=g m_{1}=150 \frac{\mu \mathrm{~A}}{v}
\end{gathered}
$$

\longrightarrow Similar frequency response of the unlling resistor, but For is impaired'by the buffer current consumption.
Overall not sue outstanding solution.
E' Note that the use of au active buffer implies that the power dissipation will be inherently higher in such coufiguratidus.
2. Miller + current buffer

$$
\Longrightarrow f_{z}=\frac{g m_{B}}{2 \pi C} \quad f_{1} \simeq \frac{l}{2 \pi C g m_{5} R_{1} R_{2}}
$$

$$
\Longrightarrow\left\{\begin{array}{l}
\left.f_{2} \simeq \frac{1}{2 \pi \sum \tau_{i}^{(0)}} \simeq \frac{1}{2 \pi\left[\frac{c_{1}}{g m_{s}}+\frac{c_{2}}{g m_{5} g m_{B} R_{1}}\right]} \simeq \frac{g m_{S}}{2 \pi c_{1}}\right] \\
f_{3} \simeq \frac{1}{2 \pi} \sum \frac{1}{\tau_{i}^{(\infty)}}=\frac{1}{2 \pi}\left[\frac{1}{C_{1} R_{1}}+\frac{g m_{B}}{C_{2}}\right] \simeq \frac{g m_{B}}{2 \pi C_{2}}
\end{array}\right\} \text { c shorted }
$$

the poles estimates yielded $a \longleftarrow f_{3}<f_{2}$! meaningless result

The pole pair moves from real to complex as the value of Q increases, up to the point where they become entirely imaginary.
At rescuance $\left(\omega=\omega_{0}\right)$ the Bode plot displays a growing peak that grams propationally with Q.

Note that:

- The actual phase uargiue might be quite different from the ave obtained considering the GBWP as the OdB crossing paint, due to the amplitude increase in the resonance peak; a solution to avoid this problem would be to move the zero at a frequency higher than the GBWP
- The position of the second pole fo in the Ahuja configuration is less dependent on the value of C_{2} (load capacitance) compared to the second pole f_{2} of a inkling resistor configuration.

$$
\begin{aligned}
\Longrightarrow f_{0} & =\frac{1}{2 \pi} \sqrt{\frac{g m_{5} g m_{B}}{C_{1} C_{2}}} \propto \frac{1}{\sqrt{c_{2}}} \\
f_{2} & =\frac{g m_{5}}{2 \pi\left(c_{1}+c_{2}\right)}
\end{aligned}
$$

Is there a way to achieve the same result of the Ahuja compensation without having to supply the current buffer?

\rightarrow Use the bias current fran the first stage to supply the buffer

This configuration operates just like before, reducing power compensation while retaining the same DC gain and the Miller effect an capacitance C.

Ahuja - cascade structure

Single stage differential amplifiers
To obtain a good amplifier ant of ally one stage, using the same structure that we've used so for, as we have obready seen requires both a low overdrive tension of the input transistors and, most importantly, a very long channel length:

$$
\begin{aligned}
& G d=g_{m_{1}}\left(r_{0_{4}} / / r_{O_{2}}\right)=\frac{2 I}{V_{o V_{1}}} \cdot \frac{V_{A_{2,4}}}{2 I}=
\end{aligned}
$$

However both decreasing $V_{\text {ow }}$ and increasing L have there limits: once the overdrive goes below ~50 mV the transistor enters weak inversion and the transcouductance saturates;
 on the other hand, if L increases then W has to increase by the same amount to mantain the form factor constant, determining a total increase
of the transistor diureusions proportional to the square of the length increment. Too big dimensions will cause the oxide capacitauces to became relevant and new poles wish appear at lower frequencies thurs impairing the frequency response of the amplifier.
E.g.: $\quad V_{A}^{\circ}=7 \mathrm{~V} \quad V_{o v_{i n}}=0,4 \mathrm{~V} \quad L_{\min }=0,35 \mu \mathrm{~m} \quad C_{o x}^{\prime}=5 \mathrm{fF}$

$$
g_{m i n}=1,5 \frac{m A}{V} \quad g_{m_{M}}=0,75 \frac{m A}{V} \quad(W / L)_{\text {in }}=150 \quad(W / L)_{M}=75
$$

- $L_{0}=2 L_{\text {min }} \longrightarrow G_{d_{0}}=140=42,9 \mathrm{~dB}$ poor, we want
at beast ~8OdB

$$
\longleftrightarrow W_{M_{0}}=75 L_{4}=52,5 \mu \mathrm{~m}
$$

$\frac{f_{T}}{2}=f_{H_{0}}=\frac{g m M}{2 \pi\left(2 C_{g_{H} H}\right)}=1 \mathrm{GHz}$ poe introduced by the $\mathrm{C}_{g s}$ capacitance of the uniror transistor

- $L=100 L_{\text {min }} \longrightarrow G_{d}=7000=76,9 \mathrm{~dB} \mathrm{gaod}$
$\begin{aligned} \longrightarrow W_{\mu} & =50 W_{H_{0}}=2,625 \mathrm{~mm} \quad \text { (huge!) } \\ f_{H}^{\prime} & =\frac{g_{m}}{2 \pi\left(2 C_{g s_{\mu}}\right)}=\frac{(W L)_{\mu}}{(W L)_{\mu}^{\prime}} f_{H_{0}}=\frac{1}{50 \cdot 50} \cdot f_{H_{0}}=4 \cdot 10^{-4} f_{H_{0}}=400 \mathrm{kHz}\end{aligned}$ too low
\Longrightarrow Trade-off between gain and bandwidth

We then need to change the amplifier structure to ge beyond this limitation
\Rightarrow Use a cascode configuration for the output resistance

Improved output resistance with same choumell lough:

$$
R_{\text {out }}=g_{m} r_{0}^{2}\left\|\frac{2 r_{0}}{1-G_{\text {leap }}}=g_{m} r_{0}^{2}\right\| r_{0} \simeq r_{0}
$$

improved ally by a \rfloor factor 2! (before it was $\frac{r_{0}}{2}$)
\longrightarrow Need to increase Gower branch resistance too.

telescopic cascade

All other parasitic eapacitauces see very low resistances (once C_{2} is shorted) and introduce poles at frequencies in the order of the f_{T} of

$$
\begin{aligned}
& R_{\text {out }}=g_{m} r_{0}^{2} / / \frac{2 g_{m} r_{0}^{2}}{1-G_{\text {lop }}}=\frac{g_{m} r_{0}^{2}}{2} \\
& \Rightarrow G_{d}=g_{m} \frac{g_{m} r_{0}^{2}}{2}=\mu G_{d}^{0} \simeq 90 d B
\end{aligned}
$$

\rightarrow many orders of magnitude higher than the previous $G i d!$ (same order of two-stage amplifier)

There is now only are high impedance node in the wicuite (since it's single stage) and there fare only are low frequency pole

$$
\begin{aligned}
G B W P & =G_{0} f_{p}=g_{m}+\frac{g_{m} r_{0}^{2}}{2} \cdot \frac{2}{2 \pi C_{2} g_{m}+1_{0}^{2}}= \\
& =\frac{g_{m 1}}{2 \pi C_{2}}
\end{aligned}
$$

 the transistors.
-'Single stage amplifiers have beer introduced because they do not nerd any farm of frequency compensation unlike unlti-stage amplifiers -

Issue: reduced voltage swing

Each added transistor requires a certain voltage drop in order to function properly.

cameron node input range

The input common mode voltage has a limited range of values, determined by the operating paint of the tail generator and the cascade transistor.

This implies that V_{B} camel be any bower than 0,9V to allow the input to have same swing.

The output also has a range, determined by the current, Mirror and the cascode transistor.
V_{B} comet be greater than $2,8 \mathrm{~V}$ so to have souse output swing (actually, the left branch
of the mirror limits V_{B} at un more thane 2,2V)

Depending on the value of V_{B}, the two ranges chou be very diverse both in terms of mean value and swing width.
\Longrightarrow trade-off between input and antput voltage swings
At least their values are sauewhat devorlapping.

The application of the amplifier defines what the input and output voltage range should look like:

Solution: use p-type transistors "in parallel" to the main branch
("flip" the components above the input transistors so that they share the same voltage drop)

$$
\begin{aligned}
& i_{c c}=g_{m \text { min }} v_{d} \\
& R_{\text {out }} \simeq g_{m} r_{0}^{2} / / \frac{g_{m} r_{0}\left(2 r_{0} / / r_{g}\right)}{1+\frac{r_{q}}{2 r_{0}+r_{g}}}
\end{aligned}
$$

$$
\cong g_{m} r_{0}^{2}
$$

Geop

$$
r_{g} \simeq r_{.}
$$

$$
\begin{aligned}
& \Longrightarrow G_{d} \simeq g_{\min } g_{m} r_{0}^{2} \\
& \text { surall reduction }
\end{aligned}
$$ of the gaiu due to the uau-ideal werrent geuerators folded cascode

$$
f_{P}=\frac{1}{2 \pi C_{L} R_{\text {out }}}
$$

frequency seespanse is the sance

comura urode imput rauge
 output reange

Iuput and autput have aluost the exact saue valtage rauge, furtheruare they bath increase as V_{B} inveeases!
\Longrightarrow No more trade- off betwen iuput and autput swings

In scaled techudogies, the power supply is however much lower than 3V (typically around IV)
\longrightarrow Improve the output voltage swing even further, by lowering the uninimu value $(0,8 V$ is tea big compared to $1 V$)
\longrightarrow enhanced mirror vs. standard mirror

The cost to achieve this improved voltage dynamic is the use of an additional power supply V_{c}.

Issue: higher power consumption

We wed sarre current in the inirror brauches to set their bias

In a telescopic cascade the total current is LIe, while in the folded cascade the total current is $2 I_{G}>2 I_{1}$.

By how much does I_{G} have to be bigger than I_{l} ? \downarrow

How rush more pewer dissipation does the folded cascade entail with reespect to the telescopic cascode?

In order to mantain the bias in bath the uniroor branches, the head generator (I_{G}) always has to provide unore current than what could possibly br weeded by the input Transistor.
At the maximum differential input siqual, all current from the tail generator ($2 I_{1}$) will flow through just ave input brauch. The head generator of that brauch will then have to supply wore than $2 I_{1}$ to allow sour current to flow in the mirror (current com not be drained from the uivor).

Therefore it unit always be grouted that $I_{G}>2 I_{1}$ The folded cascode dissipates at least 2 times mare thou the telescopic cascode configuration

Multi-stage differential amplifiers

We wont to achieve a even higher differential gain in the order of $\geq 100 d B$
\longrightarrow must use more stages in cascade
in low bias implementations, cascade can only achieve so much

inverting
 stage
\rightarrow high Gins to reduce revise

$$
\begin{array}{lll}
G_{m_{1}}=g_{m_{1}}=1,5 \frac{5 m A}{V} & G_{m_{2}}=g_{m_{5}}=0,5 \frac{\mathrm{~mA}}{\mathrm{~V}} & G_{m_{3}}=g_{m_{8}}=1 \frac{m A}{V} \\
R_{1}=r_{04} / / r_{L_{2}}=47 \mathrm{k} \Omega & R_{2}=r_{0_{7}} / / r_{g_{2}}=140 \mathrm{k} \Omega & R_{3}=r_{08} / / r_{g_{3}}=70 \mathrm{k} \Omega \\
C_{1}=0,1 p F & C_{2}=0,1 p F & C_{L}=5 p F
\end{array}
$$

they're the parasitic Cos hence very sural

\longrightarrow Miller compensation (m) to increase the time constant related to the C_{2} node (and decrease the one related to C_{3})

$$
\begin{aligned}
\Longrightarrow f_{2}^{\prime} & \simeq \frac{1}{2 \pi R_{2} C_{m} G_{3}} \\
f_{3}^{\prime} & >G B W P^{\prime} \simeq \frac{G_{m_{2}}}{2 \pi C_{m}} \\
f_{3}^{\prime} & =? \quad C_{m}=?
\end{aligned}
$$

$$
\begin{array}{ll}
f_{3}^{\prime}=\left.\frac{1}{2 \pi C R_{e q}}\right|_{C_{m} \text { shat }} & \text { duly are poe } \\
C=C_{2}+C_{L} & R_{e q}=R_{3} / / R_{2} / / \frac{1}{G_{m_{3}}} \simeq \frac{1}{C_{m_{3}}} v_{d} C_{3}^{\prime}=\frac{G_{m_{3}}}{2 \pi\left(C_{2}+C_{L}\right)}=31,2 \mathrm{MHz} R_{1}=C_{1}=1
\end{array}
$$

The Miller capacitor introduces a (RHP) zero as well:

$$
\begin{aligned}
& \Longrightarrow f_{z}^{\prime}=\frac{G m_{3}}{2 \pi C_{m}} \rightarrow 2 G B W P^{\prime} \\
& \begin{aligned}
& \phi_{m}^{\prime}=180^{\circ}-g 0^{\circ}-\operatorname{arctg}\left(\frac{G B W P^{\prime}}{f_{z}^{\prime}}\right)-\operatorname{arctg}\left(\frac{G B W P}{f_{3}^{\prime}}\right) \simeq 60^{\circ} \\
& \Longrightarrow C_{m}=10 \cdot \frac{G_{m_{2}}}{G_{m_{3}}}\left(C_{2}+C_{L}\right)=25 p F
\end{aligned}
\end{aligned}
$$

$$
f_{1}=\frac{l}{2 \pi C_{1} R_{1}}=34 \mathrm{MHz} \quad f_{2}^{\prime}=\frac{1}{2 \pi C_{m} G_{m_{3} R_{2} R_{3}}}=650 \mathrm{~Hz} \quad f_{3}^{\prime}=\frac{G_{m_{3}}}{2 \pi\left(C_{L}+C_{2}\right)}=31,2 \mathrm{MHz}
$$

$$
\left(f_{z}^{\prime}=\frac{G_{m_{3}}}{2 \pi C_{m}}=6,24 M H z\right)
$$

\longrightarrow Miller compensation (M) to increase the time constant c related to the C_{1} node (and decrease the are related te C_{2})

$$
\begin{aligned}
& \Longrightarrow f_{1}^{\prime \prime} \simeq \frac{1}{2 \pi C_{M} R_{1} G_{2} G_{3}} \quad G_{d}=G_{1} G_{2} G_{3} \quad G B W P^{\prime \prime} \simeq \frac{G_{m 1}}{2 \pi C_{M}}
\end{aligned}
$$

$$
f_{2}^{\prime \prime}>\left.G B W P^{\prime \prime} \quad f_{2}^{\prime \prime} \simeq f_{L}\right|_{c_{M} \text { sharted }} \simeq \frac{1}{\left.2 \bar{U} \tau_{i}^{(0)}\right|_{c_{M} \text { sharted }}}
$$

$$
\Longrightarrow f_{2}^{\prime \prime} \simeq \frac{1}{2 \pi C_{2 C_{2}}^{C_{2 p}^{(0)}}+\underset{25 n s}{\left.C_{m} R_{m}^{(0)}+\left(C_{1}+C_{i 2}\right) R_{13}^{(0)}\right]}} \simeq \frac{G_{m_{3}} G_{m_{2}}}{2 \pi C_{m}\left(G_{m_{3}}-G_{m_{2}}\right)} \simeq 6,4 M H z
$$

There is a new zere as well:
$\Longrightarrow f_{2}^{\prime \prime} \simeq \frac{G_{m_{2} R_{2} G_{m 3}}^{2 \pi C_{M}}>\text { GBWP! } \rightarrow \text { it deesu't affect the }}{}$ frequency response too which
transcouductance covered by the bridging capacitor C_{M}
(it's a LHP zero and will at mast improve the ϕ_{m} by a small amount)

Note: the value of the poles and zeroes is, at this paint of network complexity, just an approximation; these values should give an idea of the sizing of compensating capacitors and the behaviour of the circuit, which should then be tested through summations.

$$
\begin{gathered}
\frac{G_{m_{2}} G_{m_{3}}}{2 \pi C_{m}\left(G_{m_{3}}-G_{m_{2}}\right)}=f_{2}^{\prime \prime} \geqslant G B W P=\frac{G_{m 1}}{2 \pi C_{\mu}} \\
\Longrightarrow C_{M}>C_{m} \frac{G_{m_{1}}\left(C_{m_{3}}-G_{m_{2}}\right)}{C_{m_{2}} G_{m_{3}}}=37,5 p F \longrightarrow C_{H}=75 p F \quad G B W P=3,2 \mathrm{MHz} \\
f_{1}^{\prime \prime}=\frac{l}{2 \pi C_{H} R_{1} G_{m_{2}} G_{m_{3}}}=9,2 H z \quad f_{2}^{\prime \prime}=\frac{G_{m 3} G_{m_{2}}}{2 \pi C_{m}\left(G_{m_{3}}-G_{m_{2}}\right.}=6,4 M H z \quad f_{3}^{\prime \prime}=? \\
\\
\\
\\
\left(f_{z}^{\prime \prime}=?\right)
\end{gathered}
$$

Our approximations were mat accurate enough.

The low frequency pole was computed correctly.
The high frequency poles and zeroes have to be estimated mare carefully
\longrightarrow We can hold an to the result related to the low pale and study the circuit at higher frequencies, while also neglecting the parasitic capacitances that are uegligibe with respect to the corresponding Miller capacitance and load capacitance.
\rightarrow the resulting network is a second order network
associated to the
low pole

$$
b_{2} s^{2}+b_{1} s+1=0
$$

$$
\begin{aligned}
& \frac{1}{\omega_{0}^{2}} \quad s^{2} \frac{C_{L} C_{m}}{G_{m_{2}} G_{m_{3}}}+s \frac{G_{m_{3}}-G_{m_{2}}}{G_{m_{3}} G_{m_{2}}} C_{m}+1=0 \\
& {\left[\omega_{0}=\sqrt{\frac{C_{m_{2}} G_{m_{3}}}{C_{m} C_{L}}} \quad Q=\frac{1}{\left(G_{m_{3}}-G_{m_{2}}\right)} \sqrt{G_{m_{3}} G_{m_{2}} \frac{C_{L}}{C_{m}}}\right]}
\end{aligned}
$$

Note how changing C_{r} wan't affect the position or the amplitude of the resonance peak.
Instead, changing $G_{m_{3}}$ or $G_{m_{2}}$ (or even C_{m}) will change the Q factor and thus the peak amplitude (since Q is directly prepartioual to the peak height), moving it below the Od axis.
|| Slew Rate and Settling time ||

However closed loop pole is NOT the only limitation:

Ramp rate or Slew Rate (SR)

At the begriming of the response, if the initial exponential slope ($\frac{E}{\tau}$) is steer than the electronics slew rate (SR), then it will grow linearly according to the slaw rate.
The response will then move from the slaw rate limited region to the linear region (exponential growth)
in such a way that the coutiunity of the derivative of the signal is retained. In other wards, the link between the two branches happens when:

$$
\left[\frac{\Delta}{\tau}=S R\right]
$$

this relation returns the amplitude of Δ as wall as the length of them

$$
\text { settling time } \longleftarrow t_{s}=t_{s l e w}+t_{\text {kin }}
$$

$$
t_{\text {slew }}=\frac{E-\triangle}{S R}
$$

$$
E-\Delta e^{-t / \tau}=E(1-\varepsilon) \rightarrow t_{\mathrm{lin}}=\tau \ln \left(\frac{\Delta}{\varepsilon E}\right)
$$

Consider now an amplifier with snare than just ane poe:

Wouldu't it be better to move f_{z} and f_{2} at higher frenquencies, above the OdB axis ("in band"), so that the amplifier can better handle higher lead capacitances?
Let's study the behaviour of the closed loop singularities in a simple buffer earfiguration:

$$
G \log (s)=-G_{0} \frac{1+s \tau_{z}}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}
$$

$$
\begin{aligned}
& T(s)= V_{\text {out }}^{V_{\text {in }}}(s)=\underbrace{\frac{G_{\text {loop }}(s)}{1-G_{\text {lop }}(s)}} \\
& \quad 1-G_{l o o p}(s)=0 \\
&+\frac{G_{0}\left(1+s \tau_{z}\right)}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}+1=0 \\
& G_{0}\left(1+s \tau_{z}\right)+\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} \tau_{1} \tau_{2}+s\left(\tau_{1}+\tau_{2}+G_{0} \tau_{z}\right)+\left(G_{0}+1\right)=0 \\
& * p_{L} \simeq \frac{G_{0}+1}{G_{0} \tau_{z}+\tau_{1}+\tau_{2}} \xrightarrow[\rightarrow]{G_{0} \rightarrow \infty} \frac{1}{\tau_{z}} \\
& p_{L}=\frac{1}{\tau_{L}} \Longrightarrow \tau_{L}=\frac{G_{0} \tau_{z}+\tau_{1}+\tau_{2}}{G_{0}+t_{1}} \\
& \simeq \tau_{z}+\frac{\tau_{1}+\tau_{2}}{G_{0}} \\
& \simeq \tau_{z}+\frac{\left(\frac{\tau_{1}}{G_{0}} \quad\right.}{} \quad \frac{1}{2 \pi \cdot G B W P^{*}}
\end{aligned}
$$

$$
\begin{aligned}
* p_{H} & \simeq \frac{\tau_{1}+\tau_{2}+G_{0} \tau_{z}}{\tau_{1} \tau_{2}} \simeq \frac{G_{0} \tau_{2}}{\tau_{1} \tau_{2}}=2 \pi G B W P^{*} \frac{f_{2}}{f_{z}} \\
& \Longrightarrow G B W P=G B W P^{*} \frac{f_{2}}{f_{z}} \text { (OdB crossover) }
\end{aligned}
$$

Laplace trearsform of a step as high as E
Step respouse:

$$
\begin{aligned}
V_{\text {aut }}^{(s)} & =\frac{E}{s} T(s)=\frac{E}{s} \frac{\left(1+s \tau_{z}\right)}{\left(1+s \tau_{L}\right)\left(1+s \tau_{H}\right)}=\frac{E}{s}\left[\frac{A}{1+s \tau_{L}}+\frac{B}{1+s \tau_{H}}\right] \\
A & =\lim _{s \rightarrow-1 / \tau_{L}} \frac{1+s \tau_{z}}{\left(1+s \tau_{L}\right)\left(1+s \tau_{H}\right)} \cdot\left(1+s \tau_{L}\right)=\frac{1-\tau_{z /} \tau_{L}}{1-\tau_{H} \tau_{L}}=\frac{\tau_{L}-\tau_{z}}{\tau_{L}-\tau_{H}} \\
B & =\lim _{s \rightarrow-1 / \tau_{H}} \frac{1+s \tau_{z}}{\left(1+s \tau_{L}\right)\left(1+s \tau_{H}\right)}\left(1+s \tau_{H}\right)=\frac{1-\tau_{z^{\prime} / \tau_{H}}}{1-\tau_{L} \tau_{H}}=\frac{\tau_{z}-\tau_{H}}{\tau_{L}-\tau_{H}}
\end{aligned}
$$

$$
\begin{aligned}
v_{\text {aut }}(t)= & E\left[A\left(1-e^{-t / \tau_{L}}\right)+B\left(1-e^{-t / \tau_{H}}\right)\right]= \\
= & E[\underbrace{\left.A+B-A e^{-t / \tau_{L}}-B e^{-t / \tau_{H}}\right]=} \\
& \frac{\tau_{L}-\tau_{Z}+\tau_{z}-\tau_{H}}{\tau_{L}-\tau_{H}}=1
\end{aligned}
$$

$$
\Longrightarrow \operatorname{vaux}(t)=E\left[1-A e^{-t / \tau_{L}}-B e^{-t / \tau_{H}}\right] \quad \tau_{H} \ll \tau_{L}
$$

$e^{-4 / \tau_{2}}$ is still $\simeq 1 \quad \longrightarrow$ the terem reelated to τ_{H} "dies" unch faster

$$
* A=\frac{\tau_{L}-\tau_{z}}{\tau_{L}-\tau_{H}} \simeq \frac{\tau_{L}-\tau_{z}}{\tau_{L}} \simeq \frac{\tau_{l}}{G_{0} \tau_{z}}=\frac{f_{z}}{G B W P^{*}}
$$

\Longrightarrow Mooing the zero $\left(f_{z}\right)$ and the high frequency pole $\left(f_{2}\right)$ at frequencies lower than the GBWP* while in a closed leap buffer configuration, will cause the closed loop pole ($f_{c}=$ Gown*) to split into a low frequency pale (fL) and a high frequency pale $\left\{f_{H}=G B W P\right.$). As the zero raves towards lower frequencies, f_{L} will decrease accordingly.
Considering the response of such configuration to a step sigual, it will have a first initial phase during which the exponential term related to the high pale f_{H} will rapidly reach the asymptotic value The lower the zero, the shorter this phase aud the higher its endpoint. However, it will also have a second following phase related to the expareutial term of the low pale f_{L}, which will instead slowly reach the asymptote. The lower the zero, the longer this pase (since $\tau_{L} \propto \tau_{z}$).
For this reaseu, in order to have au overall faster step response, it is better not to have au amplifier with an in-baud doublet.

The same reasaing can be applied to an amplifier with the second pole followed by the zero:

f_{r} decreases \rightarrow less peaking but layer transient

What causes the Slew Rate
Buffer configuration. Step signal with amplitude E applied to GI; G^{-}can be seem as fixed (feedback has ut occurred yet).
If E is high enough (at least $>(\sqrt{2}-1) V_{o v_{1}}$) all current of the input stage (2I_) will flow through duly due branch.
this is actually not so accurate
Rising edge: since the small signal approximation does net hold anyuuere

$$
\begin{aligned}
g_{m_{s}} U_{s} & \simeq 2 I_{1} \\
U_{s} & \simeq \frac{2 I_{1}}{g_{m s}}
\end{aligned}
$$

$$
S R^{(-)} \Longrightarrow\left[S R^{(-)}=\frac{2 I_{1} \mu_{1}}{C_{3 p F}} \simeq S 0 \frac{V}{\mu_{s}}\right.
$$

Note that while the input is positive, the output is negative, as the overall gain of the two stages is negative.

In ardor fore the transistor M_{5} to carry $2 I_{1}$ signal current upward, it unist be biased downward with au even grater current (i.e. the transistor cannot carry a total current = signal + bias that is negative otherwise it could then off).

$$
\Longrightarrow I_{2} \geqslant 2 I_{1}=\Delta I_{s}
$$

What happens if this condition is rot ret?
M_{5} will indeed turn off. Furthermore, M_{4} will have to go into ohmic region since it count covery $2 I_{1}$ current anymore but instead has to match $I_{2}<2 I_{1}$ forced by M_{6}, which is now the auly path the current can flow through.
Hence the current through capacitor C will be I_{2} instead of $2 I_{1}$

$$
\Longrightarrow\left[S R^{(-)}=\frac{I_{2}}{C}\right]
$$

The Slew Rate is now limited by the bias current of the second stage.

Falling edge:

The circuit behaves symmetrically Like before.

However, there is re "pathology", such as M_{s} turning off, ox M_{2} going into chuic (since its current is fixed by M_{z}).

What happens if we consider the Pad capacitance too?

$\Delta I_{5}=2 I_{1}+S R^{(i n t)} C_{L} \leqslant I_{2}$ to keep M_{5} an.

$$
2 I_{1}+\frac{2 I_{1}}{C} C_{L} \leqslant I_{2}
$$

$\Longrightarrow \quad I_{2} \geqslant 2 I_{1} \frac{C+C_{L}}{C}$ ware strict thane before.

If the condition is not meet, M_{5} will turn off, M_{4} will ge into ohmic and M_{6} will' drain all the current (just like before)

$$
V_{c}=v_{s}-v_{\text {out }} \leftarrow
$$

$$
\begin{aligned}
I_{2} & =I_{c}+I_{C_{L}}= \\
& =\frac{d V_{c}}{d t} C+\frac{d V_{C L}}{d t} C_{L}=
\end{aligned}
$$

but v_{s} does nd change (it instantly

$$
\text { reaches the steady state }=S R^{(e x t)} C+S R^{(\text {ext })} C_{L}
$$

value required by M_{4})

$$
\begin{gathered}
\Longrightarrow\left[S R^{(\text {ext })}=\frac{I_{2}}{C+C_{L}}\right] \\
S R^{(-)}= \begin{cases}S R^{(\text {int })}=\frac{2 I_{1}}{C} \quad \text { if } \quad I_{2} \geqslant 2 I_{1}\left(1+\frac{C_{L}}{C}\right) \\
S R^{(\text {ext })}=\frac{I_{2}}{C+C_{L}} & \prime \prime \quad I_{2}<2 I_{1}\left(1+\frac{C_{L}}{C}\right)\end{cases}
\end{gathered}
$$

limited by both I_{2} and C_{L}

Similarly to the situation without C_{2}, there is no relevant issue related to a falling step signal (positive SR) even with a load capacitance

$$
S R^{(t)}=S R^{\text {(int) }}=\frac{2 I_{1}}{C}
$$

To summarize:

$$
\begin{array}{rl}
S R & S R^{(+)}=S R^{\text {(int) }} \\
S R^{(\text {int })}=\frac{2 I_{l}}{C} \\
S R^{(\text {ext })}=\frac{I_{2}}{C+C_{L}}
\end{array} \text { if } I_{2} \geqslant 2 I_{1}\left(1+\frac{C_{2}}{C}\right)
$$

\Longrightarrow New Figure of Merit: $\left[F O M:=\frac{S R \cdot C_{L}}{I_{\text {tot }}}\right] S R$-related

$$
\left[F C M:=\frac{G B W P \cdot C_{L}}{I_{\text {tot }}}\right] \quad \text { GBWP-related }
$$

We generally wait a simuvetric Slew Rate $\left(S R^{(+)}=S R^{(-1)}\right)$, so having $I_{2} \geqslant 2 I_{1}\left(1+\frac{C_{1}}{C}\right)$ is often mandatory, even if it rueaus More power consumption.

$$
F_{0} M=\frac{S R \cdot C_{L}}{I_{\text {tet }}}=\frac{2 I_{1}}{C} \cdot \frac{C_{L}}{2 I_{1}+2 I_{1}\left(1+\frac{C_{L}}{C}\right)}=\frac{C_{L}}{2 C_{L}+C_{L}} \xrightarrow{C_{L} \rightarrow+\infty} 1
$$

What happens (to the SR) if we consider a compensating ruling resistor?

\Longrightarrow The mulling resistor introduces a step at the beginning of the response

Is it passible to improve the slew Rate of the circuit, without impairing all other parameters, but most importantly without increasing the power consumption (that is, without using a large I_{2})?
We should redesign the tail generator M_{s} since we want it to carry large current only during the transient (when the SR limitation occurs) but a senall current is sufficient during any other operating paint.

\Longrightarrow Use the voltage increase at the draice of M_{4} to pilot the gate of M_{6} and therefore increase I_{2}.
We must fix and control the overdrive of M_{0}, so there needs to be a voltage offset between the two wades.

How can we build this voltage offset? \Longrightarrow Trausdiodes
V_{D}
 class $A-B$ stage

Allows to keep low bias current I_{2} (therefore lower power consumption) while retaining the internal SR.

$$
\text { For }=\frac{S R \cdot C_{L}}{I_{\text {tot }} \downarrow}
$$

This configuration will also (positively) affect the overall 3^{3} gain and phase enargive,
\rightarrow the added branch current is widely carepeusated by the reduced I_{2} current
| Input Referred affect $\|$

$$
V_{\text {os }}^{\text {out }}=A_{d} V_{\text {os }}^{\text {in }}
$$

should be kept statistic below a resonable value

should be θ, deterministic since it can be controlled by the desiguer

Deterministic offset

Transistors M_{s} and M_{6} unit be sized so that their currents precisely match each other given a mid. range common mode input.

If ult, their drain will increase or decrease accordingly to compensate, returning a voltage offset at the output

Statistic offset
(A) and (B) should theoretically be at the save voltage level, provided that both transistor pairs are symmetrical.
In case of a mismatch in the transistors parameters (like different V_{T} or K) then (A) and (B) may differ, causing a different current flow in the two branches and therefore a residual, uan-uegligible current at the antpent of the stage (source of the offset).

Since the variation of the transistors parameters is a statistical matter, it can be represented as a gaussian functiare whose spread depends an a certain variance 0^{2}.
The objective is to find the expression of this on d to find its relation with the variance of the output offset.
\longrightarrow We superpose to the ideal DC voltage condition the variation due to the uisuatch.

$$
\begin{aligned}
& I_{1}=\left(K+\frac{\Delta K}{2}\right)\left(V_{o v_{1}}\right)^{2} \\
& I_{2}=\left(K-\frac{\Delta K}{2}\right)\left(V_{\operatorname{eV}_{2}}\right)^{2} \\
& \text { os nim } \\
& \Longrightarrow \Delta I=I_{1}-I_{2}=\Delta K V_{\text {av }}^{2}=\left.I_{\text {auth }}\right|_{V_{\text {os }}} \\
& \longrightarrow V_{e s}=\frac{\Delta K V_{o v}^{2}}{g_{m}}=\frac{\Delta K}{K} \frac{V_{a v}^{2} \cdot K}{g_{m}} \\
& =\frac{\Delta K}{K} \frac{T}{2 I} \cdot V_{\text {on }}
\end{aligned}
$$

$$
\Longrightarrow\left[\left.V_{O s}\right|_{\Delta K_{\text {in }}}=\frac{\Delta K}{K} \frac{V_{o v}}{2}\right]
$$

\rightarrow related to the input transistors mismatch

So any misuratch will cause a definite contribution to the iuput-referred offset. However these mismatches are not a umber whose value is deterministically known bet they are a variance, that is a measure of the spread of the values the uisuratch car assume.

$$
\begin{aligned}
& V_{o s_{\text {in }}}=\Delta V_{T}+\frac{\Delta K}{K} \cdot \frac{V_{\text {av }}}{2} \\
& {\left[\theta_{V_{\text {sin }}}^{2}=\sigma_{\Delta V_{T}}^{2}+\frac{\left.\sigma_{\frac{\text { Li }}{2}}^{2} \cdot\left(\frac{V_{\text {av }}}{2}\right)^{2}\right]}{}\right.}
\end{aligned}
$$

Miner transistors can be a source of misuratch too:

$$
\begin{aligned}
I_{3} & =K_{M}(\overbrace{V_{0 S_{3}}-V_{T_{0}}^{0}}^{V_{0 V}}+\frac{\Delta V_{T}}{2})^{2}=I \\
I_{4} & =K_{M}\left(V_{G_{4}}-V_{T_{0}}-\frac{\Delta V_{T}}{2}\right)^{2} \\
\Longrightarrow \Delta I=I_{4}-I_{3} & =2 K_{M} V_{0 V}^{0} \Delta V_{T} \\
& =g m_{M} \Delta V_{T}
\end{aligned}
$$

ideal, without uisuratch!

$$
\Longrightarrow[\left.V_{O S}\right|_{\Delta V_{T M}}=\frac{\overbrace{m_{M}}}{g_{m_{\text {in }}}} \Delta V_{T}=\frac{V_{\text {orin }}}{V_{\text {or }}} \quad \Delta V_{T}]
$$

Sane calculation can be done for the k factor:

$$
\Longrightarrow\left[\left.V_{o s}\right|_{\Delta K_{\mu}}=\frac{\Delta K}{K} \cdot \frac{V_{o V_{\text {in }}}}{2}\right]
$$

To sen up all contributions:

$$
\begin{aligned}
& V_{\text {os }}^{\text {tot }} \\
& {\left[V_{T_{\text {in }}}+\Delta V_{T_{M}} \cdot \frac{V_{\text {orin }}}{V_{\text {or }}}\right)+\left(\frac{\Delta K_{\text {in }}}{K_{\text {in }}}+\frac{\Delta K_{H}}{K_{M}}\right) \cdot \frac{V_{\text {orin }}}{2}} \\
& {\left[\sigma_{V_{\text {os }}}=\sqrt{\sigma_{\Delta V_{\text {Tin }}}^{2}+\sigma_{\Delta V_{T M}}^{2}\left(\frac{V_{\text {orin }}}{V_{\text {or }}}\right)^{2}+\left(\sigma_{\Delta K_{\text {in }}}^{2}+\sigma_{\frac{\Delta K}{K_{M}}}^{2}\right) \cdot\left(\frac{V_{\text {or in }}}{2}\right)^{2}}\right]}
\end{aligned}
$$

How do we canted $\sigma_{\Delta V_{T}}^{2}$ and $\sigma_{\frac{\Delta k}{k}}^{2}$ in order to reduce the statistical offset?
The variance of these parameters is generally set by the techuralogy and the size of the transistors.
For instance, k depends on the undility μ, the oxide capacitance $C_{o x}^{\prime}$ and the form factor $\frac{V V}{L}$, which all of theme care fluctuate from their uaminal value causing the urisuratch ire K.
In the sauce way, V_{T} is also a function of C^{\prime} ox and in general is dependent are the metal-oxide-semicanductor junctions and therefore an the MOS technology.
This arguments will be thoroughly discussed Cater an.

Note how the offset (which is typically in the order of few mV) causes the amplifier to saturate every time it is in a positive feedback or in a feedback-less configuration, even with no input whatsoever.

the saturation direction is uou-detervinistic!

Duly a negative feedback can allow to have a stable, uou-saturated output (with, however, a fixed offset).

The negative feedback basically operates to balance the internal unsuatch of the OPAMP (that is, the offset) by varying the output voltage and therefore adjusting the input signal to achieve compensation.

$$
v_{d}=-v_{\text {out }} \frac{1 k}{1 k+10 k} \longrightarrow v_{\text {out }}=-v_{d}\left(1+\frac{10 k}{1 k}\right)=-11
$$ response of the neg. ff. to the offset

 operating points of the amplifier depending an the eff set

To have a deeper insight into understanding the effect of the offset and the stabilization of the veg. fb .

the interval rode fran which the offset is generated es kept at virtual gravid by the feedback through an output off set
"Comma Made Rejection Ratio $\|$

$$
\begin{gathered}
\left|C M R R=\frac{A_{d}}{A_{c m}}\right| \leftarrow \\
\Longrightarrow \sigma_{\text {out }}=A d\left(O_{d}+\frac{\sigma_{c m}}{C M R R}\right)
\end{gathered}
$$

The presence of a finite CMRR can be also uradeled as are iuput-referred offset whose value depends an the camuan irade signal.

The effect of the CMRR accurs an top of the abready discussed interval offset.

At a first glance, it might seem that the CMRR offset contribution is negligible compared to the internal offset ($V_{0 s}$ is in the order of $m V$ while $v_{\mathrm{cm}} /$ CMRR is in the order of tens of μV). This is incorrect for 2 main reasons:

- the CMRR affect is time dependent, as v_{cm} can vary over time depending on the input and so its effects an the output are also variable, while the internal offset is typically constant (drifts ally with temperature)
- the CMRR is itself frequency dependent, as it is a function of the amplifier gain; the CHRR can therefore degrade as frequency grows meaning its offset will not be so regligibla anymore.
Far these reasons it is necessary to better understand the CMRR and its defining factors.

If the stage is perfectly symmetric the common mode gain of the stage is ideally zero.

However in case of a mismatch in the current unveor, there will be sour current flowing through the output branch, yelding a uau-zero common mode gain.

$$
\begin{aligned}
v_{\text {out }} & =v_{\mathrm{cm}} G_{\mathrm{cm}}=\varepsilon \text { ism } R_{\text {out }}= \\
& =\frac{\varepsilon \frac{\sigma_{\mathrm{cm}} R_{\text {out }}}{2 \sigma_{g}}}{} \longrightarrow G_{\text {cm }}=\frac{\varepsilon R_{\text {out }}}{2 \gamma_{g}}
\end{aligned}
$$

\Longrightarrow CHR $=\frac{G_{d}}{G_{c m}}=\frac{g g_{\text {min }} R_{\text {out }}}{\frac{\varepsilon R_{\text {out }}}{2 r_{g}}}=2 g_{\text {min }} r_{g}$ (the lower the ereare, the better the CMRR)
What is the source of this error?

$$
\begin{aligned}
\varepsilon i_{c m} & =i_{c m}-i_{c m} \frac{r_{o_{3}}}{r_{0_{3}}+\frac{1}{m_{3}}}= \\
& =i_{\mathrm{cm}}\left(\frac{1 / g m_{3}}{r_{0_{3}}+1 / g m_{3}}\right)^{1+g m_{3} r_{o_{3}}} \simeq \frac{1}{\mu_{3}} \\
\Longrightarrow \varepsilon & =\frac{l}{1}
\end{aligned}
$$

lIst deterministic contribution

Moreover, there is another source of deterministic error that is due to the asyunuetry of the stage sem from the tail generator.

$$
\begin{aligned}
& R_{1} \simeq \frac{1 / g m_{3}+r_{01}}{1+g m_{1} r_{01}} \quad R_{2}=\frac{r_{02}}{1+g m_{2} r_{2}} \\
& i_{1}=\frac{v_{s}}{r_{g}} \frac{R_{2}}{R_{1}+R_{2}} \quad i_{2}=\frac{v_{s}}{r_{g}} \frac{R_{1}}{R_{1}+R_{2}} \quad \sigma_{c m} \\
& \varepsilon i_{c m}=i_{2}-i_{1}=\frac{v_{s}}{r_{g}} \frac{R_{1}-R_{2}}{R_{1}+R_{2}}= \\
& =\frac{v_{s}}{r_{g}} \frac{1 / g m_{M}}{1 / g m_{M}+2 r_{i n}} \simeq \frac{v_{s}}{r_{g}} \frac{1}{2 g m_{M} r_{0 i n}} \\
& i_{c m}=\frac{v_{c m}}{2 r_{g}} \quad i_{s}=\frac{v_{s}}{2 r_{g}} \quad v_{s} \approx v_{c m} \\
& \quad \frac{v_{s}}{v_{c m}}=\alpha \leqslant 1
\end{aligned}
$$

the output current using
Norton theorem (it was a short before too)

$$
\longrightarrow \varepsilon \frac{v_{c m}}{2 r_{g}}=\frac{v_{s}}{r_{g}} \frac{1}{2 g_{m_{M}} r_{0 i n}} \Longrightarrow \varepsilon=\frac{\alpha}{g_{m_{M}} r_{0 i n}} \leqslant \frac{1}{g_{m_{\mu}} r_{0 i n}}
$$

2nd deteruinistic coutributrou

$$
\begin{aligned}
\Longrightarrow & \varepsilon_{\operatorname{det}}=\frac{1}{g m_{\mu} r_{o_{H}}}+\frac{1}{g_{m_{H}} r_{o_{i n}}} \approx 2 \% \\
& \quad C M R R_{\text {det }}=\frac{2 g_{m_{\text {in }}} r_{g}}{\varepsilon_{\text {det }}} \approx 2 \cdot 10^{4}=86 d B
\end{aligned}
$$

So far we have suly discussed deteruinietic soveces of furite CMRR, which in ave differential stage caunot be completely caucelled aut but cau indeed be cautralled through the urcuit parauneters.
There is alse a statistical source of erear, agaiu due to process fabricaticu uou-urifaruities, that causes a fiuite CMRR.

$$
\begin{aligned}
& \text { Mircor } \\
& \text { pair } \\
& E i_{\mathrm{cm}}=i_{\mathrm{cm}}-i_{\mathrm{cm}} \frac{g_{m_{4}}}{g_{m_{3}}} \frac{\text { pour }}{\text { trauscaud }} \text { risuratch } \\
& =i_{c m}\left[1-\frac{g_{m_{4}}}{g_{m_{3}}}\right] \\
& =\text { iem } \frac{\Delta g m_{M}}{g m_{3}}
\end{aligned}
$$

Maninal
$g_{m_{M}}=\frac{g_{m_{3}}+g m_{4}}{2} \simeq g m_{3}$
if $\Delta g_{m_{\mu}}$ is suall

Iuput pair traisconductance urisuratch

We eau "fold" the circuit by taking advantage of its syennetry thus obtaining the new equivalent circuit:

Returning back to the previous circuit, we can,
 now eaupute i_{1} and i_{2} :

$$
\begin{aligned}
& i_{1}=\frac{v_{s}}{r_{\text {in }}}+g_{m_{1}}\left(v_{c m}-v_{s}\right) \quad i_{2}=\frac{v_{s}}{r_{\text {in }}}+g_{m_{2}}\left(v_{\mathrm{cm}}-v_{s}\right) \\
& \varepsilon i_{c m}=i_{2}-i_{1}=\left(g_{m_{2}}-g_{m_{1}}\right)\left(v_{c m}-v_{s}\right)=\Delta g_{m_{\text {in }}} \cdot v_{c m}\left(1-\frac{r_{s}^{*}}{\left.r_{s}^{*}+\frac{1}{g_{m}^{*}}\right)=}\right. \\
& =\Delta g_{m i n} \sigma_{c m}\left(\frac{1 / g_{m^{*}}}{r_{s}^{*}+1 / g_{m}^{*}}\right) \simeq \frac{\Delta g_{\min }}{g_{m}^{*}} \sigma_{c m} \frac{1}{r_{s}^{*}} \simeq \\
& \underset{\underset{\text { gain }}{ }}{\text { gavial teauscoud. }} \underset{g_{m_{1}}+g_{m_{2}}}{r_{g}} \quad \underset{r_{g}+r_{\text {ing/2 }}}{r_{\text {oin/2 }}}=\frac{2 r_{g}+r_{\text {in }}}{r_{g} r_{\text {in }}} \\
& \simeq \frac{\Delta g_{\text {min }}}{2 g_{\text {min }}} v_{\text {am }} \frac{2 r_{g}+r_{\text {in }}}{r_{g} r_{\text {on }}}=\frac{\Delta g_{\text {min }}}{g_{\text {min }}} \frac{v_{\text {cm }}}{2 r_{g}}\left(1+\frac{2 r_{g}}{r_{\text {in }}}\right)
\end{aligned}
$$

i_{cm}
$\Longrightarrow \varepsilon=\frac{\Delta g_{m_{\text {in }}}}{g_{\text {min }}}\left(1+\frac{2 r_{g}}{r_{0 i n}}\right) \longrightarrow$ and statistical coutributiou

$$
\Longrightarrow \varepsilon_{\text {stat }}=\frac{\Delta g_{m_{\mu}}}{g_{m \mu}}+\frac{\Delta g_{m_{i n}}}{g_{m_{\text {in }}}}\left(1+\frac{2 r_{g}}{r_{\text {in }}}\right)
$$

$$
\begin{equation*}
\text { CMRR }=\frac{2 g g_{\min } r_{g}}{\varepsilon_{\text {tot }}}=\frac{2 g_{\min } r_{g}}{\varepsilon_{\text {dat }}+\varepsilon_{\text {stat }}} \tag{2}
\end{equation*}
$$

(1) Why is the statistical contribution to the CMRR ever related to the input pair grater, by a factor $\frac{2 r_{g}}{r_{i n}}$, than the ave related to the uniror pair?
(2) How can we add together Edet and stat, since the farmer is a definite uunber while the latter is a spread of values?
(1)

$$
\begin{aligned}
& \varepsilon_{\text {stat }}^{\text {in }}=\frac{\Delta g_{m_{\text {in }}}}{g m_{\text {in }}}\left(1+\frac{2 r_{g}}{r_{\text {in }}}\right) \\
& C M R R_{\text {stat }}^{\text {in }}=\frac{2 g_{\min _{\text {in }} r_{g}}^{\varepsilon_{\text {stat }}}}{}
\end{aligned}
$$

If we wanted to improve the CMRR, it mould seem a good idea to increase r_{g} (increase chanel length of H_{5}):

However the CMRR does not tend to infinity by having an ideal tail generator as one would expect.
This is due to the finite output resistance of M_{1} and M_{2} which allows the current unisuratch to have au additisual path toward grand even when the tail trausistare is ideal.

The additional $\frac{2 r_{g}}{r_{i n}}$ factor related to the impert pair is therefore needed to ensure that the CMRR will grow ally if both the tail trausistor AND the input transistors are built with an higher output impedance.
(2)

$$
\begin{aligned}
& \begin{array}{lc}
C M R R=2 g g_{\min } r_{g} & \varepsilon_{\text {tot }}=\varepsilon_{\text {set }}+\varepsilon_{\text {stat }} \\
=\frac{\Delta g_{M}}{}+\Delta g_{\text {min }}\left(1+2 r_{g}\right) & 2 \%
\end{array} \\
& \varepsilon_{\text {stat }}=\frac{\Delta g_{m_{M}}}{g_{m_{M}}}+\frac{\Delta g_{m_{\text {in }}}}{g_{m_{\text {in }}}}\left(1+\frac{2 r_{g}}{r_{\text {in }}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{\Delta \frac{g m}{8 m}}^{2}=\text { ? } \\
& g_{m}=2 K\left(V_{G S}-V_{T}\right) \quad \Delta g_{m}=d g_{m}=2 d K\left(V_{G S}-V_{T}\right)-2 K d V_{T} \\
& \frac{\Delta g_{m}}{g_{m}}=\frac{2 d K\left(V_{a s}-V_{T}\right)-2 K d V_{T}}{2 K\left(V_{G S}-V_{T}\right)}=\frac{d K}{K}-\frac{d V_{T}}{V_{o v}} \\
& \Rightarrow \sigma_{\frac{\Delta g m}{g g_{m}}}^{2}=\sigma_{\frac{\Delta k}{K}}^{2}+\sigma_{\Delta V_{T}}^{2} \frac{1}{V_{o v}^{2}}
\end{aligned}
$$

Adding Edet to Est means shifting the gaussian of the statistical error by an amount equal to the deterministic error.

Depending on the specifications an the CMRR requested by the user, the amplifier should match those specs by having an appropriate ever spread.
E.g.: $|C M R R|>80 d B=10^{4}$

$$
\begin{aligned}
400 & \frac{2 g_{\min r_{g}}}{\left|\varepsilon_{\text {tat }}\right|}>10^{4} \\
\Longrightarrow\left|\varepsilon_{\text {tot }}\right| & <4 \%
\end{aligned}
$$

Roughly 84% of the samples will enatch the specification

In the end, how do we reduce the total CMRR mismatch?

As abready said, the deterministic error can be reduced (to reeve the centraid of the error distribution grand zero) by increasing the chanel length of the transistors.

On the other hand, how can we reduce the statistical ever (to uarrow the error distribution)?
We reed to quantify $\sigma_{\frac{\Delta x}{k}}$ and $\sigma_{\Delta v_{T}}$ to understand how they can be controlled (this is an important u natter also for the computation of the amplifier offset).
Note that $\frac{\Delta k}{k}$ and ΔV_{T} might be characterized by both a deteterniuistic term and a statistical term.

1. The deterministic tern represents the offset of their gaussian distribution and is caused by a known, definite set of uan-miformities in the fabrication of the Transistors.
2. The statistical term represents the spread of their distribution and is caused by randan, unpredictable differences in the fabrication of many transistors.
3. We generally want the deterministic contribution of these unisuatches to be as low as passible) since their causes (\#) this is why so far we assumed it to be nihil
are known and their effects ear be computed and compensated accordingly in advance.

Assume we wanted to measure the mismatch between the two insert treausistors:

The deteruniustic tern, which we want to elinicuate, arises frau deteruriustic differences in the process fabrication parameters, such as temperature.
Temperature along a wafer is mot uniform but tends to be higher in the inner port and Cover in the outer part. This temperature difference deteruries a different growth rate of the oxide and therefore a different threshold voltage aud k factor.

In order vet to have this temperature difference during fabrication, the two transistors should be placed very close to each other, even better if inside ave another.

How can two transistors be fabricated inside ane another?

T varies with x
wafer

tox \uparrow

$$
\begin{aligned}
& C_{o x}^{\prime} \sim \frac{\varepsilon_{o x}}{t_{o x}} \downarrow \\
& V_{T} \sim \frac{Q_{d}^{\prime}}{C_{o x}^{\prime}} \uparrow
\end{aligned}
$$

lower average V_{T}
higher average V_{T}

This expedient allows to cancel out any difference in the threshold voltage caused by uan-iniforen temperature, assuming that the size of each transistor is negligible with respect to the variation rate of the parameters.

On a further ute, the variation rate of the parameter is not just the derivative along ane direction of the wafer brit rather a gradient along its entire surface. Therfore the comuan ceutraid technique should be applied with respect to both the x-axis and the y-axis of the wafer.
2. We mew reed to reduce the statistical contribution of $\Delta V_{T}($ and Δk
CMRR ereare distribution.

Iuragive to split the transistor's surface into N sucodler trausistors, each with the same threshold voltage gaussian distribution, centered arand a unminal value $V_{T_{0}}$:

We then compute the average threshold voltage and the variance of the entire trausistar:

This shows that the variance of the entire transistor is surallere for a larger N.

Howeerer we doit know how munch is N uar $o_{v_{T}}^{2}$ Nevertheless, it is obvious that a larger N requires a larger transistor surface.
If each suraller transistor has a fixed A. surface, then their unuber depends an how irony of their eau fit in the entire surface:

$$
\begin{aligned}
N & =\frac{W \cdot L}{\|} \\
\sigma_{\bar{V}_{T}}^{2} & =\frac{\sigma_{V_{T}}^{2} \cdot A_{0}}{W \cdot L}=\frac{K_{V_{T}}^{2}}{W \cdot L}
\end{aligned}
$$

With this result we can conclude that, if we consider a trausistar with a given cross-section W.L, we would expect the spread of the average threshold value to be proportionally dependent an $1 / \sqrt{W \cdot L}$

$$
\left|\sigma_{\bar{v}_{T}}=\sqrt{\sigma_{\bar{v}_{T}}^{2}}=\sqrt{\frac{K_{V /}^{2}}{W \cdot L}}=\frac{K_{v_{t}}}{\sqrt{W \cdot L}}\right|
$$

This means that to a larger transistor eorrespands a smaller variability of its parameters.

$$
\frac{\sigma_{2}}{\sigma_{1}}=\frac{\sqrt{(W L)_{1}}}{\sqrt{(W L)_{2}}}=\frac{\sqrt{100}}{\sqrt{400}}=\frac{1}{2}
$$

Fran a unacroscopic paint of view, increasing the transistor area is equivalent to adding inany, tiny coutributious whose paraureters fluctuate with a certain spread; the urore of these eartributious, the better they care compensate each other with their own fluctuations, returning an overall spread of the device paraureteres that is lower than the "local" spread.

So to put everything together: if we wore to look at the distribution of V_{T} out of unary transistors (samples) of the sone fabrication process, we would expect to see a negligible. (thanks to the coucal centroid techoque) deterumistic shift, and a spread that decreases as the reass-section of the trousistor ivoreases.

Note: se four we have only considered $O_{V_{T}}$, but what we were initially interested in was actually $\sigma_{\Delta v_{T}}$

$$
\begin{aligned}
& \vec{E} \text { expected value }=\text { mean }=\text { cuter of the distribution } \\
& E\left(\Delta V_{T}\right)=\left(V_{T_{1}}-V_{T_{2}}\right)=0
\end{aligned}
$$

rus spreads are $V_{T_{0}} \overleftarrow{V}_{T_{0}}$ (typically $\sim 4 \mathrm{mV} \cdot \mu \mathrm{m}$

$$
\sigma^{2}\left(\Delta V_{T}\right)=\sigma_{V_{T_{1}}}^{2}+\sigma_{V_{T_{2}}}^{2}=2 \sigma_{V_{T}}^{2}=\frac{2 K_{V_{T}}^{2}}{W \cdot L}=\frac{\left(K_{L_{N L}}\right)^{2}}{W \cdot L}
$$

the two MOSFET \rightarrow should be equally sired
(\longrightarrow There is just a factor $\sqrt{2}$ difference between $\sigma_{\bar{V}_{T}}$ and $\sigma_{\Delta V_{T}}$.)

This whale dixussian can be repeated this time with respect to the conductivity parameter K.
We therfore need to find the: 1 deterministic and 2. statistical coutributian of its relative variability $\frac{\Delta k}{k}$.

Since k gives a ureasure of the resistivity of the transistor chanel, it is possible to compare the unatching of the k parameter of two transistor with the unatching of two resistors.
We will therefore consider resistor matching for now, and then apply the sarre argument to transistors.
A resistor is a stripe of conductive layer that is characterized by a certain sheet resistivity R_{n} as well as a spread parameter $K_{\frac{R e}{R}}$

$$
R=\rho \cdot \frac{L}{\Delta W}=\frac{\rho}{\Delta} \cdot \frac{L}{W}=R_{\square} \cdot \frac{L}{W}
$$

$$
\Delta R=\left(R_{1}-R_{2}\right) \quad\left[\frac{\sigma_{\Delta R}}{R}=\frac{K_{\Delta R_{/ R}}}{\sqrt{W \cdot L}}\right]
$$

Pelgrou's formula
-In addition to the statistical spread $\sigma_{\Delta R}$ there could also be a deterministic tern affecting ΔR, which can be conveniently cancelled out through a cam non centroid geometry approach during fabrication.:-
It is possible to derive Pelgram's formula in the sauce way we previously computed $\sigma_{v_{T}}^{2}$.

Each of the surall resistors R_{i} is taken frau a gaussian distribution with a nominal (ream) value R. and a spread (root uneau square) σ_{k}
Let's compute the total resistance ureau value $R_{T_{0}}$ and its spread $\theta_{R_{T}}$.

We can consider each rem independently (it is
$\operatorname{Gr}\left\{\quad\right.$ easier to use the conductance $\left.G_{0}=\frac{1}{R_{0}}\right)$:
$\sigma_{G_{r}}^{2}=\sum^{N} \sigma_{G}^{2}=N \sigma_{G}^{2} \quad$ variance
\leftrightarrow how much is this?

The total resistance is then the sem of the resistance of

$$
\begin{aligned}
& d G_{0}=-\frac{d R_{0}}{R_{0}^{2}} \\
& \frac{d G_{0}}{G_{0}}=-\frac{d R_{0}}{R_{0}^{2}} \cdot R_{0}=-\frac{d R_{0}}{R_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{T_{0}}=\sum^{\mu} R_{r_{0}}= \\
& =M R r_{0}= \\
& =M \cdot \frac{l}{G_{r_{0}}}= \\
& =\frac{M}{N} \frac{l}{G_{0}}=\frac{M}{N} R_{0} \\
& \theta_{R_{T}}^{2}=\sum^{M} \sigma_{R_{r}}^{2}=M \theta_{R_{r}}^{2} \\
& \rightarrow \frac{\theta_{R_{T}}^{2}}{R_{T_{0}}^{2}}=\frac{M \sigma_{R_{r}}^{2}}{M^{2} R_{r_{0}}^{2}}=\frac{1}{M} \frac{\sigma_{R_{r}}^{2}}{R_{r_{0}}^{2}}=\frac{1}{M} \frac{\sigma_{G r}^{2}}{G_{\sigma_{0}}^{2}}=\frac{1}{M} \frac{N \sigma_{G}^{2}}{N^{2} G_{0}^{2}}=\frac{1}{M \cdot N} \frac{\sigma_{G}^{2}}{G_{0}^{2}}=\frac{1}{M N} \frac{\sigma_{R}^{2}}{R_{0}^{2}} \\
& N=\frac{W}{S}, M=\frac{L}{S} \longrightarrow M N=\frac{W L}{S^{2}} \quad \longrightarrow \frac{\sigma_{R_{T}}^{2}}{R_{T_{0}}^{2}}=\frac{S^{2} \sigma_{R}^{2}}{(W L) R_{0}^{2}}=\frac{K^{2}}{W L} \\
& \text { if } \sigma_{G} \text { is too large } \\
& \text { the tails of the } \\
& \text { gaussian will }\{\text { Go..... } \\
& \text { Le to the uar- } \\
& \text { linear relation } \\
& \text { compared to } G_{0}
\end{aligned}
$$

$\left|\frac{\Delta R_{T}}{R_{T}}=\sqrt{\frac{\Theta_{R T}^{2}}{R_{T_{0}}^{2}}}=\sqrt{\frac{K^{2}}{W L}}=\frac{K}{\sqrt{W \cdot L}}\right|$ associated to a single resistor

$$
\begin{aligned}
& R_{1_{0}}=R_{20}=R_{T_{0}} \\
& \Delta R=R_{1}-R_{2}=0 \quad \frac{\sigma_{R_{1}}^{2}}{R_{1}^{2}}=\left(\frac{K}{\sqrt{(W L)_{1}}}\right)^{2}=\frac{\sigma_{R_{2}}^{2}}{R_{2}^{2}}=\left(\frac{K}{\sqrt{(W L) 2}}\right)^{2} \\
& \begin{aligned}
\sigma^{2}(\Delta R) & =\sigma^{2}\left(R_{1}\right)+\sigma^{2}\left(R_{2}\right) \\
= & 2 \sigma^{2}(R)=\frac{2 K^{2} R^{2}}{(W L)}
\end{aligned}
\end{aligned}
$$

$$
\left[\frac{\Delta R}{R}=\sqrt{\frac{\sigma^{2}(\Delta R)}{R^{2}}}=\sqrt{\frac{2 K^{2}}{W L}}=\frac{\sqrt{2} K}{\sqrt{W L}}=\frac{K_{\Delta R_{R}}}{\sqrt{W \cdot L}}\right]
$$

associated to the difference between two resistors

This formula can now be applied to the ΔK between two transistors:

$$
\begin{aligned}
& \frac{\Delta K}{K}=\sigma_{\frac{\Delta K}{K}}=\frac{K \Delta K_{/ K}}{\sqrt{W \cdot L}} \\
& \Delta V_{T}=\sigma_{\Delta V_{T}}=\frac{K V_{\Delta V}}{\sqrt{W \cdot L}}
\end{aligned}
$$

|| Output Stages
TA BUFFER

In order to build an aperatianal amplifier we used a buffer stage at the output to avoid a reduction of the gain due to the (low) load resistance directly linked to a high impedance wade of the OTA.

A basic buffer cafiguratian can be for example a source-follower stage:

With the addled output buffer stage, we will now point out what is its distortion coutributan to the output signal and how it affects the efficiency of the amplifier, after having property set the $\frac{\text { bias }}{\downarrow}$ of the stage
the outpert should be biased so that it sits at und-xauge e.g.: $V_{D D}=3 \mathrm{~V} \longrightarrow v_{\text {out }}=1,5 \mathrm{~V} \longrightarrow V_{\text {REF }}=1,5 \mathrm{~V}$
however this will move the output of the OTA at a higher voltage (it was previously at inid-rauge).

We need to set $V_{G_{7}}=2,3 V$ to have $v_{\text {cut }}=1,5 \mathrm{~V}$.

$$
\begin{aligned}
& \Longrightarrow \quad\left(\frac{N}{\tau}\right)_{S} K_{S} V_{a v}^{2}\left[1+\frac{0_{0}, S V}{V_{A S}}\right]=\frac{(V)_{6}}{K_{6}} V_{\sigma_{G}}^{2}\left[1+\frac{2,1 V}{V_{A G}}\right] \\
& W_{6}=\frac{L_{6}}{L_{S}} W_{S} \frac{\left[1+\frac{0, S V}{V_{A}}\right]}{\left[1+\frac{2, V_{A}}{V_{A}}\right]} \text { to avoid systereatic offset. }
\end{aligned}
$$

Let's uaw study the output swing:
positive swing

$$
\begin{aligned}
& I_{7}=I_{8}+\frac{\Delta v_{\text {out }}}{R_{L}} \\
& \Delta v_{\text {out }}=0,5 \mathrm{~V}
\end{aligned}
$$

Limited by
M_{s} entering ohmic
negative swing

There are 2 limits for the negative output swing:
$\frac{M_{7} \text { turning off }}{\downarrow}$ OR $\frac{M_{6} \text { entering chic }}{\downarrow}$

$$
\frac{\Delta \sigma_{C u t}}{R_{L}} \|
$$

$$
\begin{aligned}
& \Delta v_{\text {out }}=2,1 \mathrm{~V} \\
& \left(V_{G_{7}}=0,2 \mathrm{~V}\right)
\end{aligned}
$$

typically this is the most restrictive condition

Note that to have a symmetric output swing I_{8} inst watch a precise value that is dependent on R_{L}
e.g.: $R_{L}=0,5 \mathrm{KR}, \Delta v_{\text {ait }}^{+}=0,5 \mathrm{~V} \Longrightarrow I_{B}=\frac{\Delta v_{\text {ont }}^{-}}{R_{L}}=\frac{\Delta v_{\text {out }}^{+}}{R_{L}}=1 \mathrm{~mA}$

If the condition is rot reached then the full swing output signal will be clamped at the negative and!

it actually does NOT reach the full theoretical swing because of other nonidealities (real severce-follover, distertious etc.)

Let's compute what is the real peak value V_{p}^{+}

The two nail reasons of the redreced peak value are:

- mou-1:1 transfer of the buffer
- nou-livear characteristic of the transistor

$$
\begin{aligned}
\rightarrow I_{7}= & K_{7}\left[V_{G 7}^{\max }-V_{R E F}-\left(V_{P}^{+}\right)-V_{T_{7}}\right]^{2}=I_{B}+\frac{V_{P}^{+}}{R_{L}} \\
& a V_{p}^{+2}+b V_{p}^{+}+c=0 \rightarrow V_{p}^{+}<0,5 V
\end{aligned}
$$

Note that while the real source-follower causes an attenuation of the output signal (amplitude reduction of aQ of its spectral coupoueuts), the vou-livear characteristic of the treauscanductance causes a distortion (abolition of spectral components that are not present at the input).

\rightarrow When the output increases, more current flows theaigh M_{7} therefore its transcouductance slightly increases.
Viceversa, when the output decreases gm_{7} decreases.
This translates veto a distorted waveform.

$\left[H D_{2}=\frac{A_{2}}{A_{1}}\right]$ second harmonic distortion

Note how inveeasing gmo (higher I_{8}, more power cousumptiau) will benefit beth the distortion and alternation of the output signal.

Let's now compute the power efficiency η of the stage.

$$
\begin{aligned}
& \eta=P L T \text { Power delivered } \\
& \text { to the load } \\
& V_{p}^{2} / 2 \text { power dissipated } \\
& =\frac{V_{P} / 2 R_{L}}{V_{D D} \cdot I_{8}} \text { across the stage } \\
& =\frac{V_{P}^{2}}{2 R_{L} V_{\infty} I_{8}} \text { average curves the stage } \\
& \left.\leqslant \frac{V_{p}^{2}}{2 V_{P} V_{D}}\right) R_{L} I_{8} \geqslant V_{p} \\
& \leqslant \frac{V_{p}^{2}}{4 V_{p}^{2}}<V_{p}<\frac{V_{\infty}}{2} \\
& \Longrightarrow \sqrt[\eta_{\max }]{ } \frac{1}{4}=25 \% \text { poor! }
\end{aligned}
$$

We need another architecture to improve power efficiency

$\begin{aligned} & \text { Add a MOS to eouplement the negative swing } \\ & \text { transition }\end{aligned}$

class B (push-pull) buffer

The distortion around crossover is still present though.

Let's first try to understand what type of distortion we are dealing with.

$$
I_{1}=A_{0}+A_{1} \sin \left(\omega_{0} t+\varphi_{1}\right)+A_{2} \sin \left(2 \omega_{0} t+\varphi_{2}\right)+A_{3} \sin \left(3 \omega_{0} t+\varphi_{3}\right)+\ldots
$$

I_{8} is equivalent to I_{7} shifted by $\frac{I}{2}$ (given M_{7} and M_{8} have the same parameters):

$$
\begin{aligned}
I_{8}= & A_{0}+A_{1} \sin \left[\omega_{0}\left(t-\frac{T}{2}\right)+\varphi_{1}\right]+A_{2} \sin \left[2 \omega_{0}\left(t-\frac{T}{2}\right)+\varphi_{2}\right]+ \\
+ & \left.A_{3} \sin \left[3 \omega_{0}\left(t-\frac{T}{2}\right)+\varphi_{3}\right]+\ldots \sin (\varphi+\pi)=-\sin (\varphi)\right) \\
& \left(\omega_{0} \frac{T}{2}=\frac{2 \pi}{T} \cdot \frac{T}{2}=\pi, \sin \right. \\
= & A_{0}-A_{1} \sin \left[\omega_{0} t+\varphi_{1}\right]+A_{2} \sin \left[2 \omega_{0} t+\varphi_{2}\right]-A_{3} \sin \left[3 \omega_{0} t+\varphi_{3}\right]+ \\
I_{\text {out }}= & I_{7}-I_{8}=2 A_{1} \sin \left(\omega_{0} t+\varphi_{1}\right)+2 A_{3} \sin \left(3 \omega_{0} t+\varphi_{3}\right)+\ldots
\end{aligned}
$$

\Longrightarrow All add harmonics are unantained
 harmaic in case of transistors mismatch

The distortion arises from the fact that in bias condition the output transistors are left with zero driving voltage ($\left.V_{G S_{7}}=V_{S G_{8}}=Q V\right)$. Where a signal is applied at the input, the gate of the two transistors must first rise above threshold before the output
can ueove. This solution guarantees no current consumption of to the buffer stage but as we've seen it impairs the output frequency spectrum.
Au idea to fix the distortion caused by the stage would then be to fix the driving voltage bias of the output transistors exactly at threshold, so that there is me "dead zone" during which they weed to twee on.

We have already seen that a voltage shifter with virtually no resistance can be obtained through MOSFETs in treausdiode caufiguratian.

Of course this expedient to reduce distortion comes with a cost: having the transistors of the buffer stage biased close to threshold means that there will be some leakage current which will cause power dissipation.

\Rightarrow Trade-off between distortion and power efficiency
Let's compute the power efficiency of this stage.

$$
\begin{aligned}
& \eta=\frac{P_{L}}{P_{D C}}=\frac{V_{P}^{2} / 2 R_{L}}{\frac{P_{D C}^{+}+P_{D C}^{-}}{2}} \\
& P_{D C}^{+}=P_{D C}^{-}=\left(V_{D D}-V_{\text {REF }}\right) \cdot \bar{I}_{\text {out }}=\frac{V_{D D}}{2} \bar{I}_{\text {out }} \\
& \bar{I}_{\text {out }}=\frac{2}{T} \int_{0}^{T / 2} \frac{V_{p}}{R_{L}} \sin (\omega t) d t= \\
& =\frac{2}{T} \frac{T}{2 \pi} \frac{V_{p}}{R_{L}} \int_{0}^{T / 2} \sin (\omega t) d t \cdot \frac{2 \pi}{T}= \\
& \text { (urglecting } H D_{2} \text {) } \\
& \omega t=\theta \quad d t \cdot \frac{2 \pi}{T}=d t \cdot \omega=d \theta \quad t=\frac{T}{2} \rightarrow \theta=\bar{u}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi} \frac{V_{P}}{R_{L}} \int_{0}^{\pi} \sin \theta d \theta=\frac{2}{\pi} \frac{V_{P}}{R_{L}}=\bar{I}_{\text {att }} \\
& P_{D C}^{+}=\frac{V_{D D}}{2} \bar{I}_{a u t}=\frac{V_{D D} \cdot V_{P}}{\pi R_{L}} \\
& \Longrightarrow \eta_{\text {max }}=\frac{V_{P}^{2} / 2 R_{L}}{P_{D C}^{+}}=\frac{V_{P}^{2}}{2 R_{L}} \cdot \frac{\pi R_{L}}{V_{D D} V_{P}}=\frac{\pi}{2} \frac{V_{P}}{V_{D D}} \leqslant \frac{\pi}{4} \simeq 78 \% \text { great }
\end{aligned}
$$

The efficiency of the push-pull stage is roughly $3 x$ times better than the scurce-follower stage!

As we have already discussed, this solution greatly bruefits the distortion of the output stage at the cost of save power dissipation, which is due to the off-state current of H_{7} and M_{8}.
Since the off state current of a transistor varies expareutially with its sub-threshdd $V_{G S}$, it is relevant to accurately set V_{G} in order for I_{T} not to differ too munch from its estimated value (which translates to a different value of power efficisucy).
For this reason it is important to use ane MOS and ave n MOS to $\mathrm{fix} V_{G}$ (instead of two aMES er two pros).

$$
\begin{aligned}
& V_{G}=V_{G S_{7}}+V_{S G_{B}}=V_{G S_{g}}+V_{S G_{10}} \\
& V_{K_{7}}+\sqrt{\frac{I_{T}}{K_{7}}}+\underset{\downarrow}{V_{T_{8}}}+\sqrt{\frac{I_{T}}{K_{8}}}=\frac{V_{T_{9}}}{\downarrow}+\sqrt{\frac{I_{6}}{K_{9}}}+\underset{V_{10}}{V_{T_{10}}}+\sqrt{\frac{I_{6}}{K_{10}}} \\
& V_{T_{h}} \quad V_{T_{p}}
\end{aligned}
$$

The threshold voltage of p-type and n-type transistors are typically slightly different. Using ane pMOS and are nMOS for the voltage shifter allows to neglect this mismatch when comperting the value of I_{T}.

$$
\begin{gathered}
\sqrt{\frac{I_{7}}{I_{6}}}=\frac{\frac{1}{\sqrt{K_{9}}}+\frac{1}{\sqrt{K_{10}}}}{\frac{1}{\sqrt{K_{7}}}+\frac{1}{\sqrt{K_{8}}}} \\
\frac{I_{T}}{I_{6}}=\left[\frac{\frac{1}{\sqrt{K_{9}}}+\frac{1}{\sqrt{K_{10}}}}{\frac{1}{\sqrt{K_{7}}}+\frac{1}{\sqrt{K_{8}}}}\right]^{2}=\frac{\frac{1}{K_{9}}}{\frac{1}{K_{7}}}\left[\frac{1+\sqrt{K_{9}}}{1+\sqrt{\frac{K_{7}}{K_{8}}}}\right]^{2}=\frac{K_{7}}{K_{9}}\left[\frac{1+\sqrt{\frac{K_{9}}{K_{10}}}}{1+\sqrt{\frac{K_{7}}{K_{8}}}}\right]^{2}=n\left[\frac{1+\sqrt{K_{9}}}{1+\sqrt{K_{7}}{ }_{K_{8}}^{K_{8}}}\right]^{2}
\end{gathered}
$$

The current of the buffer I_{T} is proportional to the form
factor ratio n between the buffer transistors and the trausdiade transistors.
In order rot to have a too high current the trausdiodes eunst be therefore sufficiently large to have a lower n.
$n \uparrow I_{T} \uparrow H D \downarrow \quad \eta \downarrow$

Negative feedback effects on distortion

Assume: Grep $\rightarrow \infty \Leftrightarrow A_{0} \rightarrow \infty \Rightarrow v_{d} \rightarrow 0 \Rightarrow v_{\text {out }} \rightarrow v_{s}$ even if the signal is distorted!
How can the feedback deal with distortion?
Thanks to the (ideally) infinite gain of the OTA, any man-zero sigual at its input (Vd) will cause its output (Gin) to clamp at maxiumu voltage $\left(v^{+}\right.$or $\left.v^{-}\right)$. During the initial "transition, when $0<v_{S}<V_{T}$ but $v_{\text {out }}=0$ because of the "dead zone" of the uou-ideal buffer, va is unduentarily uan-wull therefore vin skips to a value such that $v_{\text {out }}=v_{s}$ and therefore $v_{d}=0$.
This nears that Gout will always be following vs without (ideally) any distortion, while in turn vii will be the ane distorted to compensate the further distortion introduced by the buffer!

\longrightarrow The uou-livearity of the buffer stage is cancelled out by pre-destorting the signal driving the stage

To better understand this concept:

|| Noise Models

So for we have duly considered the presence of thermal uaise in etectranic circuits. However there exist mare types of electronic raise, especially regarding transistors, that are very reelevant due to their unrkier arigius and their frequency behoviany which is rot necessarily coustaut (white raise) but instead varies with frequency.
They are therefore harder to deal with and require a deeper understanding.

Let's first revisit thermal noise.

$$
S_{v_{R}}(f)=4 K T R
$$

Nyquist deuroustration for thermal usise of a resistor:

thermal unise
r.ms. value: $\left[e_{n}\right]=$ Vrms. coaxial cable with:
$Z_{c}=\frac{\vec{V}}{\vec{I}}=\sqrt{\frac{L}{C}}=R_{0}$ characteristic impedance
\rightarrow adapted load (ie. no reflections of \vec{V} and \vec{I} and ϕ)
ϕ is the energy flux generated by v_{n} travelling across the transmission live (electranaguetic - tensiou/current wave).

At a certain instant the two switches are closed thus isolating the three parts of the circuit.

The energy generated by the thermal raise of the two resistors, with all its spectral components, is trapped within the coaxial cable.

If we get to know how rush is the energy contained within the coaxial cable we will then know the energy related to its source in the first place, that is the PSD of the thermal raise of the two resistors.

The tension and current in the cable unst abide the wave equation (as wall as Maxwell's equations):

$$
\begin{aligned}
& \frac{\partial^{2} v(x, t)}{\partial x^{2}}= \frac{1}{c^{2}} \frac{\partial^{2} v(x, t)}{\partial t^{2}} \quad \frac{\partial^{2} i(x, t)}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} i(x, t)}{\partial t^{2}} \\
& \Longrightarrow v(x, t)=\sin (w t+\varphi)[A \sin (k x)+B \cos (k x)] \\
& w=k c \\
& \frac{2 \pi}{f}=\frac{2 \pi}{\lambda} c \\
& c=\lambda f(\text { dispersion equation })
\end{aligned}
$$

By shorting the ends of the cable we are forcing sane baulary conditions (unle tension at $x=0$ and $x=L$):

faurdamental solutions:

$$
\begin{aligned}
& k L=\pi+n \pi \quad{ }^{2}=\frac{2 \pi}{\lambda} \cdot L=\pi+n \pi \quad \Longrightarrow \quad \lambda=\frac{2 L}{1+n} \\
& \lambda_{1}=2 L \quad \lambda_{2}=L \quad \lambda_{3}=\frac{2 L}{3} \quad \lambda_{L}=\frac{L}{2} \ldots
\end{aligned}
$$

discrete euler of electromagnetic waves that exist inside the coaxial cable

How much is the energy that each of these EM waves has at equilibrimu?
\rightarrow Use Boltzmann's law

$$
\varepsilon_{E M}=\varepsilon_{E M}(\vec{E}, \vec{H})=K T \cdot \frac{C_{2}^{2}}{2}=K T \text { degrees of freedom }
$$

Energy per frequency interval: $\varepsilon_{\Delta f}=K T \cdot \frac{\Delta f}{C / 2 L}$
Froe this derives that the PSD is constant over all the frequency spectemu (hence were dealing with white use) because the unuber of EM wades per frequency rare is everywhere the some, and they all carvery the same energy.
Now, how much was the power we injected into the cable before closing the switch?

Reureuber that e_{n} is the r.m.s. value: $S_{v_{R}}=\frac{e_{n}^{2}}{\Delta f}$

$$
\begin{aligned}
& \Longrightarrow \varepsilon_{t o t}=2 \cdot \frac{S v_{R} \cdot \Delta f}{4} \cdot \frac{l}{R_{0}} \cdot \frac{k}{R}=\varepsilon_{\Delta f}=k T \cdot \frac{\Delta f}{2} \cdot 2 k \\
& \Longrightarrow S_{v_{R}}=4 k T R_{0}
\end{aligned}
$$

Shot raise
Shot noise is due to the graurebiety of the electrical charge.

$$
\begin{array}{ll}
Q_{1}=Q_{0_{1}}+q\left(1-\frac{x}{L}\right) & Q_{2}=Q_{0_{2}}+q \frac{x}{L} \\
\frac{d Q_{1}}{d t}=-\frac{q}{L} \frac{d x}{d t} & \frac{d Q_{2}}{d t}=+\frac{q}{L} \frac{d x}{d t}
\end{array}
$$

For each carrier crossing the space charge region:

$$
i(t)=\frac{q}{L} \cdot v(t) \text { velocity }
$$

If average current is \bar{I} then average unuber of carriers (electrons or holes) crossing this region per second (rate λ) is:

$$
\lambda=\frac{\bar{I}}{9}
$$

But if we looked unicroscopically we would see:

because of each individual carrier travelling through the region.
For each single charge we can then depict its current waveform as:

We consider a square waerefarm as elementary. waveform of the granular current since in a p-n junction carrier velocity saturates, hence $i=9 / L \cdot v_{\text {sot }}$ is constant.

Gur task now is to find a unodel to derive the average square value $\left\langle i^{2}\right\rangle$ of the superposition of these current fluctuations which can effectively be seen as a form of raise (shot raise).

$$
i(t)=\sum_{j} q h_{j}(t)=q h_{1}(t)+q h_{2}(t)+q h_{3}(t)+\ldots=\sum_{j} q h\left(t_{j}\right)
$$

Moving to a coutiumous series of pulses:
$\langle i(t)\rangle=\int_{-\infty}^{+\infty} g h(t) \cdot \lambda d t \rightarrow \begin{aligned} & \text { ember of pulses starting in } \\ & \text { elementary timefraue } d t\end{aligned}$

$$
\int_{-\infty}^{+\infty} h(t) d t=1
$$

$\bar{I}=q \cdot \lambda$ which is exactly the equation we previously stated, therefore se for everything seems to be coherent.

If now we were able to compute $\left\langle i^{2}(t)\right\rangle$ we could then derive the value of the variance σ_{i}^{2}, provided the relation $\sigma_{i}^{2}=\left\langle i^{2}\right\rangle-\langle i\rangle^{2}$.

$$
\begin{aligned}
i^{2}(t) & =\left(q h\left(t_{1}\right)+q h\left(t_{2}\right)+q h\left(t_{3}\right)+\ldots\right)^{2}= \\
& =q^{2} h_{1}^{2}+q^{2} h_{2}^{2}+q^{2} h_{3}^{2}+\ldots+2 q^{2} h_{1} h_{2}+2 q^{2} h_{1} h_{3}+\ldots
\end{aligned}
$$

Moving to a continuum: they represent two different pulses

$$
\begin{aligned}
\left\langle i^{2}(t)\right\rangle & =q^{2} \int_{-\infty}^{+\infty} h^{2}(t) \lambda d t+q^{2} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}[h(x) \lambda d x] \cdot[h(y) \lambda d y] \\
& =q^{2} \lambda \int_{-\infty}^{+\infty} h^{2}(t) d t+q^{2} \lambda^{2} \\
& =q^{2} \lambda \int_{-\infty}^{+\infty} h^{2}(t) d t+\langle i(t)\rangle^{2}
\end{aligned}
$$

Since $\sigma_{i}^{2}=\left\langle i^{2}(t)\right\rangle-\langle i(t)\rangle^{2}$ we can immediately conclude that:

$$
\sigma_{i}^{2}=q^{2} \lambda \int_{-\infty}^{+\infty} h^{2}(t) d t
$$

To obtain $S_{i}(f)$ we can use Parceval's theorem:

$$
\begin{aligned}
{\left[\int_{-\infty}^{+\infty} h^{2}(t) d t\right.} & \left.=\int_{-\infty}^{+\infty}|H(f)|^{2} d f\right] \\
\int_{0}^{+\infty} S_{i}(f) d f=\sigma_{i}^{2}= & q^{2} \lambda \int_{-\infty}^{+\infty} h^{2}(t) d t \stackrel{\downarrow}{=} q^{2} \lambda \int_{-\infty}^{+\infty}|H(f)|^{2} d f=2 q^{2} \lambda \int_{0}^{+\infty}|H(f)|^{2} d f \\
\Longrightarrow S_{i}(f) d f & =2 q^{2} \lambda|H(f)|^{2} \\
& =2 q \bar{I}|H(f)|^{2}
\end{aligned}
$$

How much is $|H(f)|$?

In our model we depicted $h(t)$ to be a rectangular pulse:

$$
h(t)=\frac{1}{T} \operatorname{rect}\left(\frac{t}{T}\right)
$$

whose Fourier transform is a cardireal sine:

$$
H(f)=\frac{\sin (\pi f T)}{\pi f T}=\operatorname{sinc}(f T)
$$

Since we dou't usually work with frequencies beyond GHz we con assume the $|H(f)|^{2}$ to be constant $(=1)$ in our reange of interest (remember that $T=\frac{L}{v_{s a t}} \rightarrow$ very small!)

$$
\Longrightarrow S_{I}(f)=2 q I
$$

In a diode there are two independent current coutribeitions:

$$
\begin{aligned}
I_{D}= & \frac{I_{s}\left(e^{\frac{q V_{D}}{K T}}-1\right)}{I_{D}^{\downarrow}}+I_{S}^{\downarrow} \\
& \frac{\downarrow}{I_{S}} \\
& \frac{\text { diffusion }}{\text { current }}
\end{aligned}
$$

ane contribution due to the concentration gradient outside the space charge region (diffusion) and are contribution due to the weak voltage difference across the region (reverse).
Since they are two independent current fluxes their contributions sum up in terms of shot noise spectral density:

$$
S_{I}=\alpha q\left(I_{D}+I_{S}\right)+2 q I_{S}
$$

forward bias: $S_{I}=2 q I_{D}$ reverse bias: $S_{I}=2 q I_{S}$ ($I_{D} \gg I_{s}$) $\left(I_{D}=-I_{S}\right)$
equilibrimu: $S_{I}=4 q I_{s}$

$$
\left(I_{D}=0\right)
$$

Note that at equilibrimu shot uaise and thermal uaise are equal (they're actually the saure thing):

$$
\left.S_{I}\right|_{\text {eq }}=4 q I_{s}=4 q \frac{I_{s}}{k T} \cdot k T=4 k T g_{D}=S_{i_{\text {thermal }}}
$$

This argument is also applicable to a transistor in weak iwversion:

therual uaise curreut spectral deusity

$$
\begin{gathered}
I_{D}=I_{0} e^{\frac{q V_{a s}}{n k T}} \text { weak iuversion } \\
\text { curreut }
\end{gathered}
$$

shot uaise current spectral densety

$$
\begin{aligned}
\Longrightarrow S_{I} & =2 q I_{D} \\
& =2 g \frac{I_{D}}{n k} n k T=4 k T\left(\frac{n}{2} g m=4 k T \gamma g m\right.
\end{aligned}
$$

$\Rightarrow S_{i_{T}}=4 k T \gamma g_{m}\left\{\begin{array}{l}\gamma=2 / 3 \text { saturatiau }(\gamma=2 \text { shart }(\gamma) \text { chavel }) \\ \gamma=1 \text { shuic segioue }\end{array}\right.$
$\Longrightarrow S_{i_{T}}=4 k T \gamma g_{m}\left\{\begin{array}{l}\gamma=1 \text { ohuic regione } \\ \gamma=\frac{n}{2} \text { weak iuveresiou }\end{array}\right.$

$$
n=1+\frac{C_{0}^{1}}{C_{0 x}^{1}}
$$

E $C_{0}^{\prime}:$ depleted regiau capacitance
$C_{o x}^{\prime}$: axide capacitauce

RTN noise
RTN raise (Randan Telegraph Naise, also called burst or pep-corv raise) is related to capture and ennissiou processes of electrons, that are caused by uau-idealities of the devices fabricaticu.

conduction baud

$$
I=G \cdot V=\underbrace{q \mu_{n} n}_{\sigma} \frac{W \Delta}{L} V=q \mu_{n} n \frac{W \cdot \Delta \cdot D}{L^{2}} \cdot V=q \mu_{n} \frac{N}{L^{2}} V
$$

Because of the trapping or releasing of charges (electrons) their concentration $n^{\text {chenght not be constant, resulting }}$ in a modulation of the device conductivity o and therefore in a variation of the current I.

The capture or release of an electron uranus that the total umber of charges N will go dawn or up by de unit, causing the aforementioned variation in current.

$$
\begin{aligned}
\Delta N & \Longrightarrow \Delta I \\
\Longrightarrow \frac{\Delta I}{I} & =q \mu_{n} \frac{V}{L^{2}} \cdot \Delta N \\
& \Longrightarrow \Delta I
\end{aligned}
$$

 capture

We assume the "capture-release waveform" to have an exponential behaviour: a conductive electron is captured, causing an instantaneous current variation; the current is then expected to recover the steady state value since the election will eventually be ejected.
Our assumption is that this recovery transient is characterized by a time constant which is the average
time needed for each carrier to be released (we will see that this is true early if we consider the superposition of unary electrons being captured at the same time of course the capture and ejection of a single carrier would indeed have a square-like woweforur, not an exparential sue*).

We therefore expect the current to be somehow affected by pulses with a negative step followed by a positive recovery transient with an expoueutial-like behaviour. This could actually happen to an electron that sits outside the conductive baud as well: it can be ejected causing an increment in the total number of carvers and lu the current (positive step) and will then be absorbed back in its original state (uegative recovery transient).
$i(t)=\frac{I}{N} \cdot e^{-t / \tau} \operatorname{step}(t)$ current waveform of capture-

$$
\begin{aligned}
& i(t)=Q \quad h(t)=Q\left(\frac{1}{\tau} e^{t / \tau} \cdot \operatorname{step}(t)\right. \\
& q=\int i(t) d t=\int q h(t) d t \\
& \quad \int h(t) d t=1 \\
& \Longrightarrow \frac{I}{N} e^{-t / \tau}=Q \frac{1}{\tau} e^{+\infty} \frac{1}{\tau} e^{-t / \tau} d t=1 \\
&
\end{aligned}
$$ emission of electrons

Now that we know $i(t)$ in the form of $Q h(t)$ it is possible to re-use the same result previously drained for shot raise:

- Anytime the current is given by the series of many' pulses in the force of $l(t)=Q h(t)$ where $h(t)$ is an elementary waveform, the resulting overall -
$=P S D$ is.

$$
S_{I}(\omega)=2 Q^{2} \lambda|H(\omega)|^{2}
$$

$\longrightarrow \lambda=\lambda_{e}=\lambda_{c}$ some rate for emission and capture in steady-state conditions
\longrightarrow two processes (emission and capture) that are independent

$$
\longrightarrow \frac{1}{\tau} e^{-t / \tau} \operatorname{step}(t) \xrightarrow{\mathcal{F}} \frac{1}{\tau} \frac{1}{\frac{1}{\tau}+j \omega}
$$

$$
\Longrightarrow S_{I}=4 Q^{2} \lambda \frac{1}{1+\omega^{2} \tau^{2}}=4 \frac{I^{2}}{N^{2}} \tau^{2} \lambda \frac{1}{1+\omega^{2} \tau^{2}}
$$

How such is λ ? We know it represents the rate at which capture and emission phenausua happen, so it can be put in a relation with the recovery time constant τ and with the umber of traps (impurities) N_{T} in the device:

$$
\begin{array}{r}
\quad \lambda \approx \frac{N_{T}}{\tau} \cdot \beta \quad \text { proportionality factor } \\
\Longrightarrow S_{I}=4 \frac{I^{2}}{N^{2}} \frac{N_{T}}{\tau} \beta \frac{\tau^{2}}{1+\omega^{2} \tau^{2}} \quad \text { Lorentzian shape }
\end{array}
$$

This frequency dependance an $1 / f^{2}$ can be actually seen through appropriate experiments to estiresate the raise PSI.
If we were to book instead at the time-damain behaviour of current, we would not see exporential-like pulses such as the ours we used for our calculation but we would see square-like bumps representing the real capture and emission of carriers due to traps. After all, an electron cannot be ejected in fractious but only in disvecte quantities. Then hov cane air frequency-damain model was still correct?

The reason is that when looking at raise we're ret looking at each single event but instead we're taking into account all the events taking place in parallel.

The superposition of unary square-like pulses that obey a certain time constant law returns an overall exponential - like pulse

We now just used a value for β.
conduction band

In a real device there would be unary different traps at unary different energy levels in a usu-ideal device, each of the ur hawing its own time constant. This result in a overall time eoustaut τ that is the superposition of many different dis.
We can simplify this considering that all traps below Fermi level are always occupied, while all traps above Fermi level are always free, which means that the population of traps contributing to the capture and eurisich of electrons only includes those around Forme level.
If we limit ourselves to just consider processes happening around Fermi level it can be demestrated that

$$
\begin{gathered}
{\left[\beta \simeq \frac{1}{4}\right]} \\
\Longrightarrow \quad S_{I}(\omega)=\left(\frac{I}{N}\right)^{2} \cdot \frac{N_{T} \tau}{l+\omega^{2} \tau^{2}}
\end{gathered}
$$

time constant of traps at Fermi level

Note that in presence of rare than are family of traps, with different lime constant at a different energy level (e.g. there are different devices in the circuit all \& them affected by RTN), each respective PSD will sum up resulting in a "stair" Rooking shape (superposition of unary lorentzian shapes with different cut-aff frequencies).

Flicker noise
Flicker uaise ("l/f raise") is typically related to transistors and is due to the nan-ideal junction between the semiconductor and the oxide, which can be place of capture and emission of the channel charges, similarly to RTN unwise.

potential barrier

The oxide is characterized by save relevant traps. Carriers flowing in the chanel can easily be trapped by then, also thanks to the electrostatic pressure due to the voltage difference between the base and the gate.

In order for an electron to june inside the oxide it has to tunnel through the oxide potential barrier (the oxide is an isolating enaterial), which is allowed only in e terms of quantum urechavics: each electron has a certain probability to avercance the potential difference and reach the trap (tumuel effect). This likelihood decreases exponentially the farther the trap is.
Also the time constant associated with the capture and emission of the electron frau a trap will be exponentially dependent an the distance from the junction. In particular, we expect it to increase the farther the trap is, since the electron will be deeper inside the oxide.

$$
\left[\tau=\tau_{0} e^{r^{x}}\right] \text { accounts for the energy }
$$

\rightarrow barrier height

Since the current fluctuations are caused by capture-euissiou of carriers caused by traps, we eau use the same result previously drained for RTN; this time, however, we wan't have just are single time constant characterizing the fluctuations, instead we are going to have a distributicu of time, constants, each of then contributing with a certain weight $g(\tau)$ to the overall PSD:

$$
\Longrightarrow S_{I}=N_{T}\left(\frac{I}{N}\right)^{2} \int_{\tau_{\min }}^{\tau_{\max }} \frac{\tau g(\tau) d \tau}{l+\omega^{2} \tau^{2}}
$$

It is passible to derive $g(\tau)$ by considering the (uniform) distribution of traps through the oxide thickness:

$$
\underbrace{N_{T} \cdot \frac{d x}{t_{0 x}}}=\underbrace{N_{T} g(\tau) d \tau}
$$

umber of traps in the umber of traps characterized elementary slice $d x$ of the oxide
by a time constant between τ and $\tau+d \tau$

Let's clarify this better:

$$
\tau=\tau_{0} e^{\gamma x} \quad \rightarrow \frac{\text { uiformily distributed }}{}
$$ traps

$$
\left.\begin{array}{rl}
x_{n}=n \cdot x_{1} \longrightarrow \tau_{1} & =\tau_{0} e^{\gamma x_{1}} \\
\tau_{2} & =\tau_{0} e^{\gamma x_{2}}=\tau_{0} e^{\gamma x_{1}} \\
\begin{array}{ll}
g(\tau) \cdot N_{T} \\
\text { umber of traps } \\
\text { pere time constant }
\end{array} & \frac{\tau_{2}}{\tau_{1}}
\end{array}=\frac{\tau_{0} e^{2 \gamma x_{1}}}{\tau_{0} e^{\gamma x_{1}}}=e^{\gamma x_{1}}, \tau_{3}=\frac{\tau_{0} e^{3 x_{1}}}{\tau_{0} e^{\gamma x_{1}}}=e^{\gamma x_{1}}\right\}
$$

$$
\int \underset{\downarrow}{N_{\tau}} N_{\downarrow} d \tau=\int \underset{\downarrow}{N_{x}} d x=N_{T}
$$

$N_{T} \cdot g(\tau) d \tau=\frac{N_{T}}{t_{0 x}} d x$ (what we had written before')

$$
\begin{aligned}
& \Longrightarrow g(\tau)=\frac{d x}{d \tau} \frac{l}{t_{0 x}} \downarrow \frac{d x}{\gamma \tau d x} \frac{1}{t_{0 x}}=\frac{1}{t_{0 x} \gamma} \cdot \frac{l}{\tau} \\
& d \tau=d\left(\tau_{0} e^{\gamma x}\right)=\tau_{0} \gamma e^{\gamma x} d x \\
&=\gamma \tau d x \\
& \Longrightarrow S_{I}=\frac{N_{I}}{\operatorname{tax}_{0 x}}\left(\frac{I}{N}\right)^{2} \int_{\tau_{\text {min }}}^{\tau_{\text {max }}} \frac{d \tau}{1+\omega^{2} \tau^{2}}=\frac{N_{I}}{\operatorname{tax}_{0 x}}\left(\frac{I}{N}\right)^{2} \frac{1}{\omega}\left[\operatorname{arctg}\left(\omega \tau_{\text {max }}\right)-\operatorname{arctg}\left(\omega \tau_{\text {min }}\right)\right]
\end{aligned}
$$

To evaluate the finite integral we should eausider how munch is w in ave range of interest vs. $\tau_{\min }$ and $\tau_{\text {max }}$. Since $\omega_{\text {min }}$ and $\omega_{\text {max }}$ (Maximum and Minimum observation time) range from Hz to GHz , while $\tau_{\text {max }}$ and $\tau_{\text {min }}$ range from years to ps, it is safe to assume that:

$$
\begin{aligned}
& \left.\begin{array}{rl}
\omega_{\text {max }} & \ll \frac{l}{\tau_{\text {min }}} \\
\omega_{\text {mine }} & \gg \frac{1}{\tau_{\text {max }}}
\end{array}\right\} \begin{array}{r}
\frac{l}{\tau_{\text {max }}}<\underset{\substack{w \\
\downarrow \\
\omega \\
\tau_{\text {min }}}}{ } \ll \frac{1}{\tau_{\text {min }}}
\end{array} \\
& \omega \tau_{\text {max }} \gg 1
\end{aligned}
$$

and therefore we can write:

$$
\begin{aligned}
& \operatorname{arctg}\left(\omega \tau_{\text {min }}\right) \simeq 0 \quad \operatorname{arct}\left(\omega \tau_{\text {max }}\right) \simeq \frac{\pi}{2} \\
& \Longrightarrow S_{I}(\omega)=\frac{N_{T}}{\operatorname{tax} \gamma}\left(\frac{I}{N}\right)^{2} \frac{1}{\omega} \cdot \frac{\pi}{2} \\
& \Longrightarrow S_{I}(f)=\frac{N_{T}}{4 \operatorname{tax} \gamma}\left(\frac{I}{N}\right)^{2} \frac{1}{f} \rightarrow \frac{M_{c} \text { Warther force }}{\text { for the } 1 / f} \text { noise } \\
& \text { in MOSFETs }
\end{aligned}
$$

typically in are range of interest

Let's see what parts of the expressiou of the $\frac{1}{f}$ ucise care be coutralled frau a desiguer's perspective.

$S_{I}=\frac{N_{T}}{4 t_{0 x} \gamma}\left(\frac{I}{N}\right)^{2} \cdot \frac{l}{f}=\quad \begin{aligned} & N_{T}=n_{T} \cdot V_{o l}=n_{T}\left(W L t_{0 x}\right) \quad n \cdot \text { of trap iu oxide } \\ & N=\frac{C_{0 x}^{10 x}}{} \cdot W_{L} \cdot V_{\text {ov }} n \text { of carriers in chaurel }\end{aligned}$

$$
\begin{aligned}
& =\frac{n_{T} x_{I} L t_{0 x}}{4 t_{6 x} \gamma} \cdot \frac{K V_{\text {ov }}^{2} \cdot I}{C_{o x}^{2}(W L)^{2} V_{o v}^{2}} \cdot \frac{q^{2}}{f}=\frac{q^{2} n_{T}}{4 \gamma} \frac{1 / 2 \mu_{n} C_{a x}^{1} X_{j} / L}{C_{o x}^{2}(X \cdot L)} \cdot \frac{1}{f}= \\
& =\underbrace{\frac{q^{2} n_{T} \mu_{n}}{8 \gamma C_{a x}^{\prime}} \frac{I}{L^{2}}} \cdot \frac{l}{f} \Rightarrow S_{I}=K_{I}^{(1 / f)} \frac{I}{L^{2}} \cdot \frac{1}{f}
\end{aligned}
$$

set by techudogy
Iuput-referered voltage uaise: $S_{V} \cdot g_{m}^{2}=S_{I}$

$$
S_{v}=\frac{K_{I}^{(1 / f)}}{4 K I} \cdot \frac{\bar{I}}{L^{2}} \cdot \frac{l}{f}
$$

$$
\Longrightarrow S_{V}=\frac{K_{v}^{(1 / f)}}{C_{0 \times}^{1} W \cdot L} \cdot \frac{1}{f} \rightarrow \frac{\text { Tvidis }}{\text { farumla }}
$$

$$
=\frac{K_{I}^{(1 / s)}}{2^{4} \cdot 1 / 2} \mu_{n} C^{1} \frac{W}{L} \cdot L^{2} \cdot \frac{l}{f}
$$

$$
=\frac{K_{I}^{(1 / 3)}}{2 \mu_{n} C_{o x} W \cdot i} \frac{\frac{k}{f}}{f}
$$

Naise corver frequency: crassover betwen therueal uaise and $1 / f$ unise

thermal uoise the lower, the better mot a good optial redrce gm or inveease trausistor size

Note how both $1 / 9$ raise PSD and the transistors urisualch variance ($=$ power) are both propartiand to $1 / w$.
This is rot a coincidence and it can be explained considering the effects of capture/emissicn of on electron in/ from the oxide on the threshold voltage and the transcanductance factor.
Every time a capture/ emission process occurs, the local threshold voltage of the transistor varies, as well as the oxide capacitance and therefore the k factor.
So the $1 / f$ raise could actually be seen as raise related to fluctuatiaves of the transistors porauneters.
As explained for the computation of the variability terms $\sigma_{\Delta V_{1}}^{2}$ and σ_{1}^{2}, a larger area of the transistor allows to even out all this fluctuations as their contributions cancel out more easily when there are many of them. For this same reason, a larger area allows for ute capture/emissicu processes to happen simultaneously thus reducing their overall contribution, resulting in a smaller σ^{2}, that is, a smaller PSD.

ANALOG FILTERS

Band-Pass Filter

High -Pass Filter

Band-Stop Filter

These ideal filters are described by a "brick-wall" transfer function, which in reality cannot be implemented. Why?
The transfer function of a filter is associated to the delta-pulse frequency reespause of the system.
It eau be shown that in order to have a transfer function with a very sharp, instantaneous transition, you reed a pulse response that forfeits the laws of causality - that is, the system would reed to respond to the pulse before the pulse has even arrived. of course such time behaviour aunt be obtained in the real world.

We therefore need to be somewhat tolerant with our real filters and design them to meet some specific requirements.

Eng. wed like $|H(j \omega)|$ to be as constant as possible over a certain frequency range.

Let's see what are the ideal requirements first.
Assume that $x(t)=A \sin \left(\omega_{1} t\right)+B \sin \left(\omega_{2} t\right)$ with beth frequency components in-boud.
$\omega_{1}(t-\tau)$
Then $y(t)=A\left|H\left(j \omega_{1}\right)\right| \sin \left(\omega_{1} t+\varphi_{1}\right)+B\left|H\left(j \omega_{2}\right)\right| \sin \left(\omega_{2} t+\varphi_{2}\right)$
In order to properly filter the signal we would reed:

$$
\left|H\left(j \omega_{l}\right)\right|=\left|H\left(j \omega_{2}\right)\right| \quad \text { AND } \quad \varphi_{1}=-\omega_{1} \tau, \quad \varphi_{2}=-\omega_{2} \tau .
$$

se both frequencies in our band of interest unit be amplified and shifted by the same amount.
$|H(j \omega)|=$ constr.
amplitude stays constant with frequency

$$
\varphi=-k \omega
$$

phase grows preapartiad with frequency

In the ideal filter shown before, this is easily achieved. Let's show why in practice it cannot be implemented.

$$
\begin{aligned}
h(t) & =\mathcal{F}^{-1}[H(j \omega)]=\int_{-\infty}^{+\infty} H(j \omega) e^{j \omega t} d \omega=\int_{-\omega_{c}}^{\omega_{c}} e^{j \omega t} \frac{d \omega}{2 \pi}= \\
& =\frac{A}{2 \pi} \frac{1}{j t}\left[e^{j \omega_{c} t}-e^{-j \omega_{c} t}\right]=\frac{\omega_{c} A}{\pi}\left[\frac{e^{j \omega_{c} t}-e^{-j \omega_{c} t}}{2 j \omega_{c} t}\right]= \\
& =\frac{\omega_{c} A}{\pi} \frac{\sin \left(\omega_{c} t\right)}{\omega_{c} t}=\frac{\omega_{c} A}{\pi} \operatorname{siuc}\left(\omega_{c} t\right)
\end{aligned}
$$

needs a the oretically infinite observation time
filter is excited before the delta -pulse (which sits at $t=0$) has even happened comet be implemented
\longrightarrow Approximated filters We should accept a maximum in band atteunation ($A_{B P}$), a unininum out of band atteunation (Asp) and two different values for the cut-aff frequency to allow
 for a surooth transition
between the band-pass region ($\omega<\omega_{B P}$) and the stopbaud region $\left(\omega>\omega_{S B}\right)$. If course we should also accept to howe a reu-caustaut band-pass amplification (and usu-constant stop-band attenuation).
The approximation requirements eau be implemented through an appropriate transfer function:

$$
T(s)=T_{0} \frac{s^{n}+a_{n-1} s^{n-1}+\ldots+a_{1} s+a_{0}}{s^{n}+b_{n-1} s^{n-1}+\ldots+b_{1} s+b_{0}}
$$

We're going to see how to mathematically build this transfer function for a LPF, and then extend the same method to the HPF and the BPF through appropriate variable transformations.

Filter implementation options

All-poles trauifer functions implement low-pass fillers and, through the associated transformations, high/band-pass filters.

Poles and zeroes transfer functions are useful in those
cases when the elimination of a specific frequency tare is needed.

We're going to deal auly with all-goles transfer functions for our purposes, namely the Butterworth and the chebyshev implementations.

Butterwort

$n=6$ (even)

$$
n=3(\text { odd })
$$

The Butterwort transfer function is characterized by just poles (all-poles transfer function).
The unuber of pales depends on the filter order, which sets the sharpuess of the baud cut-aff.
The poles in the Gauss plane are situated on a circle with a characteristic frequency ω_{0}, that is related (but not equal) to the boud-pass frequency, and their angular distance is set by the filter order as π / n.

$$
\begin{aligned}
& \text { Eg: } T(s)_{n=3}=\frac{\gamma}{\left(s+\omega_{0}\right)\left(s^{2}+\frac{\left.s \omega_{0}+\omega_{0}^{2}\right)}{Q_{23}}\right.} \\
& {[Q}\left.=\frac{1}{2 \xi}=\frac{1}{2 \cos \theta}=\frac{|P|}{2 \operatorname{Re}[P]}\right] \\
& Q_{23}=\frac{\left|P_{2}\right|}{2 \operatorname{Re}\left|P_{2}\right|}=\frac{\omega_{0}}{2 \cdot \omega_{0} / 2}=1
\end{aligned}
$$

Example: LP FILTER

$$
\left.\begin{array}{ll}
\omega_{B P}=2 \pi \cdot 10 \mathrm{KHz} & A_{B P}=1 \mathrm{~dB} \\
\omega_{S B}=2 \pi \cdot 50 \mathrm{kHz} & A_{S B}=30 \mathrm{~dB}
\end{array}\right\} \xrightarrow{\text { Butterwarth }} H(s)
$$

$$
H(j \omega)=\frac{\gamma}{D_{n}(j \omega)}
$$

It cane be easily demonstrated that:

$$
\left[|H(j \omega)|^{2}=\frac{l}{1+\left(\frac{\omega}{\omega_{0}}\right)^{2 n}}\right]
$$

Note that the atteunation is the absolute value of the deraninator of the transfer function itself:
I. if $\omega \leqslant \omega_{B P}$ thee $\frac{l}{\sqrt{1+\left(\frac{\omega}{\omega_{0}}\right)^{2 n}}} \geqslant \frac{l}{A_{B P}}$
I. if $\omega \geqslant \omega_{S B}$ then $\frac{l}{\sqrt{1+\left(\frac{\omega}{\omega_{0}}\right)^{2 n}}} \leqslant \frac{1}{A_{S B}}$

To grant these conditions, since $|H(j \omega)|$ is monatanansly decreasing, it is sufficient to verify them for $\omega=\omega_{B P}$ and $\omega=\omega_{S B}$ respectively:

$$
\begin{aligned}
& \text { I. } \quad 1+\left(\frac{\omega_{S D}}{\omega_{0}}\right)^{2 n} \leqslant A_{B P}^{2} \\
& \text { II. } \quad 1+\left(\frac{\omega_{S B}}{\omega_{0}}\right)^{2 n} \geqslant A_{S B}^{2}
\end{aligned}
$$

(Note also that $\left|H\left(j \omega_{0}\right)\right|=\frac{l}{\sqrt{2}}=-3 d B$.)
I. $\left(\frac{\omega_{B P}}{\omega_{0}}\right)^{n} \leqslant\left[\sqrt{A_{B P}^{2}-1}=\varepsilon_{B P}\right]$
attenuation coefficient
II. $\left(\frac{w_{s B}}{\omega_{0}}\right)^{n} \geqslant\left[\sqrt{A_{s B}^{2}-1}=\varepsilon_{S B}\right]$
I. $\left.\quad \begin{array}{rl}\frac{\omega_{B P}}{\omega_{0}} & \leqslant \varepsilon_{B P}^{1 / n} \\ \text { II. } \quad \begin{array}{l}\omega_{S B} \\ \omega_{B}\end{array} \varepsilon_{S B}^{1 / n}\end{array}\right\} \quad \frac{\omega_{B P}}{\omega_{S B}} \leqslant\left(\frac{\varepsilon_{B P}}{\varepsilon_{S B}}\right)^{1 / n}$ $K \leqslant\left(K_{\varepsilon}\right)^{1 / n}$

$$
\left[K=\frac{w_{B P}}{\omega_{S B}}\right] \quad\left[K_{\varepsilon}=\frac{\varepsilon_{B P}}{\varepsilon_{S B}}\right]
$$

selectivity index discrininatisu index
$K<l$ and $K_{\varepsilon}<l$ always

$$
\begin{array}{ll}
& \ln k \leqslant \frac{1}{n} \ln k_{\varepsilon} \\
\ln k<0 \leftarrow k<1< & n \ln k \leqslant \ln k_{\varepsilon} \\
n \geqslant \frac{\ln k_{\varepsilon}}{\ln k}
\end{array}
$$

order of a Butterwarth filter

$$
\begin{aligned}
& K=\frac{\omega_{B P}}{\omega_{S B}}=\frac{10 K}{50 K}=0,2 \\
& \varepsilon_{B P}=\sqrt{A_{B P}^{2}-1}=\sqrt{10^{1 / 10}-1}=0,509 \\
& \varepsilon_{S B}=\sqrt{A_{S B}^{2}-1}=\sqrt{10^{3 / 10}-1}=31,607 \\
& K_{\varepsilon}=\frac{\varepsilon_{B P}}{\varepsilon_{S B}}=\frac{0,509}{31,607}=0,016 \\
& \longrightarrow n \geqslant \frac{\ln K r}{\ln K}=\frac{\ln 0,016}{\ln 0,2}=2,57 \Longrightarrow n=3
\end{aligned}
$$

We now reed to find a proper value for w.. Remember the result previously obtained:
I. $\frac{\omega_{B P}}{\omega_{0}} \leqslant \varepsilon_{B P}^{1 / n} \longrightarrow \omega_{0} \geqslant \frac{\omega_{B P}}{\varepsilon_{B P}^{1 / n}}$
II. $\frac{\omega_{S B}}{\omega_{0}} \geqslant \varepsilon_{S B}^{1 / n} \longrightarrow \omega_{0} \leqslant \frac{\omega_{S B}}{\varepsilon_{S B}^{1 / n}}$

Hence wo should be set within an interval range given by:
$\left.\frac{\omega_{B P}}{\varepsilon_{B P}^{1 / n}} \leqslant \omega_{0} \leqslant \frac{\omega_{S B}}{\varepsilon_{S B}^{1 / n}}\right]$
characteristic frequency of a Butterwort filter

Having a range of values for ω_{0} enables a further degree of freedave when designing the filter (such as having a specific atheuration at a certain frequency).

$$
\begin{aligned}
& \frac{\omega_{B P}}{\varepsilon_{B P}^{1 / n}}=2 \pi \cdot \frac{10 \mathrm{kHz}}{0,509^{1 / 3}}=2 \pi \cdot 12,5 \mathrm{kHz} \\
& \frac{\omega_{s B}}{\varepsilon_{s B}^{1 / n}}=2 a \cdot \frac{50 \mathrm{kHz}}{31,607^{1 / 3}}=2 \pi \cdot 15,8 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
\longrightarrow\left[T(s)=\frac{\gamma}{\left(s-\omega_{0}\right)\left(s^{2}+\frac{\left.s \omega_{0}+\omega_{0}^{2}\right)}{Q_{23}}\right.}=\frac{\left(\begin{array}{c}
\omega_{0}^{3}
\end{array}\right.}{\left(s-\omega_{0}\right)\left(s^{2}+s \omega_{0}+\omega_{0}^{2}\right)}\right] \\
\underset{2 \cos \frac{1}{3}}{ }=1
\end{aligned}
$$

Butterwarth travesfer functions are extraunly flat in the in-band region (they do not have any ripples) and are very regular across the entire spectrum. They are intended for a maximally flat response

Chebysher type I
The Chebyshev-I approximant is characterized by a steeper transition (with respect to the Butter worth) for the some order of the filter. However, its iu-band Gehavicur is rot as regular and has sane ripples (the higher the order, the unore the ripples).

When designing a filter ane right have to choose between a Butterwarth inodel, of a higher order but mare regulare, and a Chebyshev-I model, of a lower order but less regular.
\Longrightarrow TRADE-OFF between order (= complexity/cost) and regularity

Note that the umber of transitions iu-boud that cause the ripples is exactly equal to the filter order.
This eneaus that for are even order the DC gain is slightly less than 1 (But stile within attenuation requirements).
The poles of the transfer function are placed arcane an elliptical shape within the reference baud-pass circle and they therefore have different radial frequencies.

We unit find the filter order and, after that, the w_{0} and Q of each single pale pair.

$$
n \geqslant \frac{\ln \left(k_{\varepsilon}^{-1}\right)}{\ln \left(k^{-1}\right)} \leftrightarrow n \geqslant \frac{C^{-1}\left(k_{\varepsilon}^{-1}\right)}{\left.{C h^{-1}}^{-1} K^{-1}\right)}
$$

order of a Cheby sheer -I filter
Butterwort

$$
\begin{gathered}
{\left[\Gamma=\left(\frac{1+\sqrt{1+\varepsilon_{\Phi}^{2}}}{\varepsilon_{B}}\right)^{1 / n}\right]} \\
S_{m}=-\sin \left[(2 m-1) \frac{\pi}{2 n}\right] \frac{\Gamma^{2}-1}{2 \Gamma}+j \cos \left[(2 m-1) \frac{\pi^{2 n}}{2 n}\right] \frac{\Gamma^{2}+1}{2 \Gamma} ; \quad m=1, \ldots, 2 n
\end{gathered}
$$ poles of a normalized Chebysher-I filter the resulting values shall then be umltiplied by $\omega_{B P}$

Example: LP FILTER

$$
\left.\begin{array}{rlr}
\omega_{B P}=2 \pi \cdot 10 \mathrm{KHz} & A_{B P}=1 \mathrm{~dB} \\
\omega_{S B} & =2 \pi \cdot 50 \mathrm{kHz} & A_{S B}=30 \mathrm{~dB}
\end{array}\right\} \xrightarrow{\text { Chebysher }-\mathrm{I}} \mathrm{H}(\mathrm{~s})
$$

$$
\longrightarrow \Gamma=1,61 \longrightarrow s_{1}: s_{6} \longrightarrow \text { take only those with }
$$

$$
\operatorname{Re}\left[S_{m}\right]<0
$$

$$
\Longrightarrow\left\{\begin{array}{l}
S_{1}=-0,247+j 0,966 \\
S_{2}=-0,494+j 0 \rightarrow \\
S_{3}=-0,247-j 0,966
\end{array}\right.
$$

eanjugate pales

$$
\begin{aligned}
\Longrightarrow & \left|p_{13}\right|=0,997, \quad Q_{13}=2,018 \\
& \left|p_{2}\right|=0,494, \quad Q=0,5 \\
H(j \omega)= & \frac{\gamma}{\left[s+0,494 \cdot \omega_{B P}\right]\left[s^{2}+\frac{s, 997}{} \omega_{B P}+\left(0,997 \cdot \omega_{B B}\right)^{2}\right]}
\end{aligned}
$$

Note how in this example n (Butterworth) $=n$ (Chebyshev). This means that for these particular requirements there is no big advantage in using a chebysher-I filter.

Bessel

The Bessel transfer function has its pales at a higher radial frequency (than $\omega_{\text {BP }}$) so that the phase shift in-band is better approximated by the linear reelaticu $\varphi=-k \omega$, since they wove the warlinear region further frau ω_{∞}. However, this approach also moves the cut-off at higher frequencies so the baudpass to stop-band transition will be slower. values. phase shift.

The poles in a Bessel approximant are located an a parabola outside the reference baud-pass circe; their radial frequencies, just like for chebyshev, have to be of different

The advantage of using a Bessel model is to have a very linear

Hence the disadvantage of using a Bessel unodel is to savifice a sharp cut-off.

There exist un opere form to compute the filter order and poles position. In fact, a tabla with the typical values is generally used.

Note: the absence of peaks (ripples) in the Butterworth and Bessel transfer functions, even in presence of complex esujugate poles, is due to the attenuation that weak resonance poles (those closer to the Re axis, that do not produce a visible peak) exert an the peaks of strong renounce poles (those closer to the In axis, that do indeed produce a peak).

Poles and zeroes contiunous time filters

As already stated, poles and zeros transfer functions are useful to eliminate specific frequency tones out of -band; they are therefore characterized by the presence \&\& a retch in correspondence with these tones.

Chebysheu type II
No in-band ripples. out-of-band ripples Moderately sharp cut-off Elliptical placing of the poles.

Caver
In-baud ripples.
Qut-of-band ripples.
Very sharp cut-gf.
\rightarrow Relative attenuation is ? limited: $\frac{A_{B P}}{A_{S B}}>k$

Generalized elliptic
solves this issue

Se for we have only considered Low-Pass Filters. As already said, it is passible to transform and normalize any High-Pass and Band-Pass Filter into a Low-Pass, find the trauefer function parameters with the appropriate ruodel, then denormalize and auti-trausform the result into the original filter type.

High-Pass Filter syuthesis
We want to transform high-pass filter mask into low-pass filter mask.

$$
\Omega=\frac{\omega_{B P}}{\omega}
$$

$$
\text { High -Pass Filter } \longrightarrow \Omega=\frac{\omega_{s s}}{\omega} \longrightarrow \text { Low-Pass Filter }
$$

Example: HP FILTER

$$
\begin{array}{ll}
w_{B P}=2 \pi \cdot 2,5 \mathrm{MHz} & A_{B P}=1 \mathrm{~dB} \\
\omega_{S B}=2 \pi \cdot 1,0 \mathrm{MHz} & A_{S B}=20 \mathrm{~dB}
\end{array}
$$

$$
\begin{aligned}
& \Omega=\frac{\omega_{B P}}{\omega}(\text { bilateral }) \\
& \hat{s}=\frac{\omega_{B P}}{S} \\
& \varepsilon_{S B}=\sqrt{10^{20 / 12}-1}=9,94 \\
& K_{\varepsilon}=\frac{0,509}{9,94}=0,051
\end{aligned}
$$

$$
j \Omega
$$

$$
\begin{array}{ll}
\varepsilon_{B P}=\sqrt{10^{1 / 10}-1}=0,509 & \varepsilon_{3 B}=\sqrt{10^{2 / 40}-1}=9,94 \\
K=\frac{1}{2,5}=0,4 & K_{\varepsilon}=\frac{0,509}{9,94}=0,051
\end{array}
$$

Butterworth: $n \geqslant \frac{\ln k_{\varepsilon}}{\operatorname{lu} k}=3,4 \longrightarrow n=4$
Chebyshev-I: $n \geqslant \underline{\underline{C h^{-1}\left(K_{\varepsilon}^{-1}\right)}} \underset{C h^{-1}\left(K^{-1}\right)}{\text { Cher }}$
With thase requiremeuts, adopting a chebyshev- I uodel has the advautage of a lower filter order (circuital implementation will be lass camplex).

$$
\longrightarrow \Gamma=1,61
$$

$$
\left.\begin{array}{rll}
\longrightarrow p_{13} & =-0,247 \pm j 0,966 & \left|p_{13}\right|=0,997
\end{array} \quad Q_{13}=2,018\right)
$$

it's a LPF!

$$
\begin{aligned}
& \Longrightarrow T(\hat{s})=\frac{\gamma}{\left(\hat{s}+\left|p_{2}\right|\right)\left(\hat{s}^{2}+\frac{\hat{s}\left|p_{13}\right|}{Q_{13}}+\left|p_{13}\right|^{2}\right)}=\frac{\left|p_{2}\right|\left|p_{13}\right|^{2}}{\left(\hat{s}+\left|p_{2}\right|\right)\left(\hat{s}^{2}+\frac{\hat{s}\left|p_{13}\right|}{Q_{13}}+\left|p_{13}\right|^{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{s^{3}}{\left(s+\frac{\omega_{B P}}{\left|p_{2}\right|}\right)\left(s^{2}+\frac{s \omega_{B P}}{\mid p_{13} Q_{13}}+\frac{\omega_{B P}^{2}}{\left|p_{13}\right|^{2}}\right)}
\end{aligned}
$$

Baud-Pass Filter syuthesis
We want to transform band-pass filter mask into low-pass filter mask.

$\Longrightarrow\left[\omega_{0}=\sqrt{\omega_{B P}^{-} \omega_{B P}^{+}}\right]$geauetric center of the baud

$$
\left[B W=w_{E e}^{+}-W_{\text {ep }}^{-}\right] \text {bandwidth }
$$

$=\frac{\omega_{0}}{Q} \Longrightarrow\left[Q=\frac{\omega_{0}}{B W}\right]$-factor of the bandpass filter

Let's try the following transformation:

$$
\hat{s}=p+\frac{1}{p}
$$

$$
\begin{gathered}
\hat{s}=p^{2}+1 \\
p \hat{s}=p^{2}+1 \\
p^{2}-p \hat{s}+1=0 \\
p_{1-2}=\frac{\hat{s} \pm \sqrt{\hat{s}^{2}-4}}{2}=\frac{\Lambda+j \Omega \pm \sqrt{(\Lambda+j \Omega)^{2}-4}}{2}
\end{gathered}
$$

We are ally considering \hat{s} paints an the imaginary axis:

$$
\Lambda=0 \rightarrow p_{1-2}=j \frac{j \pm j \sqrt{\Omega^{2}+4}}{2}=j \frac{\Omega \pm \sqrt{\Omega^{2}+4}}{2}=j\left(\frac{\Omega \pm \sqrt{\left(\frac{\Omega}{2}\right)^{2}+1}}{2}\right)
$$

This transformation links a imaginary value with two new imaginary values.

$$
\begin{array}{ll}
\Omega=-1 & \omega=-\frac{1}{2} \pm \frac{\sqrt{5}}{2}= \\
\Omega=0 & \omega= \pm 1 \\
\Omega=1 & \omega=\frac{1}{2} \pm \frac{\sqrt{5}}{2}=1,6 .
\end{array}
$$

\Longrightarrow This is a valuable transformation to map a bilateral band-pass requirement into a bilateral low-pass requirement

This transformation however can only account for a Q-factor equal to 1 (the equivalent LPF gets otherwise denarualized).
\longrightarrow We reed to expand the snapped LP transfer function

$$
\Longrightarrow \quad\left[\hat{s}=Q\left[p+\frac{1}{p}\right]\right.
$$

If course we first wed to uorcualize the BPF so that the center frequency $w_{\text {- }}$ is effectively at 1 :

$$
\left.\begin{array}{rl}
& {[p=\bar{s}} \\
\Longrightarrow \hat{\omega_{0}}
\end{array}\right]=Q\left[\frac{s}{\omega_{0}}+\frac{\omega_{0}}{s}\right] \quad \begin{aligned}
\hat{s} & =Q\left[\frac{s^{2}+\omega_{0}^{2}}{s \omega_{0}}\right] \\
\hat{s} & =j=j \omega \\
\hat{s} & =j \Omega, \quad s=\omega^{\prime} \\
\Omega & =Q\left[\frac{\omega^{2}-\omega_{0}^{2}}{\omega \omega_{0}}\right]
\end{aligned}
$$

Example: BP FILTER

$$
\begin{array}{lll}
\omega_{B P}^{-}=2 \pi \cdot 4 \mathrm{MHz} & \omega_{B P}^{+}=2 \pi \cdot 6 \mathrm{MHz} & A_{B P}=3 d B \\
\omega_{S B}^{-}=2 \pi \cdot 1,6 \mathrm{MHz} & \omega_{S D}^{+}=2 \pi \cdot 15 \mathrm{MHz} & A_{S B}=30 \mathrm{~dB}
\end{array}
$$

$$
\begin{aligned}
\Omega_{B P} & =Q\left(\frac{\sigma^{2}-4,9^{2}}{6 \cdot 4,9}\right) \\
& =2,45 \cdot 0,41=1 \\
\Omega_{S B} & =2,45\left(\frac{15^{2}-4,9^{2}}{15 \cdot 4,9}\right) \\
& =6,7
\end{aligned}
$$

$$
\begin{aligned}
& B W=2 \mathrm{MHz} \\
& f_{0}=\sqrt{4 \cdot 6} \mathrm{MHz}=4,9 \mathrm{MHz} \\
& Q=\frac{f_{0}}{B W}=2,45
\end{aligned}
$$ (normalized)

Note that we are mapping both sides of the BPF to are single HPF. How care this be done?

In principle, for are BP mask there should be two separate LP masks, ane for each side. Both masks inst use the same tran formation:

$$
\Omega=Q\left[\frac{\omega^{2}-\omega_{0}^{2}}{\omega \omega_{0}}\right]
$$

(the left side of the BPF will get negative values for the parameters of its LP mask, which cam be neglected and equorted into positive sales - remember that the transformation is bilateral).
In this specific example, the two masks are exactly the same since we have a geanetricelly symmetric BFF, that is a filter whose central frequency is the same for both band-pass and stop-band frequencies and whose attention is the same an both sides:

$$
\begin{array}{ll}
\omega_{0}=\sqrt{\omega_{B P}^{+} \omega_{B P}^{-}}=2 \pi \cdot 4, g \mu H z=\sqrt{\omega_{S B}^{+} \omega_{S B}^{-}}=2 \pi \cdot 4,9 \mu H z \\
A_{B P}=A_{B P}^{-} \stackrel{\downarrow}{=} A_{B P}^{+}=3 d B & A_{S B}=A_{S B}^{-}=A_{S B}^{+}=30 d B
\end{array}
$$

For this reason we can use due single mask to map the entire BPF.

$$
\begin{aligned}
& \Omega_{B P}=Q\left(\frac{\omega_{B P}^{+2}-\omega_{0}^{2}}{\omega_{B P}^{+} \omega_{0}}\right)=Q\left|\frac{\omega_{B P}^{-2}-\omega_{0}^{2}}{\omega_{B P}^{-} \omega_{0}}\right|=1 \\
& \Omega_{S B}=Q\left(\frac{\omega_{S B}^{+2}-\omega_{0}^{2}}{\omega_{S B}^{+} \omega_{0}}\right)=Q\left|\frac{\omega_{S B}^{-2}-\omega_{0}^{2}}{\omega_{S B}^{-} \omega_{0}}\right|=6,7
\end{aligned}
$$

When the filter is ut symmetric, one should cousider the mask with the tougher requireureuts.

$$
\begin{array}{ll}
\varepsilon_{B P}=\sqrt{10^{3 / 10}-1}=0,998 & \varepsilon_{S B}=\sqrt{10^{3010}-1}=31,51 \\
K=\frac{1}{6,7}=0,149 & K_{\varepsilon}=\frac{0,998}{31,51}=0,032
\end{array}
$$

Buttorwarth: $n \geqslant \frac{\operatorname{le} 0,032}{\ln 0,149}=1,81 \longrightarrow \underline{n=2}$
Cheby sher - I: $n>\frac{C h^{-1}(31,25)}{C h^{-1}(6,7)}=1,6 \longrightarrow n=2$

$$
Q=1 / \sqrt{2}
$$

$$
\begin{aligned}
\Longrightarrow T(\hat{s})= & \frac{\gamma}{\hat{s}^{2}+\frac{\hat{s}}{Q}+1}=\frac{1}{\hat{s}^{2}+\hat{s} \sqrt{2}+1} \\
& \hat{s}=Q\left(\frac{s^{2}+\omega_{0}^{2}}{s \omega_{0}}\right) \\
\Longrightarrow T(s)= & \frac{1}{\left[Q\left(\frac{s^{2}+\omega_{0}^{2}}{s \omega_{0}}\right)\right]^{2}+\sqrt{2} Q\left(\frac{s^{2}+\omega_{0}^{2}}{s \omega_{0}}\right)+1}=\frac{s^{2}}{D_{4}(s)}
\end{aligned}
$$

- Use Matlab functious:

$$
b_{p}+f=t f\left(b_{p}-\text { nuul, bp-deu }\right)
$$

pzmap (bptf)
-bode (bptf)

$L P(\omega) \longrightarrow \operatorname{sP}(\Omega)$	$\hat{s}=\frac{s}{\omega_{B P}}$
$H P(\omega) \longrightarrow \operatorname{LP}(\Omega)$	$\hat{s}=\frac{\omega_{B P}}{s}$
$B P(\omega) \longrightarrow L P(\Omega)$	$\hat{s}=Q \frac{s^{2}+\omega_{0}^{2}}{s \omega_{0}}$

Done
Fißter mask specificatious

Deriving the mormalized reference mask

To Do

So far we have analyzed the mathematical procedure to derain the filter transfer functia starting frau the mask requirements.
We now have to proceed to the electronic implauen tation of the filter.

Generally speaking, we would expect the filter transfer function to have the following typical forme:

$$
T(s)=\frac{\gamma \cdot\left(s+w_{z_{1}}\right)(\cdot \cdot)}{\left(s+w_{1}\right)\left(s^{2}+\frac{s w_{2}}{Q}+w_{2}^{2}\right)(\cdots)}
$$

Such rational trousfor function, whose uoninator and dendininator are composed by the product of first and second order terves only, suggests to use the cascade of unary "Cell" to implement this type of filter.

The idea is that using proper amplifiers it is passible to deliver a signal across the cal independently of the inupedance seen at the input or at the output of the cell. So if the cells are properly decoupled from one another we can write the overall transfer function as the product of each single transfer:

$$
T(s)=T_{1}(s) T_{2}(s) T_{3}(s)
$$

Each cell therefore has to implement just are singularity at a time: either real (first order) or couples conjugate (second order) singularities (poles or zeroes).

For example:

$$
\begin{aligned}
& T(s)=\frac{\gamma}{\left(s+\omega_{1}\right)\left(s^{2}+\frac{\omega_{1} s}{Q}+s\right)}=T_{1}(s) T_{2}(s) \\
& \Longrightarrow\left\{\begin{array}{l}
T_{1}(s)=\frac{\gamma_{1}}{s+\omega_{1}} \\
T_{2}(s)=\frac{\gamma_{2}}{\left(s^{2}+\frac{\omega_{1} s}{Q}+s\right)} \quad \text { "Biquad cell" }
\end{array}\right.
\end{aligned}
$$

First order eel
(a simple RC network can also work)

fallen key cell
this cell implements a LPF; switch C with 3 R to implement a HPF

It's a second order cell.
$D C$ gain is equal to K. C_{l} introduces a zero at $D C$, the two capacitors are interacting and introduce two poles.
Note that the feedback is positive, therefore $G_{\text {loop }}$ unit be lover than 1 .

(we assume the GBup of the inner loop to be surd larger than the poles of the entire circuit)

This configuration is very cavenient because it allows with just are amplifier to have a fixed radial frequency ω_{0} while freely setting the Q factor of the pole pair. (it decouples Q from w_{0}).
Let's compute Glop to exactly detoruive the position of the poles.

$$
G_{\operatorname{lop}}(s)=\gamma \frac{a_{1} s+1}{b_{1} s^{2}+b_{1} s+1}
$$

Need to modify the circuit so that the usual form still holds, but in such a way that we ore then able to revert back to the original network

Watch out for the zero in DC! the usual form ally accanits for finite zeroes (there
should be un +1)
(There

\qquad
so an can cause the target specifications to differ frau the implemented performances.
What is usually done to cope with this is to implement an auxiliary system whose re is to check what is the actual value of the resonance frequency, compare it to the desired ane and accordingly fix it so that they match (in a sort of negative feedback fashion).

The sallen key cell, however, has the merit of having a Q factor of its poles that is very redrust with respect to variability of its components:

$$
Q=\frac{1}{(1-K)\left[\sqrt{\frac{C_{1} R_{1}}{C_{2} R_{2}}}+\sqrt{\frac{C_{2}}{C_{1}}}\left(\sqrt{\frac{R_{1}}{R_{2}}}+\sqrt{\frac{R_{2}}{R_{1}}}\right)\right]}
$$

In this form it can be easily seen that Q depends solely on the relative variation between each component (rather thou the absolute variation, like it was for w.) which can be easily be cactroled through proper fabrication techniques - such os the coumiou coutraid geometry - and is therefore unuch snore reliable.

A disadvantage of this cell is that it has quite unary components (higher cast). It would be rice if they could somehow be reduced.
\longrightarrow Use ally are type of resistor and capacitor $\left(R_{1}=R_{2}=R\right.$ and $\left.C_{1}=C_{2}=C\right)$

$$
\Longrightarrow \quad \omega_{0}=\frac{l}{R C} \quad Q=\frac{l}{3-K}
$$

Mind that even if Q would seen to hove lost any dependency an analog components (and their variability) it is still a function of k which depends an the ratio of two resistances.

When $k=1+R_{b_{2}}$ gets closer to $3, Q$ tends to infinity and a sural fluctuation of k can cause a huge variation of Q.

This filter is, for this reason, u at reliable in those cases when a Q factor bigger than $\sim 1(k>2)$ is needed.

An alternative solution wald then be to reunove the dependance of Q over k, by setting $k \equiv 1$ fixed, and allow for different values of resistors and/ar capacitors ($\rightarrow 0$ to still hove a degree of freedom to set Q aud ω_{0}):

$$
Q=\frac{\sqrt{R_{1} R_{2} C_{1} C_{2}}}{(1-K) C_{1} R_{1}+C_{2}\left(R_{1}+R_{2}\right)}=\sqrt{\frac{C_{1}}{C_{2}}} \frac{\sqrt{R_{1} R_{2}}}{\left(R_{1}+R_{2}\right)}
$$

We can choose to have the capacitors ratio equal to a fixed coustaut $n\left(C_{1}=n C, C_{2}=C\right)$ while the resistors are exactly equal to each other $\left(R_{1}=R_{2}=R\right)$

$$
\omega_{0}=\frac{1}{R C \sqrt{n}} \quad Q=\frac{\sqrt{n}}{2}
$$

In this way Q duly depends on the square root of n, which uneaus that it is quite soberest to the variability of the filter components.

This kind of approach is best suited when a pale pair with a large Q factare is required

Anyhow there is a drowback with this design which is the increasing area of the capacitor weeded to match a larger value of Q (since $n=4 Q^{2}$, a quality factor twice as big requires a capacitor four times as big).

Universal cell

Let's consider the ideal integrator carfiguratian:

$$
\begin{gathered}
\frac{\sigma_{\text {out }}}{\sigma_{\text {in }}}=-\frac{1}{S R C}=-\frac{\omega_{0}}{S} \\
\omega_{0}=\frac{1}{R C}
\end{gathered}
$$

As a standalone piece of circuitry, the ideal integrator daesu't do munch because of uou-1dealities such as voltage offset and current bias causing the cutpent to inevitably saturate.

Nonetheless it can still be very useful when adopted as a building black for transfor functions.
E.g.: $T(s)=\frac{Y s^{2}}{s^{2}+\frac{\omega_{0}}{Q}+\omega_{0}^{2}}$ transfer function of a HPF

$$
\begin{aligned}
& v_{H P} \leftrightarrow \frac{v_{\text {out }}}{v_{\text {in }}}=\frac{\gamma}{1+\frac{\omega_{0}}{Q S}+\frac{\omega_{2}^{2}}{S^{2}}} \\
& v_{\text {out }}\left(1+\frac{\omega_{0}}{Q S}+\frac{\omega_{0}^{2}}{S^{2}}\right)=v_{\text {in }} \gamma \\
& v_{\text {out }}=v_{\text {in }} \gamma-\sigma_{\text {out }}\left(\frac{\omega_{0}}{S Q}\right)-v_{\text {out }}\left(\frac{\omega_{0}^{2}}{S^{2}}\right)
\end{aligned}
$$

The uetwark provides three different output each carreapanding to a different filter shape of the eamuan input. This is why it's called Universal cell.
Each filter output depends an the same radial frequency $\omega_{0}=\frac{f}{R C}$ and quality factor Q.
In order to have a feedback branch fran LP to HP with a gain equal to -1 , as den ended by the calculations, R_{2} and R_{3} unit be equal $\left(\left.V_{H P}\right|_{\infty}=-\frac{R_{2}}{R_{3}} \cdot v_{\llcorner e}\right)$.
To compute the value of R_{1} and R_{4}, we apply the superposition effect:

$$
\begin{aligned}
& \left.\sigma_{H P}\right|_{\text {in }}=\left(\frac{R_{4}}{R_{1}+R_{4}}\right)\left(1+\frac{R_{2}}{R_{3}}\right) U_{\text {in }}=\frac{2 R_{4}}{R_{1}+R_{4}} V_{\text {in }} \\
& \left.v_{H P}\right|_{B P}=\left(\frac{R_{1}}{R_{1}+R_{4}}\right)\left(1+\frac{R_{2}}{R_{3}}\right) v_{i n}=2 \frac{R_{1}}{R_{1}+R_{4}} v_{D e} \\
& v_{\text {He }}^{L P}=\left(-\frac{R_{2}}{R_{3}}\right) v_{L P}=-v_{L P} \\
& \Longrightarrow v_{\substack{\downarrow \\
v_{\text {out }}}}^{v_{\gamma}}=\underbrace{\frac{2 R_{L}}{R_{1}+R_{4}} v_{i n}}_{\gamma}+\underbrace{\frac{2 R_{l}}{R_{1}+R_{L}} v_{B e}}_{l / Q}-v_{L P} \\
& \Longrightarrow \quad Q=\frac{1+R_{4} R_{1}}{2} \quad \gamma=\frac{R_{L}}{R_{l}} \cdot \frac{1}{Q}
\end{aligned}
$$

\rightarrow once Q is set through the ratio $R_{L /(}\left(R_{1}\right) \gamma$ is also set and cannot be changed!
There is only one degree of freedom ($\frac{R_{4}}{R_{l}}$) for two variables (Q and γ).
II and Q cannot be independently set

This configuration has the great advantage of providing a high-pars, band-pass and low-pass filter in parallel while usury just three OPAMPs; it has however the unieor drawback that the gain of the filter cannot be set (which is rect a big deal since au amplifying circuit can do it in its place).

Another advantage of this cell is that it is useful for the implementation of poler and zeroes tranffer functions.

$$
\begin{aligned}
T(s) & =\frac{s^{2}+s \omega_{z} / Q_{2}+\omega_{t}^{2}}{\left(s^{2}+s \omega_{0} / Q+\omega_{0}^{2}\right)}= \\
& =\frac{s^{2}}{(\cdot \cdot)}+\frac{s \omega_{z} / Q_{z}}{(\cdot)}+\left(\underline{\omega_{t}^{2}}\right. \\
v_{\text {at }} & =v_{H P}+v_{B P} \beta_{1}+v_{L P} \beta_{2}
\end{aligned}
$$

We can now think about how to improve this cell one way could be to reurave the first amplifier (which is used as a voltage summing rode) and replace it with a current summing rode

Tow Thomas cell

The idea is to sum the vorians contribution of $v_{H P}$ in the Universal cell in the form of current instead of tension, so to avoid using an OPAMP.
 now currents

The current summing made can be the virtual grand of the second amplifier:

Apparently this solution doss not offer any advantage since now the gain of $v_{l s}$ has to be suplermented through an inverting stage (ie. another amplifier).
This issue doesu't actually exist however: commercial OPAMPs typically have a differential output (fully differential amplifier), so in order to achieve a gain equal to -1 it is sufficient to cross the polarities of the output:

Au alternative to active calls for the building of a filter transfer function is Ladder Networks.
The advantage of using ladder networks instead of cells is the improved robrestuess of the resulting filter with respect to components variability.

Example: consider a Chebyshee type I transfer function of order $n=3$; using active cells, the filter can be implemented with the cascade of for instance, one first order cell and are sableu key coll:

$$
\frac{v_{\text {out }}}{v_{\text {in }}}=T(s)=\gamma \frac{1}{\left(s+\omega_{1}\right)} \frac{1}{\left(s^{2}+\frac{s \omega_{2}}{Q}+\omega_{2}^{2}\right)}=T_{l}(s) \cdot T_{2}(s)
$$

However, this solution strongly depends an the tolerance of its components. If we wee to consider a variability If $\pm 10 \%$ in the value of the swollen key feedback capacitor, the resulting filter shape would be greatly impaired:

Adopting a ladder uetwark topology for the filter implementation allows, as ne will see, for a munch mare limited variation of the filter transfer function where are of its components has same fluctuations.

The idea behind ladder uetwarks comes from passive networks, that are made orly of resistors, capacitors and inductors.

Using a passive uetwork to implement the filter from the previous example, it cold be built as follows:

The ladder letwark (the reactive part of the circuit) adds three poles to the TF, which can be adequately adjusted to match the filter specs, while having a DC gain exactly equal to 1 (alse the gain at $\omega=\omega^{*} w i l l$ be equal to 1 since we are implementing a Chebysher-I TF with in-band ripples)
It is important for the network to be doubly terminated as it allows to have the maximum possible power transfer at $D C$ (and at $\omega=\omega^{*}$) from insert' to output.

(a) $D C$ or $\omega=\omega^{*}$:
wax. value of

$$
\begin{aligned}
& \text { Gout }=\frac{\sigma_{\text {in }}}{2} \quad \text { the sivsaid } \\
& P_{L}=\left(\frac{U_{\text {in }}}{2}\right)^{2} \frac{1}{2 R}=\frac{\left|\sigma_{\text {in }}\right|^{2}}{8 R}=P_{L_{\text {max }}}
\end{aligned}
$$

So generally speaking, for any doubly terwireated Ladder network,
there will be seure frequencies (in this
case, $\omega=0$ and $\omega=\omega^{*}$) that grant maximum power trauifer from input to output ard fore which the TF reaches its peak value.

Let's consider the dependency of the output power an the frequency of the input signal:

$$
\begin{array}{r}
P_{L}(\omega)=\frac{\left|v_{o u t}\right|^{2}}{2} \cdot \frac{1}{R}=\frac{\left|v_{i n}\right|^{2}|T(j \omega)|^{2}}{2 R} \\
{\left.\left[\left.\frac{\partial P_{L}}{\partial \omega}\right|_{\omega=\omega^{*}}=0\right] \quad \longrightarrow \frac{\left|v_{i n}\right|^{2}}{2 R} \cdot 2\left|T\left(j \omega^{*}\right)\right| \frac{\partial|T(j \omega)|}{\partial \omega}\right|_{\omega=\omega^{*}}=0}
\end{array}
$$

$$
\Longrightarrow\left[\left.\frac{\partial \mid T(j \omega)}{\partial \omega}\right|_{\omega=\omega^{*}}=0\right]
$$

As it was expected, the peak in the delivered power corresponds to the peak in the tranifer function.
Even though the result is dorians, it unit be noted that it holds for a TF that is a function of its retwork parameters as well:

$$
\begin{aligned}
T & =T(j \omega, x) \\
P_{L} & =P_{L}(\omega, x) \\
\left.\frac{\partial P_{L}}{\partial x}\right|_{\omega=\omega^{*}}=0 & \Longrightarrow\left[\left.\frac{\partial|T(j \omega, x)|}{\partial x}\right|_{\omega=\omega^{*}}=0\right] \frac{\text { Orchard theorem }}{}
\end{aligned}
$$

This ureaus that if the capacitor or the inductors wore to slightly differ from their nounal value, the tranefer function would not be changing much around w^{*} (at wast it would shift a little since w* would move depending an L and C).

A mare intuitive explanation for the reduced variability If the transfer function can be understood considering That in a ladder network all cauponeuts are coupled and interacting with one anther, $\rightarrow 0$ the variation of one parameter wou't affect just are pole, causing the TF to deform, but rather it will affect the TF in its entirety (causing the aforesen shigt); whereas in a coll cascade fluctuations of a single cell parameters mount be "seen" by other cells causing the TF to deforce in those paints where the fluctuating cell placed its singularities.

Therefore, for high order filters, it is usually seecamuended to adopt a ladder network implementation since the use of unary active cells could heftly impair the variability of the resulting transfer function.

Issue: inductors in integrated circuits

We reed to implement ladder uetwarks without using inductors (which are practically in possible to have in integrated technologies).

We can uniuric the behaviour of an inductive impedance through au active network

E.g: $\quad R=10 \mathrm{kr} \quad C=10 \mathrm{p} F$
$\sigma_{c}=R i_{s} \quad i_{c}=s C \sigma_{c}=s C R i_{s}$

$\begin{aligned} \sigma_{s} & =R i_{s}+\left(i_{s}+i_{c}\right) R=2 R i_{s}+s C R\left(i_{s} R\right) \\ & =i_{s} R(2+s C R)\end{aligned}$
$=i_{s} R(2+s C R)$

$$
\longrightarrow Z_{\text {in }}=2 R+S C R^{2}=R_{e q}+S L_{e q}
$$

The gyrator con uninic an inductive impedance whose size could never be obtained with real inductors (in integrated circuits).

This is rat the duly gyrator topology but there exist many mure with different characteristics:

$$
\left(R_{e q}=0\right)
$$

There are of course some limitations of using an active network instead of a proper inductor:

1) the iveherent bandwidth limitation of a feedback circuit; the active network must work with frequencies much below the GBWP otherwise it lases its inductive behaviour
2) the raise introduced by the reu-reactive eauporeuts; au ideal iuductar would be noiseless, while the gyrator has resistors and amplifiers bath contributing with their own raise

To solve the first issece we should look for "feedback-less" gyrator topologies, such as the following ane:

To obtain an equivalent inductor between two nodes (so far it was only between are node and grand) the following topology can be used:

The unajor problem with this configuration is that the trausconductances of the two OTAs inst exactly match. In case of a mismatch, the equivalent impedance will mot be just an inductor:

Other issues of these gyrator configurations is the finite output resistance of the OTAS (so for instance the inductive zero will ult be exactly in the arigiue bret at a low, finite frequency)

Doubly terminated ladder network frau previous example using gyrators.

So fore, we assumed that a ladder reetwerk could oily be inppeureuted as a passive retwork, hence our discussion about gyrators and imitation of inductive impedances.
Is it passible to obtain a circuit that operates in the exact same may as a ladder network, retaining the same transfer function as well as its rebrustuess with respect to the variability of its parameters, but that does not make use of inductors at all?
The objective is to use any resistors, capacitors and active coupareuts where needed to implaueut a whole new network whose transfer function is the exact same as that of a ladder network.
The starting paint of this approach to filter synthesis is the derivation of the links between the state variables of the original ladder network.
electrical variables related to the energy stored in the uetworek

Energy of a network \longleftrightarrow voltage across capacitors, $\underbrace{\text { current along inductors }}$

$$
\varepsilon=\varepsilon\left(i_{1}, i_{2}, v_{c}\right)
$$ state variables

\Longrightarrow We reed to find 3 ind pendent equations that link the 3 state variables of the system: i_{1}, i_{2} and σ_{c}.

1. $i_{1}=\frac{v_{i n}-v_{c}}{R+s L_{1}}$
2. $\frac{v_{c}-v_{\text {out }}}{S L_{2}}=i_{2}$
3. $i_{1}-i_{2}=v_{c} S C$,
anything related to the retwork performance and to the overall transfer function is within these links

We can try to obtain these equations using ideal integrators as building blocks (similarly to what we did for the universal call.
It is better to first convert all variables to the same physical quantity (voltage for instance):

$$
\left[i_{1}=\frac{v_{1}}{R^{*}}\right] \quad\left[i_{2}=\frac{v_{2}}{R^{*}}\right]
$$

$\left\{v_{1}, v_{2}\right.$ and R^{*} are just a unathematical expedient to $\}$ ease the dissertation, they do not appear in the original uetwark but will be receded for the synthesis of the new are

1. $\frac{V_{u}}{R^{*}}=\frac{V_{\text {in }}-V_{c}}{R+s L_{1}}$
2. $\frac{V_{c}-v_{\text {out }}}{S L_{2}}=\frac{V_{2}}{R^{+}}$
3. $\frac{v_{1}}{R^{*}}-\frac{v_{2}}{R^{*}}=v_{c} S C$
(4.) Vat $_{\text {at }}=i_{2} R=\frac{V_{2}}{R^{*}} \cdot R \longrightarrow$ this equation is needed to derive the transfer function but does NOT give any information about the energy of the network (in fact, it does not link two state variables aud depends an where the output is taken from)
4. $v_{\text {in }}-v_{c}=v_{1} \frac{R+s L_{1}}{R^{*}}=v_{1} \frac{R}{R^{+}}+v_{1} \frac{s L_{1}}{R^{*}} \rightarrow v_{1}=\frac{R^{*}}{s L_{1}}\left(v_{i n}-v_{c}-v_{1} \frac{R}{R^{*}}\right)$
5. $v_{2}=\frac{R^{*}}{s L_{2}}\left(v_{c}-v_{\text {out }}\right)$
6. $v_{c}=\frac{l}{S C R^{*}}\left(v_{1}-v_{2}\right)$

Since this circuit holds the same state equations as the original badder network, we expect the two transfer functions to be exactly the same (and so their dependency on their components and the reduced variability, which is what matters after all).
The arigind parameter x that was related to L_{1}, L_{2} and C is now related to the radial frequency of the integrator blocks:

$$
\begin{aligned}
L_{1} \longrightarrow \omega_{1} & L_{2} \longrightarrow \omega_{2} \quad c \longrightarrow \omega_{c} \\
& {\left[\frac{\partial|T(j \omega, x)|}{\partial x}\left(\left.\right|_{\omega=\omega^{*}}=0\right]\right.}
\end{aligned}
$$

therefore the robustuess w.r.t. the components tolerance is correctly retained.

Note: the sensitivity w.r.t. $R\left(\right.$ and $\left.R^{*}\right)$ is NOT limited; nonetheless, this problem was abready present in the ladder network: in fact, the transfer function is indeed robust against the variability of the reactive components, but it is not necessarily so for the resistors tolerance $\left(\left.\frac{\partial T}{\partial R}\right|_{\omega=\omega *} ^{\neq} 0\right)$.
Anyways this problem can be dealt with, both in the original network and in this new synthesized retwork, siluce the sensitivity happens to be dependent de the RATIO of two resistor: a cowman centroid technique helps reducing any possible uisuratch.

We should now ask ourselves: how meany amplifiers are
needed for such implauentation?
At least 3 amplifiers are mandatory to build the three integrators.
The three summing nodes can also be implemented through amplifiers, however the cheaper approach (as seen for the universal cell) is summing currents instead of voltages using the virtual ground of the integrators.
$R /\left(R^{*}\right)^{2}$
now we don't house our outpent anyulere
the mimes
sign can be obtained $\left.-R^{*}\right\}$ by crossing the wizes of a Sully differ ential amplifier

\Longrightarrow To provide the proper voltage output it has to be:

$$
\begin{aligned}
& v_{\text {out }}=v_{2} \frac{R}{R^{*}} \\
& \left(\frac{1}{y}\right) \cdot \underbrace{}_{R_{x}} \underbrace{}_{V_{V_{\text {out }}}} \quad v_{2} \\
& v_{\text {out }}=\frac{R_{x}}{R_{x}+R_{y}} v_{2}=\frac{R}{R^{*}} v_{2} \text { and } R_{x}+R_{y}=\frac{\left(R^{*}\right)^{2}}{R} \\
& \Longrightarrow\left\{\begin{array}{l}
\frac{R_{x}}{R_{x}+R_{y}}=\frac{R}{R^{*}} \\
R_{x}+R_{y}=\frac{\left(R^{*}\right)^{2}}{R}
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
R_{x}=R^{*} \\
R_{y}=\frac{\left(R^{*}\right)^{2}}{R}-R^{*}
\end{array}\right.
\end{aligned}
$$

How do we obtain this circuit's parameters in the first place?

The uaruralized values of inductances, eapacitances and resistances of a ladder network low-pass filter are generally giver by the proper table of values

The table provides values for the reference low-pass filter with $\omega_{B P}=1$ rad and $R_{1}=1 \Omega$ The values must then be properly deuarmalized to derive the actual parameters of the ladder uetwark $\left(L_{1}\right) L_{2}, C_{1}, R_{1}$ and R_{2} in our example) or rather the equivalent parameters of the integrators $\left(C_{1}, C_{2}, C_{1}\right.$, R_{1}, and R_{2}).
The process of deuarualizatiau typically loaves a few degrees of freedom when sizing the components, so it has to be merged with whatever qouer/noise/seusitivity causteaiuet to dafiue the optimal filter imphauentation, as we will see.

Example: ladder network band-pass filter

Assume $R^{(0)}=1 \Omega \quad L^{(0)}=1 H \quad C^{(0)}=1 F$ uarualized values.
We reed to deuormalize wo to a certain radial frequency N :

$$
\omega_{0}^{(0)}=1 \frac{\mathrm{rad}}{\mathrm{~S}} \longrightarrow \omega_{0}=N \frac{\mathrm{rad}}{\mathrm{~S}} \text { (target } B P \text { frequency) }
$$

\Longrightarrow Divide both $L^{(0)}$ and $C^{(0)}$ by N :

$$
L^{(1)}=\frac{L^{(0)}}{N} \quad C^{(1)}=\frac{C^{(0)}}{N}
$$

We must check that Q did not change during the wo transformation:

$$
Q=\frac{R^{(0)}}{\omega_{0} L^{(1)}}=\frac{R^{(0)}}{\left(\omega_{0}^{(0)} \cdot A\right) \cdot\left(L^{(0)} / \AA\right)}=\frac{R^{(0)}}{\omega_{0}^{(0)} \cdot L^{(0)}} V \quad Q \text { remained canst. }
$$

However if N is not large enough (at bast $\sim 10^{9}!$) $\begin{aligned} & \text { we wright get a value for } C^{(1)} \\ & \text { to be practically implemented. }\end{aligned}=\frac{C^{(0)}}{N}=\frac{1 F}{N}$ too large to be practically implemented.
$\Longrightarrow \frac{\text { Multiply } R^{(0)} \text { and } L^{(1)} \text { by a factor } M \text { and divide }}{R^{(1)}}$ $C^{(1)}$ by the same M

$$
R=R^{(0)} \cdot M \quad L=\frac{L^{(0)}}{N} \cdot M \quad C=\frac{C^{(0)}}{N \cdot M}
$$

Check that w_{0} and Q stayed the sene:

$$
\begin{aligned}
& \omega_{0}=\frac{l}{\sqrt{L \cdot C}}=\frac{N}{\sqrt{\left(L^{(0)} M\right)\left(C^{(0) / M)}\right.}}=N \frac{\operatorname{rad}}{S} V \\
& Q=\frac{R}{\omega_{0} \cdot L}=\frac{R^{(0)} M}{\left(\omega_{0}^{(0)} \cdot N\right)\left(L^{(0)} \frac{M}{N}\right)}=\frac{R^{(0)}}{\omega_{0}^{(0)} \cdot L^{(0)}} V
\end{aligned}
$$

Now it seems that, while C can be low enough by adjusting factor M (which alse deterunives the value of R), L right be too high.

This is not a problem since the inductance L is not actually implemented: it is esther replaced by a gyrator or identified by the capacitance of an integrator bock. In the latter case, we know from previous cauputatious that the capacitance that will eventually got implemented is proportional to said inductance:

$$
C_{1}=\frac{L_{1}}{\left(R^{*}\right)^{2}}
$$

\Longrightarrow Size R* to obtain a proper value for the implemented capacitances of the integrator blocks

Normalized values	Baud-pass frequency (N)	Resistance value (M)
$R^{(0)}$	$\times 1$	$\times M$
$C^{(0)}$	$\times 1 / N$	$\times 1 / N M$
$L^{(0)}$	$\times 1 / N$	$\times M / N$

Some additional cam vents to clarify a few things
For starters, as reported in the tables, souse Chebyshev-I configurations are ut doubly terminated; it can be denaustrated that the Oxchat theorem (and all the discussion held so far) is also valid for uau-daubly terminated ladder networks.

Now, a crucial paint we havent covered yet is how to impleuneut high-pass and boud-pass filters with a ladder uetwork, starting from the oforeseen normalized low-pass values.
We know any filter mask can be converted to a normalized low-pass mask, for which we have seen the table of values of the corresponding ladder retwark. Given these values, are can revert back to the original filter type through the following transformations:

Normalized lowpass elements	Highpass filter elements	Bandpass filter branches	Bandreject filter branches
L_{i}	$\frac{1}{\Omega_{0} L_{i}}$		

So, for example, the denorualized high-pass filter is derived from the normalized low-pass ladder network by swapping inductors with capacitors and viceversa, with the proper denomalizing transformation.
This table does rot take into account eventual dencrualizations of R_{1} and R_{2}. As we 've sen, sizing the terminating resistances to the target M value simply entails scaling up all inductances and scaling dowse all capacitances by the same factor M.

In general, to obtain the ladder network that implements a certain filter, these steps should be taken in order:
filter specifications
filter mask
normalized low-pass mask
\downarrow
Bulterworth/Chebysher order
RLC values for normalized low-pass Butterworth/Chebyshev deuorvalized RLC values
implementation through gyrators
implementation through integrators choice of R^{*} value

So for it secured like we could choose the values of the resistances and capacitances in almost any way we ranted (fore instance, we could set huge R and R^{*} values to minimize C and C_{1}).

However, the setting of resistors and capacitors is also influenced by the filler mau-idealities: poise, finite gain distortion, etc.

($\alpha \leqslant 1$ takes into accant passible additional limitations to the output dynamic)

The Sigual-to-Naise ratio considering orly the filter raise is given by:

$$
\left(\frac{S}{N}\right)^{2}=\frac{\left(\alpha \frac{V_{D}}{2}\right)^{2} \cdot \frac{1}{2}}{S_{v} \cdot B W}=\frac{\left(\alpha \frac{V_{D D}}{2}\right)^{2} \cdot \frac{1}{2}}{4 K T R \cdot \frac{1}{4 R C}}=\frac{\left(\alpha \frac{V_{D D}}{2}\right)^{2} \cdot \frac{1}{2}}{K T / C}
$$

All the additional usise (coming from the source, early stages, etc.) can be taken into account by adding the raise figure torn:
\Rightarrow is the ratio
between a specific

$$
\begin{aligned}
& \left(\frac{S}{N}\right)_{\text {tot }}^{2}=\frac{\left(\alpha \frac{V_{D D}}{2}\right)^{2} \cdot \frac{1}{2}}{\frac{k T}{C}(1+F)} \\
& \left(\frac{S}{N}\right)_{\text {tot }}^{\uparrow}=\alpha V_{D D} \sqrt{\frac{C \uparrow}{8 K T(1+F)}}
\end{aligned}
$$ raise over all other raise sources (F); sometimes it is also

indicated as the ratio
between a spécufic raise over all raise sources $(1+F)$.

Note that to reduce the raise, the capacitance value should be increased. However, the band-pass frequency of the filter unit not be altered, therefore the resistance should also be deverased to compensate (BW a $\frac{1}{R C}$).
This statement goes against the criteria we adapted during denarmalizatiou: if we choose smaller capacitances (and bigger resistances) we reduce the silicon occupation but we increase the noise.
\Rightarrow Trade- off between silica real estate and noise

Not only raise, but also power dissipation can be an issue whee choosing the size of capacitors and resistors.
To compute the power dissipation of the system, we need to ask ourselves how inch energy is drained frow the seuply during each cycle:

$$
\downarrow P_{d}=\frac{\varepsilon}{T}=\left(\alpha V_{\Delta D} C\right) V_{D D} \cdot f=\alpha \downarrow C V_{D D}^{2} f
$$

charge collected from p.s.
So a larger capacitance will cause higher power consumptions.
\Rightarrow Trade-aff between power dissipation and uaise

Example: baud-pass filter output raise PSD

$$
\begin{aligned}
T_{1}(s) & =-\frac{R}{R_{1}} \frac{1}{1+S C R}=-G_{1} \frac{1}{1+\frac{s}{\omega_{0}}} \\
\left\langle n_{\text {out }}^{2}\right\rangle_{1} & =\int_{0}^{+\infty} 4 k T R R_{1}\left|T_{1}(j \omega)\right|^{2} d f=4 k T R_{1} G_{1}^{2} \int_{0}^{+\infty} \frac{d f}{1+\left(\frac{\omega}{\omega_{0}}\right)^{2}}= \\
& =4 k T R_{1} G_{1}^{2} \frac{\omega_{0}}{4} \\
T_{R}(s) & =-R \frac{1}{1+\frac{s}{\omega_{0}}} \quad\left\langle n_{\text {out }}^{2}\right\rangle_{R}=\frac{4 k T}{R} \cdot R^{2} \frac{\omega_{0}}{4} \\
T_{A}(s) & =\left(1+\frac{R}{R_{1}}\right) \frac{1+s C(R / / R)}{1+s C R}=G_{A} \frac{1+\frac{s}{\omega_{2}}}{1+\frac{s}{\omega_{0}}} \\
\left\langle n_{\text {out }\rangle_{A}}^{2}\right. & =\int_{0}^{+\infty} S_{v_{A}} G_{A}^{2} \frac{1+\left(\frac{\omega}{\omega_{z}}\right)^{2}}{1+\left(\frac{\omega_{0}}{\omega_{0}}\right)^{2}} d f
\end{aligned}
$$

we erroueansly considered the transfer function T_{A} to be ideal

however the cut-ofl at higher frequencies due to the finite GBINP of the OPAMP should be taken into account

$$
\left.\left\langle n_{\text {out }}^{2}\right\rangle_{A}\right|_{\text {real }}=\int_{0}^{+\infty} S_{v_{A}} G_{A}^{2} \frac{\left[1+\left(\frac{w_{1}}{w_{z}}\right)^{2}\right]}{\left[1+\left(\frac{w_{1}}{w_{0}}\right)^{2}\right]\left[1+\left(\frac{w_{w}}{w_{\mu}}\right)^{2}\right]} d f
$$

This integral is not easy to solve in closed form; nonetheless there are tables that give the result for some standard functions of this type. In this case:

$$
\int_{0}^{+\infty}\left|\frac{1+\frac{s}{\omega_{t}}}{\frac{s^{2}}{\omega_{0}^{*}}+\frac{s}{\omega_{0}^{*} Q}+1}\right|^{2} d f=\frac{\omega_{0}^{*} Q}{4}\left[1+\left(\frac{\omega_{0}^{*}}{\omega_{t}}\right)^{2}\right]=B W
$$

where $\left(1+\frac{s}{\omega_{0}}\right)\left(1+\frac{s}{\omega_{\mu}}\right)=1+s\left(\frac{1}{\omega_{0}}+\frac{1}{\omega_{z}}\right)+\frac{s^{2}}{\omega_{0} \omega_{\mu}}=1+\frac{s}{\omega_{0}^{1} Q}+\frac{s^{2}}{\omega_{0}^{2}}$

$$
\begin{aligned}
& \longrightarrow \omega_{0}^{*}=\sqrt{\omega_{0} \omega_{\mu}} \quad Q=\frac{\sqrt{\omega_{0} \omega_{\mu}}}{\omega_{0}+\omega_{\mu}} \longleftarrow \\
& \Longrightarrow B W=\frac{\sqrt{\omega_{0} \omega_{\mu}}}{4} \cdot \frac{\sqrt{\omega_{0} \omega_{\mu}}}{\omega_{0}+\omega_{\mu}}\left[l+\frac{\omega_{0} \omega_{\mu}}{\omega_{z}^{2}}\right]= \\
& \lesssim \frac{\omega_{0} \omega_{\mu}}{4 \omega_{\mu}}+\frac{\left(\omega_{0} \omega_{\mu}\right)^{2}}{4 \omega_{\mu} \omega_{z}^{2}}=\frac{\omega_{0}}{4}+\frac{\omega_{\mu}}{4}\left(\frac{\omega_{0}^{2}}{\omega_{z}^{2}}\right)=\frac{\omega_{0}}{4}+\frac{\omega_{\mu}}{4} \frac{l}{G_{A}^{2}} \\
& \omega_{\mu}>\omega_{0} \\
&\left.\Longrightarrow\left\langle n_{0_{0} t_{A}}^{2}\right\rangle\right|_{\text {real }} \lesssim S_{v_{A}} G_{A}^{2} \cdot B W=S_{v_{A}} G_{A}^{2} \frac{\omega_{0}}{4}+S_{v_{A}} \frac{\omega_{\mu}}{4}
\end{aligned}
$$

A faster, intuitive way to obtain the same result without incurring in al these calculations is to consider the filtering effects of ω_{0} and w_{μ} as separate contributions.
Given that $\omega_{0} \ll \omega_{\mu}$, we can assume the total output
raise to be the sum of the raise PSD integrated up to w_{0}, plus the noise PSD integrated up to ω_{μ} :

$$
\begin{aligned}
& \left.\left\langle n_{\text {out }}^{2}\right\rangle_{\Delta}\right|_{\text {real }} \lesssim\left\langle n_{\text {out }}^{2}\right\rangle+\left\langle n_{\text {out }}^{2}\right\rangle=\int_{0}^{+\infty} S_{\sigma_{A}} G_{A}^{2} \frac{l}{l+\left(\frac{\omega}{\omega_{D}}\right)^{2}} d f+\int_{0}^{+\infty} S_{\sigma_{A}} \frac{l}{l+\left(\frac{\omega_{1}}{\omega_{\mu}}\right)^{2}} d f \\
& =S_{v_{A}} G_{A}^{2} \frac{w_{0}}{4}+S_{v_{A}} \frac{w_{u}}{4} \\
& \Longrightarrow\left\langle n_{\text {alt }}^{2}\right\rangle=4 k T R_{1}\left(\frac{R}{R_{1}}\right)^{2} \frac{\omega_{0}}{4}+4 k T R \frac{\omega_{0}}{4}+ \\
& +S v_{A}\left(1+\frac{R}{R_{1}}\right)^{2} \frac{\omega_{0}}{4}+S v_{A} \frac{\omega_{M}}{4}
\end{aligned}
$$

au ideally infinite GBNP would cause an infinite output raise

Note that the GBWP of the amplifier appears in the expression of the output raise (through w_{μ}). The higher the GBWP, the rosier the outport (since $\left\langle n_{\text {out }}^{2}\right.$ > ω_{μ}). For this reassure having a too large GBWP cam harshly impair the performance of the filter. If lowering it is not an option, then additional poles should be placed at the filter output to limit the overall raise transfer

In this example we've all considered the raise introduced by the filter. However the source sigual causes itself with souse raise.

$$
\begin{aligned}
& G_{1}=\frac{R}{R_{1}}=G \\
& G_{A}=1+\frac{R}{R_{1}}=1+G
\end{aligned}
$$

$$
\begin{aligned}
\left\langle n_{\text {out }}^{2}\right\rangle_{\text {tet }}= & \operatorname{Sin} G_{1}^{2} \frac{\omega_{0}}{4}+4 k T R_{1} G_{1}^{2} \frac{w_{0}}{4}+4 k T R \frac{\omega_{0}}{4}+ \\
& +S_{v_{A}} G_{A}^{2} \frac{w_{0}}{4}+S_{v_{A}} \frac{w_{\mu}}{4}
\end{aligned}
$$

$$
\Longrightarrow\langle n_{\text {out }\rangle_{\text {tot }}}^{\Longrightarrow}=\operatorname{Sin} G^{2} \frac{\omega_{0}}{4}[1+\underbrace{\frac{4 k T R}{\operatorname{Sin}}+\frac{4 k T R}{\operatorname{Sin} G^{2}}+\operatorname{So}_{\Delta} \frac{(1+G)^{2}}{G^{2}}+\frac{\operatorname{Sov}_{A}}{\operatorname{Sin} G^{2}} \frac{\omega_{\mu}}{\omega_{0}}}_{F}]
$$

The designer's objective is to reduce the raise figure: since he has no coutred over the source raise, he unit rake things se that the filter/amplifier raise is negligible compared to it - that is, se that the raise figure F is as low as passible.
$\longrightarrow \frac{\text { High gain } G}{}=\frac{R}{R_{1}}$. In this way the sigual raise gets amplified and the filter raise is overshadowed.
\longrightarrow Low resistance R_{1}. The thermal raise of R_{1} is directly comparable with the source raise, se a lover value for the front end resistor is better in order mot to produce a raise greater thou the input one
$\longrightarrow \frac{\text { Lew input referred raise of the OPAMP }}{A} S_{v_{p}} \sim \frac{8 K T \gamma}{g_{m}}$. A proper input bias of the amplifier should be gm adapted so to have a bow input referred raise.
\longrightarrow Low GBUWP $\sim \omega_{\mu}$. As already discussed, a larger GBWP allows for more vase of the OPAMP to reach the filter output; either a lower GBWP or an additional filtering action at the artpent is therefore recaumeuded.

Let's now see how the finite gain of au amplifier can affect the filter transfer function.
Consider the following biquad universal call:

$$
\begin{aligned}
& H_{i d}(s)=-\frac{l}{S R C}=-\frac{\omega_{0}}{s} \quad H_{\text {red }}(s)=\frac{H_{i d}(s)}{1-\frac{l}{G_{\text {loop }}(s)}} \\
& G_{\text {loop }}(s)=\frac{\sigma_{e}}{V_{t}}=-\frac{A_{0}}{1+S \tau_{A}} \frac{R}{R+1 / s C}=-\frac{A_{0}}{1+S \tau_{A}} \frac{S C R}{1+S C R} \\
& \operatorname{Gloop}(s)=1 \longleftrightarrow \text { closed lop poles }
\end{aligned}
$$

GBWP $=\frac{A_{0}}{2 \pi \tau_{A}}$

$$
f_{0}=\frac{1}{2 \pi R C}
$$

to have a good feedback (i.e a high Gloop) the GBWP of the amplifier should be unech larger than the characteristic frequency of the filter $\left(\frac{A_{0}}{\tau_{A}} \gg \frac{1}{R C}\right)$

Note that the low frequency pale is actually the Miller pole. Indeed, since C is placed in between two high gain nodes, its equivalent capacitance is amplified by the Miller effect. If the amplifier was ideal, then the Miller effect would wake the C capacitance virtually infinite, moving its pole to the origin (ideal integrator); since the amplifier is not ideal, the pole is instead at a bow but uou-zero frequency.

The ideal filter transfer function $T_{i d}(s)=\gamma \frac{\omega_{0}^{2}}{s^{2}+S \frac{\omega_{0}}{Q}+\omega_{0}^{2}}$ will
suffer from a shift of both ω_{0} and Q suffer from a shift of both ω_{0} and Q due to the different expression of the real integrators.

While the shift of w_{0} can be adjusted (as abready painted out) through an ancillary network that coutrols the actual radial frequency of the circuit and fixes it accordingly, the shift of Q is not coutrdbable and can therefore heavily affect the filter's performance.
Let's compute how much different the real w' and, more importantly, the real Q^{\prime} are going to be with respect to the ideal target values ω_{0} and Q.

$$
\begin{aligned}
& T_{\text {id }}(s)=\gamma \frac{\omega_{0}^{2} s^{2}}{\frac{\omega_{2}^{2}}{s^{2}}+\frac{\omega_{0}}{s Q}+1}=\gamma \frac{\left(-\frac{\omega_{0}}{s}\right)^{2}}{\left(-\frac{\omega_{0}}{s}\right)^{2}-\left(-\frac{\omega_{0}}{s}\right) \frac{1}{Q}+1}=\gamma \frac{H_{i d}^{2}(s)}{H_{\text {id }}^{2}(s)-\frac{H_{i d}(s)+1}{Q}} \\
& \Longrightarrow T_{\text {real }}(s)=\gamma \frac{H_{\text {real }}^{2}(s)}{H_{\text {real }}^{2}(s)-\frac{H_{\text {waal }}(s)}{Q}+1} \text { where }
\end{aligned}\left\{\begin{array}{l}
H_{\text {real }}(s)=-\frac{A_{0}}{\left(1+\frac{s}{\omega}\right)\left(1+\frac{s}{\omega_{H}}\right)} \\
\omega_{L}=\frac{\omega_{0}}{A_{0}}=\frac{1}{A_{0} R C} \\
\omega_{H}=2 \pi G B W P=\frac{A_{0}}{\tau_{A}}
\end{array}\right.
$$ real transfer function are:

1. finite gain of the amplifiers (causing ω_{L} pole)
2. finite bandwidth of the amplifiers (causing ω_{H} poe)

In order to ease the study of this prebbleu, it is bettor to split the two uau-idealities and consider their effects separately.

1. $H^{\prime}(s)=-\frac{A_{0}}{\left(1+\frac{s}{\omega_{L}}\right)}$ real integrator with finite gaire

$$
\begin{aligned}
& T^{\prime}(s)=\frac{\left.\gamma \frac{A_{0}^{2}}{\left(1+S_{L}\right)_{L}}\right)^{2}}{\frac{A_{0}^{2}}{\left(1+F / \omega_{L}\right)^{2}}+\frac{A_{0}}{\left(1+F / \omega_{L}\right) Q}+1}=\gamma \frac{A_{0}^{2}}{\left(1+F / \omega_{L}\right)^{2}+\frac{A_{0}}{Q}\left(1+F / \omega_{L}\right)+A_{0}^{2}}= \\
& =\gamma \frac{A_{0}^{2}}{\frac{s^{2}}{\omega_{L}^{2}}+s\left(\frac{2}{\omega_{L}}+\frac{A_{0}}{Q \omega_{L}}\right)+A_{0}^{2}+\frac{A_{0}}{Q}+1}= \\
& \begin{aligned}
\omega_{L}=\frac{\omega_{0}}{A_{0}}(& =\gamma \frac{A_{0}^{2} \omega_{L}^{2}}{S^{2}+s \omega_{L}\left(2+\frac{A_{0}}{Q}\right)+\omega_{L}^{2}\left(A_{0}^{2}+\frac{\left.A_{0}+l\right)}{Q}+l\right.} \\
& =\gamma \frac{\omega_{0}^{2}}{S^{2}+s \omega_{0} \underbrace{\left(\frac{2}{A_{0}}+\frac{l}{Q}\right)}_{\sim 1 / Q^{\prime}}+\underbrace{\omega_{0}^{2}\left(1+\frac{l}{A_{0} Q^{\prime}}+\frac{l}{A_{0}^{2}}\right)}_{\sim \omega_{0}^{12}}}
\end{aligned}
\end{aligned}
$$ compare with $T_{\text {id }}(s)=\gamma \frac{\omega_{0}^{2}}{s^{2}+s \frac{\omega_{0}}{Q}+\omega_{0}^{2}}$

real characteristic frequency:

$$
\omega_{0}^{\prime}=\omega_{0} \sqrt{\frac{l}{A_{0}^{2}}+\frac{1}{A_{0} Q}+1}
$$

real quality factor: $\omega_{0}\left(\frac{2}{A_{0}}+\frac{l}{Q}\right)=\frac{\omega_{0}^{\prime}}{Q^{\prime}} \simeq \frac{\omega_{0}}{Q^{\prime}}$
with finite gain

$$
\begin{aligned}
& \frac{l}{Q^{\prime}} \simeq \frac{2}{A_{0}}+\frac{1}{Q} \\
& \frac{l}{Q^{\prime}}-\frac{1}{Q} \simeq \frac{2}{A_{0}} \\
& \frac{Q-Q^{\prime}}{Q Q^{\prime}} \simeq \frac{2}{A_{0}} \\
& -\frac{\Delta Q}{Q Q^{\prime}} \simeq \frac{2}{A_{0}}
\end{aligned}
$$

$$
\text { of the quality factor } \leftarrow \frac{\Delta Q}{Q} \simeq-2 \frac{Q}{A_{0}}
$$

Note how the finite gain of the amplifier will cause a lower Q factor than expected for all pole pairs of the filter cell, which might Bring the resulting implementation off the required filter mask.

2. $H^{\prime \prime}(s)=-\frac{\omega_{0}}{s} \frac{1}{\left(1+\frac{s}{\omega_{H}}\right)}$ real integrator with finite BW

As already said, the GBWP should be much larger thou the frequencies of interest.

Therefore, we can afford the following semplifications:

$$
2 \pi G B W P=\omega_{H} \quad \omega \ll \omega_{H} \Longrightarrow \frac{l}{l+s / \omega_{H}} \simeq l-\frac{s}{\omega_{H}}
$$

$$
\begin{aligned}
& \Longrightarrow T^{\prime \prime}(s) \simeq \frac{\gamma}{\left(1+\frac{s}{\omega_{H}}\right)^{2}} \frac{\omega_{0}^{2}}{{ }^{\text {negligible }}}
\end{aligned}
$$

$$
\begin{aligned}
& \simeq \gamma \frac{\omega_{0}^{2}}{s^{2}\left(1-\frac{\omega_{0}}{Q \omega_{H}}+\frac{\omega_{0}^{2}}{\omega_{H}^{2}}\right)+s\left(\frac{\omega_{0}}{Q}-\frac{2 \omega_{0}^{2}}{\omega_{H}}\right)+\omega_{0}^{2}} \\
& =\gamma \frac{\omega_{0}^{2}}{s^{2}+\frac{s \omega_{0}}{\left(1-\frac{\omega_{0}}{Q \omega_{H}}+\frac{\omega_{0}^{2}}{\omega_{H}}\right) \frac{\left(\frac{1}{Q}-\frac{2 \omega_{0}}{\omega_{H}}\right)}{\sim 1 / Q^{1}}+\frac{\omega_{0}^{2}}{\left(1-\omega_{0} \omega_{H}+\frac{\omega_{0}^{2}}{\omega_{H}}\right)}} \sim \sim \omega_{0}^{12}}
\end{aligned}
$$

real characteristic frequency:

$$
\omega_{0}^{\prime}=\frac{\omega_{0}}{\sqrt{1-\frac{\omega_{0}}{Q \omega_{H}}+\frac{\omega_{0}^{2}}{\omega_{H}^{2}}}}
$$

real quality factor: $\quad \frac{\omega_{0}^{\prime}}{Q^{\prime}}=\frac{\omega_{0}}{\left(1-\frac{\omega_{0}}{Q \omega_{H}}+\frac{\omega_{0}^{2}}{\omega_{H}}\right)}\left(\frac{1}{Q}-\frac{2 \omega_{0}}{\omega_{H}}\right) \simeq \omega_{0}^{\prime}\left(\frac{1}{Q}-\frac{2 \omega_{0}}{\omega_{H}}\right)$ with finite bandwidth

$$
\begin{aligned}
& \frac{l}{Q^{\prime}} \simeq \frac{l}{Q}-\frac{2 \omega_{0}}{\omega_{H}} \\
& \frac{\Delta Q}{Q} \simeq 2 \frac{Q \omega_{0}}{\omega_{H}}
\end{aligned}
$$

Note how this time the finite bandwidth of the amplifier will cause a higher Q factor thou expected, which right impair the filter's performance by rat abiding the unask specificatiaus?

(These results can be generalized to all filters imploueuted by active integrators)

The two uou-idealities (finite gain and BW) affect the filter at the same time and, even though their effects an the Q factor seen to somewhat cancel act each other, they should be anyway always taken into account.

AQ these constraints, that wove see arise frau noise, power dissipation, finite GBWP (and distortion), are rancid when designing a filter since they give information about what the most fitting components (resistors, capacitors and amplifiers) will be for ar task and how well they are required to perform (hence the choice for a proper amplifier design).
||Switched Capacitors

The eaucept of switched capacitors woe firstly used by James Clerk Maxwell in its introduction to the fundations of electranaguetisue. Switched capacitors have then been used to implunent filters in the entire audio range, thanks to their merit of being able to instate the worteing principle of large resistors with just a sural capacitor
Let's see where and how this evert takes place.
Assume we have to implement an audio filter with a bandwith of 10 kHz (the full audio range is $20 \div 20 \mathrm{~K} \mathrm{~Hz}$). We then reed a cell to build the filter, which can be made up by integrator blocks whose radial frequency has to match that of the filter e.

The problem is that, when we move to the low frequency range, in order to obtain the desired radial frequency
in an integrated technology we used huge resistance values that would take up too munch of the available chip area, if implemented in a standard way.
An alternative, more efficient way to obtain large resistances for the implementation of low frequency filters is precisely the use of switched capacitors.
The role of switched capacitors is in fact to mimic the behaviour of the resistors in the

switched capacitor

The resulting voltage variation at the output is therefore a step (integral of the current pulse) proportional to the input signal frau the first phase.
Over unany clock cycles, the output waveform corresponding to a constant input signal with amplitude E will then be:

In the continuous time implementation, a resistor is wreaking current flow into virtual grand proportionally to the input voltage and the output is a linear ramp. This current is equal to $I=\frac{E}{R}$
In the discrete time implementation, a switched capacitor is taking charge from the input voltage and is giving it to the integrating capacitance during each cycle, unaking an average current flow from input to output. This average current is equal to $\frac{I}{I}=\frac{Q}{T}=E \frac{C_{1}}{T}$
It is now clear that the switched capacitor is mimicking on equivalent resistance equal to:

$$
R_{\text {eq }}=\frac{T}{C_{l}}
$$

The unain difference fran a continuous time approach will be the staircase-shaped waveform at the output, instead of a linear ave.

The discrete approximation will be gad enough provided that the switching time is much lower than the period of the input waveform - or, to be urore correct, the clock frequency is munch larger than the bandwidth of the sigual.

Now what is the advantage of this solution?
If you consider the previous audio filter ($f_{0}=10 \mathrm{kHz}$), we firstly used to ensure that $\frac{1}{T}=f_{c l k}>f_{0}$.
This is easily done by setting folk ${ }^{\top}=1 \mathrm{HHz}(T=l \mu s)$, which is a common value for clack frequencies.
This means that, in order to obtain the required resistance $R=16 M \Omega$ (computed before) with a switched capacitor, we would then wed a capacitance c_{1} as large as:

$$
R=R_{e q}=\frac{T}{C_{1}} \longrightarrow C_{1}=\frac{T}{R}=\frac{l_{\mu s}}{16 M \Omega}=62,5 \mathrm{fF} \text { good! }
$$

The switched capacitor allows to approximate the behaviour
of a very large resistance with just a suall capacitance (and solve switches).

Not ally this: the switched capacitor has another advantage.
In a standard inpleurentation the radial frequency of the filter is dependent an the absolute value of its components:

$$
\omega_{0}=l / R C
$$

and thus suffers from tolerance and variability issues.
In a switched capacitor implourentation instead the radial frequency is dependent an the relative value of the components

$$
\omega_{0}=\frac{l}{R_{e q} C}=\frac{C l}{T \cdot C}=f_{\text {alk }} \frac{C}{C}
$$

Since the frequency block eau be contrded and is very stable, the only source of berar is the reatio of the two capacitors, whose Gariability can be greatly improved with the proper fabrication layout technique (egg. cenunou centroid).

The switched capacitor allows for a were reliable effective value of the radial frequency of the filter.

Let's row take a closer look at the implieatious of dealing with a discrete tire systru

Sampling of the input (phase 1) happens every full period

Transition of the output (phase 2) happens every half period

The output waveforen can be expressed as:

$$
\left[v_{\text {out }}(t)=\sum_{n=0}^{\infty} v_{\text {out }}(n T) \cdot\left\{\operatorname{step}\left[t-\left(n-\frac{1}{2}\right) T\right]-\operatorname{step}\left[t-\left(n+\frac{1}{2}\right) t\right]\right\}\right]
$$

Our task here is to understand what is the link between the Fourier transform (i.e. frequency spectrum) of the output sigual and the spectrum of the input signal.

$$
\operatorname{Vout}(s)=\alpha\left[\sigma_{\text {out }}(t)\right](s)=\sum_{n=0}^{\infty} \sigma_{\text {out }}(n T) \cdot\left\{\frac{1}{s} e^{-s\left(n-\frac{1}{2}\right) T}-\frac{1}{s} e^{-s\left(n+\frac{1}{2}\right) T}\right\}
$$

$$
\begin{aligned}
& V \text { out }(s)=\sum_{n=0}^{\infty} \sigma_{\text {out }}(n T) \frac{1}{s} e^{-s n T}\left\{e^{s \frac{T}{2}}-e^{-s \frac{T}{2}}\right\} \\
& s=j \omega \\
& \begin{aligned}
V_{\text {out }}(j \omega) & =\sum_{n=0}^{\infty} \sigma_{\text {out }}(n T) \frac{1}{j \omega} e^{-j \omega n T}\left\{e^{j \omega \frac{T}{2}}-e^{-j \omega \frac{T}{2}}\right\} \\
& =\sum_{n=0}^{\infty} \sigma_{\text {out }}(n T) e^{-j \omega n T} T\left\{\frac{e^{j \omega T / 2}-e^{-j \omega T / 2}}{2 j \cdot \omega T / 2}\right\} \\
& =\sum_{n=0}^{\infty} \sigma_{\text {out }}(n T) e^{-j \omega n T} T \operatorname{sinc}\left(\frac{\omega T}{2}\right) \\
& \left.\sum_{n=\infty}^{\infty} \sigma_{\text {out }}(n T) z^{-n}\right|_{z=e^{j \omega T}} \cdot T \operatorname{sinc}\left(\frac{\omega T}{2}\right)
\end{aligned}
\end{aligned}
$$

like a transform"

$$
1 \Longrightarrow \operatorname{Vout}(\omega)=\left.\operatorname{Vout}(z)\right|_{z=e^{j \omega T}} \cdot T \operatorname{sinc}\left(\frac{\omega T}{2}\right)
$$

zeta- transforlu
Trausform
"The expressiou $\left.\operatorname{Vin}(z)\right|_{z=e^{j \omega T}}$ represents the Fourier tranform of the iupert wareform $v i n(t)$ sampled every $t=n T$ i.e. uneltiplied by $\delta(t-n T)$ "

$$
\begin{aligned}
\left.V_{\text {in }}(z)\right|_{z=e^{j u T}} & =\mathcal{F}\left[U_{\text {in }}(t) \cdot \sum_{n} \delta(t-n T)\right](\omega)= \\
& =V_{\text {in }}(\omega) * \mathcal{F}\left[\sum_{n} \delta(t-n T)\right](\omega)= \\
& =V_{\text {in }}(\omega) * \sum_{k} \frac{2 \pi}{T} \delta\left(\omega-\frac{2 \pi}{T} k\right) \\
V_{\text {out }}(\omega) & =\left[\frac{2 \pi}{T} V_{\text {in }}(\omega) * \sum_{k} \delta\left(\omega-\frac{2 \pi}{T} k\right)\right] \cdot\left[\left.H(z)\right|_{\left.z=e^{j \omega T}\right]} ^{(b)}\right] \cdot\left[T \operatorname{sinc}\left(\frac{\omega T}{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& V_{\text {out }}(z) \cdot z=\operatorname{Vout}(z)-\operatorname{Vin}(z) \frac{C_{1}}{C} \\
& V_{\text {out }}(z)(z-1)=-\operatorname{Vin}(z) \frac{C_{l}}{C} \\
& 2 \Longrightarrow \frac{V_{\text {eut }}(z)}{V_{\text {in }}(z)}=-\frac{C_{l}}{C} \frac{l}{z-l}=H(z)=\begin{array}{c}
\text { trauzfer functiou } \\
\text { of the disurete (sampled) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \left.V \operatorname{in}(z)\right|_{z=e^{j \omega T} T} \sum_{n=0}^{\infty} U_{\text {in }}(n T) e^{-j \omega n T} \\
& =\int_{-\infty}^{e^{j \omega T}} \sigma_{\text {in }}^{+\infty}(t) \sum_{n=0}^{\infty} \delta(t-n T) \cdot e^{-j \omega t} d t \\
& =\mathcal{F}\left[\operatorname{Vin}_{\text {in }}(t) \cdot \sum_{n=0}^{+\infty} \delta(t-n T)\right](\omega) \leftrightarrow \text { Fowrier }
\end{aligned}
$$

Let's see what each tern in the final equation means:
(a) The first true simply says that due to sampling we are replicating the input spectrum around all the harmonics of the clock (radial) frequency \leftarrow aliasing
(b) The second term yields to the operation of the SC filter itself. (an integrator in our case) in the discrete time dauaire.
Note that $\left.H(z)\right|_{z=e^{j \omega T}}=-\frac{C l}{C} \frac{l}{z-1}=-\frac{C l}{C} \frac{l}{e^{j \omega T}-1}$ is a periodic function in ω.
In fact oj ${ }^{W T}$ is a periodic function itself with parian $\frac{2 \pi}{T}$. Therefore $\left.H(z)\right|_{z=e^{j \omega \tau}}$ can be seen as a "periodic filter" that acts an each replica of the iupent spectrum
(c) The third tereus is a cardinal sine centered around the origin and whose zeroes coincide exactly with the clock harmonics $\left(\sin \frac{\omega T}{2}=0 \rightarrow \frac{\omega T}{2}=\pi \rightarrow \omega=\frac{2 \pi}{T}\right)$. Its effect is to amplify the origind input spectrum while atteunating other replicas.

residual spurious frequency components

In order to improve the fidelity of the out put signal we need to kill all residuals at high frequency that are caused by the sampling.
Therefore an additional low-pass filter $H_{1}(\omega)$ should be placed after the switched capacitor filter to filter off these residual harmaics ("recoustructing filter").
This is not an issue since the weeded cut-off of the additional filter is very close to clock frequency ($\geqslant 1 \mathrm{MHz}$) hence it can Er easily implemented with a standard RC uetwork (remember that the switched capacitor implementation was required only for low frequency cut-aff; high frequency filters can be built with normal resistors in the cantinnans time domain and of course do not suffer from aliasing issues).

Another issue could be caused by input aliasing when the input spectrum is not just a narrow band but abs has same unwanted high frequency components, which due to sampling will be brought close to base-band.

In order to avid this problem a low-pass filter $H_{2}(\omega)$ should be placed before the switched capacitor filter to remove these high frequency harmonics from the input ("anti-aliasing filter").
Phis again is not an issue since the newly added cut-off reds to remove only high order harmonics hence it can be munch higher than the frequency range of interest and a standard RC implementation is feasible.

no spurious component in-band

In addition to these two analog filters, a third are is typically used at the end of the filtering chain whose purpose is to compensate the spectrum shape alteration due to the cardinal sine term ("equalizing filter").

Stray insensitive topologies
About capacitor structure, parasitic capacitances and their effects an switched capacitors.

Depending on the configuration, it is ruare convenient to place the capacitor in the circuit in ane way instead of the other:
so that bottom (ie. larger parasitic) is shorted between grounds

Note that now the charge tranger of the switched capacitor is directly dependent on $C_{p_{2}}$, which is in parallel with C_{1}.

$$
R_{e q}=\frac{T}{C_{1}+C_{p 2}}
$$

Req now suffers from the high variability of $C_{p_{2}}$.

How can we aroid this issue?
\longrightarrow Stray insensitive configuration

This is one of many topologies that allow to remove the contribution of both parasitic capacitouces

Phase l :

During sampling, $C_{P_{2}}$ is always shorted aud doesult gather charge se it wou't contribute to the output. $C_{p 1}$ instead gets charged up just like C_{1}.

Phase 2: Averting integrator

During transfer, $C_{p 1}$ is now shorted to grand so it dis. charges without affecting the output.

Just by inverting the phase of the switches are can obtain a new stray insensitive configuration

Sampling and transfer now occur together. $C_{p 2}$ is always between grounds, while $C_{p e}$ is charged up but does not interact with the circuit.

Phase 2:

During this "discharge phase" both C_{1} and $C_{p u}$ lose the accumulated voltage of the previous half period.

Downside of stray insensitive topologies: mare switches are required

Clock feed through
About switches structure, their ran-idealities and how they affect switched capacitors.

Phase 2:

RC time constant or slew rate limited

The transient due to switch or amplifier uou-idealities should be inch lower thou the dock period (like in the order of navoseceuds) to have a good sample of the input (ie. a "rice staircase" at the output).
To reduce the $R_{0 n}=1 / \mathrm{gm}$ we need to increase the form factor $\frac{W}{L}$ or the overdrive of the transistor.
However, increasing w will result in larger stray capacitauces of the switching transistor, which play a relevant rae during transitions.

For instance, during the phase $1 \rightarrow 2$ transition, at the transition edge current is injected both in C_{1} and, mure importantly, in C causing an inunediate change in the output voltage. Then, when the transition is over and the transistor turns an, the charge that was injected in C_{1} flows through virtual ground to the output, effectively altering the previously sampled value of $v_{i n}$.
\longrightarrow The entire oxide capacitance of the trousistor (both source and drain) contributes to the erred at the output.

What about the falling edge, that is, phase $2 \rightarrow 1$ transition?

Similarly to before, charge is taken frau both C_{1} and C during the transition. However, while charge taken from C means a bump up (since it's an inverting stage) of the output, charge taker frau Cl cannot affect the output since the switch will then open (transistor turning off).
So during the trailing edge it is taking out souse residual charge frau C that is just a portion of the charge injected during the leading edge.
Overall, aver a clock period, there will always be save additional charge deposited du C that wan't cave frau the rupert but frame the trausistar's gate.
Since this phenourenou occurs at each clock cycle, it resembles the bias current of a continuous time filter: the charge deposited at each cycle basically corresponds to au equivalent current flowing through the feedback capacitor:

$$
\bar{I}=\frac{Q(1-\gamma)}{T} \sim I_{B \mid A S}
$$

output droop caused by the clock feed through

