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1 x I segnali
Signals represent the behavior of physical magnitudes as a function of one or more
independent variables.

Signals can be continuous x(t) or discrete xn, real or complex, deterministic or
casual.

If the signal repeats itself in a time interval proportional to a period T0, it is called
periodic. f0 = 1/T0 is the fundamental frequency. If y(t) is a periodic signal of period
T0 and x(t) is the expression for a single period, we can write that

y(t) =
1X

n=�1
x(t� nT0)

1.1 Energy and Power

The definitions will be given for continuous and discreet signals respectively.

Energy:

E =

Z 1

�1
|x(t)|2dt E =

1X

n=�1
|xn|2

Average power:

P = lim
T!1

1

T

Z T/2

�T/2

|x(t)|2dt P = lim
N!1

1

2N + 1

NX

n=�N

|xn|2

Average power on the interval T:

PT =
1

T

Z T/2

�T/2

|x(t)|2dt P =
1

2N + 1

NX

n=�N

|xn|2

Average power of a periodic signal:

P =
1

To

Z To/2

�To/2

|x(t)|2dt P =
1

No

No�1X

n=0

|xn|2

The rectangle

x(t) = rect(t) =

(
1 |t| < 1

2

0 |t| � 1
2

See that rect(t) = ✓(t+1/2)� ✓(t� 1/2). Multiplying a signal x(t) and the rectangle,
we make some kind of filter.

1



B. Berasategi Chapter 1. I segnali

1.2 Elementary operations on the signals

Delay: the signal x(t� ⌧) is delayed by ⌧ with respect to x(t). It is translated rigidly
to the right.

Advance: the signal x(t + ⌧) is advanced by ⌧ with respect to x(t). It is translated
rigidly to the left.

Scaling: the signal x(at) is scaled by a with respect to x(t), and it is dilated or
compressed depending on |a| < 1 or |a| > 1.

The step (scalino)

x(t) = u(t) = ✓(t) =

8
>><

>>:

1 t > 0
1
2 t = 0

0 t < 0

un =

8
<

:
1 n � 0

0 n < 0

1.3 The impulse

Dirac’s delta can be defined this way:

�(t) = lim
T!0

1

T
rect

✓
1

T

◆
= lim

T!0

1

T


u

✓
t+

T

2

◆
� u

✓
t� T

2

◆�

It has an infinitesimal width, infinite height and unitary area. It is the derivative of
the step function.

A =

Z 1

�1
�(t)dt = 1 �(t) =

du(t)

dt
u(t) =

Z t

�1
�(t)dt

1.3.1 Properties

x(t) · �(t) = x(0) · �(t)
x(t) · �(t� ⌧) = x(⌧) · �(t� ⌧)
Z 1

�1
x(t)�(t� ⌧)dt = x(⌧)

x(t) =

Z 1

�1
x(⌧)�(t� ⌧)d⌧

�(at) =
1

|a|�(t), �(�t) = �(t)

2



B. Berasategi Chapter 1. I segnali

1.3.2 The discrete impulse

�n = un � un�1 =

(
1 n = 0

0 n 6= 0

We can write the step function in this way1

un =
nX

m=�1
�m =

1X

k=0

�n�k

Some properties:
xn · �n = x0 · �n xn · �n�m = xm · �n�m

1X

n=�1
xn · �n�m = xm

1.4 Complex exponential

x(t) = exp{j(2⇡f0t+ ')}
xn = x(nT ) = exp{j(2⇡f0nT + ')}

�0 = f0T is called the normalized frequency. In the discrete case, the vector rotates
on the complex plane in 2⇡�0 steps every T s. When the angular step is > ⇡ or < ⇡,
a frequency alias exists, when � < �1/2 or � > 1/2. Consequently, f = �/T is
limited to the interval between � 1

2T and 1
2T . The frequency 1

2T is called Nyquist’s

frequency. 1/T is the sampling frequency.

1
k = n�m.

3
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2 x Sistemi Lineari Tempo Invarianti
Linear: when the output generated from the linear combination of two or more inputs
is equal to the linear combination of the outputs of each of those inputs.

O[x1(t) + x2(t)] = O[x1(t)] +O[x2(t)]

Time Invariant: when the output generated by a retarded signal is equal to the
retarded output generated by the original signal.

O[x(t)] = y(t) �! O[x(t� t0)] = y(t� t0)

We define the response to the impulse h(t) as the output of the system when the
input is an impulse.

h(t) = O[�(t)]

If the system is time-invariant, the form of the output is independent of the time on
which the impulse has been applied.

h(t� ⌧) = O[�(t� ⌧)]

If the system is also linear:

O[a�(t) + b�(t� ⌧1) + c�(t� ⌧2)] = ah(t) + bh(t� ⌧1) + ch(t� ⌧2)

Any signal x(t) can be represented as an integral sum of impulses:

Z 1

�1
x(⌧)�(t� ⌧)d⌧ = x(t)

2.1 Convolutions

According to what he have discussed:

y(t) = O[x(t)] = O

Z 1

�1
x(⌧)�(t� ⌧)d⌧

�
=

Z 1

�1
x(⌧)O[�(t� ⌧)]d⌧ =

=

Z 1

�1
x(⌧)h(t� ⌧)d⌧ =

Z 1

�1
h(⌧)x(t� ⌧)d⌧ = x(t) ⇤ h(t)

The integral of convolution is defined as

x(t) ⇤ h(t) =
Z 1

�1
x(⌧)h(t� ⌧)d⌧ =

Z 1

�1
h(⌧)x(t� ⌧)d⌧

5
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2.1.1 Properties of convolutions

x(t) ⇤ h(t) = h(t) ⇤ x(t)
y(t� t0) = x(t) ⇤ h(t� t0) = x(t� t0) ⇤ h(t)

g(t) ⇤ �(t) =
Z 1

�1
g(⌧)�(t� ⌧)d⌧ = g(t)

g(t) ⇤ �(t� t0) = g(t� t0)

2.1.2 Causality of the LTI systems

A LTI system is said to be causal if the output y(t) for a instant t = t̄ depends of the
input x(t) only for values t  t̄. When the independent variable is time, a physical
system must be causal. The condition that must be fulfilled to respect causality is:

h(t) = 0 for t < 0

2.1.3 Effects of convolutions

Low-pass filter: the fast-varying components of the signal are eliminated through
the convolution if h(t) is slow-varying.

High-pass filter: the low-varying components of the signal are eliminated if h(t) is
fast-varying.

2.2 LTI discrete systems

In a discrete system, yn = O[xn]. The response to the impulse is: hn = O[�n].

Any discrete signal can be written as a sum or impulses

xn =
1X

k=�1

xk�n�k

Therefore, as in the continuous case:

yn = O[xn] = O

" 1X

k=�1

xk�n�k

#
=

1X

k=�1

xkO[�n�k] =
1X

k=�1

xkhn�k = xn ⇤ hn

The sum of convolution:

1X

k=�1

xkhn�k = xn ⇤ hn

6
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Properties:

xn ⇤ yn = yn ⇤ xn Commutative
xn ⇤ [yn ⇤ zn] = [xn ⇤ yn] ⇤ zn Associative
xn ⇤ [yn ⇤ zn] = xn ⇤ yn + xn ⇤ zn Distributive

xn ⇤ �n�m = xn�m

7
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3 x Descrizione dei segnali e dei sistemi
nelle frequenze

Both the time domain representation and the frequency domain have the same infor-
mation. However, sometimes working in the frequency domain is much more simple.
The Fourier Analysis allows us to study any signal as a combination of sinusoidals
or complex exponentials.

3.1 Spectral characterization of signals

Indeed, any periodic signal s(t) of period T can be decomposed in a discrete number
of sinusoidals whose frequencies are multiples of f = 1/T . Those components are
called harmonics. The representation of s(t) in the domain of the frequencies of its
harmonics constitutes the signal’s spectrum S(f).

3.1.1 Representation of periodic signals

The periodic signal y(t) of period T0 can be expressed as a Fourier series

y(t) =
1X

k=�1

Yke
j2⇡kf0t

where f0 = 1/T0 and

Yk =
1

T0

Z T0/2

�T0/2

y(t)e�j2⇡kf0tdt

If y(t) is real, its Fourier series expansion has hermitian symmetry
1

Yk = Y ⇤
�k

As a consequence of this, the Fourier series of a real periodic signal can be written as
a sum of sines and cosines.

y(t) = Y0 + 2
1X

k=1

Re{Yk} cos(2⇡kf0t)� Im{Yk} sin(2⇡kf0t)

y(t) = Y0 + 2
1X

k=1

|Yk| cos(2⇡kf0t+ ✓k)

1
Complex conjugate symmetry.

9
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3.1.2 Examples

Example 1: half-null square wave.

y(t) =

(
0, 0  t  T0/2

1, T0/2 < t  T0

For this, Y0 = 1/2 and

Yk =
1

T0

Z T0/4

�T0/4

e�j2⇡kf0tdt =
1

T0

Z T0/4

�T0/4

cos(2⇡kf0t)dt =
sin
�
⇡ k

2

�

⇡k

We have only odd components, as sin
�
⇡ k

2

�
= 0 for k = 2q, q 2 Z.

Example 2: constant.

For a signal y(t) = 1, we have that

Yk =

(
1, k = 0

0, k 6= 0

Example 3: complex exponential

For y(t) = ej2⇡f0t we have that Y0 = 0 and

Yk =

(
1, k = 1

0, k 6= 1

The Fourier analysis can be extended for all signals that change on time, periodic or
not. The signal s(t) can be represented on the frequency domain of its components,
which constitute the spectrum of the signal S(f).

A signal with a wide band varies fast on time, whereas a signal with a tight band

varies slowly.

3.2 Frequency response of LTI systems

If the input signal of a LTI system is a complex exponential, the output will be a
complex exponential with the same frequency, but different amplitude and phase.
The frequency response H(f) is a function of f that describes how the amplitude
and phase of a complex exponential is modified when it goes through a LTI system.

If x(t) = ej2⇡f0t, we have that

y(t) = x(t) ⇤ h(t) =
Z 1

�1
x(t� ⌧)h(⌧)d⌧ = ej2⇡f0t

Z 1

�1
h(⌧)e�j2⇡f0⌧d⌧

= x(t)

Z 1

�1
h(⌧)e�j2⇡f0⌧d⌧ = ej2⇡f0tH(f0), H(f0) 2 C

10
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The frequency response can be obtained experimentally using k complex exponentials
of frequency fk.

H(f) is a complex function of frequency which only depends on the system’s response
to the impulse h(t).

H(f) =

Z 1

�1
h(t)e�j2⇡ftdt

It introduces the concept of bandwidth (banda passante) of a LTI system. The
module of H(f) will have higher values in a frequency interval called bandwidth,
and relatively smaller ones for the other frequencies. The complex exponentials with
frequencies belonging to the BW will have the highest amplitudes in the output.

3.2.1 Fourier Transform

The operator that allows us to get H(f) from h(t) is called Fourier Transform (F):

X(f) =

Z 1

�1
x(t)e�j2⇡ftdt

The inverse way can be done using the Inverse Fourier Transform (F�1):

x(t) =

Z 1

�1
X(f)ej2⇡ftdf

It means that any signal x(t) can be expressed as the sum (integral) of complex
exponentials whose amplitudes and initial phases as a function of frequency are given
by the Fourier Transform X(f):

Amplitude: |X(f)| df Initial phase: \X(f)

Some considerations:

– x(t) has an uniquely defined X(f), and vice versa.

– For any value of f , Y (f) = H(f)X(f).

3.2.2 Frequency response of an ideal low-pass filter

A system is called low-pass filter when the frequency response H(f) has nonzero
amplitude only in a symmetric band with respect to the origin.

An ideal low-pass filter with cutoff frequency fc has as frequency response a rectangle
of unitary amplitude and base 2fc: H(f) = rect(f/2fc).

11
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3.2.3 Frequency response of an ideal high-pass filter

A system is said to be a high-pass filter when its response in frequency H(f) has
nonzero amplitude only for f > fc and f < �fc.

An ideal high-pass filter with cutoff frequency fc has as H(f) = 1� rect(f/2fc).

3.2.4 Frequency response of an ideal band-pass filter

When H(f) has nonzero amplitude only in two bands symmetrically positioned with
respect to the origin and centered in �f0 and f0, the system is called band-pass

filter.

If it is ideal, with central frequency f0 and bandwidth 2fc, its frequency response
is two unitary-amplitude rectangles with base 2fc, centered in �f0 and f0.

(a) Low-pass.

(b) High-pass.

(c) Band-pass.

Figure 3.1: Frequency responses of ideal filters.

12
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3.2.5 Discrete systems

If the input of a LTI system is a discrete complex exponential, the output will be a
discrete complex exponential with the same frequency, but modified amplitude and
phase.

Taking into account that yn =
P1

k=�1 xn�khk, if xn = ej2⇡fnT we have that

yn =
1X

k=�1

ej2⇡f(n�k)Thk = ej2⇡fnT
1X

�1
e�j2⇡fkThk

= xn

1X

�1
e�j2⇡fkThk = ej2⇡fnTH(f)

The operator that allows us to get H(f) from hn is called Fourier Transform, and
it is the following one:

X(f) =
1X

n=�1
xne

�j2⇡fnT

Note that the Fourier Transform of a discrete signal is periodic with period T .

X

✓
f +

k

T

◆
=

1X

�1
xne

�j2⇡(f+ k
T )nT =

1X

�1
xne

�j2⇡fnT e�j2⇡kn = X(f)

The operator to do the opposite way is called Inverse Fourier Transform, and it is
given by

xn = T

Z 1/2T

�1/2T

X(f)ej2⇡fnTdf

Note that we only use one period of X(f) to calculate the integral.

If we substitute the normalized frequency � = f ·T we obtain these expressions for
the preceding operations:

X(f) =
1X

n=�1
xne

�j2⇡�n

xn =

Z 1/2

�1/2

X(�)ej2⇡�nd�

The Fourier transform of a discrete signal in normalized frequency is periodic of unit

period.

13
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3.3 Properties of Fourier Transforms

1) Linearity.

F{ax(t) + by(t)} = aX(f) + bY (f)

2) Scaling.

F{x(at)} =
1

|a|X
✓
f

a

◆

Particularly, when a = �1:

F{x(�t)} = X(�f)

3) Symmetry. The TDF2 of a real signal has complex conjugate symmetry.

X⇤(f) = X(�f)

The real part and the module are even/symmetric, and the imaginary part and
the phase odd/anti-symmetric.

Re{X(f)} = Re{X(�f)} |X(f)| = |X(�f)|
Im{X(�f)} = �Im{X(f)} \X(�f) = �\X(f)

Particular cases:

– x(t) 2 R and even ) X(f) 2 R and even.
– x(t) 2 R and odd ) X(f) 2 I and odd.

If the signal x(t) is imaginary, there is also symmetry:

X⇤(f) = �X(�f)

4) Duality. Given the signal x(t) and its TDF X(f), the following is fulfilled:

x(t)
F�! X(f)

X(t)
F�! x(�f)

5) Value in the origin. The TDF in f = 0 is equal to the integral of the signal
over time. The value of the signal in t = 0 is equal to the integral of the TDF
over the frequencies.

X(0) =

Z 1

�1
x(t)dt x(0) =

Z 1

�1
X(f)df

6) Translation in time and frequency.

F{x(t� t0)} = e�j2⇡ft0X(f) F�1{X(f � f0)} = ej2⇡f0tx(t)
2Trasformata di Fourier.
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7) Convolution: Frequency multiplication.

F{x(t) ⇤ h(t)} = F
⇢Z 1

�1
x(⌧)h(t� ⌧)d⌧

�
= X(f)H(f)

It is an important property, as it allows to get the response y(t) = x(t) ⇤ h(t) of
a system working on the frequency domain: y(t) = F�1{X(f)H(f)}.

8) Modulation: Time multiplication.

F{x(t)y(t)} =

Z 1

�1
X(⇠)Y (f � ⇠)d⇠ = X(f) ⇤ Y (f)

When a signal x(t) is multiplied with another signal y(t), it is said that one
modulates the amplitude of the other. This allows to increase the frequency of
the transmitted signal.
Check quadrature amplitude modulation. It allows to transmit two signals,
modulating the amplitudes of two carrier waves, which are of the same frequency
but out of phase with each other by 90° (orthogonality/quadrature). Thanks to
that, at the receiver both waves can be coherently demodulated.

9) Time derivative.

F
⇢
dx(t)

dt

�
= j2⇡f X(f) () F{j2⇡t x(t)} = �dX(f)

df

Be careful with the constant values that might be lost during derivation. Related
with this, know that, related to the step function u(t),

U(f) =
1

j2⇡f
+

1

2
�(f) 6= 1

j2⇡f

If the calculus is done without too much attention, the wrong expression is
obtained. A good way to check results is that if the transform is symmetric, the
original function must be so.

10) Time integral.

F
⇢Z t

�1
x(⌧)d⌧

�
=

X(f)

j2⇡f
+

1

2
X(0)�(f)

This can be shown using what we have said about U(f) on the previous property.
The dual of this property is:

F
⇢
�x(t)

j2⇡t
+

1

2
x(0)�(t)

�
=

Z f

�1
X(⌘)d⌘

11) Parseval’s relation. The energy of a signal is equal to the integral of the
squared module of its TDF.

Z 1

�1
|x(t)|2dt =

Z 1

�1
|X(f)|2df
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So, we have two ways to compute the energy of a signal. |X(f)|2 is called
spectral energy density. This can be shown knowing that

Z 1

�1
x(t)y⇤(t)dt =

Z 1

�1
X(f)Y ⇤(f)df

which is eq. 3.14 from the book. It can be proved writing x(t) as the inverse
transform of X(f). Remember that F{x⇤(t)} = X⇤(�f).

Autocorrelation function

Using Parseval’s relation we can write that:
Z 1

�1
X(f)X⇤(f)ei2⇡f⌧ df =

Z 1

�1
x⇤(t)x(t+ ⌧) dt

We define the autocorrelation function of the signal x(t) as:

Rx(⌧) =

Z 1

�1
x⇤(t)x(t+ ⌧) dt

It measures how similar a signal translated by ⌧ is to itself. It is a particularly inter-
esting measurement for the analysis of non-deterministic signals. We see that:

Rx(⌧) = F�1{|X(f)|2} |X(f)|2 = F{Rx(⌧)}

It has the following properties:

1) The transform of autocorrelation is real, so it has hermitian symmetry:

Rx(⌧) = R⇤
x(�⌧)

2) It can be written as a convolution:

Rx(⌧) = x(⌧) ⇤ x⇤(�⌧)

3) Rx(0) � |Rx(⌧)|.
4) Rx(0) is real and equal to the energy E of the signal x(t) (see property 5).
5) If the signal x(t) is real, Rx(⌧) will be real and even symmetric.

Cross-correlation function

Using Parseval’s relation once more, we have that
Z 1

1
y(t+ ⌧)x⇤(t) dt =

Z 1

�1
X(f)⇤Y (f)ej2⇡f⌧ df
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The first operator is called the cross-correlation function between signals x(t) and y(t).
Normally we write it as

Rxy(⌧) =

Z 1

�1
y(t+ ⌧)x⇤(t) dt

It can be written as
Rxy(⌧) = F�1{X(f)⇤Y (f)}

So the transform of Rxy(⌧) is X⇤(f)Y (f), the cross-spectrum of signals x(t) and
y(t).

Properties:

1) Rxy(⌧) = y(⌧) ⇤ x⇤(�⌧).
2) Rxy(⌧) = R⇤

yx(�⌧).
3) If x(t) and y(t) are real, so is the cross-correlation, and Rxy(⌧) = Ryx(�⌧).
4) If y(t) = x(t� t0) we have that

Rxy(⌧) = Rx(⌧ � t0)

An important application of the cross-correlation function is the measurement of the
response to the impulse of a LTI system.

This in practice can not be directly done, as generating an impulse is not easy. If
y(t) = x(t) ⇤ h(t), we can write that

Rxy(⌧) = y(⌧) ⇤ x⇤(�⌧) = h(⌧) ⇤ x(⌧) ⇤ x⇤(�⌧) = h(t) ⇤Rx(⌧) = h(⌧) ⇤Rx(⌧)

We need to transmit a function x(t) with a almost impulsive autocorrelation3 Rx(⌧) '
�(⌧). This ensures that

Rxy(⌧) ' h(⌧)

The energy we would need using this trick is much more small than the one needed to
generate an impulse.

3.3.1 Band of a signal

The band B of a signal x(t) is given by the frequency interval (measured on the
positive semi-axis) on which X(f) has non-zero values. For the cases when X(f) 6= 0,
8f , the band corresponds to the frequency interval on which X(f) is significantly

different from 0.
3
An example with this characteristic is the “chirp”, defined as:

s(t) = exp(j⇡kt2)

Its frequency is a linear function of time: f = kt.
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(a) Low-pass X(f) signal
type, gathered around f =

0.

(b) Band-pass type X(f) signal, gath-

ered around f = ±f0.

Figure 3.2: Following the definition of band, we consider two classes of signals.

3.3.2 Some important Fourier Transforms

The impulse

F{�(t)} =

Z 1

�1
�(t)e�j2⇡ftdt =

Z 1

�1
�(t)e0dt =

Z 1

�1
�(t)dt = 1

Thanks to property 4, we know that

F{1} =

Z 1

�1
e�j2⇡ftdt = �(�f) = �(f)

The rectangle

x(t) = A · rect
✓

t

T

◆
() X(f) = AT

sin(⇡fT )

⇡fT

(a) x(t) (b) X(t)

The triangle

x(t) = A · tri2T (t) =
(

A+ A
T t, �T  t  0

A� A
T t, 0 < t  T

() X(f) = AT 2

✓
sin(⇡fT )

⇡fT

◆2
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(c) x(t) (d) X(t)

The cardinal sine

sinc(x) =
sin(⇡x)

⇡x

x(t) = A
sin(⇡/T t)

⇡/T t
() X(f) = AT · rect(fT )

(e) x(t) (f) X(t)

The complex exponential

X(f) = F{ej2⇡f0t} =

Z 1

�1
ej2⇡f0te�j2⇡ftdt =

Z 1

�1
e�j2⇡(f�f0)tdt = �(f � f0)

We can get the same conclusion applying the translation property:

F{1} = �(f) ) F{1 · ei2⇡f0t} = �(f � f0)

The cosine

F{cos(2⇡f0t)} = F
⇢
1

2
ej2⇡f0t +

1

2
e�j2⇡f0t

�
=

1

2
�(f � f0) +

1

2
�(f + f0)

The cosine is real and even, thus, its transform is also real and even.

The sine

F{sin(2⇡f0t)} = F
⇢
�j

2
ej2⇡f0t +

j

2
e�j2⇡f0t

�
= �j

2
�(f � f0) +

j

2
�(f + f0)

The sine is real and odd, so its transform is purely imaginary and odd.
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The Gaussian

The Gaussian is the only function whose TDF is the function itself, F{x(t)} = X(f) =

x(f):
x(t) = e�⇡t2 () X(f) = e�⇡f2

For the formula used in statistics, the normal distribution:

x(t) =
1p
2⇡�2

e�
t2

2�2 () X(f) = e�2⇡2�2f2

This formula is gotten using the scaling property.

(g) x(t) (h) X(t)

3.3.3 Impulse responses of ideal filters

We have seen the frequency responses of ideal filters in figures 3.1a, 3.1b and 3.1c.
With the tools we have just gotten, we can compute the response to impulses of these
systems.

Ideal low-pass

h(t) =
sin(2⇡fct)

⇡t

Ideal high-pass

h(t) = �(t)� sin(2⇡fct)

⇡t

Ideal band-pass

h(t) =
2 sin(2⇡fct)

⇡t
cos(2⇡f0t)

3.3.4 Properties of TDF of discrete signals

1) Linearity.
2) Symmetry. The TDF of a real signal has complex conjugate symmetry.
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3) Value in the origin.

X̃(0) =
1X

n=�1
xn x0 = T

Z 1/2T

�1/2T

X̃(f)df

4) Translations.

F{xn�m} = X̃(f)e�j2⇡fmT F{xne
+j2⇡f0nT} = X̃(f � f0)

The tilde expresses explicitly the periodicity of the TDF of a discrete signal. See
that if f0 = 1

T (T being the period of the TDF), the translation has no effect.
5) Convolution: frequency multiplication. The TDF of the convolution of two

discrete signals is equal to the product of the TDF of the two signals.

yn = xn ⇤ hn =
1X

k=�1

xn�khk �! Y (f) =
1X

�1
hkX̃(f)e�j2⇡fTk = X̃(f)H(f)

6) Modulation: Time multiplication. The TDF of the product of two discrete
signals is equal to the circular/periodic convolution of the two periodic TDFs
multiplied by T .

F{xnhn} = T

Z 1/2T

�1/2T

X̃(⇠)H(f � ⇠)d⇠ �! Y (f) = X̃(f)~H(f)

7) Parserval’s relation. The energy of a signal is equal to the integral of the
squared module of the TDF in one period, multiplied by T

1X

�1
|xn|2 = T

Z 1/2T

�1/2T

|X̃(f)|2df

In normalized frequency:
1X

�1
|xn|2 =

Z 1/2

�1/2

|X̃(�)|2d�

To arrive to this formulas, we need the relation
1X

n=�1
xnyn = T

Z 1/2T

�1/2T

X(�f)Y (f) df

Indeed, if zn = xnyn, the sum of the samples zn is equal to Z(0). Besides,

Z(f) = T

Z 1/2T

�1/2T

X(f � ⌘)Y (⌘)d⌘

For f = 0 we obtain the previous formula. Knowing that F{y⇤n} = Y ⇤(�f), we
have that

1X

n=�1
xnyn = T

Z 1/2T

�1/2T

X(f)Y ⇤(f) df
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Autocorrelation sequence and spectral energy density

From Parseval’s relation:

T

Z 1/2T

�1/2T

X(f)X⇤(f)ei2⇡fTk df =
1X

n=�1
x⇤
nxn+k = Rx[k]

We deduce that the transform of the correlation sequence Rx[k] is equal to |X(f)|2:

F{Rx[k]} = |X(f)|2

All the properties we saw for the continuous case are still valid.

Cross-correlation function

We can write that

T

Z 1/2T

�1/2T

X(f)Y ⇤(f)ei2⇡fTk df =
1X

n=�1
y⇤nxn+k = Rxy[k]

The second summation takes the name of cross-correlation sequence between xn and
yn. Its transform gives the cross-spectrum of the sequence:

F{Rxy[k]} = X(f)Y ⇤(f)

The properties are the same we had in the continuous case.
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Tempo Frequenza

x(t) X(f)

y(t) Y (f)

ax(t) + by(t) aX(f) + bY (f)

x(0)
R1
�1 X(f)df

R1
�1 x(t)dt X(0)

x(at) con a reale 1
|a|X(fa )

x(t� t0) X(f)e�j2⇡ft0

x(t)ej2⇡f0t X(f � f0)

x(t) ⇤ y(t) X(f)Y (f)

x(t)y(t) X(f) ⇤ Y (f)

dx(t)
dt j2⇡fX(f)

�j2⇡tx(t) dX(f)
df

R t

�1 x(⌧)d⌧ 1
j2⇡fX(f) + 1

2X(0)�(f)

x⇤(t) X⇤(�f)

R1
�1 |x(t)|2dt

R1
�1 |X(f)|2df

R1
�1 x⇤(t)x(t+ ⌧)dt = Rx(⌧) |X(f)|2

If x(t) is real

X(�f) = X⇤(f)

Re{X(f)} = Re{X(�f)}
Im{X(f)} = �Im{X(�f)}

|X(f)| = |X(�f)|
\X(f) = �\X(�f)
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Tempo Frequenza Frequenza normalizzata

xn = x(nT ) X(f) periodica 1
T X(�) periodica 1

yn = y(nT ) Y (f) periodica 1
T Y (�) periodica 1

axn + byn aX(f) + bY (f) aX(�) + bY (�)

x(0) T
R 1/(2T )

�1/(2T ) X(f)
R 1/2

�1/2 X(�)d�

P1
n=�1 xn X(0) X(0)

xn�n� X(f)e�j2⇡fTn� X(�)e�j2⇡�no

xnej2⇡f0Tn = xnej2⇡�0n X (f � f0) X (�� �0)

xn ⇤ yn X(f)Y (f) X(�)Y (�)

xnyn
R 1/2T

�1/2T X(#)Y (f � #)d#
R 1/2

�1/2 X(#)Y (�� #)d#

x⇤
n X⇤(�f) X⇤(��)

P1
n=�1 |xn|2 T

R 1/2T

�1/2T |X(f)|2df
R 1/2

�1/2 |X(�)|2d�
P1

n=�1 x⇤
nxn+k =

Rx[k]
|X(f)|2 |X(�)|2

If x(t) is real

X(�f) = X⇤(f)

Re{X(f)} = Re{X(�f)}
Im{X(f)} = �Im{X(�f)}

|X(f)| = |X(�f)|
\X(f) = �\X(�f)

X(��) = X⇤(�)

Re{X(�)} = Re{X(��)}
Im{X(�)} = �Im{X(��)}

|X(�)| = |X(��)|
\X(�) = �\X(��)
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List of useful continuous transforms

Tempo x(t) Frequenza X(f) = F{x(t)}

�(t) 1

1 �(f)

rect(t/T )
sin(⇡Tf)

⇡f

sin(⇡Bt)

⇡t
rect(f/B)

e�⇡t2 e�⇡f2

e�at · u(t) 1

a+ j2⇡f

1

a+ j2⇡t
eaf · u(�f)

t · e�at · u(t) 1

(a+ j2⇡f)2

ej2⇡f0t �(f � f0)

cos(2⇡f0t)
1
2�(f � f0) +

1
2�(f + f0)

sin(2⇡f0t)
�j
2 �(f � f0) +

j
2�(f + f0)

cos(2⇡f0t+ ✓) 1
2e

j✓�(f � f0) +
1
2e

�j✓�(f + f0)

✓
sin(⇡t)

⇡t

◆2

tri(f) = rect(f) ⇤ rect(f)

25



B. Berasategi Chapter 3. Descrizione dei segnali e dei sistemi nelle frequenze

List of useful discrete transforms

Remember that duality theorem does not exist. un�un�N is a rectangle between n = 0

and n = N�1. If N is odd, N�1 is even and k0 =
N�1
2 is integer: e�j⇡�(N�1) = e�j2⇡�k0

is an usual time translation. Instead, if N is even, we do not get a typical translation
for the transform of the rectangle. This has to do with the fact that we can only center
a rectangle in the origin if N is odd.

Tempo xn Frequenza X(�) = F{xn}

�n 1 (T = 1)

an · un
1

1�ae�j2⇡� (T = 1)

un � un�N e�j⇡�(N�1) · sin(⇡N�)
sin(⇡�) (T = 1)

1

P1
k=�1

1
T �
�
f � k

T

�
=P1

n=�1 1 · ej2⇡fnT

P1
k=�1

1
T �
�
�
T � k

T

�
=P1

k=�1
1
T T �(�� k) =P1

k=�1 �(�� k)

Simplest low-pass filter we can build for discrete signals:

hn =
1

2
�n +

1

2
�n�1

Simplest high-pass filter:
hn =

1

2
�n �

1

2
�n�1

This two examples are better analyzed in the notes you took on class.
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4 x Del tempo continuo a quello dis-
creto

4.1 Digitization of signals

In the current storage and transmission systems, the input signals are of numeric
type, normally represented in binary format. However, the majority of the signals
from reality are continuous both in time (sampling) and amplitude (quantization). To
represent there as numeric signals, it is necessary to discretize them both in time and
amplitude.

4.2 Sampling in time

The sampling step/period is represented by T , and fc = 1/T is called the sampling

frequency. If we sample the signal x(t), we obtain the sequence of samples x(nT ).

See that the same sequence is obtained for any of the following signals, remembering
that ej2⇡n = 1, 8n:

xk(t) = x(t)ej2⇡kfct =) xk(nT ) = x(nT )ej2⇡kfcnT = x(nT )

In general, it is not possible to say which of the signals xk(t) (or their linear combina-
tions) have generated the samples x(nT ).

Consider the following example (T = 1, fc = 1):

(a) x(t) =
sin(0.5⇡t)

0.5⇡t
Two possible linear combinations are:

(b)
x1(t) + x�1(t)

2
= x(t) cos(2⇡t) (c)

x2(t) + x�2(t)

2
= x(t) cos(4⇡t)

The sequence of samples we would obtain is the same in the three cases:

(a)

(b) (c)
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Continuing with the same x(t), let’s see what happens when summing it with the
signals xk(t) = x(t)ej2⇡kt:

(d) x0(t)

(e)
P2

k=�2 xk(t) (f)
P8

k=�8 xk(t)

As the number elements in the sum K increases, the result of the sum gets closer
to K · c(nT ) for t = nT and tends to zero for the rest of the points. Each element
of the sum corresponds to a different replica of X(f) centered in the frequency kfc.
Therefore the sum of infinite replicas in frequency X(f) generates an impulsive signal
proportional to X

n

x(nT )�(t� nT )

Therefore the spectrum of a signal sampled using impulses with time-step T is peri-

odic with step fc = 1/T in frequency.

We define the sampled signal (segnale campionato) xc(t) as:

xc(t) =
1X

n=�1
x(nT )�(t� nT ) = x(t)

1X

n=�1
�(t� nT )

This operation is called ideal sampling, and xc(t) a signal sampled ideally. xc(t) is still
a continuous signal in time, and our goal will be to show that is possible to reconstruct
x(t) when T is sufficiently small.

Using the modulation property of Fourier Transform, we see that:

Xc(f) = X(f) ⇤
1X

n=�1
e�j2⇡nTf = X(f) ⇤ 1

T

1X

k=�1

�

✓
f � k

T

◆

The last step has been done using the formula (3.41) from the book. Finally, we get
that:

Xc(f) =
1

T

1X

k=�1

X

✓
f � k

T

◆
=

1X

n=�1
x(nT )e�j2⇡fnT

Showing that Xc(f) is periodic with period 1/T . Xc(f) = X̃(f) = F{xn}.
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4.3 Sampling theorem

If the band B of X(f) is limited between f = �fs
2 = � 1

2T and f = fs
2 = 1

2T , this is, if
fs =

1
T > B or T < 1

2fmax
:

– The replicas of X(f) do not overlap (there is no frequency ambiguity/alias).
– The Fourier Transform of the signal x(t) can be obtained from the sampled signal,

multiplying Xc(f) with a rectangular function H(f) of amplitude T between
f = � 1

2T and f = 1
2T .

The condition can be also formulated as:

fmax <
1

2T
=

fs
2

= fNy

where fNy is called Nyquist frequency.

Teorema del campionamento: un segnale reale tempo-continuo x(t) può essere

ricostruito esattamente dai suoi campioni xc(t) se la frequenza di campionamento fs
è maggiore del doppio della frequenza massima di x(t).

Multiplying in frequency with a rectangle of base fc and amplitude T is equivalent to
convolving in time with a cardinal sine that has unitary amplitude in t = 0 and null
in t = nT . HR(f) is a low-pass filter called reconstruction filter:

HR(f) =
1

fs
rect(

f

fs
) = T rect(fT )

x(t) = xc(t) ⇤
sin
�
⇡ t

T

�

⇡ t
T

In reality, a perfect cardinal sine (infinite duration) can not be produced, and the used
reconstruction filters have softer transitions. It is enough to add cardinal sines centered
in t = nT , with Amax = x(nT ) and zeroes in t = mT for all m 6= n. Consequently, it
is not safe to try to reconstruct the signal x(t) with the minimum fs that the theorem
gives: in practice, the sampling frequency we used is around 10% bigger than the one
given by the sampling theorem1.

1
In CDs, fs = 44.1kHz for fmax = 20kHz, even if the theorem requires fs < 40kHz.
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Figure 4.1: The Fourier Transform of a signal constituted of a sequence of samples
x(nT ) is defined in the same way of the transform of the signal

P
n x(nT )�(t � nT ).

Therefore, the Fourier transform of the sequence x(nT ) is equal (multiplied by fc) to
the transform of the time-continuous signal x(t) replicated in frequency infinite times,
with step fc.

Figure 4.2: To obtain the Fourier transform of the time-continuous signal from the
transform of the signal formed by samples, it is necessary to delete all the spectral
replicas and leave only the one for k = 0. This can be done multiplying the transform
of x(nT ) by a rectangle of amplitude T and duration between f = ±fc

2 ; alternatively,
compute the convolution of its response with a cardinal sine-like signal. If the Nyquist
frequency fc/2 is bigger than the maximum frequency of the signal, the low-pass filter
can have softer transitions.

4.4 Practical systems for reconstruction

In theory, to get x(t) from the numeric sequence xn it is needed to first create a
sequence of impulses xc(t) =

P1
n=�1 xn�(t � nT ) and to use a low-pass filter on it.

As we have already said, in practice we can not create ideal impulses, so other kinds
of signals will be needed.
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4.4.1 Reconstruction with maintenance

An alternative to the impulse �(t) is a rectangle rect(t/T ). The sequence xn becomes
a sequence of rectangular impulses:

xh(t) =
1X

n=�1
xn rect

✓
t� nT

T

◆

This technique is said to be with maintenance (sample and hold) as the amplitude of
the sample xn is maintained. It can be shown (page 98 in the book) that

xh(t) = xc(t) ⇤ rect
✓

t

T

◆

The Fourier transform will therefore be:

Xh(f) = Xc(f)
sin(⇡fT )

⇡f
= Xc(f)

sin
⇣
⇡ f

fs

⌘

⇡f

This function shows the same replicas as Xc(f), but modulated with a cardinal sine
whose value is T in f = 0 and is null for f = k/T = kfs. The reconstruction filter
must be designed in a way that eliminates the replicas, but also cancels the effect of
the cardinal sign. The response of the filter takes the form:

HR(f) =
⇡f

sin
⇣
⇡ f

fs

⌘rect
✓
f

fs

◆

4.4.2 Reconstruction with oversampling

Examining the previous formula for HR(f) we see that for f ⌧ fs the effect of the
modulation introduced by the cardinal sine is negligible. If the band of the signal is
B ⌧ fs/2, the response of the reconstruction filter must be practically constant in the
band B, and must go to zero in fs � B, where the first replica starts.

Sampling the signal x(t) of band B with a sampling frequency fs � 2B generates a
increase of the amount of samples, but consequently, of the cost of memorization and
transmission.

In practice, the lowest possible frequency is used for sampling, and the highest for the
reconstruction phase, interpolating numerically the samples xn before reconstructing
x(t). To understand the process, remember that the reconstructed signal xR(t) is
obtained as:

xR(t) = xc(t) ⇤
sin
�
⇡ t

T

�

⇡ t
T
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Using the expressions we have previously obtained, the signal reconstructed ideally:

xR(t) =

" 1X

n=�1
x(nT )�(t� nT )

#
⇤
sin
�
⇡ t

T

�

⇡ t
T

=
1X

n=�1
xn ·

sin
�
⇡ t�nT

T

�

⇡
�
t�nT
T

�

This allows us to write, for example, the formula for x(mT
8 ) as a function of the known

samples xn. Substituting t = mT
8 in the previous formula:

x

✓
m
T

8

◆
=

1X

n=�1
xn ·

sin
⇣
⇡mT/8�nT

T

⌘

⇡
⇣

mT/8�nT
T

⌘ =
1X

n=�1
xn ·

sin
�
⇡(m8 � n)

�

⇡(m8 � n)

This operation is called 8:1 oversampling of the sequence xn, and it can be generalized
to any M :1 this way:

x

✓
m

T

M

◆
=

1X

n=�1
xn ·

sin
�
⇡(m

M � n)
�

⇡(m
M � n)
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5 x The Discrete Fourier Transform
Note: we will use X̃(f) to indicate the Fourier transform of xn, which can not be
confused with X(f), the Fourier transform of the time continuous signal x(t).

5.1 Sampling in time and frequency

In the examples from previous chapters we have seen that a time continuous signal
of finite duration has a Fourier transform with infinite bandwidth. However, usually
almost all the spectral energy density confined to a limited bandwidth. Dually, signals
with limited band have always infinite duration, but the majority of their energy is
usually limited to a finite interval. So, in practice, we can admit the existence of
signals with finite duration and band, at least as a first approximation.

Consider the signal x(t) of limited duration T0 (0  t < T0), whose Fourier transform
X(f) has limited band B (�B < f < B). If we sample x(t) with a sampling interval of
T < 1

2B , the sequence xn = x(nT ) is obtained. Its Fourier transform has the following
formula:

X̃(f) =
1X

n=�1
xne

�j2⇡fnT =
1

T

1X

m=�1
X
⇣
f � m

T

⌘

As a consequence of the limited duration T0 of the signal x(t), the sequence xn will
have only N = T0

T non-zero samples (from n = 0 to n = N � 1). So its Fourier
transform can be written as:

X̃(f) =
N�1X

n=0

xne
�j2⇡fnT

If we now sample in frequency X̃(f) with a sampling interval1 1
T0

= 1
NT , we obtain a

sequence in frequency related to xn by the following relation:

X̃k = X̃(f)
���
f= k

NT

=
N�1X

n=0

xne
�j2⇡ kn

N

The sequence X̃k is periodic every N samples (given that X̃(f) is periodic of period
1
T ), and therefore it is completely defined by a sequence Xk of N samples included, for
example, between k = 0 and k = N � 1:

Discrete Fourier Transform (DFT)

Xk =
N�1X

n=0

xne
�j2⇡ kn

N computed for 0  k  N � 1

11/T0 is the longest sampling interval (in frequency) that allows to avoid temporal alias.
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It can be shown (book, page 106) that there exists a analogous expression to the DFT
that allows to find the N samples of xn using the N samples of Xk. This relation is
called Inverse Discrete Fourier Transform, and has the following formula:

Inverse Discrete Fourier Transform (DFT)

xn =
1

N

N�1X

k=0

Xke
j2⇡ kn

N computed for 0  n  N � 1

This can be extended to values of n that go from �1 to 1, and this way a periodic
signal x̃n of period N is obtained, whose base is the signal xn:

x̃n =
1X

p=�1
xn�pN

5.2 Utility of the DFT

Using the DFT, we have seen that a sequence xn with a finite number of samples in
the time domain is associated to a sequence Xk with the same number of samples in
the domain of the frequency. The practical significance of this fact is huge, as it allows
to elaborate numeric signals both in time and frequency domains.

In fact, the sequence Xk (DFT of the sequence xn), contains all the information
2

of X(f) (Fourier transform of the same sequence xn, continuous in frequency).

It is important to remark that both Xk and xn represent a period of N samples
(conventionally between 0 and N � 1) of periodic sequences.

5.3 Format of the DFT

It is immediate to obtain the existing relation between the sequence Xk, DFT of the
sequence xn, and X(f) and X(�), transform and normalized transform of the same
frequency xn:

Xk =
N�1X

n=0

xne
�j2⇡ nk

N = X(f)|f= k
NT

= X(�)|�= k
N

One consequence of this choice is that with even N , the maximum normalized fre-
quency � = 1/2 (Nyquist frequency) is obtained with the sample k = N/2 of the

2
Remember that X(f) has been sampled fulfilling the sampling theorem, and consequently, it is

completely rebuildable starting from the samples.
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DFT. Please note that normally the continuous transform of a sequence is represented
between � = �1/2 and � = 1/2, while with the DFT format the period is represented
with samples that go form � = 0 to � = 1� 1/N . When N is odd, Nyquist frequency
does not correspond to a sample of Xk.

5.4 Circular representation

We have already said that xn has to be seen as a period of the periodic sequence x̃n and
Xk as a period of the periodic sequence X̃k. Because of this, it is useful to represent
the sequences xn and Xk with their samples forming a circumference, so that after the
last sample (n = N � 1) we find again the first (n = 0).

This idea allows us to work when the samples do not go from n = 0 to n = N � 1,
reordering them. This operation is called circular delay. This can be done in MatLab
using the functions FFT and SHIFT.

LLL 0 1 2 3 4 5 6 7 8 9 10 n 

n = 6 n= 5 
n= 4 

n = 3 n=7 

n = 8 

n= 2 
n=9 

n= 1 
n= 10 

n = 0 

Figure 5.1: Circular representation.

5.5 Some examples

1) xn = 1

Xk =
N�1X

n=0

1 · e�j2⇡ nk
N = N�k

2) xn = ej2⇡
k0
N n

Xk =
N�1X

n=0

ej2⇡
k0
N n · e�j2⇡ nk

N =
N�1X

n=0

e�j2⇡ n
N (k�k0) = N�k�k0
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3) cos(2⇡ k0
N n) = 1

2e
j2⇡

k0
N n � 1

2e
�j2⇡

k0
N n

Xk =
N

2
�k�k0 +

N

2
�k+k0

The sub-index k + k0 is not appropriate for a computer, it can not check negative
frequencies. Using the circular shift, k + k0 = k � (�k0) = k � (N � k0)

Xk =
N

2
�k�k0 +

N

2
�k�(N�k0)

5.6 Properties of the DFT

5.6.1 Linearity

DFT{axn + byn} = aXk + bYk

5.6.2 Symmetry

Same that in the Fourier transform’s case, also the DFT X̃k of a real signal xn has
complex conjugate symmetry :

X̃�k = X̃⇤
k

For the DFT Xk defined in 0  k  N � 1, we have that

XN�k = X⇤
k =)

8
>><

>>:

Re{XN�k} = Re{Xk}

Im{XN�k} = �Im{Xk}

with 1  k  N
2 � 1 for even N , and 1  k  N�1

2 for odd N .

5.6.3 Initial values

Using the formulas of DFT and IDFT, it is immediate to show that

X0 =
N�1X

n=0

xn x0 =
1

N

N�1X

k=0

Xk

5.6.4 Circular translation

The change of variables ⌫ = n� n0 can be used to see that:

DFT(xn�n0) =
N�1X

n=0

xn�n0e
�j2⇡ nk

N =
N�1X

n=0

xne
�j2⇡

(n+n0)k
N = Xk e

�j2⇡
n0
N k

If n0 = N , we get xn�N = xn.
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Analogously, it can be shown that:

IDFT(Xk�k0) = xn e
j2⇡

k0
N n

For k0 = N/2, we have ej2⇡n = (�1)n.

5.6.5 Circular convolution

Let xn and yn be two sequences with N samples with DFT Xk and Yk. The page 111
of the book shows that:

DFT(xn ~ yn) = Xk · Yk

Where the circular convolution xn ~ yn is given by:

xn ~ yn =
N�1X

m=0

xmỹn�m

If zn = xn ⇤ yn is the linear convolution, the circular convolution can be written as:

z̃n = xn ~ yn =
1X

k=�1

zn�kN

As we have seen in class, if we have two sequences of N samples, and we add N � 1

zeroes, the circular convolution of these will be equivalent to the linear convolution3

of the original sequences.

To calculate manually a circular convolution (length N), first compute the linear con-
volution (length 2N � 1) and then bring all the samples to the range between 0 and
N � 1. Divide by N and order the samples using the remainder.

5.6.6 Modulation

With the same xn and yn as before,

DFT(xn · yn) =
1

N
·Xk ~ Yk

Proof on page 111 of the book.

5.6.7 Parseval’s relation

It can be shown that:
N�1X

n=0

xn · y⇤n =
1

N

N�1X

k=0

Xk · Y ⇤
k

3
The linear convolution of two sequences of N samples is a sequence of length 2N � 1.

37



B. Berasategi Chapter 5. The Discrete Fourier Transform

For xn = yn, we obtain Parseval’s relation for sequences of limited duration:

En =
N�1X

n=0

|xn|2 =
1

N

N�1X

k=0

|Xk|2

The energy of the sequence xn can be obtained both in the time and frequency
domain. The power of the signal xn can be computed as:

Pn =
1

N
En =

1

N

N�1X

n=0

|xn|2 =
1

N2

N�1X

k=0

|Xk|2

For example, taking x̃n = A cos(2⇡n/100) of N = 100, its DFT is

Xk = 100
A

2
(�k�1 + �k�99)

The power will be

Pn =
1

1002
2

✓
100

A

2

◆2

=
A2

2

5.6.8 Circular autocorrelation of a sequence

Rx[m] = IDFT (|Xk|2) =
N�1X

n=0

xn+mx
⇤
n = xm ~ x⇤

�m

All the properties we saw in the previous chapters are still valid.

5.6.9 Circular cross-correlation of a sequence

Ryx[m] =
N�1X

n=0

yn+mx
⇤
n = ym ~ x⇤

�m

If yn = hn ~ xn, we have that Ryx[m] = hm ~Rx[m].

5.7 Applications of the DFT

5.7.1 Translation by a non-integer number of samples

This idea might not make much sense at first, but it is understandable when we
remember that we get the sequence xn sampling a continuous signal x(t). Consider
that we want to find the following sequence

yn = x(t� ⌧)|t=nT = x(t)|t=nT�⌧
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given
xn = x(t)|t=nT

The relation of their Fourier transform is the following:

Y (f) = X(f)e�j2⇡f⌧ � 1

2T
< f <

1

2T

Or, using normalized frequency:

Y (�) = X(�)e�j2⇡�⌧/T � 1

2
< � <

1

2
(5.1)

The relation between the DFTs Xk and Yk can be found putting � = k
N in the formula

(5.1). However, we have to be careful, as the exponential from that formula is not
periodic of period � = 1 as in the case of the translation by a integer number of
samples (integer ⌧/T ).

Equation (5.1) is in fact valid only in the interval �1
2 < �  1

2 , and then it repeats
with step � = 1. So, we have to make the following distinction:

Yk =

8
>><

>>:

Xke�j2⇡ k
N

⌧
T for 0  k  N

2

Xke
�j2⇡( k

N �1) ⌧
T for N

2 + 1  k  N � 1

yn can be then found as IDFT (Yk).

5.7.2 Linear convolution

We have already talked about the relation between linear and circular convolutions.
More information about this can be found on page 117 of the book.

5.7.3 Interpolation in frequency with zero-padding in time

We have seen that
Xk = X(f)|f= k

NT

The frequencies f = k
NT corresponding to the samples Xk get closer from each other as

the duration T0 = TN of the sequence increases. The sampling interval in frequency
is in fact:

�f =
1

T0
=

1

NT

Once the temporal sampling interval has been fixed, the duration of the sequence
can be increased adding P null samples to the right/left of the original sequence xn

(operation called zero-padding in time).

39



B. Berasategi Chapter 5. The Discrete Fourier Transform

For example, if we want to reduce to half the sampling interval in f (interpolation by a

factor of 2 ), it is enough to add N null samples to the sequence xn, in order to double
its duration. This way,

�f2 =
1

2NT
=

1

2T0
=

�f

2

5.7.4 Interpolation in time with zero-padding in frequency

It is the dual operation of the previous one. If the samples xn correspond to the time
instants t = nT0

N , the (bilateral) bandwidth of the DFT Xk is:

B =
1

�t
=

N

T0

Once we fix the frequency sampling interval 1
T0

, B can be increased adding P null
samples to the sequence Xk (zero-padding in frequency).

For example, to reduce to half a sampling interval in t, it is enough to add N null
samples to Xk in order to double the bandwidth B that the DFT occupies.

�t2 =
T0

2N
=

1

2B
=

�t

2
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Sequenza DFT

xn Xk

yn Yk

axn + byn aXk + bXk

circular xn�m Xke�j2⇡ km
N

e�k2⇡ nm
N xn circular Xk+m

PN�1
m=0 xmyn�m circular XkYk

xnyn circular 1
N

PN�1
m=0 XmYk�m

x⇤
n circular X⇤

�k

circular x⇤
�n X⇤

k
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6 x Richiami di probabilità
We use probability to describe phenomenons which can be thought of as experiments,
whose results vary among different N trials.

If we make N trials, and that N is high enough, the relative frequency of the
results/events is close to their probability:

fk =
Nk

N
⇡ P (k)

The histogram of the results is a graph that plots the relative frequencies of each
event.

6.1 Properties of probability

– The probability is a number between 0 and 1.

0  P (A)  1

– The set S of all the possible results is a sure result:

P (S) = 1

– Probability of the union (or) of two events:

P (A+B) = P (A) + P (B)� P (AB)

– Probability of the intersection (and) of two events:

P (AB) = P (A|B) · P (B)

where P (A|B) is the conditioned probability of A given that B has occurred.

6.1.1 Bayes theorem

It is easy to show that

P (AB) = P (A|B) · P (B)

P (AB) = P (B|A) · P (A)

From those two, we get the expression of Bayes theorem:

P (A|B) = P (B|A) · P (A)

P (B)
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6.2 Discrete and continuous variables

A random variable is a real number1 associated to the result of an experiment. If
the possible results are numerable, the variable is said to be discrete. However, if
the variable can take a continuous range of values (infinite results!) it is called a
continuous random variable.

The concept of relative frequency appears again when approximating a continuous
set of values with a finite number of small intervals (discretization). The random
variable becomes discrete, and we can approximate the probability as a limit of the
relative frequency for high N .

6.3 Histograms

Once we have turned a continuous random variable discrete, it is possible to plot its
histogram as a graph of the relative frequencies of the results of each intervals on
which the continuous set of the results have been divided.

Warning: the values of the continuous random variables (after making them discrete)
depend on the dimension of the chosen intervals: as they get tighter, the values of the
histogram become smaller.

6.4 Probability distribution

For a random variable x, the probability distribution Fx(a) indicates the probability
of getting an output equal or smaller than a:

Fx(a) = P (x  a)

1
If we refer to the possible outcomes of throwing a dice as a, b, c, d, e, f , we are not defining a

random variable.
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Properties:

1) It is monotonous and increasing.
2) Fx(�1) = 0.
3) Fx(1) = 1.

Example: traffic lights. Red: x = 0, yellow: x = 0.5, green x = 1.

P (x = 0) = 4/7 P (x = 0.5) = 1/7 P (x = 1) = 2/7

6.5 Probability density

Adapting the idea of the histograms for continuous random variables, the concept of
probability density function

2 (pdf) arises.

Small intervals must be used so that the probability distribution can be retained
constant within them. Divide the histogram value by the size of the interval (so that
the result is independent of the size of the interval). Use a very large number of trials
(the higher the smaller the interval) so that relative frequencies and probabilities nearly
coincide.

2
In Italian, densità di probabilità (ddp).
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The probability density px(a) of a continuous random variable can be defined as:

px(a) = lim
da!0

P (a < x  a+ da)

da
=

d

da
Fx(a)

Know that:
px(a) � 0

Z 1

�1
px(a) da = 1

Note: the probability density is also written as fX(x), which is not the frequency in
Hz. We will not use this notation.

fX(x) =
d

dx
FX(x)

Know that:

P [x1  X  x2] = P [X  x2]� P [X  x1]

= FX(x2)� FX(x1) =

Z x2

x1

fX(x) dx

Keep in mind that the relation between probability and area under the probability
density curve:

P (a1 < x  a2) =

Z a2

a1

p(a) da

Important:

P (�1 < x < 1) =

Z 1

�1
p(a) da = 1

Continuing with the previous example of the traffic lights, its probability distribution:

Example: uniform/continuous distribution

p(x) =

8
>>>>>><

>>>>>>:

0 x  a

1

b� a
a < x  b

0 x > b

F (x) =

8
>>>>>><

>>>>>>:

0 x  a

x� a

b� a
a < x  b

1 x > b
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(a) p(x) (b) F (x)

Figure 6.1: Uniform/continuous distribution

Check this results with the concepts that are explained in the following lines:

E[x] =
b+ a

2

E[x2] =
b3 � a3

3(b� a)

�2
x =

(b� a)2

12
=

�2

12

6.6 Expectation value

In italian, valor medio mx, or valore atteso E[x], or statistic moment of order one.
It is defined as:

µx = mx = E[x] =
NX

k=1

ak · p(ak)

For an experiment that is repeated an infinitely big amount of times (high N), mx can
be understood as the arithmetic mean of the results. Baricenter of the area under
the curve of the probability density.

For example, if we take a dice:

mx = E[x] =
6X

k=1

k · 1
6
= 3.5

The value of mx does not need to be one of the possible outcomes of the experiment.

For a continuous variable, the same concept can be defined:

µx = mx = E[x] =

Z 1

�1
a · p(a) da ⇡ 1

N

NX

i=1

xi

If N is high enough, mx can be taken as the arithmetic mean of the results. Other
possible notation:

mx = µx = E[X] =

Z 1

�1
xfX(x)dx
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6.6.1 Properties of the mean value

– The mean value of a function y = g(x) of a random variable x can be found
using:

E[g(x)] =

Z 1

�1
g(a) px(a) da

The result is analogous for a function of more than one random variables. Note
that for high N ,

E[y] ⇡ 1

N

NX

i=1

yi =
1

N

NX

i=1

f(xi)

Other possible notation: Y = g(X). If the pdf is fX(x),

E[Y ] =

Z 1

�1
yfY (y)dy �! E[g(X)] =

Z 1

�1
g(x)fx(x)dx

– The mean value of a linear combination of N random variables is the linear
combination of the mean values:

E

"
NX

n=1

bnxn

#
=

NX

n=1

E[bnxn] =
NX

n=1

bnE[xn]

6.7 Statistical momentums

The statistic moment of order n of a random variable x is:

E[Xn] =

Z 1

�1
xnfX(x)dx

The expectation value is the momentum of order 1. Central momentum of order

n:
E[(X � µX)

n] =

Z 1

�1
(x� µX)

nfX(x)dx

6.7.1 Quadratic mean value

Also called statistic power or statistical moment of order 2, the quadratic mean

value E[x2] can be interpreted as the arithmetic mean of the square of a lot of samples:

E[x2] =

Z 1

�1
a2p(a) da ⇡ 1

N

NX

i=1

x2
i
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6.7.2 Variance

The variance �2
x of a random variable x, also known as central moment of order 2, is

the quadratic mean value of the difference between x and its mean value mx:

�2
x = E[(x�mx)

2] = E[x2] +m2
x � 2E[x]mx = E[x2]�m2

x

The variance is the difference between the quadratic mean value and the square of the
mean value:

�2
x = E[(x�mx)

2] = E[x2]�m2
x

Note that if the mean value is null, the variance is equal to the quadratic mean value.

6.7.3 Standard deviation

The square root of the variance is called standard deviation of the random variable
x:

�x =
p
�2
x

This number measures the dispersion of the samples with respect to the mean value of
x. The higher �x is, the more sparse and far will be the results from the mean value.

Gaussian probability

A Gaussian random variable has Gaussian probability density:

p(a) =
1p
2⇡�2

x

exp

✓
�(a�mx)2

2�2
x

◆

Limits:

P (mx � �x < x  mx + �x) =

Z mx+�x

mx��x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.683

P (mx � 2�x < x  mx + 2�x) =

Z mx+2�x

mx�2�x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.954

P (mx � 3�x < x  mx + 3�x) =

Z mx+3�x

mx�3�x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.997

6.8 Joint probability distributions

The joint probability distribution of two random variables x and w is represented
as px,w(a, b), and it indicates the probability to have x = a and w = b at the same
time.
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Figure 6.2: Gaussian probability density.

For example (fig. 6.3), take a system formed by two dices. x and w take values from
1 to 6, so we will have 36 pairs of equiprobable results: (1, 1), (1, 2), ...(2, 1), ..., (6, 6).
Therefore,

px,w(a, b) =
1

36
In this example it is possible to see that the joint probability can be written as the
product of the pdfs of each random variables. When this happens, x and w are
statistically independent random variables.

px,w(a, b) = px(a)pw(b)

This means that the value taken by one of the variables does not affect in any way
the result of the other one.

Figure 6.3: Joint probability density of our example with the dices.

6.9 Dependent random variables

We will have conditioned probability densities. Using Bayes formula, we have that:

px,y(a, c) = py|x=a(c|x = a)px(a)

The symbol | means given that.
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Figure 6.4: Consider the random variables x and w that describe the output of two
dices. We want to compute px,y(a, c) of the random variables x and y = x + w.
First, notice that y depends on the value of x. When x = a, y can take values
{a + 1, a + 2, a + 3, a + 4, a + 5, a + 6} with probability 1/6. This can be written as:
Py|x=a(c|x = a) = 1

6 for 1 + a  c  6 + a.

See that:
X

c

px,y(a, c) = px(a)

X

a

px,y(a, c) = py(b)

If the variables are independent,

py|x=a(c|x = a) = py(c)

and we recover the previous formula

px,y(a, c) = py(c)px(a)

If our random variables x and y are continuous, their joint probability density is

px,y(a, b) =
P (a < x < a+ da, b < y < b+ db)

da db

The function px,y(a, b) must fulfill the following properties:

px,y(a, b) � 0

ZZ
px,y(a, b)da db = 1

Z 1

�1
px,y(a, b) db = px(a)

In fact, integrating px,y(a, b) db we are summing the probabilities of all the possible
joint elementary results that can be obtained with a < x < a+ da.

Note that if:

px,y(a, b) = py|x=a(b|x = a)px(a) ! py|x=a(b|x = a) =
px,y(a, b)

px(a)
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The following integral must be unitary:
Z

py|x=a(b|x = a) db =
1

px(a)

Z
px,y(a, b) db = 1

Remember that independence of the random variables implies that py|x=a(b|x = a) =

py(b).

6.10 Sum of random variables

Let x and y be two independent random variables. The probability density function
of random variable z = x+ y will be the convolution of the pdf of x and y:

pz = px ⇤ py

Central limit theorem: The sum of a big number N of independent random vari-
ables xi has a pdf close to a Gaussian, independently of the individual pdfs:

py(a) = px1(a) ⇤ px2(a) ⇤ ... ⇤ pxN (a) ⇡
1p
2⇡�2

y

exp

✓
�(a�my)2

2�2
y

◆

For N ⇠ 5 the approximation is already good.

The variance of the sum will be equal to the sum of variances:

�2
z =

X

i

�2
i

6.11 Covariance

Given two random variables X and Y , the covariance is the difference between the
expectation value of the product of both variables and the product of the expectation
values:

cov[XY ] = E[(X � E[X])(Y � E[Y ])] = E[XY ]� µxµy

6.11.1 Correlation coefficient

⇢ =
cov[XY ]

�X�Y

where �X�Y is the product of the standard deviations.
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6.11.2 Uncorrelated variables

Two random variables x and y are uncorrelated if and only if

cov[xy] = 0

and thus, E[xy] = E[x]E[y]. Indeed, for statistically independent random variables,
we know that

E[xy] = E[x]E[y]

as

E[xy] =

ZZ
xyfX,Y (x, y)dxdy =

ZZ
xyfX(x)fY (y)dxdy

=

Z
xfX(x)dx

Z
yfY (y)dy = E[x]E[y]

Analogously, if x and y are independent random variables and f(x) and g(y) are
arbitrary functions,

E[f(x)g(y)] = E[f(x)]E[g(x)]

Be careful (typical question for oral exams):

– Two random variables can be uncorrelated even if they are not independent.
– Two independent random variables are always uncorrelated.

So, being uncorrelated is necessary but not sufficient condition for two random vari-
ables to be independent.

6.11.3 Orthogonal variables

Two random variables are said to be orthogonal if and only if

E[xy] = 0

This is not stronger than being uncorrelated.
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7 x Processi casuali: parte I
Let’s start this chapter by doing a small summary of what we have learned up to this
point.

7.0.1 Random variables

µx = mx = E[x] =

Z 1

�1
a p(a) da =

Z 1

�1
xfX(x)dx

E[x2] =

Z 1

�1
a2 p(a) da

�2
x = E[(x�mx)

2] = E[x2] +m2
x � 2E[x]mx = E[x2]�m2

x

For two random variables x and y:

cov[XY ] = E[(X � E[X])(Y � E[Y ])] = E[XY ]� µxµy

⇢ =
cov[XY ]

�X�Y

If the variables are statistically independent:

px,w(a, b) = px(a)pw(b)

and consequently
E[xy] = mxmy

If the variables are uncorrelated:

cov[xy] = 0 ⇢ = 0

Statistically independent ) uncorrelated, but uncorrelated ��) statistically indepen-
dent.

7.0.2 Gaussian probability density

p(a) =
1p
2⇡�2

x

exp

✓
�(a�mx)2

2�2
x

◆

Limits:

P (mx � �x < x  mx + �x) =

Z mx+�x

mx��x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.683

P (mx � 2�x < x  mx + 2�x) =

Z mx+2�x

mx�2�x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.954

P (mx � 3�x < x  mx + 3�x) =

Z mx+3�x

mx�3�x

1p
2⇡�2

x

exp

 
�(a�mx)

2

2�2
x

!
da ⇡ 0.997
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Example 1: on a previous lesson we considered a variable ' that was uniformly dis-
tributed between �⇡ and ⇡:

f' =
1

2⇡

If we take a RV g(') = cos('), then

E[g(')] =

Z 1

�1
g(')f'g(') d'

Now let’s take a signal that could be an electromagnetic wave

x(t) = cos(2⇡f0t+ ') = cos

✓
2⇡f0(t+

'

2⇡f0
)

◆

See that in this case �1  x(t = 0)  1, with E[x(t = 0)] = 0. Same for E[x(t =
1
2')] = 0, independently of the time. Using some math:

E[x(t)] = E[cos(2⇡f0t+ ')] = E[cos(2⇡f0t) cos'� sin(2⇡f0t) sin']

= cos(2⇡f0t)E[cos']� sin(2⇡f0t)E[sin']

= cos(2⇡f0t)

Z ⇡

�⇡

cos'
1

2⇡
d'� sin(2⇡f0t)

Z ⇡

�⇡

sin'
1

2⇡
d' = 0

Now, we want to see if x(t) is uniformly distributed too. If it was, remember that we
could express its variance as:

�2 =
�2

12

And taking � = 2, �2 = 1
3 . Let’s calculate it ourselves and see if it matches (spoiler:

no).

�2
x = E[x2(t)]�⇠⇠⇠⇠⇠E2[x(t)] =

1

2⇡

Z ⇡

�⇡

cos2(2⇡f0t+ ') d'
t=0
=

1

2⇡

Z ⇡

�⇡

cos2(')d' =
1

2⇡
⇡ =

1

2

The variable is more disperse than what we expected, so x(t) is not uniformly dis-
tributed.
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7.1 Deterministic signals

A signal is deterministic if at a given time t0 it has associated a precise value x(t0).
All the signals we have used until now are deterministic. However, a big part of the
signals we find in practice cannot be represented in this way; they have associated
certain value, but they are not repeatable. An example of this is the thermal noise.

7.2 Random processes

The thermal noise can be represented as the voltage v(t) existing in a resistor, caused
by the chaotic movement of the electrons as a consequence of having certain temper-
ature (> 0K).

If we take two identical resistors and we measure the deterministic signals v1(t) and
v2(t), we will obtain two signals that even if they have similar characteristics, they are
different between them.

If our aim is to determine the effect of the thermal noise on a system, it is not useful
at all to know deterministically the behavior of v1(t) along the first resistor if we then
are going to use the second one.

Nevertheless, the smart thing to do is to describe the characteristics of the thermal
noise which are common to all resistors of the same type and temperature. This way,
we will be able to give(for example) the probability of certain values of the tension or
the value of the power for any resistor.

Consequently, we abandon the concept of certainty of deterministic signals to take
the uncertainty, described by the probability theory and characteristic of random
processes.

A random process is a set of all the deterministic signals (realizations of the process)
generated by the same source but independent between them. The value of the different
realizations at time t = tk will be a random variable x(tk).
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7.3 Stationary random processes

A random process is said to be stationary if its statistic characteristics do not depend
on t. For instance, the probability density of the process is:

p(xti+t) = p(xti) for all values of t

For a stationary random process the n-th order momentum is independent of time:

E[Xn
ti ] =

Z 1

�1
xn
tip(xti) dxti

Particularly the mean value and the variance are constant in time: µX(t) = µX and
�2
X(t) = �2

X .

7.3.1 Autocorrelation

RX(t1, t2) = E[Xt1Xt2 ] =

Z 1

�1

Z 1

�1
xt1xt2p(xt1 , xt2) dxt1dxt2

The autocorrelation measures how much the value taken by the realization of the
process at time t1 is related to the value of the same realization at time t2.

If the random process is complex, the correct expression is:

RX(t1, t2) = E[X(t1)X
⇤(t2)]

If we limit our analysis to stationary random processes, RX does not depend on the
instants t1 and t2 but only on the delay ⌧ between the measurements:

E[Xt1 , Xt2 ] = RX(t1, t2) = RX(t1 � t2) = RX(⌧)

The autocorrelation tells us how much the value taken by a realization of the random
process at time t+ ⌧ is related to the value the same realization takes at time t.

The autocorrelation function depends on the joint probability density of x(t) and
x(t+ ⌧).

– If the two random variables are independent, the joint pdf is equal to the product
of the pdfs and the autocorrelation function coincides with the square of the mean

value of the random process.
– If the random variable x(t+ ⌧) depends on the value taken by x(t), the autocor-

relation function will have a different value to the square of the mean value of
the random process.

Know that if we sample a continuous process (mx, �2
x, Rx(⌧)) with period T , the dis-

crete process will have equal mx and �2
x but the autocorrelation function will no longer

be continuous:
Rx[n] = Rx(nT )
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7.3.2 Slowly varying processes

If we have a high number N of trials, the following approximation is good:

Rx(⌧) = E[x(t)x(t+ ⌧)] ⇡ 1

N

NX

i=1

xi(t)xi(t+ ⌧)

Now let’s consider a stationary random process with null mean value, with realizations
that vary slowly in time.

If x(t) evolves slowly in time with respect to a fixed value ⌧ , x(t+ ⌧) is similar to x(t).
The product xi(t)xi(t+⌧) has often positive sign, in the various realizations and times
t.

(a) Slowly varying process. (b) Rapidly varying process.

Figure 7.1: Autocorrelation of different kind of processes.

7.3.3 Rapidly varying processes

Consider a stationary random process with null mean value, with realizations that
vary rapidly in time.

If x(t) evolves rapidly in time with respect to the fixed value ⌧ , x(t+ ⌧) changes a lot
from x(t). The product xi(t)xi(t+⌧) will have random sign in the different realizations
and times t. From this we deduce that the autocorrelation will take a value close to
zero, as we are summing practically the same amount of positive and negative terms.

7.3.4 Properties of autocorrelation

1) RX(⌧) = E[X(t+ ⌧)X(t)] for all t.
2) Mean quadratic value: RX(0) = E[X2(t)].
3) Even function: RX(⌧) = RX(�⌧). We see this showing that:

E[x(t+ ⌧)x(t)] = E[x(t� ⌧)x(t)]
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(a) Slowly varying process. (b) Rapidly varying process.

Figure 7.2: Autocorrelation of different kind of processes.

4) |RX(⌧)|  RX(0). For this, take x(t+ ⌧)± x(t):

E[(x(t+ ⌧)± x(t))2] � 0

E[x2(t+ ⌧) + x2(t)± 2x(t+ ⌧)x(t)] = E[x2(t+ ⌧)] + E[x2(t)]± 2E[x(t)x(t+ ⌧)]

We know that E[x2(t)] = RX(0) but given that the process is stationary, we also
know that E[x2(t+ ⌧)] = RX(0). So,

E[(x(t+ ⌧)± x(t))2] = RX(0) +RX(0) + 2RX(⌧) � 0

RX(0)±RX(⌧) � 0 �! RX(⌧)  RX(0), RX(⌧) � �RX(0)

7.4 Autocovariance

CX(t1, t2) = E[(X(t1)� µX)(X(t2)� µX)] = RX(t2 � t1)� µ2
X

The autocovariance function is defined as the square of the mean value of a random
process subtracted to the autocorrelation function.

CX(⌧ = 0) = RX(0)� µ2
X = E[X(t)2]� µ2

X = �2
X

In the origin the autocovariance is equal to the variance of X.
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7.5 Correlation coefficient

⇢X(⌧) =
CX(⌧)

CX(0)
=

CX(⌧)

�2
X

It takes a value in the interval [0, 1], and it indicates how related are two points of the
same random process.

– If both variables are independent or uncorrelated, the autocovariance function is
null and so is the correlation coefficient.

– However, if the random variable x(t + ⌧) depends of the absolute value of x(t),
the modulus of the correlation function will have a value which as it gets closer
to 1, it indicates a bigger dependence between the two random variables.

RX(⌧) = E[x(t)x(t+ ⌧)] ⇡ 1

N

NX

i=1

xi(t)xi(t+ ⌧)

The autocorrelation evaluated in ⌧ = 0 is equal to the mean power of the random
process.

RX(0) is the maximum value that the autocorrelation can take.

In a process on which the mean value is null, the correlation coefficient becomes the
normalized autocorrelation:

⇢X(⌧) =
RX(⌧)

RX(0)
=

E[x(t)x(t+ ⌧)]

E[x2(t)]

Example: sinusoidal signal1 with random phase:

X(t) = A cos(2⇡fct+⇥) f⇥(✓) =

8
>><

>>:

1

2⇡
, �⇡  ✓  ⇡

0, else

We see that the phase is a uniformly distributed random variable. To calculate the
autocovariance, remember that CX(⌧) = RX(⌧)�µ2

X . We have seen that for a function
like this µX = 0. So, CX(⌧) = RX(⌧):

RX(⌧) = E[X(t+ ⌧)X(t)]

= E


A2

2
cos (4⇡fct+ 2⇡fc⌧ + 2⇥)

�
+

A2

2
E [cos (2⇡fc⌧)]

=
A2

2

Z ⇡

�⇡

1

2⇡
cos (4⇡fct+ 2⇡fc⌧ + 2✓) d✓ +

A2

2
cos (2⇡fc⌧) =

=
A2

2
cos(2⇡fc⌧)

1
Later in the course we will see transportation of signals. It is the reason for the c (carrier) in fc.
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We can check that the solution fulfills the properties we have seen, as a way to confirm
the validity of our calculation.

Take ⌧ = 1
4fc

.

RX

✓
⌧ =

1

4fc

◆
=

A2

2
cos

✓
2⇡fc

1

4fc

◆
= 0

Consequently,

RX

✓
⌧ =

1

4fc

◆
= CX

✓
⌧ =

1

4fc

◆
= 0 ⇢X

✓
⌧ =

1

4fc

◆
=

CX(⌧)2

�2
X

= 0

Take x(t1) and x(t2). We measure x(t1) =
p
2
2 A, but we do not know ⇥, so we can not

know if that value is given by the blue or by the orange line.

We can say that x(t2) = ±
p
2
2 A, each with probability of 50%, but we can not say

which of them is the true value. We can not predict what happens in t2. That is the
reason why the correlation coefficient is null.

Are the two variables uncorrelated or are they statistically independent?

px

 
x(t1)

����x(t2) =
A
p
2

2

!
=

1

2
�

 
x� A

p
2

2

!
+

1

2
�

 
x+

A
p
2

2

!

The 1/2 stands for the 50% probability.

Are they uncorrelated or statistically independent variables? They are uncorrelated.
See that the conditioned probability distribution is really conditioned, it is not the
product of the individual pdfs. Being independent is sufficient to be uncorrelated, but
it is not necessary for it. Independent is stronger than uncorrelated.
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Independence Uncorrelation

CX(⌧) = 0 ) ⇢X(⌧) = 0 CX(⌧) = 0 ) ⇢X(⌧) = 0

RX(⌧) = µ2
X RX(⌧) = µ2

X

px,w(a, b) = px(a)pw(b) px,y(a, c) = py|x=a(c|x = a)px(a)

The correlation coefficient of a process is a function whose values are limited be-
tween �1 and 1. Obviously its value in ⌧ = 0 is unitary and in most of the cases,
the only maximum.

The value of the correlation coefficient as a function of ⌧ is a measure of the predictabil-
ity of a realization of the process at time t+ ⌧ knowing the value of the realization at
time t.

The closer the value of the correlation coefficient in ⌧ is to 1 or �1, the more precise

will be the prediction of the value that the realization of the process will take at time

t+ ⌧ , knowing the value at t.

7.6 Relation between correlation and predictability

For briefness, we will write the random variables x(t1) and (x2) as x1 and x2. It can
be shown that:

– The more correlated the variables x1 and x2 are (with null mean value), the
better we can estimate the value of one of them using the other.

– The best estimation will be achieved when the estimation error is uncorrelated
with the data.

Saying that the random variable x2 is correlated with the random variable x1 is equiv-
alent to say that the value taken by x2 is in part proportional to the one x1 takes, plus
a random variable independent of x1 (and therefore non-predictable):

x2 = rx1 + n

The stationarity of a process ensures that the variance �2 of both x1 and x2 is the
same, imposing a relation between the variance of n and r. We have that mx = 0 and:

E[x2
1] = E[x2

2] = �2

From which:

E[x2
2] = E[(rx1 + n)2] = �2

r2E[x2
1] + E[n2] + 2rE[x1n] = �2

r2�2 + E[n2] = �2
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Using that E[x1n] = E[x1]E[n] and E[x1] = 0, we obtain the following expression:

E[n2] = (1� r2)�2

The closer r is to 1, the smaller the mean quadratic value (and consequently the
variance) or n is: x2 will deviate less from the value of x1.

From the definition of the correlation coefficient is easy to deduce that:

r =
E[x1x2]

E[x2
1]

= ⇢(⌧)

The prediction of the future behavior of the random process (at time t2) made with its
current value (at time t1), gets more precise as the correlation coefficient gets closer
to 1.

7.6.1 Linear estimation of x2 using x1

Knowing the current value that x1 takes, the aim is to predict (estimate) in the possible
way the value that x2 will take, finding the proportionality coefficient a. The linear

estimation will be:
x̂2 = ax1

The optimum value of a is obtained when the error (in quadratic mean) of the estima-
tion is minimum, this is, if the difference (in quadratic mean) of the estimated value
and the effective value taken by x2 is minimum. We need to minimize:

E[(x2 � x̂2)
2] = E[(x2 � ax1)

2]

Taking the derivative with respect to a and making it equal to zero, the optimal value
of a is obtained:

a =
E[x1x2]

E[x2
1]

= r = ⇢(⌧)

The optimal value of a coincides, obviously, with the coefficient r.

Knowing this we can define a procedure to estimate the value that x2 will take once
we know the value taken by x1.

1) Learning: analyzing N (big number) realizations of the random process, the
correlation coefficient is computed:

⇢x(⌧) ⇡
PN

i=1 xi(t)xi(t+ ⌧)
PN

i=1 x
2
i (t)

2) Prediction: x(t+ ⌧) is estimated using x(t):

x̂(t+ ⌧) = ⇢(⌧)x(t)
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7.6.2 Estimation error

Note that the estimation error, caused only by the random variable n, has equal mean
quadratic value to the one of n:

E[(x2 � x̂2)
2] = E[(x2 � ax1)

2] = �2(1� r2)

From this expression we immediately understand that:

1) The estimation error is 0 if the random variables are totally correlated (|r| = 1).
2) The estimation error is maximum if the random variables are uncorrelated (|r| =

0).

In the end, it is important to note that the estimation error is uncorrelated with the
datum x1. In fact, if we compute the covariance:

E[x1(x2 � ax1)] = E[x1x2 � ax2
1] = E[x1x2]� aE[x2

1] = rE[x2
1]� rE[x2

1] = 0
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8 x Processi casuali: parte II
Independence implies uncorrelation, but uncorrelation does not imply independence.
The only exception is if the process is Gaussian.

8.1 Gaussian stationary processes

If the process is Gaussian and the variables t1, t2, tn are uncorrelated, they are also
statistically independent.

8.2 Ergodic processes

Among the stationary random processes, there are some for which all the statistic
properties can be obtained for a single realization. These are called ergodic pro-

cesses.

All the realizations taken on a known instant give the same statistic information that
can be obtained from a long-time observation of a single process. Obviously, for a
process to be ergodic, it must be stationary.

8.2.1 Ergodic for the mean

A random process is ergodic for the mean if the time mean value of a single real-
ization is equal to the statistical mean value of the process measured for every value
of t.

µx = lim
T!1

1

T

Z T/2

�T/2

x(t)dt temporal mean

mX = E[X] =

Z 1

�1
xfX(x)dx statistical mean

An ergodic process must be stationary, as the statistic means can not be functions of
time. The opposite is not necessarily true.
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8.2.2 Ergodic for the autocorrelation

A random process is ergodic for the autocorrelation if the autocorrelation of the
set (the statistical one) is equal to the temporal autocorrelation.

RX(⌧) = E[X(t+ ⌧)X⇤(t)] = lim
T!1

1

T

Z T/2

�T/2

x(t+ ⌧)x⇤(t)dt

8.2.3 Ergodic process

All the statistical characteristics can be derived from a single realization in time. The
time mean value and the autocorrelation estimated in time are equal to the ones of
the set.

A sufficient condition for a random process to be ergodic is that the correlation
coefficient goes to zero in a finite time (⌧0). At distance ⌧0 the samples are uncorrelated.
The temporal averages of a big amount N of samples (in time, always for time > ⌧0)
are equal to the statistical mean values.

mX = E [Xn] <=
1

N

N�1X

0

Xn

E
⇥
X2

n

⇤
<=

1

N

N�1X

0

X2
n

RX [m] <=
1

N

N�1X

0

Xn+mXn

8.3 Power spectrum

Wiener Knitchine’s theorem: the Fourier transform of the set autocorrelation
function RX(⌧) of a random stationary process is the power spectrum of the signal

(or spectral power density) SX(f):

SX(f) =

Z 1

�1
RX(⌧) exp(�j2⇡f⌧)d⌧

RX(⌧) =

Z 1

�1
SX(f) exp(j2⇡f⌧)df

The autocorrelation in ⌧ = 0 RX(0) is equal to the mean power of the random

process:

RX(0) = lim
T!1

1

T

Z T/2

�T/2

x(t)x⇤(t)dt = PX
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Therefore we have that: Z 1

�1
SX(f)df = RX(0) = PX

The spectral power density is real due to the properties of the Fourier transform.

8.3.1 Properties

SX(0) =

Z 1

�1
RX(⌧)d⌧

SX(f) � 0 for all f
SX(�f) = SX(f)

E[X2(t)] =

Z 1

�1
SX(f)df = RX(0) = P

The last property shows that there are three different ways to compute the power of

the process. This is the typical theory question: how to compute the power of the

process.

Example: take a random process X(t) and a sinusoidal signal which is a function
of a random phase, uniformly distributed between 0 and 2⇡. X(t) is statistically
independent of the phase ⇥.

Y (t) = X(t) cos(2⇡fct+⇥)

The autocorrelation of Y is:

RY (⌧) = E[Y (t+ ⌧)Y (t)]

= E [X(t+ ⌧) cos (2⇡fct+ 2⇡fc⌧ +⇥)X(t) cos (2⇡fct+⇥)]

= E[X(t+ ⌧)X(t)]E [cos (2⇡fct+ 2⇡fc⌧ +⇥) cos (2⇡fct+⇥)]

=
1

2
RX(⌧)E [cos (2⇡fc⌧) + cos (4⇡fct+ 2⇡fc⌧ + 2⇥)]

=
1

2
RX(⌧) cos(2⇡fc⌧)

Were we have used the statistical independence of X(t) and the phase. Taking its
Fourier transform:

SY (f) =
1

4
[SX(f � fc) + SX(f + fc)]

8.4 Continuous white processes

If the process x(t) is white, its autocorrelation function is null everywhere except in
the origin ⌧ = 0 (impulsive!) and its frequency spectrum is constant.
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Figure 8.1: Continuous white process.

All the components of the frequency are present in the spectrum and that is the reason
why it is called white. It is an analogy with white light, that contains all the visible
wavelengths.

RX(⌧) can have a constant term, so rigorously speaking, CX(⌧) is the one formed of a
single impulse:

CX(⌧) = k�(⌧)

RX(⌧) = k�(⌧) +m2
x

⇢X(⌧) = �(⌧) for any ⌧ the variables are uncorrelated
SX(f) = k +m2

X�(f)

Remember that:

⇢X(⌧) =
CX(⌧)

�2
X

=
k�(⌧)

k
= �(⌧)

�2
X = CX(0) = k�(0) = k

In nature white processes do not exist, otherwise they would have infinite power. They
are the idealization of random processes with constant spectral power density in a big
range W (order of THz).

SX(f) = k rect(f/W ) +m2
X�(⌧)

RX(⌧) is a very narrow cardinal sine
RX(⌧ = 0) = P = kW +m2

X

�2
X = CX(0) = RX(0)�m2

X = kW

k = �2
X/W

8.4.1 Discrete white process

The idea is the same, but this processes do actually exist in nature:
CX [m] = k�m

RX [m] = k�m +m2
X

⇢X(⌧) = �m for any m all the samples are uncorrelated.
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SX(�) = k +m2
X�(�)

RX [0] = P = k +m2
X

�2
X = CX [0] = RX [0]�m2

X = k

But know that this processes actually exist in nature.

8.5 Continuous colored processes

If the process y(t) is colored, its autocorrelation function is wider than an impulse
and its power spectrum is shaped consequently.

Figure 8.2: Continuous colored process.

8.6 White noise

A sequence of samples is said to be white if its samples are uncorrelated between
them and consequently if the autocorrelation function is null for ⌧ 6= 0.

A sequence of samples is colored if its samples are correlated between them and the
autocorrelation function is non-zero for ⌧ 6= 0.

The noise whose samples are uncorrelated is called white noise. The autocorrelation
is therefore a Dirac delta centered in the origin.

8.6.1 AWGN

If the white noise is also Gaussian (it has Gaussian probability density), its samples
are statistically independent.

The classical type of noise added in communication systems is called Added White

Gaussian Noise (AWGN).

8.6.2 Coloring white noise

It is possible to color a white noise xn filtering it with a filter that has response to the
impulse hn, obtaining the signal yn.
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Obviously the sampled signal y(nT ) is obtained convolving x(nT ) and h(nT ).

yn =
KX

k=0

xn�khk = xn ⇤ hn

8.7 Transmission of a continuous random process through
a LTI system

The system is deterministic, with input x(t), output y(t) and impulse response h(t).

It can be shown that the mean value of the random process y(t) in the input of a LTI
system is given by the mean value of the input random process x(t) times the transfer
function H(f) evaluated in 0:

µY (t) = µX(t) ·H(0)

It can be also shown that the autocorrelation and the power spectrum of the random
process y(t) in the input of a LTI system can be obtained from:

Ry(⌧) = Rx(⌧) ⇤ h(⌧) ⇤ h⇤(�⌧)

SY (f) = |H(f)|2SX(f)

8.8 Transmission of a discrete random process through
a LTI system

The system is deterministic, with input xm, output ym and impulse response hm.

E[ym] = E[xm]H(0)

Ry[m] = Rx[m] ⇤ hm ⇤ h⇤
�m

SY (�) = |H(�)|2SX(�)

8.9 Cross-correlation between the output signal and
the discrete input signal of a LTI system

Ryx[m] = E[Yn+mXn] = Rx[m] ⇤ hm

In the case of a white input process:

Ryx[m] = �2
Xhm +m2

XH(0)

The cross-correlation is equal to the impulsive response, scaled. It helps us to esti-

mate the transmission channel : a white sequence is sent, with impulsive autocorrela-
tion. Then, the autocorrelation with the output signal is computed, and this way the
response to the impulse of the signal is computed.
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8.10 Summary: stationary random processes

– Mean value of the process1:

mx = E[x] =

Z 1

�1
xfx(x)dx independent of t

– Quadratic mean value and variance:

E[x2] =

Z 1

�1
x2fx(x)dx = E[x(t)x(t)] independent of t

�2
x = E[x2]�m2

x independent of t

– Autocorrelation function:

Rx(⌧) = E[x(t+ ⌧)x(t)]

Rx(0) = E[x2]

– Autocovariance function:

Cx(⌧) = Rx(⌧)�m2
x

Cx(0) = �2
x

– Correlation coefficient:
⇢x(⌧) =

Cx(⌧)

�2
x

If the autocovariance function is null, so is the correlation coefficient: Cx(⌧) =

0 ) ⇢x(⌧) = 0. In this situation, we say that the samples are uncorrelated
2. Only

for Gaussian processes, uncorrelation and statistical independence are equivalent.
– Consider a LTI system. If we define the spectral power density as

Sx(f) = F{Rx(⌧)}

We have that:

Ry(⌧) = Rx(⌧) ⇤ h(⌧) ⇤ h⇤(�⌧)

Sy(f) = |H(f)|2Sx(f)

– Power:
P =

Z 1

�1
Sx(f)df = Rx(0) = E[x2]

1
If the process is stationary, its statistic properties are independent of t.

2
Keep in mind that this does not imply that samples are statistically independent.
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9 x Quantizzazione di segnali discreti
9.1 Conversione analogico/digitale

The human representation of reality is continuous (analog world). However, the
numerical elaborators manage discrete information (digital world). It is necessary to
transform the analog signals into their digital equivalents.

With the sampling, we limit the time instants on which the signal is defined. With
quantization we do something similar but for the amplitudes. The signal will be able
to take only certain values of the amplitude, not any in a known interval.

9.2 Numerical signals

A numerical signal xq(nT ) = xq[n] is a signal which is discrete in time and its
samples have discrete amplitudes. In the case of the discrete signal x(nT ) = x[n],
each sample is a real number that can take any value on a continuous interval.

If we wanted to represent each sample x(nT ) in a numerical way, it is necessary
to approximate the real number with a finite number of K levels that cover the
previously mentioned interval.

This operation is called quantization: associating to the amplitude of each sample
the closest of the K quantization levels of the given interval.

9.3 Quantization

The quantizator is a device which transforms the real sample x(nT ) into the sample
xq(nT ) with a number K of levels.
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If the minimum and the maximum values that x(nT ) can take are �V and V , the
relation between the continuous value x(nT ) and the quantized xq(nT ) is represented
by a stair of K levels.

The quantization interval � is:

� =
2V

K

(a) Quantization levels. (b) Quantization error.

Figure 9.1: Quantization.

9.4 The quantization error

When quantizing the samples an error is made, which gets smaller as the number of
levels K increases. The quantization error is defined as

e(nT ) = xq(nT )� x(nT )

If the number of levels K is high enough, the quantization errors of the samples become
uncorrelated random variables, independent of x(nT ).

The discrete signal x(nT ) has a distribution of amplitudes more or less uniform between
�V and V , and the probability density of e(nT ) can be considered uniform between
��/2 and �/2.

Consequently the quantization error is a random variable with null mean value and
variance equal to

�2
e(nT ) =

�2

12
=

✓
2V

K

◆2 1

12
=

V 2

3K2
= Pe(nT )

Where Pe(nT ) is the power of the quantization error.
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If we use N binary digits to represent the samples we will have that:

Pe(nT ) = �2
e(nT ) =

�2

12
=

V 2

3

1

22N

If we write the variance of the error in dBs, we obtain:

[�2
e(nT )]dB = 10 log10(�

2
e(nT )) = 10 log10

✓
V 2

3

◆
� 10 log10(2

2N)

= 10 log10

✓
V 2

3

◆
� 10 log10(4)N ⇡ 10 log10

✓
V 2

3

◆
� 6N

Adding a binary digit (bit), the power of the quantization error is reduced by 6dB.

9.4.1 Natural encoding

Usually the quantization levels are associated to a number in binary format (binary
coding).

With N binary digits (bit) K = 2N quantization levels are obtained. Therefore, a
code of N = log2 K bits can be associated to each level.

For example, if N = 3, we obtain K = 8 quantization levels Vm, which can be quantified
in various ways with 3 bits.

Natural encoding: we associate binary numbers in increasing order to the quanti-
zation levels: 000, 001, 010, 011, 100, 101, 110, 111.

9.4.2 Gray’s encoding

The natural encoding is not always the best choice to represent the levels of signals.

Gray’s encoding: the binary numbers we associate differ by one bit between adjacent
levels: 000, 001, 011, 010, 110, 111, 101, 100.

It is commonly used for the transmission of information as it reduces the probability
of an error happening.

9.4.3 Signal to Noise Ratio

Supposing that the signal x(nT ) has a uniform distribution between �V and +V , it
is possible to determine the power as

Px(nT ) = �2
x(nT ) =

Z V

�V

a2
1

2V
da =

V 2

3

The Signal to Noise Ratio (SNR) is the ratio between the power of the signal and
the power of the quantization noise (error).

(SNRq)dB =

✓
Px(nT )

Pe(nT )

◆

dB

=

✓
V 2

3

3

V 2
22N
◆

dB

⇡ 6N
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We have that:

SNRq =
Px(nT )

Pe(nT )
= 22N (SNRq)dB =

✓
Px(nT )

Pe(nT )

◆

dB

⇡ 6N

In practice, the necessary number of bits to quantize an specific signal is determined
considering the signal’s own SNRx, and imposing that

SNRq � SNRx

# quantization bits 8 10 16
SNR (linear) 65536 1048576 4294967296
SNR (dB) 48 60 96

9.5 Quantization of non-uniform signals

If the signal x(nT ) does not have an uniform distribution between �V and V , it is
not convenient to use an uniform quantizer.

A better choice wold be to use a quantizer with variable quantizing interval to in order
to adapt better to the statistics of the signal.

Figure 9.2: Non-uniform quantization.

To create a non-uniform quantizer a non-linear function is applied to the input (dis-
torter), and then this signal is given to an uniform quantizer.

For instance, consider logarithmic quantization. The intervals closer to the origin
are expanded, and the levels close to the maximum are compressed.

The process that has just been discussed is summarized in the figure 9.4.

78



B. Berasategi Chapter 9. Quantizzazione di segnali discreti

(a) (b)

Figure 9.3: Non-uniform quantization.

Figure 9.4

9.6 Bit-rate

After the binary coding, the numeric signal becomes a sequence of bits. The cadence

of bits per second of a numeric signal is called bit-rate.

For a time-continuous signal sampled with frequency fc = 1/T and quantized using
N = log2 K bits for each sample, the bit-rate is:

Rb =
log2 K

T
= N fc [bit/s]

When a signal is transformed into a sequence of bits, its origin is no longer important
for its memorization/transmission.

The typology of the signal source (band, duration, amplitude) is a factor which only
matters in the phase of going from analogical to digital and vice versa. The analysis
and elaboration of numerical signals leaves aside the nature of the analogical source,
given that the characteristics of the numerical signals are determined by the bit-rate.

79



B. Berasategi Chapter 9. Quantizzazione di segnali discreti

9.6.1 Example: telephonic signal

The signal x(t) is continuous in time and its maximum frequency is 3.6kHz. The
sampling theorem imposes a sampling frequency fc bigger than 7.2kHz. Normally
fc = 8kHz is used (8000 samples per second).

If we quantize the signal with K = 256 levels (symbols), N = 8 bits are enough.
Consequently the numeric telephonic signal will have a bit-rate of:

Nfc = 8 · 8000 = 64Kbit/sec

Figure 9.5: Bit-rates of standard signals.

9.7 Summary: digitalization of a signal

Sampling: measure of the amplitude of the
signal in specific time instants which are
equidistant. If fc > fNyquist the information the
signal contains is completely preserved. Dis-
crete amplitude levels are introduced.

Quantization: representation of the continu-
ous amplitude of the signal, sampled using dis-
crete levels. A specific group of bits is associ-
ated to each discrete level.

Now the analogical signal is in digital form.
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10 x Codifica di Sorgente
Digitalizaton of a time continuous signal:

10.1 Binary encoding

On the previous chapter we saw the natural and Gray’s encodings:

Natural: 000 001 010 011 100 101 110 111

Gray: 000 001 011 010 110 111 101 100

Is this the best way to label levels with a binary code? Yes, if the levels are uncor-

related and equiprobable. However, one of our objectives must be to reduce as
much as possible the amount of bits needed, as this will improve memorization and
transmission processes. This topic is related to the source encoding.

10.2 Huffman’s encoding

Variable length binary source encoding, proposed by David Huffman in 1951. It is
very simple to implement and its performance is close to theoretical optimal values.

General principles:

1) The most probable symbols are codified with the shortest code words (formed
of the lowest bit amounts).

2) No code word must be preceded by another code word.
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Example: Follow the steps in figure 10.1, from bottom to top.

Symbol Probability

1 0.02
2 0.29
3 0.03
4 0.04
5 0.33
6 0.04
7 0.06
8 0.19

Symbol Probability

5 0.33
2 0.29
8 0.19
7 0.06
4 0.04
6 0.04
3 0.03
1 0.02

Symbol Probability

5 0.33
2 0.29
8 0.19
7 0.06

Node 1 0.05
4 0.04
6 0.04

1) Reorganize the table according to the probability of the levels, in decreasing order.

2) Select the two lowest probabilities (in this case 0.02 for 1 and 0.03 for 3) and
generate a sum node: Node 1, 0.05.

3) The table needs to be updated now, adding the Node 1 and removing the two rows
that they have generated it.

Symbol Probability

5 0.33
2 0.29
8 0.19

Node 2 0.08
7 0.06

Node 1 0.05

Symbol Probability

5 0.33
2 0.29
8 0.19

Node 3 0.11
Node 2 0.08

Symbol Probability

5 0.33
2 0.29
8 0.19

Node 4 0.19

4) Once again, chose the two lowest probabilities (4 and 6, both with 0.04), sum them
creating Node 2 (probability 0.08). Update the table.

5) Repeat steps 3 and 4 until getting the total probability of 1.

6) The tree graph will the be complete.

7) A bit 1 is assigned to each branch going to the left, and a 0 to each one going to
the right.

8) Start reading from the top (node with probability of 1) down to each square, and
obtain the code for each symbol.
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Symbol Probability

Node 5 0.38
5 0.33
2 0.29

Symbol Probability

Node 6 0.62
Node 5 0.38

Symbol Probability

Node 7 1

Figure 10.1: Huffman encoding: example.

Summarizing, this is what we get:

Symbol Probability Fixed encoding Huffman encoding

1 0.02 000 10011
2 0.29 001 01
3 0.03 010 10010
4 0.04 011 1010
5 0.33 100 00
6 0.04 101 1011
7 0.06 110 1000
8 0.19 111 11
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Average bit numbers per level:
8X

i=1

PiKi

Using the binary encoding with fixed length (3 bits/level):
8X

i=1

PiKi = 3
8X

i=1

Pi = 3

Huffman encoding:
8X

i=1

PiKi = 0.33 ·2+0.29 ·2+0.19 ·2+0.06 ·4+0.04 ·4+0.04 ·4+0.03 ·5+0.02 ·5 = 2.43

10.3 Entropy of the source

With Huffman’s encoding we have reduced the needed bit amount to represent each
level. In fact, there is a limit to the average number of bits needed to represent the
samples of a numeric signal.

This value is called entropy of the source, and is indicated with H. the entropy
measures the complexity of the signal, of the information amount that it contains, and
consequently, the difficulty to transmit it.

The entropy represents the minimum average bit number per symbol needed to rep-
resent correctly an specific numeric signal.

Therefore, a numeric signal can be compressed without information loss, reducing
the average bit number per symbol until the value of the entropy. A further reduction
implies a information loss, the signal is not loyal to the original, and some parts will
be missing.

10.3.1 Expression for the entropy

Shannon showed that a random information source can not be represented with a

number of bits smaller than its entropy.

Hypothesis:
– Numeric signal, represented with M independent symbols.
– The i-th symbol appears with probability Pi.
– The number of symbols (duration of the signal) N ! 1.

The information related to the i-th symbol is given by the PiN positions on which it
appears, from a total of N available positions:

✓
N

PiN

◆
=

N !

(N � PiN)!(PiN)!
⇡ (Pi)

�NPi(1� Pi)
�N(1�Pi)
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where Stirling’s formula n! ⇠
p
2⇡nnne�n has been used.

To be able to code the i-th level, we need to be able to code all the possible NPi

positions with respect to the N samples. To represent all the possible configurations
we will need a number of bits equal to:

log2

✓
N

PiN

◆
= �NP log2 Pi �N(1� Pi) log2(1� Pi) [bit]

Therefore, the average number of bits needed per symbol will be:

1

N
log2

✓
N

PiN

◆
= �Pi log2 Pi � (1� Pi) log2(1� Pi) [bit/symbol]

where �Pi log2 Pi is the mean number of bits to codify the generic i-th symbol, and
�(1�Pi) log2(1�Pi) is the mean number of bits ti codify the rest of M � 1 symbols.

If all the symbols are independent between them, it can be shown that the minimum
average number of bits needed to encode the source of M symbols is the number of
bits needed to represent the configuration inside the set N , this is:

H =
MX

i=1

�Pi log2 Pi [bit/symbol]

If the symbols are equiprobable (Pi = 1/M), the maximum entropy is equal to

H =
MX

i=1

�Pi log2 Pi =
MX

i=1

� 1

M
log2

1

M
= log2 M [bit/symbol]

Example: going back to our example from section 10.2, we said that for the fixed
length encoding and for the Huffman encoding the average bits per level were:

8X

i=1

PiKi = 3
8X

i=1

Pi = 3
8X

i=1

PiKi = 2.43

The entropy of the source is:

H =
8X

i=1

�Pi log2 Pi ⇡ 2.38

Attention: Shannon’s theorem says that there exists a encoding that allows to reach
the number of bits of the entropy, but it does not specify what procedure to apply in
each situation.
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10.4 Sources with memory

The computation of entropy we have just considered is only valid for sources whose
symbols are independent between them. If this is not true,

H <
MX

i=1

�Pi log2 Pi

Sources with memory: sources in which different symbols are no longer independent
but show a degree of correlation between them.

Correlation between symbols means that the value taken by a sample in a known time
instant is predictable as a function of the samples from the past, and therefore the
source shows some redundancy.

A good source encoding will delete as much of this redundancy as possible (thus the
memory) to maintain uniquely the fundamental information, the non-predictable one.

Example: the method to encode sources with memory consists on combing between
them more elementary symbols, creating higher level symbols which have smaller (or
null) correlation degree.

Take for example a random variable xn which can be take the value A or B:
(

P (xn = A) = P (A) = 1
2

P (xn = B) = P (B) = 1
2

Consider the joint probabilities:
8
>>><

>>>:

P (A|A) = 9
10

P (B|A) = 1
10

P (A|B) = 1
10

P (B|B) = 9
10

If we encoded the single symbols of the given source, we find necessary to use 1 bit
per symbol. However, it is evident that the symbols are tightly related between them.

Probabilities of the pairs:
8
>>><

>>>:

P (AA) = P (A|A)P (A) = 9
10

1
2 = 0.45

P (BA) = P (B|A)P (A) = 1
10

1
2 = 0.05

P (AB) = P (A|B)P (B) = 1
10

1
2 = 0.05

P (BB) = P (B|B)P (B) = 9
10

1
2 = 0.45

The new symbols are no longer equiprobable, so we can apply Huffman’s encoding. In
this case the average bit number per symbol we can obtain reduces to 0.825<1.
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Joint probabilities of the triplets:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

P (AAA) = 9
10

9
10

1
2 = 81

200

P (ABA) = 1
10

1
10

1
2 = 1

200

P (AAB) = 1
10

9
10

1
2 = 9

200

P (ABB) = 1
10

9
10

1
2 = 9

200

P (BAA) = 1
10

9
10

1
2 = 9

200

P (BBA) = 1
10

9
10

1
2 = 9

200

P (BAB) = 1
10

1
10

1
2 = 1

200

P (BBB) = 9
10

9
10

1
2 = 81

200

The average number of bits we can obtain in this case is reduced to 0.68<1.

The number of symbols to encode increases exponentially with the number of the
consecutively grouped samples. This implies a bigger complexity of the encoder and
the decoder.

10.5 Lempel and Ziv’s encoding method (LZ777)

It is a method that eliminates the correlation between symbols, considering simulta-
neously their occurrence rate.

It is the base of the PKZIP algorithm, commonly used to compress files without
information losses in PCs.

Procedure:

1) The encoded sequence is composed of symbols preceded by a pointer, which spec-
ifies if the current symbol is preceded by a group of m symbols which already are
in the encoded sequence that starts d symbols before the current one: (d,m)A.

2) Each time a symbol is read in the sequence we want to encode, it must be
controlled if the symbol is already contained in the encoded sequence. If it
exists, the next symbol is read and we check the existence of the couple of
symbols. Do not insert anything in the encoded sequence until a non-existing
string of symbols is found.

3) At this point, the non-present symbol is inserted preceded by the pointer (d,m)

which specifies the number of symbols m to be preceded to be read at distance
d.
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Substituting groups of symbols with simple pointers of few bits allow to reduce con-
siderably the dimension of the encoded data.

As the encoding advances, it will be easier to find groups of symbols already appearing
in the encoded sequence.

The more variable is the sequence we want to encode (high entropy), the less com-
pressible it will be.

10.6 Source encoding with losses

Very often it is convenient to encode sources with a bit/symbol number smaller than
their entropy: lossy encoding. In this case it is no longer possible to keep unaltered
the amount of information, which is reduced during the encoding phase.

According to the type of data, the details that can be considered not very important
are chosen to be lost. For example, in the jpeg encoding, this is done for images: the
details at high frequency are reduced.

Figure 10.2: In these images the bit number is reduced by a factor of 2 each time.
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11 x Sistemi di trasmissione numerica
11.1 Sistema di comunicazione

The transmission through the physical channel is always done using analogical signals.
The numeric source can come from an operation of sampling and quantization of a
generic analogical source. The communication systems themselves can be for analogical
or numerical signals.

(a) Communication systems for analogical sig-

nals.

(b) Communication systems for numerical sig-

nals.

Figure 11.1: Communication systems.

11.2 Transmission channel

The transmission medium is characterized by a transfer function in frequency H(f)

which determines the characteristics of the output signal given the input.

The principal alterations that the transmission medium can add are:
– Attenuation of the power of the signal as a function of its frequency and the

distance traveled.
– Addition of a different delay for each frequency component of the signal (dis-

persion).
Each transmission medium has a region of the frequency domain on which the best
response is found, in terms of attenuation and dispersion. This region is called band-

width of the channel.

For a signal to be received as it has been transmitted, the bandwidth of the channel
needs to be equal or bigger than the bandwidth of the signal itself. Otherwise, the
signal loses some harmonics and is consequently distorted, this is, altered.

For any transmission medium the band with is reduced when the length of the medium
is increased.
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11.2.1 Occupied band vs bandwidth

The extension in frequency of the significant part1 of the spectrum of the signal cor-
responds to the occupied band.

If the communication channel is linear, the spectrum of the received signal is equal
to the spectrum of the transmitted signal times the transfer function of the channel.

To avoid the distortion the channel must modify the spectrum as less as possible.

Bandwidth of the signal > Band occupied by the signal

11.2.2 Channel types

Low-band transmission: the medium shows a bandwidth around f = 0.

Band-pass transmission: the medium shows a bandwidth in different ranges of
frequency. An EM wave (carrier) is used to transmit the signal.

The most used parts of the electromagnetic spectrum are the radio-waves and mi-
crowaves (radio frequency) and from infrared to visible light and ultraviolet for optical
communications.

1
For example the half amplitude band.
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11.2.3 Band-pass transmission

In general, the higher the frequency of the carrier of a signal is, the bigger the available
bandwidth for the transport of information, so the bigger the amount of infor-

mation we can transfer per time unit.

Note: Be careful with plots in logarithmic scale. The bandwidth for the optical fiber
is much wider than the one of the coaxial wire.

11.3 Effect of the noise

It is well known that all the physical systems introduce a noise signal, that can be
represented as a casual process that alter impulses during their generation, propagation
and reception.

The typical effect of the noise consists on perturbing the form of the signal and adding
errors in reception ) Calculation of the error probability.

11.4 From the source to the information transmission
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11.5 Modulation

The transmission of a digital (numeric) signal requires to create an opportune signal
which is adapted to being transported in the transmission medium. The digital se-
quence is used to modify (modulate) some parameter of the signal (modulated) sent to
the transmission medium.

11.5.1 Example: transmission of a 4 level numeric signal

(a) Numeric source s[n]. (b) Analogical signal g(t). Its fmax needs to be

smaller than B and needs to have null value in

correspondence of the times which are multi-

ples of the time of the symbol (Ts). It is called

base band impulse.

Figure 11.2: Example.

From the multiplication of the previous two signals we get x(t) =
P

n sng(t� nTs).

If the transmission channel is ideal (it does not add any noise and does not alter the
signal), sampling the received signal x(t) with step Ts the sequence sn can be obtained,
and therefore, the transmitted bit sequence.
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Figure 11.3: Example: x(t) =
X

n

sng(t� nTs).

11.6 Binary transmission in base band

Tb =
1

bit rate is the time that elapses between one bit and the next one, and it is called
bit time.

The base band impulse is multiplied by a coefficient associated to the bit that we want
to transmit. In the case of binary transmission there will be only two values of the
multiplicative coefficient: c1 and c2.

Consequently, depending on the bit the following signals are transmitted: c1g(t) or
c2g(t).

11.6.1 Pulse Amplitude Modulation (PAM)

The choice of the values of the coefficients is generally the antipodal one, which allows
to reduce the transmitted power. Thus, c2 = �c1. See fig. 11.4.

...110... ! sn = c1�n+1 + c1�n � c1�n�1

x(t) =
X

n

sng(t� nTb) = c1g(t+ Tb) + c1g(t)� c1g(t� Tb)
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Figure 11.4: Pulse Amplitude Modulation: ...110...

11.6.2 Reception of a binary signal in base band

If the transmission channel is ideal (it does not add noise nor alter the sequence),
sampling the received signal x(t) with step Tb the sequence sn is obtained, and thus,
the sequence of the transmitted bits (fig. 11.5).

x(nTb) = sn = c1�n+1 + c1�n � c1�n�1

Figure 11.5: Pulse Amplitude Modulation. Received signal: ...110...

11.7 Transmission in pass band

An electromagnetic wave2 called carrier is used at a known frequency fp to translate
the spectrum of the signal towards the frequency of the carrier (Fourier transform’s
modulation property).

The band-pass signals are normally analyzed exploiting the representation of their
complex envelope (inviluppo complesso). The signal m(t) can also be complex: we
can transmit the modulus in phase, and the phase in quadrature. Therefore, using
this system we can simultaneously send two real signals.

Note that the signal after ⌃ must be real, as if it was not, we would not be able to
transmit it. This means that its frequency spectrum has hermitian symmetry. The
negative frequencies do not give additional information. This is taken into account to
get the expression for g(t).

2
Mainly sines and cosines.
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11.7.1 Geometrical representation of signals

The signals are represented as points of the complex plane. The modulus of the signal
is the distance from the origin to the point. The instantaneous phase of the signal is
analogous to the angle with the positive real axis.

At each time t1 it will be possible to associate a different point of the complex plane.
The effect of the fc frequency term is a rotation of the point along a constant-modulus
circumference.

In most of the cases the signals are modulated in phase or/and amplitude, so in many
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cases we can ignore the term ej2⇡fct, as we know exactly what it does.

11.7.2 Reception of band-pass signals

The received signal is filtered together to the noise added during the transmission, to
limit the amount of noise as much as possible. Then the signals is demodulated on
the two quadratures. It is important to use the same fc used before.

x(t) cos (2⇡fct) = g(t) cos (2⇡fct) + n(t) cos (2⇡fct)

= gI(t) cos (2⇡fct)
2 � gQ(t) sin (2⇡fct) cos (2⇡fct) + n(t) cos (2⇡fct)

=
1

2
gI(t) +

1

2
gI(t) cos (2⇡2fct)�

1

2
gQ(t) sin (2⇡2fct) + n(t) cos (2⇡fct)

After the low-pass filter: dI(t) =
1
2gI(t) + nI(t).

x(t) sin (2⇡fct) = g(t) sin (2⇡fct) + n(t) sin (2⇡fct)

= gI(t) sin (2⇡fct) cos (2⇡fct)� gQ(t) sin (2⇡fct)
2 + n(t) sin (2⇡fct)

= �1

2
gQ(t) +

1

2
gQ(t) cos (2⇡2fct) +

1

2
gI(t) sin (2⇡2fct) + n(t) sin (2⇡fct)

After the low-pass filter: dQ(t) = �1
2gQ(t) + nQ(t).

11.7.3 Typical band-pass modulation

– Amplitude modulation (ASK): variation of the instantaneous amplitude of
the carrier.

– Frequency modulation (FSK): variation of the instantaneous frequency of the
carrier.

– Phase modulation (PSK): variation of the instantaneous phase of the carrier.
– QAM modulation: simultaneous variation of the amplitude and the phase

(ASK+PSK).
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Amplitude modulation ASK

The 0 and 1 bits are represented using two different amplitude levels. The carrier is
multiplied with the values 1 and 0 depending on the bit we want to transmit. It is the
simplest modulation that can be generated, but its resistance against noise is smaller.

Modulation with variable envelope: strong distortion in presence of non-linearities.
These non-linearities are added by the channel depending on the instantaneous power:
when the signal has a maximum, the non-linearities are added at their maximum, and
when there is no signal, there is no addition. These can not be eliminated afterwards.

This kind of modulation was very used in the past (for the radio, for example), but
nowadays it is not so popular (even though it is used for optical transmissions, for
short transmissions).

Figure 11.6: Amplitude modulation ASK.

Frequency modulation FSK

The 0 and 1 bits are represented using two different frequencies of the carrier. The
signal is modulated at constant envelope: limited effect of the non-linearities added
by the transmission medium.

The needed band is a bit wider than with ASK, as we are using two frequencies, but
it is more resistant to noise.
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Reception: frequency discriminator.

Figure 11.7: Frequency modulation FSK.

Phase modulation PSK

The bits 0 and 1 are represented using two different initial phases.

The signal is modulated at constant envelope: smaller impact of non-linearities of
the transmission medium.

Reception: coherent demodulator or differential demodulator that acts on two consec-
utive symbols.

Figure 11.8: Phase modulation PSK.

Multilevel modulation

To increase the transmission capacity without modifying the occupied band, it is
necessary to increase the multilevel modulation.

Example: PAM in base band or ASK in translated band.
– The input bit flux is divided in groups of log2 N .
– N different amplitude levels are used.
– For each amplitude level transmitted (also called symbol), there are now logically

corresponding n = log2 N bits.
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(a) Binary ASK or PAM: two amplitude levels ) 1

bit per level.

(b) 4-ASK or 4PAM: 4 amplitude levels

) 2 bit per level.

Figure 11.9: Multilevel modulation.

Multilevel amplitude modulation

Multilevel phase modulation

Example: PSK in translated band. The input bit flux is divided in groups of log2 N .
N different phase levels are used. For each transmitted level (also called symbol), there
are logically corresponding n = log2 N bits.

(a) QPSK. (b) 8-PSK.

Figure 11.10: Multilevel phase modulation.
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Notice that the labels of the different phase levels are assigned using Gray’s encoding,
which is more resistant to noise.

Amplitude and phase multilevel modulation

Be careful with the noise, we can not infinitely increase the levels, as with higher
number of levels, less noise is needed to have problems.

Example: QAM in translated band. The bit flux is divided in groups of log2 N . We
use N different amplitude and phase levels. For each transmitted level (also called
symbol), there are logically corresponding n = log2 N bits.

In radio, 1024QAM: single impulse 10 bits.

16QAM: optics, nowadays trying 64 bits (32 is not used because it is not square).

The multilevel modulation is used with two objectives:

– Increase the transmission velocity, keeping the same frequency band occupation.

∗ R ⌘ permitted rate for a binary transmission with occupied band B.
∗ nR ⌘ allowed rate for a multilevel transmission with occupied band B.

– Decrease the used resources, in terms of occupied band, keeping the bit-rate
unaltered.

∗ B ⌘ necessary band to make a binary transmission at bit-rate R.
∗ B/n ⌘ necessary band to make a binary transmission at bit-rate R.
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The number of levels (and therefore the number of bits carried by each level) cannot be
increased arbitrarily due to noise which can introduce misunderstanding in reception
(reception error). See calculation of the probability of error.

(a)

(b)

Figure 11.11: Multilevel modulation.
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12 x ISI and matched filter

12.0.1 Transmitted signal (base band)

The shape of the single impulse is determined by g(t), whereas the value taken at its
maximum depends on the specific amplitude ak.

In this way, it is possible to write analytically the signal, composed by all the impulses1

consecutively:

s(t) =
1X

k=�1

akg(t� kTb)

In the following sections we will try to find the optimal g(t).

12.0.2 Received signal (base band)

The signal s(t) is propagated through the channel with transfer function H(f). After
the reception filter c(t) we get y(t). When sampling is done, it is possible to write the
expression of the received signal this way:

y(ti) = y(iTb) =
1X

k=�1

akp(iTb � kTb) + n(iTb)

The function p(iTb � kTb) represents the form of the base impulse g(t), modified by
the propagation through the medium. Distorted by H(f) and C(f). Knowing that:

s(t) =
1X

k=�1

akg(t� kTb) p(t) = g(t) ⇤ h(t) ⇤ c(t)

We have that:

y(ti) = y(iTb) =
1X

k=�1

akp(iTb � kTb) + n(iTb)

We can rewrite it this way:

y(ti) = y(iTb) = ai +
X

k 6=i

akp(iTb � kTb) + n(iTb)

1
They are no longer Dirac’s deltas, but copies of g(t) that carry information.
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where ai is the value generated at time iTb,
P

k 6=i akp(iTb � kTb) is the sum of the
residue of the other k impulses present at time iTb (with i 6= k) and n(iTb) is the value
of the noise signal at the instant iTb.

12.1 Intersymbolic interference

The dotted lines in the image in the right are the independent impulses. Their peak
values are the stars, the ones we want to read in the received signal. However, see that
the values we get are the sums, the ones given by the points in the thick continuous
line.

The difference between stars and points is the intersymbolic interference (ISI). ISI
signal: X

k 6=i

akp(iTb � kTb)

If this term is not null, the presence of other symbols adds another noise term to the
signal, which can generate errors in the decision phase.

The condition to have null ISI is:
X

k 6=i

akp(iTb � kTb) = 0

Therefore, the shape of the impulse has to be null at all the integer multiples of Tb, so
that there is no effect of the ISI in the optimal sampling intervals. Optimal form:2

p(t) =
sin ⇡ t

Tb

⇡ t
Tb

2
It is not the only family of functions that can be used for this, but yes the one with the narrowest

frequency band. That is the reason why we call it optimal.
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If we write the condition to have null ISI in the frequency domain, we get Nyquist’s

criteria for the ISI:
1X

k=�1

P

✓
f � k

Tb

◆
= Tb

Explanation: we are sampling in time, so we are creating replicas in the frequency
domain. To obtain a single impulse in time, we need to get a constant in frequency
after creating all the replicas.

This criteria ensures that all the samples observed in the interval nTb will be null,
except from the one in the center (a constant value is obtained in frequency only if
the signal in time is formed by a single impulse).

The function that occupies the least band in frequency and satisfies this relationship
is the rectangle.

12.1.1 Ideal impulse’s shape: cardinal sine

If H(f) and C(f) do not add any distortion to the signal,

p(t) = g(t) =
sin ⇡ t

Tb

⇡ t
Tb

) G(f) = Tb rect(Tbf)

If the low pass channel has (unilateral) band B, the shortest bit time Tb that can be
used is equal to 1/2B, and thus the maximum bit-rate is equal to the double of

the band (2B):
1

2Tb
= B ) bit rate =

1

Tb
= 2B

As we have said the cardinal sine is the best impulse form as it minimizes the band
occupation, but it is not easy to use in reality. We take it as a theoretical limit.
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It is not physically doable, as it goes from �1 to 1 and consequently has instanta-
neous transitions in frequency. A perfect synchronization would be needed, given that
a small delay with respect to the optimal sampling instant would provoke a strong ISI
to arise.

12.1.2 Raised-cosine impulses

In practice waveforms with wider band are used, with more gradual transitions and
odd symmetry, with respect to the extreme frequencies of the cardinal sine, so as to
respect Nyquist’s criteria.

The transition at odd symmetry with respect to the frequency ± 1
2Tb

guarantees the
annulment of the base band impulse at the time instant t = nTb.

12.1.3 Expression of the raised-cosine

P (f) = G(f) =

8
>><

>>:

Tb, |f |  1�↵
2Tb

Tb
2

h
1 + cos

⇣
⇡Tb
↵

h
|f |� 1�↵

2Tb

i⌘i
, 1�↵

2Tb
 |f |  1+↵

2Tb

0, otherwise
The ↵ roll-off factor indicates the excess band in comparison with the ideal case of the
rectangle. The band and the bit-rate of a raised-cosine signal will therefore be:

B =
1 + ↵

Tb
Rb = (2� ↵) · B

with B  Rb  2B.
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12.2 Optimal receptor (base band)

Optimal reception of a single impulse in presence of noise.

– The receptor knows the form of the impulse g(t).
– The noise is of type AWGN with null mean value and variance �2

n = N0
2 .

y(t) = g(t) ⇤ c(t) + w(t) ⇤ c(t) = g0(t) + n(t)

Optimal situation: maximize the energy of the signal, minimize the energy of the noise.
This is equivalent to finding the c(t) that allows to maximize the SNR: matched filter.

12.2.1 The matched filter

The optimal reception is obtained when we use the matched filer as reception filter.
We call it matched because it matches the signal g(t).

It allows to maximize the power of the signal and to minimize the power of the noise,
this is, to minimize the SNR. Peak SNR (we are checking it in the maximum point of
our signal):

⌘ =
|g0(T )|2

E{n2(t)}

where the numerator is the instantaneous power at time T and the denominator is the
mean power of the noise.

Mean power of the noise

n(t) = w(t) ⇤ c(t)

SN(f) = SW (f)SC(f) =
N0

2
|C(f)|2

E{n2(t)} =

Z 1

�1
SN(f)df =

N0

2

Z 1

�1
|C(f)|2df
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Instantaneous power of the signal

g0(t) = g(t) ⇤ c(t) ! G0(f) = C(f)G(f)

g0(t) =

Z 1

�1
C(f)G(f)ej2⇡ftdf

|g0(T )|2 =
����
Z 1

�1
C(f)G(f)ej2⇡fTdf

����
2

12.2.2 Maximum value of the peak SNR

⌘ =
|g0(T )|2

E {n2(t)} =

���
R +1
�1 C(f)G(f)ej2⇡fTdf

���
2

N0
2

R +1
�1 |C(f)|2df

The matched filter allows us to maximize this relationship. Using the Schwartz in-
equality: ����

Z 1

�1
�1(x)�2(x)dx

����
2


Z 1

�1
|�1(x)|2 dx

Z 1

�1
|�2(x)|2 dx

with �1(f) = C(f) and �2(f) = G(f)ej2⇡fT , we have:
����
Z +1

�1
C(f)G(f)ej2⇡fTdf

����
2


Z +1

�1
|C(f)|2df

Z +1

�1
|G(f)|2df

⌘ =

���
R +1
�1 C(f)G(f)ej2⇡fTdf

���
2

N0
2

R +1
�1 |C(f)|2df


R +1
�1 |C(f)|2df

R +1
�1 |G(f)|2df

N0
2

R +1
�1 |C(f)|2df

=
2

N0

Z +1

�1
|G(f)|2df = ⌘max

This value represents the maximum of ⌘. It does no depend on the expression of the
frequency response of the filter C(f). It only depends on the energy of the signal and
the spectral power density of noise.

12.2.3 Expression of the matched filter

It is possible to find the expression of C(f) that allows to obtain:

⌘ =
2

N0

Z 1

�1
|G(f)|2df = ⌘max
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This is satisfied when:
Copt(f) = kG⇤(f)e�j2⇡fT

The optimal filter is therefore linked to the Fourier transform of the impulse. Consid-
ering the signal is real, we obtain

G(�f) = G⇤(f)

copt(t) = kg⇤(T � t) = kg(T � t)

12.2.4 How the matched filter acts

Take two signals without noise c1g(t) and c2g(t). They are plotted in the first graph.

The second graph shows c1g(t) and c2g(t) with the added noise. The values at time
t = 0 are almost equal.

In the third graph we can see the effect of the matched filter. The values at t = 0

are again quite different.

12.3 Reception by correlation measurement

The response to the impulse of the matched filter is a time scaled, delayed and inverted
version of the impulse used in transmission.

The reception of the information is based on a measure of similarity (correlation)
between the received signal and the sample impulse we were expecting to receive.

In practice, the matched filter performs a time integral of the received impulse on
an interval equal to the symbol duration, to which the integral of the power or the
noise (generally a constant) through the band of the signal is summed.
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12.3.1 Decision operation

After the matched filter, the decision maker elaborates the sample of the received
signal at each T . It is a random number (estimation of the energy of the received
signal) that is compared with the possible results expected.

It is decided that the symbol whose expected level is closest to the measured received
energy has been transmitted.

12.4 ISI + matched filter

To eliminate the intersymbolic interference, P (f) needs to have a raised-cosine like
expression.

Very frequently the square root of a raised-cosine is used as transmission impulse.
In this way the adapted filter will have the same expression and the result of their
multiplication will be a regular raised-cosine.

If it is known a priori, also H(f) can be compensated in order to have a overall function
equal to a raised-cosine.
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13 x Probabilità di errore
13.1 Base-band transmission

We will start by analyzing the case of binary base-band transmission in presence of
white Gaussian noise w(t) and the matched filter.

13.1.1 Received signal

w(t) is a Gaussian white noise with null mean value and bilateral spectral power
density

Sw(f) =
N0

2
The power of the noise is �2

wF
= N0B.

Figure 13.1: Remember that we said that in practice the impulses we used were
not cardinal sines but raised-cosines. Considering this, the form of the filter in the
frequency domain is not the rectangle shown.

We are considering this signal:

x(t) =
X

k

akg(t� kTb)

With this,

y(t) = [x(t) + w(t)] ⇤ h(t) ⇤ c(t)
= x(t) ⇤ h(t) ⇤ c(t) + w(t) ⇤ h(t) ⇤ c(t)
= p(t) + wF (t)

13.1.2 Sampling at the receiver

Both the signal and the added noise are sampled:

y(iTb) = x(iTb) + wF (iTb) = ai + wF = ±A+
1

Tb

Z (i+1)Tb

iTb

w(t)dt

E = A2Tb k =
1

ATb
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ai can take the values c1 = �A or c2 = �c1 = +A. wF is a Gaussian random variable
with null mean value and variance �2

wF
.

After making the low-pass filtering and the sampling, the following values are mea-
sured:

bc1 = c1 + wF = �A+ wF if we have transmitted c1

bc2 = c2 + wF = +A+ wF if we have transmitted c2

13.1.3 Distribution of the signal sampled on the receiver

The variable yi is therefore a random process that can be represented as the sum of two
Gaussian processes, given that it is composed by a determined value (±A) summed to
the Gaussian process (noise) low-pass filtered.

µy = ±A �2
y =

k2N0E

2
=

N0

2Tb

13.1.4 Error in reception

Define the distance between the amplitudes associated to the symbols as d = |c2 � c1|
and the decision threshold V = c1 +

d
2 . We decide that the closest coefficient to the

measured value of yi has been transmitted. A transmission error is made when:

yi > c1 +
d

2
= �A+

d

2
c1 = �A has been transmitted

yi < c2 �
d

2
= +A� d

2
c2 = +A has been transmitted
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It is possible that the received signal is recognized differently to the transmitted one
(wrong bits). The possible causes are:

– Thermal noise (transmission medium, transmission and reception devices).
– Interferences of other transmissions through the same medium.
– Electromagnetic disturbances.
– Synchronism loss.
– ...

Conditioned probability (transmitted bit: “0”)

The probability error can be computed from the conditioned probability of the Gaus-
sian distribution surpassing the threshold given that an specific symbol has been trans-
mitted.

Pe0 = P (yi > V |bi = 0) = P (yi > V |ai = �A)

=

Z +1

V

fy(y|0)dy =
1q
⇡N0

Tb

Z +1

V

e
� (y+A)2

N0/Tb dy

Conditioned probability (transmitted bit: “1”)

Pe1 = P (yi < V |bi = 1) = P (yi < V |ai = +A)

=

Z V

�1
fy(y|1)dy =

1q
⇡N0

Tb

Z V

�1
e
� (y�A)2

N0/Tb dy

Error probability (binary transmission)

The total error probability is very easy to compute using the conditioned probabilities
and the occurrence probability of the binary symbols bi.

Pe = P (bi = 0)P (yi = 1|bi = 0) + P (bi = 1)P (yi = 0|bi = 1)

Normally P (0) = P (1) = 1/2.
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(a) Transmitted bit “0”. (b) Transmitted bit “1”. (c)

Figure 13.2: Error probability in a binary transmission.

To compute the value of the conditioned probability we have to integrate both parts
of the Gaussians that go over the threshold V .

Pe =
1

2

Z +1

V

fy(y|0)dy +
1

2

Z V

�1
fy(y|1)dy

To compute these areas, normally the Q-function is used, where

Q(x) =
1p
2⇡

Z 1

x

e�
u2

2 du

If the symbols are equiprobable, the optimal point for the threshold is the one in the
middle of the transmitted symbols:

V =
c1 + c2

2

In this case the computation of the areas is simplified:

Pe0 = Q

 r
2Eb

N0

!
= Q

✓
A

�y

◆
= Pe1 = Pe

where Eb = A2Tb and �2
y = k2N0E

2 = N0
2Tb

for a symmetric binary channel. So it is
enough to compute just one integral, using symmetry.

There is another function that we can use to make this calculations: the comple-

mentary error function erfc:

erfc(z) = 1� erf(z) = 1� 2p
⇡

Z z

0

e�t2dt

This allows us to write the error probability as:

Pe = Q

 r
2Eb

N0

!
=

1

2
erfc

 r
Eb

N0

!

For binary transmissions, the error probability depends only on the rate between the
mean energy per bit and the spectral power density of the noise.
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(a) Px(a) (b) Q(x) (c) erfc(x)

(d) (e)

Figure 13.3: Q-function and erfc.

The error probability in the case of binary PAM transmission depends only on the
distance between the values associated to the symbols and the power of the noise.

Pe = Q

✓
�

�y

◆
= Q

✓
d/2

�y

◆
= Q

 s
d2

4N0B

!

A binary PAM transmission system with antipodal symbols (for example �5, 5) has
the same error probability as a transmission system with unipolar symbols (0,10).

However the transmitted power is proportional to c21 + c22, so it is double in the
case of unipolar symbols. So it possible, it is better to use antipodal symbols, as it
allows us to spend less power.

In the case of antipodal symbols, we find that

d

2�y
=

|c1 � c2|
2

r
2Eg

N0
=

s
2c21Eg

N0

in which Eg represents the energy of the waveform g(t) used for the transmission.

In this case the transmission symbols are equivalent to the bits, so

ES = Eb = c21Eg

Thus,

Pe = Q

 r
2Eb

N0

!
= Q

 r
2ES

N0

!
= PS

In the case of unipolar symbols,
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c1 = 0
d

2�y
=

s
c22Eg

2N0

In this case the energy varies depending on the symbol. If they are equiprobable, the
mean energy per symbol (and per bit) wile be

Es = Eb =
c22Eg

2
Half of what we have obtained before, as now half of the time we are in a bit of value

0. Realize that as smaller this value gets, the error probability increases.

Pe = Q

 r
Eb

N0

!
= Q

 r
ES

N0

!
= PS

13.1.5 Multilevel transmission in base-band (M-PAM)

In this case there are M possible ak corresponding to the same amount of symbols.
Each symbol carries log2 M bits. If we use 4 levels (2 bits), the symbol time T = 2Tb

is twice as long as the bit time.

Gray code: each symbol differs from the adjacent one only by one bit. It minimizes
the error probability, so it is widely used.

Error probability per symbol (M-PAM)

Note: The symbols are composed by more than one bit, so be careful, the probability

per symbol 6= the probability per bit.

In the case of M equidistant levels (each to distance d from the adjacent levels) and
equiprobable symbols, the computation of the error probability is simplified.

Take figure 13.4. We have M � 1 thresholds. The number of superposed areas is
2(M � 1). The symbol probability, considering they are equiprobable is 1

M .

PeS =
2(M � 1)

M
Q

 s
d2

4N0B

!
= 2

✓
1� 1

M

◆
Q

✓
d

2�y

◆
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In the general case, we expect a higher error probability than in the binary case.

Figure 13.4:
Z 1

V1

fy(y|c1)dy = Q

 s
d2

4N0B

!
.

With M equidistant (distance d) and equiprobable levels, it can be shown that

d

2�y
=

|cm � cm+1|
2

r
2Eg

N0
=

s
(cm � cm+1)2

2

Eg

N0

ES =
1

M

MX

k=1

ESk
=

d2Eg

2M

M/2X

k=1

(2k � 1)2 =
d2

2

M2 � 1

6
Eg

This allows us to write:

PeS = 2

✓
1� 1

M

◆
Q

 r
6

M2 � 1

ES

N0

!

Error probability per bit (M-PAM)

To compare the performance of PAM systems with different amount of symbols, it is
convenient to compute the error probability per bit. The relation between the energy
per symbol and the energy per bit is very simple:

ES = log2 M Eb

In the case of Gray’s encoding, each symbol differs only by one bit from the adjacent
symbols. So each time an error occurs, it occurs only by one bit (1/ log2 M). So the
error probability is smaller than if we used the natural encoding:

Peb '
PeS

log2 M
=

2

log2 M

✓
1� 1

M

◆
Q

 r
6 log2 M

M2 � 1

Eb

N0

!

Note: The ' symbol is used, because we are assuming that the errors that happen
are a consequence of missing only one bit. We are assuming that errors can not take
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us to symbols further than the adjacent ones. In practice this is quite unusual, but
mathematically, the ' symbol is more correct than =.

Figure 13.5: P ("b) vs Eb/N0 (dB).

For equal Eb/N0, increasing the number of levels implies a much higher error proba-
bility.

However, the bit-rate of the transmitted signal is a multiple of the binary case: the
frequency band is the same, so the symbols have the same speed, but each symbol has
more bits! To obtain the same performance in terms of capacity of the binary case we
need a higher Eb/N0 and a wider band.

If we want to use a multilevel transmission to increase the bit-rate, we also have
to increase Eb and the bandwidth (so the power band of the noise also increases).
Penalty.

13.1.6 Bit error rate

The error probability per bit is normally indicated as bit error rate (BER). The BER
is an indicator that measures the transmission quality of the communication system.
It is a synthetic indicator based on other parameters, such as bit-rate and received
power.

It tells what to expect when using the communication system, but it does not show
the origin of the transmission error.

A transmission system can be considered error-free in the case on which the BER is
close to 10�9 � 10�12.

If the error probability needs to be further reduced, error corrector codes can be used
(such as Forward Error Correction FEC). It does the opposite thing we did when we
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learned about source encoding. It adds some redundancy bits to the signal (parity),
so that if a limited number of errors happen, they can be corrected: (n, k) code )
channel encoding.

k information bits | n� k partity bits

They are projected to be able to correct up to C errors (corrector power of the code).

As a consequence of this the bit-rate of the transmitted signal is higher than the one
of the original signal.

Example: M-PAM transmission in base-band

– Transmission at 5Mb/s with 2-PAM modulation (M = 2):
∗ Bit time Tb = 1/5 · 106 = 200ns.
∗ Minimum band needed: BM=2 = 1/2Tb = 2.5MHz (roll-off factor ↵ = 0).

– Transmission at 5Mb/s with 4-PAM modulation (M = 4):
∗ Symbol time Ts = 2 · Tb = 400ns.
∗ Minimum band needed: BM=4 = 1/2T = 1.25MHz (BM=4 = BM=2/2).
∗ Needed energy per bit: 5Eg/2 (4dB more than for the 2-PAM case).

– Transmission at 5Mb/s with 8-PAM modulation (M = 8):
∗ Symbol time Ts = 3 · Tb = 600ns.
∗ Minimum band needed: BM=8 = 1/2T = 833 kHz (BM=8 = BM=2/3).
∗ Needed energy per bit: 7Eg (8.5 dB more than for the 2-PAM case, 4.5 dB

more than for the 4-PAM case).

13.2 Transmission in translated band

The main difference with respect to base-band transmission is that we can transmit
two signals in quadrature. So we have two components, and the noise will distort both
of them.

(
ak = Re{m(t)}
bk = Im{m(t)}

So,
x(t) = ak cos(2⇡fct) + bk sin(2⇡fct)
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Therefore,

y(t) = x(t) ⇤ h(t) ⇤ c(t) + w(t) ⇤ c(t)
d(t) / ak + jbk + nI + jnQ

The noise acts on both components in an independent way. Be careful: here fc stands
for carrier, not campionamento.

13.2.1 Effect of the noise: QPSK constellation

We saw that the possible symbols of a transmission in band-pass are organized in
constellations. We will use these as a geometrical representation of noise.

The effect of the noise on the received symbols: both nI and nQ are two Gaussian
random variables with null mean and variance �2

w.

Therefore, we will have a circular cloud around the nominal values of the symbols.
The stars from the figure 13.6a represent a 2D Gaussian distribution.

(a) (b)

Figure 13.6: QPSK constellation.

As we did in the base band case, it is convenient to compute the distance between the
symbols of the constellation, because is useful for finding the error probability of the
transmission:

d =
p

(am � ak)2 + (bm � bk)2

Error per symbol

Due to the noise �, a symbol cm can be interchanged with an adjacent symbol (fig.
13.6b).

The probability of this change to happen, with the diametrically opposite symbol (c3
in the figure) is very low and it can be neglected.
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In the case of the QPSK modulation, we will have an error when we go out of the
colored sector, this is, when

�I >
dmin

2
or �Q < �dmin

2

Both events can be considered disjunctive, so we find

P

✓
�I >

dmin

2

◆
= P

✓
�Q < �dmin

2

◆
= Q

✓
dmin

2��

◆

Therefore the error probability of the symbol c2 will be:

Pec2
= 2Q

✓
dmin

2��

◆
= PeS

given that the symbols are equiprobable and neglecting the probability of going to c3.

If the symbols are equiprobable, and the distances are always the between adjacent
symbols, this probability will be the same for all.

It can be shown1 that

�� =

s
N0

Eg

The error probability per symbol will therefore be:

Pes = 2Q

 r
Eg

N0

dmin

2

!
= 2Q

0

@
s

d2minEg

4N0

1

A

The probability of an error happening is equal to the probability of a symbol going to

another quadrant as a consequence of the noise, multiplied by the number of neighbors.

Knowing that

|cm|2 =
d2min

2

Es =
1

2
|cm|2Eg = log2 M Eb

The error probability per symbol is:

Pes = 2Q

0

@
s

d2minEg

4N0

1

A = 2Q

 r
Es

N0

!

1
The demonstration is in the book.
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Error probability per bit

To consider this value is useful as it allows us to compare the error probability of
diverse modulations.

In this case each symbol is formed by 2 bits, and thanks to the Gray’s encoding, two
adjacent symbols differ only by one bit. The error probability per bit in the case
of the QPSK modulation will be:

Peb =
Pes

log2 M
= Q

 r
2Eb

N0

!

It is equal to the error probability found for the 2-PAM with antipodal symbols. For
2-PAM we had a constellation only over the real axis, constituted of 2 points. Now
we have 4 points, but in two axis. It is as if we were applying two independent binary
antipodal modulations, one to the real part and another one to the imaginary, and
that is the reason we find the same probability of the 2-PAM.

Because of this, in general, the modulation called BPSK is almost never used, which
is constituted of two phase points (0, ⇡). Its error probability is the same of the QPSK,
but this one doubles the transmission speed or reduces to half the needed bandwidth.

13.2.2 Effect of the noise on M-QAM systems

To compute the error probability for the multilevel systems M-QAM, we work in the
same way we have done for the QPSK constellation.

The number of levels is higher, but the constellations are built following the same
relations.

This time too, it will be possible to individuate a minimum distance, which on a first
approximation it will determine the error probability, neglecting the symbols at higher
distance.
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Example: 16-QAM constellation

Figure 13.7: 16-QAM modulation.

An error will happen each time the noise moves a symbol to a zone closer to another
symbol.

In this case there are three kind of symbols, one in each of the zones colored in the
image:

1) 4 internal symbols (simboli interni, blue).
2) 4 corner symbols (simboli di spigolo, green).
3) 8 border (simboli di bordo, orange).

For the internal symbols, an error is made every time one of the following happens:

�I >
dmin

2
, �I < �dmin

2
, �Q >

dmin

2
, �Q < �dmin

2

The four events have probability equal to

P

✓
�I >

dmin

2

◆
= Q

0

@
s

d2minEg

4N0

1

A

The total error probability for these symbols will be the sum of the probabilities of
the 4 events:

PeS1
' 4P

✓
�I >

dmin

2

◆
= 4Q

0

@
s

d2minEg

4N0

1

A

For the border symbols, an error occurs when one of the following is fulfilled:

�I >
dmin

2
, �I < �dmin

2
, �Q >

dmin

2

The 3 events have probabilities equal to:

P

✓
�I >

dmin

2

◆
= Q

0

@
s

d2minEg

4N0

1

A
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The total error probability for these symbols will be the sum of the probabilities of
the 3 events:

PeS2
' 3P

✓
�I >

dmin

2

◆
= 3Q

0

@
s

d2minEg

4N0

1

A

For the corner symbols, an error occurs when one of the following is fulfilled:

�I < �dmin

2
, �Q >

dmin

2

The 2 events have probabilities equal to:

P

✓
�I >

dmin

2

◆
= Q

0

@
s

d2minEg

4N0

1

A

The total error probability for these symbols will be the sum of the probabilities of
the 2 events:

PeS3
' 2P

✓
�I >

dmin

2

◆
= 2Q

0

@
s

d2minEg

4N0

1

A

With 16 equiprobable symbols, the error probability per symbol will be given by the
sum of all the error probabilities of each symbol:

PeS =
4Pes1 + 8Pes2 + 4Pes3

16
' 3Q

0

@
s

d2minEg

4N0

1

A

Where 3 is the average number of neighbors that these points have (check it!).

In the first approximation, the error probability per symbol is determined by the

probability of the noise moving a point to one of the adjacent quadrants, multiplied by

the mean number of close symbol.

Mean energy per symbol in a 16-QAM constellation

To write this probability in terms of the energy used to transmit a symbol, it is
considered that:

ES =
1

2
|cm|2Eg = log2 M Eb

For internal symbols: |cm|2 = d2min
2

For border symbols: |cm|2 = 5d2min
2

For corner symbols: |cm|2 = 9d2min
2

Thus,

ES =
1

2
|cm|2Eg =

1

2


4 + 8 · 5 + 4 · 9

16

d2min

4

�
Eg = 5

d2min

4
Eg
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13.2.3 Error probability per symbol of a M-QAM constellation

In the case of 16-QAM we have just considered, the error probability per symbol in
terms of the mean energy per symbol is:

PeS ' 3Q

0

@
s

d2minEg

4N0

1

A = 3Q

 r
Es

5N0

!

In general, it can be shown that the expression of the error probability per symbol

for a number of levels equal to M is

PeS = 4

✓
1� 1p

M

◆
Q

 s
3ES

(M � 1)N0

!

13.2.4 Error probability per bit of a M-QAM constellation

Considering that each symbol represents log2 M bits and that we are using Gray’s
encoding, we find that:

Peb =
4

log2 M

✓
1� 1p

M

◆
Q

 s
3 log2 MEb

(M � 1)N0

!

Remember that the value of Q decreases as its argument gets bigger. Increasing M ,
the argument gets smaller and the error probability bigger. To compensate this, we
can increase Eb or decrease N0, tolerate less noise.

In the analog formula for M-PAM, we had 1/(M � 1)2 inside, so the decrease of the
argument was a lot faster (no more than 8 levels). With M-QAM the situation is a
bit better (1024 levels can be used, but normally 16-QAM is used).

13.2.5 Error probability of M-PSK constellations

It can be found in an analogous way to what we have done for the M-PSK modula-

tion.
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The error probability per symbol and per bit is equal to:

PeS = 2Q

 r
2ES

N0
sin2 ⇡

M

!

Peb =
2

log2 M
Q

 r
2 log2 M

Eb

N0
sin2 ⇡

M

!

PSK is less convenient than the QAM of the same number of symbols, so it is not so
widely used.

Error probability per bit for M-QAM

Figure 13.8: Choose a constant Eb/N0 (the dynamics of the symbols do not change),
and see how increasing the number of bits increases the error probability per bit (BER).
QPSK⌘4-QAM.

The highest error probability we can have is 50%, which is the worst case, we do
not know anything. The lines in the graph tend to this value. Do not say that 100%

is the highest error probability: this means we are inverting the received bits/signal
and have zero error. The worst situation, the maximum error probability is indeed
50%.

In general, using also other tools and special encoding, the error is around 10�3 (see
figure 13.9).

13.2.6 Characteristics of the BER for different constellations

In general, given a specific Eb/N0 we find that:

1) BER(M-QAM) BER(M-PSK) BER(M-PAM). The constellation with the
lowest error probability is always the M-QAM. Then the M-PSK and finally the
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Figure 13.9: Choose a constant error probability per bit (BER) and see how to increase
the number of bits an increasing Eb/N0 (dynamics of the symbols) is needed. We need
a bigger space to put all these symbols. Even if we increase the number of symbols, if
the dmin between them is kept fixed, the error probability will remain unchanged.

M-PAM (this one in base-band). The performance in base band is worse with
respect to translated band, as we can check on the formulas we have obtained.

2) BER(2-PAM)= BER(2-PSK)=BER(4-PSK)= BER(4-QAM). Where

– 2-PAM: binary antipodal in base band.
– 2-PSK: two phases (0,⇡) in translated band. Equal constellation of the

2-PAM.
– 4-PSK: four phases in translated band.
– 4-QAM: quadrature amplitude modulation, equal to 4-PSK.

When possible, use the modulation with 4 symbols instead of the one with 2
when we are in translated band, because the performance is the same but with

the double of symbols.
3) For equal constellation families, when increasing M a higher BER is found (more

errors) for a fixed Eb/N0.

13.2.7 How to decide the constellation to use

BER: Bit Error Probability.

To determine the frequency band (base/translated) to use the transfer function of the
channel must be analyzed: pass-band of the channel.

Checking the available bandwidth and the transmission-bit rate, the needed number
of levels is computed.

The specific modulation topology is determined depending on the complexity and the
expected cost of the system.
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The theoretical BER is computed to know the power that the transmitter needs to
have to reach the target BER, needed to be able to apply an appropriate correction
code of the errors and obtain an error free transmission.

If it is not possible to reach the needed BER (as a consequence of a too high power, too
much noise, non adequate complexity of the system...) we will search a compromise
between the obtainable performance and the maximum transmission speed allowed.
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A x ISI & filtro adattato - attachment
A.1 Shape of the ideal impulse

If H(f) and C(f) would not add any distortion to the signal,

p(t) = g(t) =
sin ⇡ t

Tb

⇡ t
Tb

) G(f) = Tb rect(Tbf)

If the low-pass channel has unilateral bandwidth B, the shortest bit time Tb that can

be used is equal to 1/2B, and therefore the maximum bit-rate is equal to the double
of the bandwidth (2B),

1

2Tb
= B ) bit rate =

1

Tb
= 2B

A.2 Low-pass transmission (base band)

A.2.1 Ideal case (↵ = 0)

Binary format transmission: Rbit = Rsymbol = 1/Tb

The minimum bandwidth of the signal that fulfills Nyquist’s condition, Bsignal,min Nyq:

Bsignal,min Nyq = Rsymb/2 = Rbit/2 = 1/2Tb

We need that:

Bsignal,min Nyq = 1/2Tb  Bchannel Rb  2Bchannel
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1

2Tb
= Bch ) bit rate =

1

Tb
= 2Bch

If the low-pass channel has unilateral bandwidth Bchannel, the shortest bit time Tb

that can be used is equal to 1/2Bch and therefore the maximum bit-rate is equal to
the double of the bandwidth of the channel (2Bchannel).

2M level format transmission: Rsymb = Rbit/M = 1/Tsymb

In this case:

Bsignal = Rsymb/2 = 1/2Tsymb

Bsignal = 1/2Tsymb  Bchannel

Where Bchannel still is the available unilateral bandwidth of the channel.
1

2Tsymb
= Bch ) symbol rate =

1

Tsymb
= 2Bch Rsymb  2Bch

If the low-pass channel has unilateral bandwidth Bchannel, the shortest symbol time

Tsymb that can be used is equal to 1/2Bch and therefore the maximum symbol-rate

is equal to the double of the bandwidth of the channel (2Bchannel).

A.2.2 Non-deal case (↵ > 0)

Binary format transmission: Rbit = Rsymbol = 1/Tb

Bsignal = (1 + ↵)
Rsymb

2
= (1 + ↵)

Rbit

2
=

(1 + ↵)

2Tb

Bsignal =
(1 + ↵)

2Tb
 Bchannel

1 + ↵

2Tb
= Bch ) Bch  Rb  2Bch
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2M level format transmission: Rsymb = Rbit/M = 1/Tsymb

Bsignal = (1 + ↵)
Rsymb

2
=

(1 + ↵)

2Tsymbol

Bsignal =
(1 + ↵)

2Tsymbol
 Bchannel

1 + ↵

2Tsymbol
= Bch ) Bch  Rsymb  2Bch

A.3 Pass-band transmission

A.3.1 Ideal case (↵ = 0)

Binary format transmission: Rbit = Rsymbol = 1/Tb

Bsignal,min Nyq = Rsymb = Rbit = 1/Tb

Bsignal,min Nyq = 1/Tb  Bchannel

where Bchannel is the available bilateral bandwidth of the channel.
1

Tb
= Bch ) Rbit = Bchannel

If the band-pass channel has bilateral bandwidth Bchannel, the lowest bit time Tb that
can be used is equal to 1/Bchannel and therefore the maximum bit-rate is equal to
the bandwidth of the channel Bchannel.
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2M level format transmission: Rsymb = Rbit/M = 1/Tsymb

Bsignal = Rsymb = 1/Tsymb

Bsignal = 1/Tsymb  Bchannel

1

Tsymb
= Bch ) Rsymb = Bchannel

If the band-pass channel has bilateral bandwidth Bchannel, the shortest symbol time

Tsymb that can be used is equal to 1/Bchannel and therefore the maximum symbol-

rate is equal to the bandwidth of the channel Bchannel.

A.3.2 Non-ideal case (↵ > 0)

Binary format transmission: Rbit = Rsymbol = 1/Tb

Bsignal = (1 + ↵)Rsymb = (1 + ↵)Rbit =
(1 + ↵)

Tb

Bsignal =
(1 + ↵)

Tb
 Bchannel

1 + ↵

Tb
= Bch ) Bch/2  Rb  Bch

2M level format transmission: Rsymb = Rbit/M = 1/Tsymb

Bsignal = (1 + ↵)Rsymb =
(1 + ↵)

Tsymb

Bsignal =
(1 + ↵)

Tsymb
 Bchannel

1 + ↵

Tsymb
= Bch ) Bch/2  Rsymb  Bch
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B x Graph of the Q-function

Figure B.1: Average probability of symbol error Pe
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